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If the large-scale anomalies in the temperature power spectrum of the cosmic microwave background are
of primordial origin, they may herald modifications to the slow-roll inflationary paradigm on the largest
scales. We study the possibility that the origin of the large-scale power suppression is a modification of
initial conditions during slow roll as a result of a pre-slow-roll phase during which the inflaton evolves
rapidly. This stage is manifest in a potential in the equations for the Gaussian fluctuations during slow roll
and modifies the power spectra of scalar perturbations via an initial condition transfer function T ðkÞ. We
provide a general analytical study of its large- and small-scale properties and analyze the impact of these
initial conditions on the infrared aspects of typical test scalar fields. The infrared behavior of massless
minimally coupled test scalar field theories leads to the dynamical generation of mass and anomalous
dimensions, both depending nonanalytically on T ð0Þ. During inflation, all quanta decay into many quanta
even of the same field because of the lack of kinematic thresholds. The decay leads to a quantum entangled
state of subhorizon and superhorizon quanta with correlations across the horizon. We find the modifications
of the decay width and the entanglement entropy from the initial conditions. In all cases, initial conditions
from a “fast-roll” stage that lead to a suppression in the scalar power spectrum at large scales also result in a
suppression of the dynamically generated masses, anomalous dimensions and decay widths.
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I. INTRODUCTION

Inflation provides a solution to the horizon and flatness
problems and a mechanism for generating scalar (curva-
ture) and tensor (gravitational wave) quantum fluctuations
[1–4] which seed the small temperature inhomogeneities in
the cosmic microwave background (CMB) upon reentering
the particle horizon during recombination. Although there
are several different inflationary scenarios, most of them
predict a nearly Gaussian and nearly scale-invariant power
spectrum of adiabatic fluctuations (for reviews, see [5–9]).
Observations of the CMB offer compelling evidence in

support of the inflationary paradigm, confirming that
anisotropies are well described by adiabatic, Gaussian,
and nearly scale-invariant fluctuations [10–12] and are
beginning to discriminate among different scenarios.
Recent results from the Planck collaboration [12] have

provided the most precise analysis of the CMB to date,
confirming the main features of the inflationary paradigm
but at the same time highlighting perplexing large-scale
anomalies, some of them, such as a low quadrupole, dating
back to the early observations of the Cosmic Background
Explorer (COBE) [13,14], confirmed with greater accuracy
by Wilkinson Microwave Anisotropy Probe (WMAP) [15]
and Planck [12]. The most recent Planck [12] data still find

a statistically significant discrepancy at low multipoles,
reporting a power deficit 5%–10% at l≲ 40 with 2.5–3.0σ
significance. This puzzling and persistent result stands out
in an otherwise consistent picture of ΛCDM insofar as the
CMB power spectrum is concerned.
The large-scale suppression of the primordial power spec-

trum on super Hubble scales and its statistical significancewere
analyzed early on [16,17] within the context of the original
COBE-differential microwave radiometer data. These refer-
ences report on a systematic analysis of possible mechanisms
for large-scale suppression (see Refs. [16,17] and references
therein) and their statistical significance with the conclusion
that in inflationary scenarios the suppression on super-Hubble
scales are expected to be of low statistical significance. The
latest results from Planck [12] rule out foreground contami-
nation as the origin of the large-scale suppression but also
highlight that at 2.5–3.0σ this suppression is still of low
statistical significance and obviously cosmic variance limited.
The conclusion of Ref. [17] is that if suppression on Hubble
scales is indeed measured with sufficient statistical signifi-
cance, complementary measurements such as polarization, for
example, can serve as consistency checks.
The interpretation and statistical significance of these

anomalies are a matter of much debate, but being associated
with the largest scales, hence the most primordial aspects of
the power spectrum, their observational evidence is not
completely dismissed. The possible origin of the large-
scale anomalies is vigorously discussed. Whether these are
of primordial origin or a consequence of the statistical
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analysis (masking) or secondary anisotropies is still an
open question. Recent studies claim the removal of some of
the large-scale anomalies (including the suppression of
power of the low multipoles) after subtraction of the
integrated Sachs-Wolfe effect [18,19]; however, a different
analysis of the WMAP9 [11] data still finds a statistically
significant discrepancy at low multipoles [20], suggesting
that the possibility of the primordial origin of the large-
scale anomalies merits further study. Recent analysis of this
lack of power at low l [20] and large angles [21] suggests
that while limited by cosmic variance the possibility of the
primordial origin of the large-scale anomalies cannot be
dismissed and merits further study.
The simpler inflationary paradigm that successfully

explains the cosmological data relies on the dynamics of
a scalar field, the inflaton, evolving slowly during the
inflationary stage with the dynamics determined by a fairly
flat potential. This simple, yet observationally supported
inflationary scenario is referred to as slow-roll inflation
[5–9]. Within this scenario, wave vectors of cosmological
relevance cross the Hubble radius during inflation with
nearly constant amplitude leading to a nearly scale-invari-
ant power spectrum. The quantization of the Gaussian
fluctuations (curvature and tensor) is carried out by
imposing a set of initial conditions so that fluctuations
with wave vectors deep inside the Hubble radius are
described by Minkowski space-time free-field mode func-
tions. These are known as Bunch-Davies initial conditions
[22] (see for example [5,7–9] and references therein).
The issue of modifications of these initial conditions and

the potential impact on the inflationary power spectra
[16,17,23–32], enhancements to non-Gaussianity [33–39],
and large-scale structure [40] have been discussed in the
literature. Whereas the recent results from Planck [12]
provide tight constraints on primordial non-Gaussianities,
including modifications from initial conditions, these con-
straints per se do not apply directly to the issue of initial
conditions on other observational aspects.
Non-Bunch-Davies initial conditions arising from a pre-

slow-roll stage during which the (single) inflaton field
features a fast-roll dynamics have been proposed as a
possible explanation of power suppression at large scales
[41–46]. More recently, a detailed analysis of modifications
of power spectra for curvature and tensor perturbations
from a kinetic dominated pre-slow-roll stage has been
reported [47].
Alternative pre-slow-roll descriptions in terms of inter-

polating scale factors preinflation (and postinflation) have
been discussed in Ref. [48], and the impact of initial
conditions from high-energy models on power spectra and
non-Gaussianities and the tensor to scalar ratio was studied
in Refs. [49–52].
The largest scales that manifest the suppression in the

power spectrum correspond to fluctuations in which the
wave vectors exited the Hubble radius about 60 e-folds

before the end of inflation; therefore, if the large-scale
anomalies are of primordial origin and herald new physics,
an explanation must be sought in the infrared sector of
inflationary perturbations.
It has been recognized that the contribution from super-

Hubble fluctuations of massless (or nearly massless) fields
in de Sitter (or nearly de Sitter) inflation to loop corrections
of cosmological correlation functions leads to infrared and
secular divergences that hinder the reliability of the pertur-
bative expansion [53–60]. These divergences invalidate the
semiclassical approximation [61] and require nonperturba-
tive resummations [62–66] or kinetic [67] treatments.
In the seminal work of Ref. [68], it was shown that

resummation of infrared and secular divergences leads to
the dynamical generation of mass, a result that was further
explored in Ref. [69], and more recently, a self-consistent
mechanism of mass generation for scalar fields through
infrared fluctuations has been suggested [60,61,65,70–73].
Furthermore, the lack of a global timelike killing vector

leads to remarkable physical effects in inflationary cosmol-
ogy; for example, it implies the lack of kinematic thresholds
(a direct consequence of energy-momentum conservation)
and the decay of fields even in their own quanta [65,74,75],
a result that was also investigated for massive fields in
Ref. [76,77] and confirmed in general in Ref. [78].
If a parent particle decays into two or more daughter

particles, the quantum state that describes the daughter
particles is an “entangled state” [79]; the entanglement is a
consequence of conservation laws, such as momentum,
angular momentum, etc. Recently it was recognized that in
inflationary cosmology the decay of a particle into sub-
horizon and superhorizon quanta produces an entangled
state with quantum correlations across the Hubble
radius [80].

A. Motivations, goals and summary of results

Our study is motivated by the persistency of the power
suppression at large scales as evidenced in the Planck data
[12] and the possibility that these anomalies are of
primordial origin and reflect novel physical infrared effects
with observational consequences.
Our goals in this article are twofold: (i) to study in detail

the modifications of initial conditions within the paradigm
of single field inflation but described by an early pre-slow-
roll stage in which the inflaton field undergoes fast-roll
dynamics as proposed in Refs. [41–46] and more recently
in Ref. [47] and (ii) to assess how the modified initial
conditions impact infrared phenomena in scalar fields. In
particular, we focus on the impact of non-Bunch-Davies
initial conditions as a consequence of a pre-slow-roll stage
on nonperturbative phenomena, such as dynamical mass
generation, decay of quanta, and superhorizon correlations
arising from the quantum entanglement of the daughter
particles. To the best of our knowledge, the effect of initial
conditions on infrared effects such as dynamical mass
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generation and decay of single-particle excitations has not
been studied.
We consider the case in which non-Bunch-Davies initial

conditions during inflation are a consequence of a pre-
slow-roll stage during which the inflaton undergoes fast-
roll dynamics. This fast-roll stage prior to slow roll results
in a potential in the equations of motion of Gaussian
fluctuations and leads to a change of initial conditions
during the slow-roll stage via Bogoliubov coefficients.
We begin with a description of a fast-roll stage domi-

nated by the kinetic term of the inflaton and follow with a
detailed analysis of superhorizon and subhorizon behavior
of the Bogoliubov coefficients describing non-Bunch-
Davies initial conditions during the inflationary stage
and how these modify the large-scale power spectrum of
fluctuations. The effect of these non-Bunch-Davies initial
conditions is encoded in the power spectra of scalar
perturbations via a “transfer function” T ðkÞ.
Implementing methods from the quantum theory of

scattering, we provide a general analytic study of the
superhorizon and subhorizon limits of the initial condition
transfer function T ðkÞ and find that for superhorizon
momenta

T ðkÞ≃ T ð0Þ þOðk2Þ
and obtain an explicit expression for T ð0Þ. For subhorizon
momenta, we find

T ðkÞ≃ 1þOð1=k4Þ:
We extract the form of the mode functions modified by

these initial conditions in the superhorizon limit and study
in detail how this transfer function modifies the infrared
behavior in typical scalar field theories, in particular the
modification of dynamically generated masses and the
width of the single-particle states.
We find that the dynamically generated masses induced

by these infrared divergences depend nonanalytically on
the transfer function. As a consequence of dynamical mass
generation, the scalar power spectrum features anomalous
dimensions that depend nonanalytically on T ð0Þ. The
decay width of single-particle quanta and the entanglement
entropy from integrating out superhorizon fluctuations
depend also on this quantity.
We find that a kinetic-dominated fast-roll stage prior to

slow roll leads to an attractive potential in the scalar mode
equations leading to jT ð0Þj < 1, and the power spectrum
and infrared correlators are suppressed at large scales. This
suppression is also manifest in the dynamically generated
masses, anomalous dimensions, decay widths and entan-
glement entropy.

II. FAST-ROLL STAGE

In this section, we summarize the main aspects of a
kinetic dominated pre-slow-roll stage or fast-roll stage.

More details and a complete analysis of the matching to
slow roll can be found in Ref. [47].
We consider a spatially flat Friedmann-Robertson-

Walker (FRW) cosmology with

ds2 ¼ dt2 − a2ðtÞðd~xÞ2 ¼ C2ðηÞ½dη2 − ðd~xÞ2�;
CðηÞ≡ aðtðηÞÞ; (2.1)

where t and η stand for cosmic and conformal time,
respectively. The dynamics of the scale factor in single
field inflation is determined by Friedmann and covariant
conservation equations

H2 ¼ 1

3M2
Pl

�
1

2
_Φ2 þ VðΦÞ

�
; Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0:

(2.2)

During the slow-roll near de Sitter stage,

H2
sr ≃ VsrðΦÞ

3M2
Pl

; 3H _Φþ V 0
srðΦÞ≃ 0: (2.3)

This stage is characterized by the smallness of the (poten-
tial) slow-roll parameters [5–9]

ϵV ¼ M2
Pl

2

�
V 0
srðΦÞ

VsrðΦÞ
�
2 ≃ _Φ2

sr

2M2
PlH

2
; ηV ¼ M2

Pl
V 00
srðΦÞ

VsrðΦÞ
;

(2.4)

(here MPl ¼ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass). The

potential slow-roll parameters ϵV , ηV have been constrained
by Planck and WMAP polarization (PlanckþWP) [12] to
be ϵV < 0.008ð95%C:L:Þ; ηV ¼ −0.010þ0.005−0.011 .
Instead, in this section we consider an initial stage

dominated by the kinetic term, namely a fast-roll stage,
thereby neglecting the term V 0 in the equation of motion for
the inflaton (2.2) and consider the potential to be (nearly)
constant and equal to the potential during the slow-roll
stage, namely, VðΦÞ≃ VðΦsrÞ≡ Vsr.

H2 ¼
�
_a
a

�
2

¼ 1

3M2
Pl

�
1

2
_Φ2 þ Vsr

�
(2.5)

Φ̈þ 3H _Φ≃ 0: (2.6)

The solution to (2.6) is given by

_ΦðtÞ ¼ _Φi

�
ai
aðtÞ

�
3

; (2.7)

an initial value of the velocity damps out, and the slow-roll
stage begins when Φ̈ ≪ 3Hsr

_Φ≃−V 0
srðΦÞ. During the

slow-roll stage when 3Hsr
_Φsr ≃−V 0

sr, it follows that
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3 _Φ2
sr

2Vsr
¼ ϵV: (2.8)

The dynamics enters the slow-roll stage when
_Φ ∼Oð ffiffiffiffiffi

ϵV
p Þ, as seen by (2.4). To a first approximation,

we assume that Eq. (2.7) holds not only for the kinetically
dominated epoch, but also until the beginning of slow-roll
( _Φ2 ∼ ϵV). The dynamics enters the slow-roll stage at a
value of the scale factor aðtsrÞ≡ asr so that

_Φsra3sr ¼ _Φia3i : (2.9)

We now use the freedom to rescale the scale factor to set

aðtsrÞ ¼ asr ¼ 1: (2.10)

This normalization is particularly convenient to establish
when a particular mode crosses the Hubble radius during
slow roll, an important assessment in the analysis below.
In terms of these definitions and Eq. (2.9), we have that

during the fast-roll stage

_ΦðtÞ ¼
_Φsr

a3ðtÞ : (2.11)

Introducing

H2
sr ≡ Vsr

3M2
Pl

; (2.12)

Friedmann’s equation becomes

_aðtÞ
aðtÞ ¼ Hsr

�
1þ ϵV

3a6ðtÞ
�
1=2

: (2.13)

This equation for the scale factor can be readily integrated
to yield the solution

aðtÞ¼
��

ϵV
3

�
1=2

sinh½θðtÞ�
�
1=3

; θðtÞ¼ θ0þ3Hsrt;

(2.14)

where θ0 is an integration constant chosen to be

e−θ0 ¼
ffiffiffiffiffi
ϵV
12

r
(2.15)

so that at long time aðtÞ ¼ eHsrt. The slow-roll stage begins
when aðtsrÞ ¼ 1, which corresponds to the value of θsr ¼
θðtsrÞ given by

e−θsr ¼ f

�
ϵV
3

�
; (2.16)

where to simplify notation later we defined

fðsÞ ¼
ffiffiffi
s

p

1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ s

p : (2.17)

Introducing the dimensionless ratio of kinetic to potential
contributions at the initial time ti

_Φ2
i

2Vsr
¼ κ (2.18)

and assuming that the potential does not vary very much
between the initial time and the onset of slow roll (this is
quantified further in Ref. [47]), it follows from (2.9) that

a6i ¼
_Φ2
sr

2Vsrκ
¼ ϵV

3κ
; (2.19)

where we have used (2.8). Combining this result with
(2.14), we find that at the initial time θi ¼ θðtiÞ is given by

e−θi ¼ fðκÞ: (2.20)

Let us introduce

εðtÞ ¼ − _H
H2

¼
_Φ2

2M2
PlH

2
¼ ϵV

a6ðtÞ þ ϵV
3

; (2.21)

where we have used the results (2.7), (2.8), (2.9) from
which it is clear that for ϵV ≪ 1 the slow-roll stage begins
at a ¼ 1 when ε ¼ ϵV þOðϵ2VÞ. With aðtÞ given by (2.14),
it follows that

εðtÞ ¼ 3

cosh2½θðtÞ� ; (2.22)

therefore, 0 ≤ ε ≤ 3, and

HðtÞ ¼ Hsr

tanh½θðtÞ� : (2.23)

The acceleration equation written in terms of εðtÞ is
given by

ä
a
¼ H2ðtÞð1 − εðtÞÞ (2.24)

so that the inflationary stage begins when εðtÞ ¼ 1. At the
initial time,

εðtiÞ ¼
3κ

1þ κ
; (2.25)

hence, for κ > 1=2 the early stage of expansion is deccel-
erated, and inflation begins when εðtinfÞ ¼ 1.
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It proves convenient to introduce the variable

xðtÞ ¼ e−θðtÞ=3 ¼
�
ϵV
12

�
1=6

e−Hsrt; (2.26)

with

xi ≡ xðtiÞ ¼ ½fðκÞ�1=3; xsr ≡ xðtsrÞ ¼ ½fðϵV=3Þ�1=3;
(2.27)

where fðsÞ is given by Eq. (2.17) and write a,H, ε in terms
of this variable leading to

aðxÞ ¼
�
ϵV
12

�
1=6 ½1 − x6�1=3

x
; (2.28)

HðxÞ ¼ Hsr
½1þ x6�
½1 − x6� ; (2.29)

εðxÞ ¼ 12x6

½1þ x6�2 : (2.30)

Conformal time ηðtÞ defined to vanish as t → ∞ is
given by

ηðtÞ ¼
Z

t

∞

dt0

aðt0Þ ¼
Z

aðtÞ

∞

da
a2HðaÞ

¼ − 1

aðtÞHðtÞ þ
Z

t

∞
εðt0Þ dt0

aðt0Þ ; (2.31)

where we integrated by parts and used the definition of ε
given by Eq. (2.21). Adding and subtracting ϵV we find

ηðtÞ¼− 1

aðtÞHðtÞð1− ϵVÞ
þ ϵV
ð1−ϵVÞ

Z
t

∞

�
εðt0Þ
εV

−1

�
dt0

aðt0Þ :

(2.32)

The argument of the integrand in the second term in
(2.32) vanishes to leading order in ϵV , ηV in the slow-roll

phase (when t > tsr). Therefore, during slow roll,
η ¼ −1=aHð1 − ϵVÞ. For numerical purposes it is conven-
ient to write η in terms of the variable x (2.26); it is given by

ηðxÞ ¼ − 1

Hsrð1 − ϵVÞ
�
12

ϵV

�
1=6

�
xð1 − x6Þ2=3
ð1þ x6Þ

þ ϵV

Z
x

xsr

dy

½1 − y6�1=3
�
12

ϵV

y6

ð1þ y6Þ2 − 1

��
: (2.33)

The number of e-folds between the initial time ti and
a given time t is given by

Neðt; tiÞ ¼
Z

t

ti

Hðt0Þdt0 ¼ 1

3
ln

� ffiffiffi
κ

p ð1 − x6ðtÞÞ
2x3ðtÞ

�
; (2.34)

with a total number of e-folds between the beginning
of the fast-roll stage at t ¼ ti and the onset of slow-roll at
tsr given by

Neðti; tsrÞ ¼
1

6
ln

�
3κ

ϵV

�
: (2.35)

Figure 1 shows ε as a function of Ne for κ ¼ 100,
ϵV ¼ 0.008. Inflation begins at Ne ≃ 0.5–0.8, and slow roll
begins at Ne ≃ 1.37–1.75. We find that this is the typical
behavior for 1 ≤ κ ≤ 100, namely for a wide range of fast-
roll initial conditions; the inflationary stage begins fairly
soon Ne;inf ≲ 1, and the fast-roll stage lasts ≲1.7 e-folds.
The results above are the leading-order contributions in

ϵV during the fast-roll stage; higher orders are studied
systematically in Ref. [47].
The latest results from the Planck collaboration [12]

confirm a 5%–10% suppression of power for l≲ 40 with
2.5–3.0σ significance. Recently, in Ref. [47], a detailed
study of the impact of the fast-roll stage on non-Bunch
Davies initial conditions for curvature perturbations and on
the suppression of the low multipoles has been reported.
The results of this reference are independent of the inflaton
potential and suggest that a 5%–10% suppression of the

FIG. 1. εðtÞ and HðtÞ=Hsr as a function of the number of e-folds from the beginning of the fast roll for κ ¼ 100 for ϵV ¼ 0.008.
Inflation starts at Ne ≃ 0.5, and slow roll starts at Ne ≲ 1.75.

PRE-SLOW-ROLL INITIAL CONDITIONS: LARGE SCALE … PHYSICAL REVIEW D 89, 063533 (2014)

063533-5



quadrupole is consistent with a fast-roll stage with a ratio of
kinetic to potential contributions 10≲ κ ≲ 100. These
results confirm more generally previous results based on
particular realizations of the inflaton potential [41–45].

III. INITIAL CONDITIONS FROM A
PRE-SLOW-ROLL STAGE

Our goal is to understand how infrared aspects of light
scalar fields with massM ≪ H are modified by the fast-roll
stage; therefore, in this and the following sections, we focus
on test scalar fields, not necessarily on the inflaton field.
The quantization of a generic minimally coupled massive

scalar field is achieved by writing

ϕð~x; ηÞ ¼ 1

CðηÞ
1ffiffiffiffi
V

p
X
~k

½α~kSðk; ηÞei
~k·~x þ α†~k

S�ðk; ηÞe−i~k·~x�;

(3.1)

where the operators α~k, α†~k
obey the usual canonical

commutation relations and the mode functions Sϕðk; ηÞ
are solutions of

�
d2

dη2
þk2−WðηÞ

�
Sðk;ηÞ¼ 0; WðηÞ¼C00ðηÞ

CðηÞ −M2C2ðηÞ:

(3.2)

This is a Schrödinger equation, with η the coordinate, k2

the energy and WðηÞ a potential that depends on the
coordinate η. The full dynamics of the inflaton field during
the fast-roll stage yields the potential

WðηÞ ¼ C00

C
−M2C2ðηÞ ¼ a½äþH _a� −M2a2ðtÞ

¼ 2a2H2

�
1 − 3

2
Δ − εðtÞ

2

�
; (3.3)

where we have introduced

Δ ¼ M2

3H2
≪ 1: (3.4)

During slow-roll inflation, the potential ε ¼ ϵV and

a2ðtÞH2ðtÞ ¼ 1

η2
ð1þ 2ϵVÞ; (3.5)

therefore, during slow roll, WðηÞ becomes

WðηÞ ¼ ν2 − 1
4

η2
; (3.6)

where to leading order in slow-roll parameters and Δ

ν ¼ 3

2
þ ϵV − Δ: (3.7)

Therefore, during the full dynamics of the inflation,
including the fast-roll stage, we write

WðηÞ≡ VðηÞ þ ν2 − 1
4

η2
; (3.8)

where the potential

VðηÞ ¼ WðηÞ − 2

η2

�
1þ 3ϵV

2
− 3Δ

2

�
: (3.9)

The potential is calculated parametrically in terms
of the variable x introduced in (2.26) and a, H, η all
functions of x given by the expressions (2.28), (2.29), and
(2.33). Figure 2 shows the typical potentials for κ ¼ 10,
100; ϵV ¼ 0.008; Δ ¼ 0.01. We studied the potentials for
a wide range of values of ϵV , Δ and κ with qualitatively
the same features.
The potentials are always negative and qualitatively of

the same form with very small variations for fixed κ the
(negative) amplitude of the potential increases with increas-
ing κ. For both ϵV ; Δ ≪ 1, the potential is quite insensitive
to their values and is mainly determined by the ratio κ.
These results are in general agreement with those of

Refs. [43–46], and more recently in Ref. [47], a more
detailed analysis confirmed the robustness of the main

FIG. 2. Potentials as a function of η from the beginning of fast roll for κ ¼ 10; 100, ϵV ¼ 0.008, Δ ¼ 0.01.
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features of the pre-slow-roll stage quite independently of
the inflationary potential (provided the potential is smooth
enough to be consistent with slow roll).
The solution of the mode equations with Bunch-Davies

initial conditions for subhorizon modes obeys the condition

Sðk; ηÞ → e−ikηffiffiffiffiffi
2k

p ; −kη → ∞; (3.10)

and up to an overall phase is given by

Sðk; ηÞ≡ gνðk; ηÞ ¼
ffiffiffiffiffiffiffiffiffi−πη
4

r
Hð1Þ

ν ð−kηÞ; (3.11)

these mode functions satisfy the Wronskian condition

W½g; g�� ¼ g0νðk; ηÞg�νðk; ηÞ − g�0ν ðk; ηÞgνðk; ηÞ ¼ −i:
(3.12)

When field quantization is carried out with these mode
functions, the vacuum state j0iBD annihilated by the
operators α~k is the Bunch-Davies vacuum. However,
the most general solution in the slow-roll regime can be
written as

Sðk; ηÞ ¼ Akgνðk; ηÞ þ Bkg�νðk; ηÞ; (3.13)

where Ak; Bk are Bogoliubov coefficients. For the creation
and annihilation operators to obey standard commutation
relations, it follows that these general combinations must
obey the Wronskian condition

W½S; S�� ¼ −i ¼ W½g; g��½jAkj2 − jBkj2�; (3.14)

from which it follows that the Bogoliubov coefficients must
obey the constraint

jAkj2 − jBkj2 ¼ 1: (3.15)

The relation between quantization with the mode func-
tions Sðk; ηÞ with general initial conditions and the more
familiar Bunch-Davies case with the mode functions gν
(3.11) is obtained from the expansion of the Fourier
components of the relevant fields; namely, the field can
be expanded in either set with corresponding annihilation
and creation operators. For example, for a scalar field

1ffiffiffiffi
V

p
X
k

a~kgνðk; ηÞei
~k·~x þ a†~kg

�
νðk; ηÞe−i~k·~x

¼ 1ffiffiffiffi
V

p
X
k

α~kSðk; ηÞei
~k·~x þ α†~k

S�ðk; ηÞe−i~k·~x; (3.16)

where a~kj0iBD ¼ 0 defines the Bunch-Davies vacuum and
α~kj0iα defines the vacuum with the general initial con-
ditions. The relation between the creation and annihilation

operators is obtained from the Wronskian conditions; it is
given by

α~k ¼ A�
ka~k − B�

ka
†
−~k; α†~k

¼ Aka
†
k − Bka−~k: (3.17)

The Bogoliubov coefficients have been discussed in the
literature [5–9], and an interpretation can be furnished by
considering the action of the α number operator on the
Bunch-Davies vacuum. It is easily shown that

BDh0jα†kαkj0iBD ¼ jBkj2; (3.18)

which suggests the interpretation that jBkj is the number of
α-vacuum particles in the Bunch Davies vacuum.
The power spectra for scalar field fluctuations (ϕ) is

given by

PðkÞ ¼ k3

2π2

���� Sðk; ηÞCðηÞ
����2: (3.19)

Evaluating these power spectra a few e-folds after hori-
zon crossing −kη ≪ 1 and using that in this regime

Hð1Þ
ν ð−kηÞ≃ iYνð−kηÞ, it follows that for −kη ≪ 1 the

general solution of the form (3.13) is given by

Sðk; ηÞ ¼ i

ffiffiffiffiffiffiffiffiffi−πη
4

r
Yνð−kηÞ½Ak − Bk�; (3.20)

therefore, the power spectra becomes

PðkÞ ¼ PBDðkÞT ðkÞ; (3.21)

where PBDðkÞ are the power spectra for Bunch-Davies
modes gνðk; ηÞ, namely for Ak ¼ 1, Bk ¼ 0, and

T ðkÞ ¼ jAk − Bkj2 (3.22)

is a transfer function that encodes the non-Bunch-Davies
initial conditions for the respective perturbations.
The main questions are precisely these: what is the origin

of T ðkÞ and what are the properties for small and large k?
In Refs. [43–46] and more recently in Ref. [47], the

modifications of the mode equations during the fast-roll
stage, where the stage just prior to slow roll was kinetic
dominated, were invoked as a possible origin of the
Bogoliubov coefficients Ak, Bk.
Here we pursue this line of argument and consider this

possibility in detail, in particular focusing on the super-
horizon limit of the transfer function T ðkÞ (3.22) for light
test scalar fields, namely with Δ ≪ 1.
The full dynamical evolution of the inflaton leads to a

modification of the mode Equation (3.2), where WðηÞ is
now given by (3.8) in terms of the potential VðηÞ. As shown
in Fig. 2, this potential is localized in η in a narrow range
prior to the slow-roll phase [43–47], namely in the mode
Equation (3.2) WðηÞ is written as

PRE-SLOW-ROLL INITIAL CONDITIONS: LARGE SCALE … PHYSICAL REVIEW D 89, 063533 (2014)

063533-7



WðηÞ ¼ VðηÞ þ ν2 − 1=4
η2

;

VðηÞ ¼
�≠ 0 for −∞ < η < ηsr

0 for ηsr < η
; (3.23)

where ηsr determines the beginning of the slow-roll stage
when ϵV , ηV ≪ 1 (see Fig. 2).
Rather than studying the behavior of the Bogoliubov

coefficients numerically for different values of the param-
eters, we now exploit the similarity with a quantum
mechanical potential problem and implement methods
from the quantum theory of scattering to obtain the general
behavior on T ðkÞ for small and large wave vectors based
solely on the fact that the potential is negative and
localized. These are generic features of the potentials
VðηÞ as consequence of the brief fast-roll stage prior to
slow roll.
The mode Equation (3.2) can now be written as�

d2

dη2
þ k2 − ν2 − 1=4

η2

�
Sðk; ηÞ ¼ VðηÞSðk; ηÞ; (3.24)

which can be converted into an integral equation via the
retarded Green’s function Gkðη; η0Þ obeying
�
d2

dη2
þ k2 − ν2 − 1

4

η2

�
Gkðη; η0Þ ¼ δðη − η0Þ;

Gkðη; η0Þ ¼ 0 for η0 > η: (3.25)

This Green’s function is given by

Gkðη;η0Þ ¼ i½gνðk;ηÞg�νðk;η0Þ−gνðk;η0Þg�νðk;ηÞ�Θðη−η0Þ;
(3.26)

where gνðk; ηÞ is given by Eq. (3.10). The solution of
(3.24) with boundary conditions corresponding to
Bunch-Davies modes deep inside the horizon obeys
the Lippman-Schwinger integral equation familiar from
scattering theory,

Sðk;ηÞ¼ gνðk;ηÞþ
Z

0

−∞
Gkðη;η0ÞVðη0ÞSðk;η0Þdη0: (3.27)

With the Green’s function given by (3.25), this solution
can be written as

Sðk; ηÞ ¼ AkðηÞgνðk; ηÞ þ BkðηÞg�νðk; ηÞ; (3.28)

where

AkðηÞ ¼ 1þ i
Z

η

−∞
Vðη0Þg�νðk; η0ÞSðk; η0Þdη0 (3.29)

BkðηÞ ¼ −i
Z

η

−∞
Vðη0Þgνðk; η0ÞSðk; η0Þdη0: (3.30)

For a potential VðηÞ that is localized prior to the slow-roll
stage (see Fig. 2) and for η > ηsr, we can safely replace
the upper limit of the integrals η → 0, and during the
slow-roll stage, the solution (3.28) becomes

Sðk; ηÞ ¼ Akgνðk; ηÞ þ Bkg�νðk; ηÞ;
Ak ≡ Akðη ¼ 0Þ; Bk ≡ Bkðη ¼ 0Þ: (3.31)

This expression clearly suggests that mode functions
with general initial conditions follow from pre-slow-roll
stage wherein the inflaton zero mode undergoes rapid
dynamical evolution. Reference [47] provides a thorough
numerical study of the potential independently of the
inflaton potential (see the figures in this reference).
We now pursue an analytic understanding of the transfer

function T ðkÞ both for superhorizon and subhorizon modes
quite generically without specifying particular values of
κ; ϵV ; Δ but based solely on the fact that the potential VðηÞ
is localized and negative.
We first note that the η-dependent Bogoliubov coeffi-

cients (3.29) and (3.30) satisfy the relation

gνðk; ηÞA0
kðηÞ þ g�νðk; ηÞB0

kðηÞ ¼ 0; (3.32)

which implies the following relation between Wronskians

W½S; S�� ¼ W½gν; g�ν�ðjAkðηÞj2 − jBkðηÞj2Þ; (3.33)

valid at all times not only during slow roll.
Second, inserting the relation (3.28) into the Eqs. (3.29)

and (3.30) leads to the coupled Fredholm integral equations

AkðηÞ ¼ 1þ i
Z

η

−∞
fCðk; η0ÞAkðη0Þ þDðk; η0ÞBkðη0Þgdη0

(3.34)

BkðηÞ ¼ −i
Z

η

−∞
fCðk; η0ÞBkðη0Þ þD�ðk; η0ÞAkðη0Þgdη0;

(3.35)

where the coefficient functions are given by

Cðk; ηÞ ¼ jgνðk; ηÞj2VðηÞ; Dðk; ηÞ ¼ ðg�νðk; ηÞÞ2VðηÞ:
(3.36)

Upon taking derivatives with respect to conformal time,
we find the coupled differential equations

A0
kðηÞ ¼ iCðk; ηÞAkðη0Þ þ iDðk; ηÞBkðηÞ;

Akðk;−∞Þ ¼ 1 (3.37)

B0
kðηÞ ¼ −iCðk; ηÞBkðηÞ − iD�ðk; ηÞAkðηÞ;

Bkðk;−∞Þ ¼ 0: (3.38)
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It is straightforward to confirm that these equations lead to
the result

d
dη

ðjAkðηÞj2 − jBkðηÞj2Þ ¼ 0; (3.39)

which combined with the initial conditions in Eqs. (3.37)
and (3.38) yield the η-independent result

jAkðηÞj2 − jBkðηÞj2 ¼ 1: (3.40)

Along with the relation (3.33), this result implies that
W½S; S�� ¼ −i; namely, the fields quantized with the
Bunch-Davies modes and the modes Sðk; ηÞ, which are
determined by the pre-slow-roll stage, are related by a
canonical transformation.
Writing the coefficients Cðk; ηÞ; Dðk; ηÞ explicitly in

terms of Bessel functions, it follows that

Cðk; ηÞ þD�ðk; ηÞ ¼
�−πη

2

�
VðηÞ½J2νð−kηÞ

þ iJνð−kηÞYνð−kηÞ� (3.41)

Cðk; ηÞ −D�ðk; ηÞ ¼
�−πη

2

�
VðηÞ½Y2

νð−kηÞ
− iJνð−kηÞYνð−kηÞ�: (3.42)

The coupled set of linear differential Equations (3.37)
and (3.38) is difficult to solve analytically in general,
although the system is amenable to a straightforward
numerical integration. However, analytical progress can
be made in two limits: (i) the superhorizon limit −kη → 0
and (2) subhorizon modes −kη ≫ 1.

A. Superhorizon modes

For modes that crossed the horizon prior to the onset of
the slow-roll phase and either during or prior to the stage
where the inflaton field is evolving rapidly

Jνð−kηÞ≃ ð−kη=2Þν
νΓðνÞ ; Yνð−kηÞ≃−ΓðνÞ

π
ð−kη=2Þ−ν:

(3.43)

It proves convenient to define the combinations

F�ðk; ηÞ ¼ AkðηÞ � BkðηÞ; (3.44)

obeying the coupled equations

F0−ðk;ηÞ− γðηÞF−ðk;ηÞ¼ iπνγðηÞJ2νð−kηÞFþðk;ηÞ (3.45)

F0þðk;ηÞþγðηÞFþðk;ηÞ¼ iπνγðηÞY2
νð−kηÞF−ðk;ηÞ; (3.46)

where we have introduced

γðηÞ ¼
�−η
2ν

�
VðηÞ: (3.47)

Equations (3.45) and (3.46) can be simplified by writing

F�ðk; ηÞ ¼ h�ðηÞf�ðk; ηÞ;

h�ðηÞ ¼ exp

�
∓
Z

η

−∞
dη0γðη0Þ

�
(3.48)

and defining

~jðk; ηÞ≡ πνJ2νð−kηÞh2þðηÞ;
πνY2

νð−kηÞh2−ðηÞ ¼ 1

~jðk; ηÞ ; (3.49)

where we have used the limiting form (3.43) for super-
horizon modes. With these definitions one finds the
following set of coupled equations for the real and
imaginary parts,

Re f0−ðk; ηÞ ¼ −γðηÞ~jðk; ηÞIm fþðk; ηÞ (3.50)

Re f0þðk; ηÞ ¼ − γðηÞ
~jðk; ηÞ Im f−ðk; ηÞ; (3.51)

Im f0−ðk; ηÞ ¼ γðηÞ~jðk; ηÞRe fþðk; ηÞ (3.52)

Im f0þðk; ηÞ ¼
γðηÞ
~jðk; ηÞRe f−ðk; ηÞ; (3.53)

with the initial conditions

Re f�ðk; η → −∞Þ → 1; Im f�ðk; η → −∞Þ → 0:

(3.54)

Given the potentialVðηÞ, this set of equations lends itself to a
simple numerical integration. However, we can pursue
further analytical understanding by writing them into an
equivalent set of integral equations as follows: formally
integrating (3.51) and (3.53) with the initial condition (3.54)
and introducing the result into the equations for (3.50) and
(3.52), we integrate with the initial condition (3.54) and
obtain

Re f−ðk; ηÞ ¼ 1 −
Z

η

−∞
dη0γðη0Þ~jðk; η0Þ

×
Z

η0

−∞
dη00

γðη00Þ
~jðk; η00Þ Re f−ðk; η

00Þdη00 (3.55)

Im f−ðk; ηÞ ¼
Z

η

−∞
dη0γðη0Þ~jðk; η0Þ −

Z
η

−∞
dη0γðη0Þ~jðk; η0Þ

×
Z

η0

−∞
dη00

γðη00Þ
~jðk; η00Þ Im f−ðk; η00Þdη00: (3.56)

Inserting the solutions to these integral equations into
Eqs. (3.50) and (3.52) yields the solutions for fþðk; ηÞ.

PRE-SLOW-ROLL INITIAL CONDITIONS: LARGE SCALE … PHYSICAL REVIEW D 89, 063533 (2014)

063533-9



We can glean several important features from the integral
Equations (3.55) and (3.56):

(i) Re f−ðk; ηÞ has a smooth k → 0 limit as the factors
k2ν cancel between the ~j in the numerator and
denominator in the integral equations. Using the
small argument expansion of Bessel functions we
find that in the long wavelength limit

Re f−ðk; 0Þ≃ Re f−ð0; 0Þ þOðk2Þ þ � � � ; (3.57)

where Re f−ð0; 0Þ is finite.
Since ~jðk; ηÞ ∝ k2ν one notes that rescaling
Imf−ðk;ηÞ≡k2ν Im ~f−ðk;ηÞ, it follows from Eq. (3.56)
that Im ~f−ðk; ηÞ has a finite limit as k → 0; therefore,
we find that in the long wavelength limit

Im f−ðk; ηÞ≃ Ck2ν½1þOðk2Þ þ � � ��; (3.58)

where C is a finite constant. Therefore, Im½Ak¼0ðηÞ−
Bk¼0ðηÞ�¼0. From the result jAkðηÞj2 − jBkðηÞj2 ¼ 1,
this implies that the real part Re½Ak¼0 − Bk¼0� can
never vanish. Because of the initial condition, this
combination begins positive (¼ 1) in the early past and
always remains positive, and the double integral in
(3.55) is manifestly positive and finite leading to the
conclusion that

Re f−ð0; 0Þ < 1; Im f−ð0; 0Þ ¼ 0: (3.59)

From the result (3.58) above and inserting this result in
Eq. (3.51) we find that Re fþðk; ηÞ features a smooth
long wavelength limit with Re fþð0; 0Þ a finite con-
stant. Inserting the result that Re f−ðk; ηÞ is a regular
function approaching a constant in the longwavelength
limit, it follows that Im fþðk; ηÞ ∝ k−2ν and features an
infrared divergence in the longwavelength limit. These
results for fþðk; ηÞ imply that in the long wavelength
limit the sum

Ak þ Bk ∝ ik−2ν: (3.60)

It is important to recognize how, in view of this result,
the identity jAkðηÞj2 − jBkðηÞj2 ¼ 1 is fulfilled in the
longwavelength limit: from the results Im f−ð0; ηÞ ¼ 0
and the long wavelength limit Im fþðk; ηÞ ∝ k−2ν it
follows that in this limit ½ImAkðηÞ�2 ¼ ½ImBkðηÞ�2 ∝
k−4ν and ½ReAkðηÞ�2 ≃Oð1Þ; ½ReBkðηÞ�2 ≃Oð1Þ,
from which it follows that jAkðηÞj2 − jBkðηÞj2≃
Oð1Þ; namely, the singular long wavelength behavior
in the imaginary parts of the Bogoliubov coefficients
cancels out in the long wavelength limit, leaving only
the regular contributions in this limit.
During the slow-roll, near de Sitter stage the mode
functions become

Sðk; ηÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffi−πηp ½ðAk þ BkÞJνð−kηÞ
þ iðAk − BkÞYνð−kηÞ� (3.61)

in the long wavelength and long time limit; with the
result that Ak þ Bk ∝ ik−2ν and Ak − Bk ≃Oð1Þ,
it follows that

Sðk;ηÞ≃ ½ak−νð−ηÞ12þνþbk−νðAk¼0−Bk¼0Þð−ηÞ12−ν�;
(3.62)

where a, b are coefficients of Oð1Þ. Hence, although
both terms are of the same order ∝ k−ν in the long
wavelength limit, it is the second term that dominates
well after horizon crossing and the power spectrum is
determined by this term as anticipated above [see the
discussion leading up to Eqs. (3.21) and (3.22)]. In
summary for long wavelength modes at long time
η → 0, the mode functions can be approximated as

Sðk;ηÞ≃−iΓðνÞ
2π

ðAk−BkÞ
ffiffiffiffiffiffiffiffiffi−πηp �

2

−η
�

ν

k−ν: (3.63)

This result is used in the analysis of infrared correla-
tions in the next sections.

(ii) The above results combined with equations (3.44)
and (3.48) lead to

Re½Ak¼0ð0Þ − Bk¼0ð0Þ�

¼ exp

�Z
0

−∞
dη0γðη0Þ

�
Re f−ð0; 0Þ;

Im½Ak¼0ð0Þ − Bk¼0ð0Þ� ¼ 0; (3.64)

hence,

T ð0Þ¼ exp

�
2

Z
0

−∞
dη0γðη0Þ

�
½Ref−ð0;0Þ�2: (3.65)

Therefore, for an attractive potential VðηÞ < 0
it follows that γðηÞ < 0 and

T ð0Þ < 1; (3.66)

namely, for an attractive potential the long wavelength
limit of the initial condition transfer function is smaller
than one entailing a suppression of the power spec-
trum at long wavelengths. Since ½Re f−ð0; 0Þ�2 ≤ 1 for
the case of attractive potentials as found for a fast-roll
stage [43–45,47], an upper bound for the superhorizon
limit of the initial condition transfer function is

T ð0Þ ≤ exp

�
2

Z
0

−∞
dη0γðη0Þ

�
: (3.67)

This analysis confirms more generally the numerical
results obtained in Refs. [43–45,47]. Furthermore,
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using the small argument approximation of the
Bessel functions with noninteger ν the integral Equa-
tions (3.55) and (3.56) clearly show that

T ðkÞ≃ T ð0Þ þOðk2Þ þ � � � ; (3.68)

namely, it has a power series expansion in k at long
wavelengths.

B. Subhorizon modes

For modes that remain inside the Hubble radius through-
out inflation −kη ≫ 1 the integral Equation (3.27) can be
consistently solved in a Born series. In the first Born
approximation we replace Sðk; ηÞ ¼ gνðk; ηÞ in the integral
Equation (3.27) leading to

AkðηÞ≃ 1þ i
2k

Z
η

−∞
Vðη0Þdη0 (3.69)

BkðηÞ≃− e−iπν
2k

Z
η

−∞
e−2ikη0Vðη0Þdη0; (3.70)

where we have used that for subhorizon modes
gνðk; ηÞ → e−iπ2ðνþ1=2Þ=

ffiffiffiffiffi
2k

p
. The subhorizon limit of the

coefficient Bk is strongly suppressed because the Fourier
transform of the localized potential V falls off very fast for
large k as a consequence of the Riemann-Lebesgue lemma.
An integration by parts dropping the surface terms because
(i) for large k the integrand at the lower limit averages out to
zero and (ii) for η > ηsr the integrand vanishes at the upper
limit since Vðη > ηsrÞ ¼ 0 yields that during the slow-roll
stage when VðηÞ ¼ 0

BkðηÞ≃−i e
−iπν
4k2

Z
η

−∞
e−2ikη0V 0ðη0Þdη0 → jBkðηÞj2 ≲ 1

16k4
:

(3.71)

This implies that for subhorizon modes

jAkð0Þj2 − 1 ¼ jBkð0Þj2 ≲ 1

k4
; (3.72)

therefore, the number of Bunch-Davies particles falls off
very fast at large (subhorizon) momenta, and the general
initial conditions do not affect the short distance and
renormalization aspects. Therefore, for modes that are
deep within the Hubble radius during most of the slow-
roll era and, therefore, where very deep inside the Hubble
radius during the pre-slow-roll era it follows that

T ðkÞ ¼ 1þOð1=k4Þ þ � � � : (3.73)

Although the intermediate range of momenta must be
studied numerically for definite realization of the pre-slow-
roll potentials, there are several relevant consequences of

the results obtained in the superhorizon and subhorizon
limits:

(i) On the largest scales today corresponding to wave
vectors that crossed the horizon ∼60 e-folds before
the end of inflation, the initial conditions set by a
pre-slow-roll rapid dynamical evolution of the in-
flaton yield a suppression of the power spectrum
when the potential VðηÞ is attractive. This is the
situation for a fast-roll stage as confirmed numeri-
cally in Refs. [43–45,47]. This suppression may
explain at least the large-scale anomaly in the
CMB reflected on the low power for the lowest
multipoles.1

(ii) The effect of pre-slow-roll initial conditions is
negligible on small scales, those that crossed the
horizon late or near the end of slow roll inflation. For
example, scales that reentered at the time of re-
combination imprinted on the first acoustic peaks,
crossed out during ≃10 e-folds in the period lasting
about 60 e-folds before the end of inflation. These
modes were deep inside the Hubble radius during
the pre-slow-roll stage (≳60 e-folds prior to the end
of inflation), and their contribution to T ðkÞ is
strongly suppressed.

This suggests that these initial conditions may suppress
the power spectrum for the largest scales but do not modify
the spectral index and do not introduce a significant
running of the spectral index with wave vector.
Although this latter consequence must be studied in

further detail numerically, we now focus on the impact of
these types of initial conditions on the infrared aspects of
correlations for light scalar fields during de Sitter inflation,
postponing a detailed analysis for curvature perturbations to
further study. In particular, we have found that whereas
individually the Bogoliubov coefficients feature large con-
tributions for superhorizon momenta (as determined by the
result for the sum Ak þ Bk ∝ k−2ν), the power spectrum is
only sensitive to the difference and is smooth with a finite
limit for superhorizon momenta; thus, the question remains:
are there any other infrared sensitive quantities that may
feature a stronger dependenceon initial conditions?We study
below the following infrared aspects: the self-consistent
generation of mass and the decay width of single-particle
states during de Sitter inflation. Both are consequences of a
strong infrared enhancement of nearly massless fields in
inflationary cosmology and a cross correlation between
subhorizon and superhorizon modes in the decay products.

IV. INFRARED ASPECTS OF SCALAR FIELD
CORRELATIONS

Our goal is to study the influence of initial conditions on
infrared aspects of scalar field correlators, in particular to

1It is unlikely to explain the low multipole alignment or large-
scale asymmetry.
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assess how initial conditions arising from the pre-slow-roll
stage modify the self-consistent mass generated by infrared
fluctuations and also how they affect the decay of single-
particle states and cross-horizon correlations.
For the purposes of this work, only minimally coupled

scalar field theories in a spatially flat de Sitter cosmology
(the limit ϵV ; ηV → 0) are considered. The action for this
field is given by

I ¼
Z

d3xdta3ðtÞ
�
1

2
_ϕ2 − ð∇ϕÞ2

2a2
− VðϕÞ

�
: (4.1)

The potential under consideration is of the form

VðϕÞ ¼ 1

2
M2ϕ2 þ λϕp; p ¼ 3; 4: (4.2)

Passing to conformal time and conformally rescaling
the fields

aðtðηÞÞ≡ CðηÞ ¼ −1
Hη

; aðtÞϕð~x; tÞ≡ χð~x; ηÞ; (4.3)

the action can be rewritten, after discarding surface
terms, as

I ¼
Z

d3xdη

�
1

2
½χ02 − ð∇χÞ2 −M2ðηÞχ2�

− λðCðηÞÞ4−pχp
�

(4.4)

M2ðηÞ≡M2C2ðηÞ − C00ðηÞ
CðηÞ ¼ 1

η2

�
M2

H2
− 2

�
; (4.5)

where 0 ¼ d=dη. The equations of motion for the Fourier
modes in the noninteracting theory during the de Sitter
stage become

χ00~kðηÞ þ
�
k2 − 1

η2

�
ν2 − 1

4

��
χ~kðηÞ ¼ 0; ν2 ¼ 9

4
−M2

H2
:

(4.6)

Furthermore, we focus on light, nearly massless fields
with M2=H2 ≪ 1 in exact de Sitter space-time in which
case it follows that ϵV ¼ ηV ¼ 0 and

ν ¼ 3

2
− Δ; Δ ¼ M2

3H2
þ � � � ≪ 1: (4.7)

Infrared divergences arising from the nearly masslessness
of the fields are manifest as poles in Δ in the various
correlation functions [61,62,65,70,71,73]. We focus on
the leading-order infrared contributions arising from the
poles in Δ.

In order to study the effect of initial conditions set by a
pre-de Sitter stage, we now quantize the scalar field with
the general mode functions (3.31),

χðη;xÞ¼ 1ffiffiffiffi
V

p
X
k

αkSνðk;ηÞei~k·~xþα†kS
�
νðk;ηÞe−i~k·~x; (4.8)

where S1 ¼ Akgνðk; ηÞ þ Bkg�νðk; ηÞ and αj0αi ¼ 0 defines
the vacuum with general initial conditions, the Bunch-
Davies mode functions are given by (3.11), and the
coefficients Ak, Bk obey the relation (3.15).
Two results obtained in the previous section are relevant

for the analysis that follows:

T ðkÞ ¼ jAk − Bkj2 k → 0
			!

T ð0Þ þOðk2Þ þ � � � (4.9)

jAkj k→∞
				!

1þOð1=k4Þ; jBkj k→∞
				!

Oð1=k2Þ; (4.10)

with T ðkÞ a smooth function of k and T ð0Þ given by (3.65).

A. Interaction picture

The time evolution of interacting fields is handled in
a straightforward manner. In the Schrödinger picture,
a quantum state jΨðηÞi obeys

i
d
dη

jΨðηÞi ¼ HðηÞjΨðηÞi; (4.11)

where the Hamiltonian HðηÞ is explicitly a function of η in
an expanding cosmology. Defining the time evolution
operator, this has the formal solution

i
d
dη

Uðη; η0Þ ¼ HðηÞUðη; η0Þ; Uðη0; η0Þ ¼ 1 (4.12)

so that jΨðηÞi ¼ Uðη; η0ÞjΨðη0Þi. The Hamiltonian can be
separated into free and interacting pieces, HðηÞ ¼
H0ðηÞ þHiðηÞ, where H0 is the noninteraction
Hamiltonian. Defining the time evolution operator for
the free theory, U0ðη; η0Þ, so that

i
d
dη

U0ðη;η0Þ¼H0ðηÞU0ðη;η0Þ;

i
d
dη

U−1
0 ðη;η0Þ¼−U−1

0 ðη;η0ÞH0ðηÞ; Uðη0;η0Þ¼1: (4.13)

From here, the interaction picture may be defined in the
usual manner as

jΨðηÞiI ¼ UIðη; η0ÞjΨðη0ÞiI ¼ U−1
0 ðη; η0ÞjΨðηÞi (4.14)

so that UIðη; η0Þ is the interaction picture time evolution
operator such that
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d
dη

UIðη; η0Þ ¼ −iHIðηÞUIðη; η0Þ; UIðη0; η0Þ ¼ 1;

HIðηÞ ¼ U−1
0 ðη; η0ÞHiðηÞU0ðη; η0Þ: (4.15)

For the interactions that are considered here, the interaction
Hamiltonian is given explicitly by

HIðηÞ ¼
λ

ð−HηÞ4−p
Z

d3xðχð~x; ηÞÞp: (4.16)

To leading order in λ, the standard solution in perturbation
theory is

UIðη; η0Þ ¼ 1 − i
Z

η

η0

dη0HIðη0Þ þ � � � : (4.17)

B. The infrared contribution to the tadpole

The tadpole h0jχ2ð~x; ηÞj0i with j0i being the vacuum
with non-Bunch-Davies initial conditions plays an impor-
tant role in the following discussion. It is given by

h0jχ2ð~x; ηÞj0i ¼
Z

d3k
ð2πÞ3 jSðk; ηÞj

2: (4.18)

Our goal is to extract the most relevant infrared contribu-
tions. In order to understand the influence of the
Bogoliubov coefficients Ak; Bk determined by the initial
conditions, we revisit the evaluation of the tadpole for the
Bunch-Davies case, namely Ak ¼ 1; Bk ¼ 0, Sðk; ηÞ ¼
gνðk; ηÞ to highlight the origin of the most infrared relevant
contributions. In this case, making a change of variables
y ¼ −kη the tadpole is given by

BDh0jχ2ð~x;ηÞj0iBD ¼ 1

8πη2

Z
Λp=H

0

dy
y
y3jHð1Þ

ν ðyÞj2; (4.19)

where we have introduced an ultraviolet cutoff in physical
coordinates. To isolate the infrared divergences for Δ ≪ 1,
we write the integral above as

Z
Λp=H

0

dy
y
y3jHð1Þ

ν ðyÞj2¼
Z

μp=H

0

dy
y
y3jHð1Þ

ν ðyÞj2

þ
Z

Λp=H

μp=H

dy
y
y3jHð1Þ

ν ðyÞj2; (4.20)

with μp → 0 an infrared physical cutoff. For the first
integral we use ν ¼ 3=2 − Δ with 0 < Δ ≪ 1 and

z3jHð1Þ
ν ðzÞj2 ¼z→0

�
2νΓðνÞ

π

�
2

z2Δ; (4.21)

thus, Δ > 0 regulates the infrared behavior of the tadpole,
and the first integral yields

Z μp
H

0

dz
z
z3jHð1Þ

ν ðzÞj2

¼ 2

π

�
1

2Δ
þ μ2p
2H2

þ γ − 2þ ln
2μp
H

þOðΔÞ
�
; (4.22)

where we have displayed the pole in Δ and the leading
infrared logarithm. In the second integral in (4.20) we set
ν ¼ 3=2, and combining its result with (4.22) we find that
the dependence on the infrared cutoff μp cancels in the limit
μp → 0 leading to the following final result for the tadpole
with Bunch-Davies vacuum

BDh0jχ2ð~x;ηÞj0iBD
¼ 1

8π2η2

�
Λp

2

H2
þ2 ln

Λp

H
þ 1

Δ
þ2γ−4þOðΔÞ

�
: (4.23)

While the quadratic and logarithmic ultraviolet divergences
are regularization scheme dependent, the pole in Δ arises
from the infrared behavior and is independent of the
regularization scheme. In particular this pole coincides
with that found in the expression for hϕ2ð~x; tÞi in
Refs. [61,65,70,81]. The ultraviolet divergences, in which-
ever renormalization scheme, require that the effective field
theory be defined to contain renormalization counterterms
in the bare effective Lagrangian. For the tadpole, this
counterterm is of the form χðηÞJðηÞ, and JðnÞ is required to
cancel the ultraviolet divergences. Thus, the renormalized
tadpole in the Bunch-Davies vacuum is given by

IBDðηÞ≡ BDh0jχ2ð~x; ηÞj0irenBD ¼ 1

8π2η2
1

Δ
½1þ � � ��; (4.24)

where the dots stand for higher order terms in Δ ≪ 1.
We are now in position to understand the effect of non-

Bunch-Davies initial conditions. The most infrared diver-
gent contribution is determined by superhorizon modes for
which gνðk; ηÞ≃ i

ffiffiffiffiffiffiffiffiffi−πηp
Yνð−kηÞ=2; hence,

jSðk; ηÞj2 ≃−πη
4

Y2
νð−kηÞT ðkÞ; −kη ≪ 1; (4.25)

the fast falloff of the Bogoliubov coefficients with large
k entails that the ultraviolet behavior of the tadpole is the
same as in Bunch-Davies vacuum so that renormalization
of the tadpole proceeds just as in the Bunch-Davies case.
The pole in Δ in (4.23) arises from a narrow band of
superhorizon wave vectors with the infrared cutoff μ → 0.
The results of the previous section show that for super-
horizon wave vectors T ðkÞ ¼ T ð0Þ þOðk2Þ þ � � � is a
smooth function of k with T ð0Þ given by (3.65).
Therefore, to obtain the leading-order infrared contribution
for Δ ≪ 1 we replace T ðkÞ → T ð0Þ in (4.25) because the
higher powers of k in T ðkÞ yield terms that are subleading
for Δ ≪ 1. Furthermore, since for large k we found that
T ðkÞ≲ 1=k4 the ultraviolet divergences of the tadpole are
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the same as for the Bunch-Davies case, and renormalization
is achieved in the same manner as with Bunch-Davies
initial conditions.
Therefore, for general initial conditions set during a pre-

slow-roll stage, we obtain

IðηÞ≡ h0jχ2ð~x; ηÞj0iren ¼ 1

8π2η2
T ð0Þ
Δ

½1þ � � ��: (4.26)

Although this discussion was focused on the tadpole,
similar arguments allow us to extract the leading infrared
contributions in other correlators. The main point is that the
leading infrared divergences that are responsible for poles
in Δ ≪ 1 arise from a small band of superhorizon wave
vectors for which T ðkÞ≃ T ð0Þ.

C. Self-consistent mass generation

1. ϕ3 theory

For this particular field theory, radiative corrections
induce a nonzero expectation value of the field in the
dressed vacuum. At leading order for a general interaction
Hamiltonian, the dressed vacuum evolves in time as

j~0ðηÞi ¼ Uðη; ηoÞj~0ðηoÞi

≃
�
1 − i

Z
η

ηo

dη0HIðη0Þ þ � � �
�
j~0ðηoÞi (4.27)

so that, to leading order, the expectation value of the field is
given by

h~0ðηÞjχðy; ηÞj~0ðηÞi − h~0ðηoÞjχðy; ηÞj~0ðηoÞi

≡ δhχðy; ηÞi ¼ ih~0ðηoÞj
Z

η

ηo

dη0½HIðη0Þ; χðy; ηÞ�j~0ðηoÞi:

(4.28)

Specializing to λϕ3 theory results in

δhχi ¼ 3iλ
Z

η

ηo

dη0Cðη0Þ

×
Z

d3x½χðx; η0Þ; χðy; ηÞ�h~0ðηoÞjχ2ðx; η0Þj~0ðηoÞi;

(4.29)

where the commutator is readily evaluated using the
expansion of the field and creation/annihilation operator
commutation relations, the result being

Z
d3x½χðx; η0Þ; χðy; ηÞ� ¼ ½Sðk; η0ÞS�ðk; ηÞ

− S�ðk; η0ÞSðk; ηÞ�k¼0: (4.30)

This is readily evaluated using the limiting form of Bessel
functions, and it can be shown that

Sðk; η0ÞS�ðk; ηÞjk→0 ¼
−π ffiffiffiffiffiffi

ηη0
p
4

�
ðjAkj2 þ jBkj2Þ

�
1

Γ2ðνþ 1Þ
�
kηη0

4

�
ν

þ Γ2ðνÞ
π2

�
kηη0

4

�−ν�

þ ðAkB�
k þ BkA�

kÞ
�

1

Γ2ðνþ 1Þ
�
k2ηη0

4

�
− Γ2ðνÞ

π2

�
kηη0

4

�−ν�
þ ðAkB�

k − BkA�
kÞ
�−i
πν

���
η

η0
−ν
�

þ
�
η0

η

−ν��
ðjAkj2 − jBkj2Þ

�−i
πν

���
η0

η

�−ν −
�
η

η0

�−ν��
: (4.31)

Note that the first three terms would diverge in the long
wavelength limit; however, these are all real, and
Sðk;η0ÞS�ðk;ηÞ− S�ðk;η0ÞSðk;ηÞ ¼ 2i ImðSðk;η0ÞS�ðk;ηÞÞ.
Hence, these terms cancel in the expectation value. Since
jAkj2 − jBkj2 ¼ 1, the commutator becomesZ

d3x½χðx; η0Þ; χðy; ηÞ� ¼ i
2ν

ðηβþη0β− − ηβ−η0βþÞ;

β� ¼ 1

2
� ν; (4.32)

which is independent of the vacuum state.
Therefore, the full expression for the expectation value

becomes

δhχi¼−3λ
2νH

Z
η

ηo

dη0

η0
½ηβþη0β− −ηβ−η0βþ�h0jχ2ð~x;η0Þj0i: (4.33)

To leading order inΔ the renormalized tadpole contribution
is given by (4.26)

δhχi¼−3λT ð0Þ
16πνHΔ

Z
η

ηo

dη0

η03
½ηβþη0β− −ηβ−η0βþ�

¼−λT ð0Þ
8πΔHη

�
1

Δ

�
1−

�
η

ηo

�
Δ
�
−1

3

�
1− η3

η3o

��
; (4.34)

therefore, to leading order in Δ and as η=η0 → 0, we find

δhχi ¼ −λT ð0Þ
8πHΔ2η

þOðΔÞ: (4.35)

If the field initially has a vanishing expectation value, the
interactions lead to a nonvanishing expectation value in the
interacting ground state asymptotically given by
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h0jχðy; ηÞj0i ¼ χ̄ðηÞ → −λ
8π2Hη

T ð0Þ
Δ2

þOðΔÞ: (4.36)

Then the unscaled field obtains a constant expectation value
for η=ηo → 0,

hϕðy; ηÞi ¼ 1

aðηÞ hχðy; ηÞi ¼
λ

8π2
T ð0Þ
Δ2

þOðΔÞ: (4.37)

This result which includes the effect of initial conditions is
a generalization of that found in Ref. [65] and is noteworthy
because infrared effects lead to an asymptotic expectation
value which is time independent, signaling the emergence
of a nontrivial minimum of an effective action.
The emergence of a nontrivial expectation value and a

minimum of the effective action implies that it is necessary
to redefine the field shifting by this expectation value,
namely

χðx; ηÞ ¼ Ψðx; ηÞ þ χ̄ðηÞ; h~0jΨðx; ηÞj~0i ¼ 0: (4.38)

This is the origin of the mechanism of self-consistent
mass generation considering that the bare Lagrangian
describes a massless scalar field with cubic interaction,
shifting by the vacuum expectation value. The cubic term
now written in terms of Ψ becomes

HI ¼
Z

d3x

�
1

η2
M2

2H2
Ψ2 − λ

Hη
Ψ3

�
; (4.39)

where

1

η2
M2

2H2
¼ −3 λ

Hη
χ̄ðηÞ: (4.40)

This suggests a self-consistent mass generation mechanism
by replacing χ̄ by the result (4.36), namely,

1

η2
M2

2H2
¼ 3λ2

8π2H2η2
T ð0Þ
Δ2

½1þOðΔÞ�: (4.41)

Since Δ ¼ M2=3H2 this is a self-consistent condition with
the result

M ¼ H
ffiffiffi
3

p �
λ

2πH

�
1=3

½T ð0Þ�1=6 ≡MBD½T ð0Þ�1=6; (4.42)

where MBD is the self-consistent mass obtained with
Bunch-Davies initial conditions [65]. It is reassuring to
find that the sign of the induced expectation value is
consistent with M2 > 0; otherwise, the radiatively induced
squared mass would indicate an instability in the theory.
This is a noteworthy result. The strong infrared behavior

leads to a self-consistent mass generation which is non-
analytic in the transfer function for initial conditions.

2. ϕ4 theory

For this theory, the Lagrangian density is now
LI ¼ −λχ4, and as discussed previously, the expectation
value of the field remains zero. As discussed in Ref. [65],
the mechanism of self-consistent mass generation for a
massless field is accomplished by introducing a mass term
in the free Lagrangian and then subtracting it out again as
a counterterm in the interaction part

LI ¼
1

2
C2ðηÞM2χ2 − λχ4 (4.43)

and requesting that the tadpole cancels the mass counter-
term leading to a self-consistent condition akin to the
Hartree resummation [70–73], namely,

M2

2H2η2
¼ 6λh0jχ2ðx; ηÞj0i; (4.44)

where the renormalized tadpole is given by (4.26).
Therefore to leading order in Δ, the self-consistent mass
becomes

M ¼ H

�
9λT ð0Þ
2π2

�
1=4 ≡MBD½T ð0Þ�1=4: (4.45)

Again the Bunch-Davies case corresponds to T ð0Þ ¼ 1;
thus, the self-consistent condition leading to dynamical
mass generation from infrared divergences yields a non-
analytic dependence of the generated mass upon the initial
conditions.
The comparison between the infrared generated mass for

Bunch-Davies initial conditions and the puzzling discrep-
ancy obtained with other approaches [60,61,68,70,71,73]
has been discussed in Ref. [65] (see the first reference).

D. Initial condition-dependent anomalous dimensions

The self-consistent mass generation through infrared
divergences leads to the following expressions for Δ from
the self-consistent solutions for cubic (3) and quartic (4)
interactions, respectively,

Δð3Þ ¼
�
λð3Þ

ffiffiffiffiffiffiffiffiffiffi
T ð0Þp

2πH

�2
3

; (4.46)

Δð4Þ ¼
�
λð4ÞT ð0Þ

2π2

�1
2

; (4.47)

where λð3Þ, λð4Þ are the cubic and quartic couplings,
respectively.
This result, in turn, implies that the power spectrum

acquires nonperturbative initial condition-dependent anoma-
lous dimensions, namely
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P ∝ k3h0jχ~kðηÞχ−~kðηÞj0i ∝ k2Δ; (4.48)

where Δ is given by (4.46) and (4.47) for cubic and quartic
self-interactions, respectively.
We highlight that for initial conditions determined by a

fast-roll stage prior to slow roll, the long wavelength power
spectrum is suppressed, and all of the corrections from
the initial conditions on self-consistent masses and anoma-
lous dimensions are suppressed with respect to the Bunch-
Davis result. Hence, initial conditions that could explain
the anomalously low quadrupole in the CMB lead con-
sistently to a suppression of all infrared effects, including
the nonperturbatively generated masses and anomalous
dimensions.

V. PARTICLE DECAY: WIDTH DEPENDENCE ON
INITIAL CONDITIONS

In an expanding cosmology, the lack of a global timelike
Killing vector implies the lack of thresholds for particle
decay (a consequence of energy-momentum conservation).
Therefore, a single-particle state of a field can decay into
multiple particle states of the same field as discussed in
Refs. [74,75] confirmed for heavy fields in Refs. [76,77]
and more generally (and thoroughly) for a scalar theory
with cubic interactions in [78]. The usualmethod to extract a
decay rate in Minkowski space-time relies on energy-
momentum conservation that leads to a transition proba-
bility that grows linearly in time at long times, namely a
time-independent decay rate. The lack of energy conserva-
tion in an expanding cosmology prevents the usual imple-
mentation of what is, essentially, Fermi’s Golden rule;
instead, the transition probability and ultimately the full-
time evolution of quantum states must be studied in detail.
In Ref. [64] a nonperturbative field theoretical generali-

zation of the Wigner-Weisskopf method to study the decay
of single-particle states was adapted to inflationary cos-
mology, and in Ref. [65], this method was generalized and
extended to obtain in a consistent manner both the infrared-
induced self-consistent masses and the time-dependent
decay width of particle states. The details of these
methods have been explained in Refs. [64,65,79,80],
and the reader is referred to these references for details.
For self-consistency we give a brief summary of the
method in Appendix B.

A. Transition amplitude and probability: cubic vertex

To identify the corrections to masses and the decay
widths, consider the interaction of a scalar fields through
a cubic vertex. The interaction Hamiltonian is given by

Hi ¼ λ

Z
d3xaðtÞ3ϕ3 ¼ λCðηÞ

Z
d3xχ3ðx; ηÞ; (5.1)

where the conformally rescaled fields have been used.
Using the expansion of the field Equation (4.8), the matrix

element for process χ → 2χ can be readily obtained. It is
given by

Aχ→χχ ¼
−6iλ
V1=2

Z
η

ηo

dη0Cðη0ÞSðk; η0ÞS�ðk − q; η0ÞS�ðq; η0Þ;

(5.2)

and the total transition probability is given by

Pχ→χχ ¼
X
q

jAj2 ≡
Z

η

ηo

dη1dη2Σðk; η1; η2Þ; (5.3)

where

Σðk; η1; η2Þ ¼
36λ2

H2η1η2

Z
d3q
ð2πÞ3 S

�ðk; η1ÞSðk; η2ÞSðk − q; η1Þ

× S�ðk − q; η2ÞSðq; η1ÞS�ðq; η2Þ; (5.4)

with the property

Σðk; η1; η2Þ ¼ Σ�ðk; η2; η1Þ: (5.5)

Inserting a factor of 1 ¼ θðη2 − η1Þ þ θðη1 − η2Þ in the
integral and making use of (5.5) yields

Pχ→χχðk; ηÞ ¼ 2

Z
η

η0

dη2

Z
η2

η0

dη1 Re½Σðk; η1; η2Þ�; (5.6)

so the transition rate is easily identified to be

ΓðηÞ ¼ d
dη

Pχ→χχðk; ηÞ ¼ 2

Z
η

η0

dη0 Re½Σðk; η; η0Þ�: (5.7)

In Minkowski space-time where energy-momentum
conservation holds, the transition probability for a decaying
state grows linearly (secularly) in time, leading to a
constant transition rate and an overall energy momentum
delta function in the phase space integrals determining the
kinematic reaction thresholds. Only when the transition
probability grows with time is the process associated with
the decay of the parent particle.
In an expanding cosmology, the lack of energy con-

servation (energy momentum is covariantly conserved)
leads to the lack of kinematic thresholds, and the decay
process χ → 2χ is allowed [64,75]. In Ref. [65] it is shown
in detail nonperturbatively that an initial single-particle
state decays as

jΨðηÞi ∝ jΨðη0Þie−
1
2

R
η

η0
Γðη0Þdη0

: (5.8)

B. Decay rate

In order to calculate the decay rate of χ → 2χ, we need to
evaluate Σðk; η1; η2Þ given by Eq. (5.4). We focus on the
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long time limit η1, η2 → 0 and the leading order in Δ.
The calculation is involved and has been carried out in
detail for the case of Bunch-Davies initial conditions in
Ref. [65]. The details of this calculation for general initial
conditions with the Bogoliubov coefficients are relegated to
Appendix A.
We find to leading order in Δ and in the long time limit,

Σðk; η1; η2Þ ¼
18λ2T ð0Þ
π2H2Δ

jSðk; η1Þj2
ðη1Þ2

jSðk; η2Þj2
ðη2Þ2

þOðΔ0Þ:
(5.9)

The factor T ð0Þ originates in the infrared region that
yields the pole in Δ corresponding to one of the internal
lines in the self-energy, either q≃ 0 or q≃ k, within the
band of superhorizon wave vectors. To leading order in Δ
the self-energy is purely real, and the decay rate becomes

Γðk; ηÞ ¼ 36λ2

π2H2

T ð0Þ
Δ

jSðk; ηÞj2
η2

Z −η0
−η

dð−η0Þ jSðk; η
0Þj2

ðη0Þ2 :

(5.10)

At long times when the external momentum k crosses
the Hubble radius, this expression simplifies a few
e-folds after crossing since in this limit jSðk; ηÞj2 →
T ðkÞð−πη=4ÞY2

νð−kηÞ, and using the expression (3.43)
we find in this limit

Γðk; ηÞ≃ 9λ2T ð0ÞT 2ðkÞ
π2H2Δð−ηÞð−kηÞ6 : (5.11)

The Bunch-Davies result is obtained by replacing
T ðkÞ → 1 and coincides with the result obtained in
Ref. [65].2

C. Simple rules

The analysis presented above yields as corollary the
following set of simple rules to assess the effect of non-
Bunch-Davies in the correlators:

(i) Correlation functions feature products of mode
functions of the form Sðk; ηÞS�ðk; η0Þ; for values
of k so that −kη, −kη0 ≫ 1, this product can be
replaced by

Sðk; ηÞS�ðk; η0Þ → π

4
T ðkÞðηη0Þ1=2Yνð−kηÞYνð−kη0Þ:

(5.12)

(ii) In the momentum integrals that lead to infrared
divergences and resulting in poles in Δ, the initial
condition transfer function can be expanded as
T ðkÞ≃ T ð0Þ þOðk2Þ þ � � �. The higher order

powers of k do not yield infrared enhancements;
therefore, the poles in Δ are multiplied by T ð0Þ.
Namely, for poles in Δ that arise from momentum
integration, it follows that

1

Δ
→

T ð0Þ
Δ

: (5.13)

These simple rules allow us to extract the contribu-
tion from non-Bunch-Davies initial conditions, en-
coded in T to the various correlation functions.

VI. ENTANGLEMENT ENTROPY: EFFECT OF
INITIAL CONDITIONS ON CORRELATIONS

ACROSS THE HORIZON

In the λϕ3 theory considered here, a single-particle state,
j1~ki, decays into a two-particle state, j1~k−~pij1~pi, with the

corresponding amplitude given by (5.2). The full quantum
state obtained from the time evolution is a linear super-
position of the two particle states summed over the
momentum ~p. Such a quantum state is entangled. This
is a general result highlighted in Ref. [79]: the decay of a
single-particle state leads to a quantum entangled state with
correlations between the daughter particles as a conse-
quence of conservation laws. In a spatially flat FRW
cosmology, spatial momentum is conserved. In Ref. [80]
it was realized that the decay of an initial single-particle
state with wavelength deep inside the Hubble radius
produces two particle states which in the case of light
fields the leading contribution in Δ corresponds to the
decay into a subhorizon particle and a superhorizon
particle. This is an entangled state with correlations
between the daughter particles across the Hubble radius.
As discussed in detail in Ref. [80], this process is
dominated by the emission and absorption of superhorizon
quanta, and therefore, it is enhanced in the infrared by poles
in Δ which is a hallmark of the infrared aspects associated
with light fields in de Sitter (or near de Sitter) space-time.
The main tool to study the time evolution of

single-particle states and the correlated quantum state
resulting from the decay is the quantum field theory
version of the Wigner-Weisskopf method introduced in
Refs. [64,65,79,80] where the reader is referred to for a
detailed treatment. A brief description is included in
Appendix B for consistency.
Considering an initial state j1~ki at initial time η0 results

in the following quantum state:

jΨðηÞiI ¼ CkðηÞj1~ki þ
X
~p

Cpðk; ηÞj1~k−~pij1~pi; (6.1)

where the coefficients Ck, Cp are obtained through (B5)
and (B11). It has been shown that the Wigner-Weisskopf
truncation is fully consistent with unitarity, as shown in2There is a factor 2 error in the prefactor in this reference.
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Ref. [80]. For completeness, this is shown explicitly in
Appendix B.
With a fully unitary prescription to obtain the coeffi-

cients, the pure-state density matrix corresponding to the
entangled state of Eq. (6.1) may be written

ρðηÞ ¼ jΨðηÞihΨðηÞj: (6.2)

Considering the situation where a subhorizon mode
(~k≳ ð−1=ηÞ) decays, tracing out superhorizon (~p≲
ð−1=ηÞ) modes leads to the mixed-state density matrix
for modes whose wavelengths are inside the horizon during
the evolution. This is given by

ρrðηÞ ¼ jCkðηÞj2j1~kih1~kj þ 2
X

p≲ð−1=ηÞ
jCpðk;ηÞj2j1~k−~pih1~k−~pj;

(6.3)

where the factor 2 accounts for the two regions of super-
horizon momenta p < ð−1=ηÞ and j~k − ~pj < ð−1=ηÞ
which yield the same contribution, as can be easily seen
after a relabeling of momenta.
The entanglement entropy is given by the Von-Neumann

entropy for the reduced-density matrix, where one finds

SðηÞ ¼ −nkðηÞ ln nkðηÞ − 2
X

p≲ð−1=ηÞ
npðηÞ ln npðηÞ; (6.4)

where the occupation numbers of the initial and produced
quanta are given by

nkðηÞ ¼ hΨðηÞja†~ka~kjΨðηÞi ¼ jCkðηÞj2;
npðηÞ ¼ hΨðηÞja†~pa~pjΨðηÞi ¼ jCpðk; ηÞj2: (6.5)

The unitarity relation from Eq. (B18) implies that

X
~p

npðηÞ ¼ 1 − nkðηÞ; (6.6)

as expected on physical grounds. At this point, all that
remains to calculate the entropy for this process is a
calculation of the coefficients (B5) and (B11).
Using (5.4), the coefficient (B11) can be calculated. For

j~pj ≪ −1=η; j~kj, j~k − ~pj ≫ −1=η, the mode functions in
(4.8) reduce to

Sνðk; ηÞ →
1ffiffiffiffiffi
2k

p ½Ake−ikη þ Bkeikη�;

Sνðp; ηÞ →
iffiffiffi
2

p Ap − Bp

ð−ηÞ1−Δp3=2−Δ : (6.7)

For momenta k deep inside the Hubble radius, the results
(3.69), (3.70) and (3.71) justify to set Ak ¼ 1; Bk ¼ 0 to
leading order. The integral in (5.4) can be carried out with

an infrared cutoff μ ≲ ð−1=ηÞ, and the leading order in Δ is
extracted by approximating T ðpÞ≃ T ð0Þ, leading to the
result

Σðk; η1; η2Þ ¼
α

k2−2Δη2−Δ1 η2−Δ2

; (6.8)

where

α≡ 9λ2T ð0Þ
8π2H2Δ

: (6.9)

Using this result, the coefficient of (B11) becomes

CkðηÞ ¼ exp

�
− α

2z2−2Δ

�
; z≡ kη: (6.10)

The matrix element for this process is given by

Mðp; k; ηÞ ¼ h1~k−~p; 1~pjHIðηÞj1~ki

¼ − 6λ

Hη
ffiffiffiffi
V

p Sνðk; ηÞS�νðp; ηÞS�νðj~k − ~pj; ηÞ

→
−6λðA�

0 − B�
0Þ

2
ffiffiffi
2

p
kHV1=2ð−ηÞ2−Δp3=2−Δ (6.11)

so that

Cpðk; ηÞ ¼ −i
Z

η

η0

Mðp; k; η0ÞCkðη0Þdη0

¼ −6iλðA�
0 − B�

0Þ
2

ffiffiffi
2

p
HV1=2p3=2−Δ

1ffiffiffi
α

p
Z

y

y0

e−y2=2dy; (6.12)

where a change of variables, η ¼ ffiffiffi
α

p
=ky, has been made.

In principle, this can be calculated in terms of error
functions, but unitarity provides a simpler means of
evaluation. Since α ∝ jA0 − B0j2=Δ, jCpðk; ηÞj2 can be
rewritten as

jCpðk; ηÞj2 ¼
Δ

Vp3−2Δ
jA�

0 − B�
0j2

jA0 − B0j2
F½k; η� ¼ Δ

Vp3−2Δ F½k; η�:
(6.13)

The dependence on Δ is a manifestation of unitarity to
leading order; if the integral in Eq. (6.13) is calculated over
superhorizon modes, then

X
p≲ð−1=ηÞ

jCpðk; ηÞj2 ¼
F½k; η�Δ
2π2

Z ð−1=ηÞ
0

p2dp
p3−2Δ

¼ F½k; η�
4π2

ð−1=ηÞ2Δ; (6.14)

noting that the Δ in the numerator in Eq. (6.13) cancels the
single pole in Δ from the integral giving an Oð1Þ
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contribution, which is what is necessary to satisfy the
unitarity condition (B18) to leading order in Δ.
This result is similar to that found in the case of particle

decay in Minkowski space-time [79]: in this case the
particles produced from the decay of a parent particle
feature a Lorentzian distribution in energy, with width Γ the
decay width of the parent particle and amplitude 1=Γ so that
the energy integral over the distribution is Oð1Þ. In
Ref. [80], it is proven to leading order in the perturbative
expansion OðΓÞ that this narrow distribution of large
amplitude is the main reason for the fulfillment of unitarity
to leading order in the Wigner-Weisskopf approximation.
In the case of de Sitter space-time, the distribution function
of the particles produced with superhorizon wave vectors is
∝ Δ=p3−2Δ whose momentum integral over the region of
superhorizon momenta is also of Oð1Þ.
Thus, in the limit Δ ≪ 1, the sum

P
pjCpðηÞj2 is

dominated by the superhorizon momenta, and from the
unitarity relation (B18), it is found that

TrρrðηÞ ¼ jCkðηÞj2 þ
X
p

jCpðηÞj2 ¼ 1: (6.15)

To leading order in Δ, the sum is dominated by the
superhorizon contributions from both regions of integra-
tions p≲ ð−1=ηÞ, j~k − ~pj≲ ð−1=ηÞ contributing equally;
hence,

X
p≲ð−1=ηÞ

jCpðk; ηÞj2 ≃ 1

2
½1 − jCkðηÞj2�: (6.16)

Then the factorized form (6.13) for superhorizon modes
combined with Eq. (6.16) leads to

F½k; η� ¼ 2π2

ð−ηÞ−2Δ ½1 − jCkðηÞj2�; (6.17)

and for −kη ≫ 1 and −pη ≪ 1 to leading order in Δ, it is
found that

jCpðk; ηÞj2 ¼
2π2Δ

Vp3ð−pηÞ−2Δ ½1 − jCkðηÞj2�; (6.18)

the same result is valid in the region −kη ≫ 1 with
−j~k − ~pjη ≪ 1 by replacing p↔j~k − ~pj.
The long wavelength limit of Eq. (6.18) requires a

careful treatment. Since jCpðηÞj2 ¼ npðηÞ is the distribu-
tion function of particles, for a fixed volume V, there is an
infrared divergence in the occupation as p → 0. However,
physically the longest allowed wavelength must be deter-
mined by the linear size of the quantization volume. This
forces an introduction of an infrared cutoff:

pm ¼ 1=V
1
3: (6.19)

This treatment is similar to the case of Bose-Einstein
condensation where momentum integrals are cut off in

the infrared with a typical momentum pm ∝ L−1 with L
being the typical size of the system. At the end of the
calculation of thermodynamic variables, one takes L → ∞
with a careful analysis of the infrared behavior; the remain-
der of this calculation proceeds in much the same manner.
The definition of the lower momentum cutoff pm may

differ from Eq. (6.19) by overall constants of Oð1Þ;
however, as is shown in detail in the analysis that follows,
this proportionality constant would yield an irrelevant
contribution in the limit Δ ≪ 1.
Now the calculation of the entanglement entropy is

straightforward. Consider

I ¼
X

p≤ð−1=ηÞ
jCpðk; ηÞj2 ln½jCpðk; ηÞj2�≡ I1 þ I2 (6.20)

with

I1¼ ½1− jCkðηÞj2� ln½2π2Δ½1− jCkðηÞj2��Δ

×
Z ð−1=ηÞ
pm

ð−pηÞ2Δdp
p

¼ 1

2
½1− jCkðηÞj2� ln½2π2Δ½1− jCkðηÞj2��½1−x2Δm �; (6.21)

where the following definition has been made:

xm ¼ ð−pmηÞ: (6.22)

Evaluating I2 can be done by changing integration variables
to x ¼ −pη which produces

I2 ¼ −½1 − jCkðηÞj2�Δ
Z

1

xm

x2Δ−1 ln
�
x3−2Δ
x3m

�
dx

¼ 1

2
½1 − jCkðηÞj2�

�
3 − 2Δ
2Δ

½1 − ðxmÞ2Δ�þ (6.23)

3ln½1−ðxmÞ2Δ�þð3−2ΔÞ½1−ðxmÞ2Δ�ln½xm�
�
: (6.24)

It is now clear that the limit xm → 0 may be carried out
safely in I1 and in the terms that do not feature poles inΔ in
I2. The terms in I2 that feature the ln½xm� and the (single)
pole in Δ, namely ð3=2ΔÞ × ½1 − ðxmÞ2Δ�, yield the leading
contribution for Δ, xm ≪ 1.
Therefore, for Δ ≪ 1 and xm ≪ 1, to leading order, the

entanglement entropy is found to be

SðηÞ≃ α

ðkηÞ2 e
− α

ðkηÞ2 − ½1 − e
− α

ðkηÞ2 � ln½1 − e
− α

ðkηÞ2 �

þ ½1 − e
− α

ðkηÞ2 �
�
ln

�
1

2π2Δ

�
þ 3

2Δ
½W½η� − 1

þ e−W½η�� þOðΔÞ�
�
; (6.25)

where
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W½η� ¼ 2Δ
3
ln½VphðηÞH3�; VphðηÞ¼VðCðηÞÞ3: (6.26)

CðηÞ ¼ aðtðηÞÞ is the scale factor, and α is given in
Eq. (6.9). The function W½η� − 1þ e−W½η� is manifestly
(semi) positive and monotonically increasing, behaving as
≃W2=2 for W ≪ 1 and as ≃W for W ≫ 1. As η → 0 the
entanglement entropy grows monotonically with the
physical volume.
An important consequence of unitarity is that the

dependence of the entanglement entropy on the initial
conditions is only through α.
The logarithmic volume dependence is similar to the

result obtained in Minkowski space-time, and its interpre-
tation is that asymptotically the entropy saturates to the
logarithm of the number of accessible states in phase space,
which is proportional to the volume. However, in the
expanding cosmology, it is the physical volume that enters
in the final expression; as the cosmological expansion
proceeds, the available phase space increases as more and
more wave vectors cross the Hubble radius. Furthermore,
the infrared enhancement from light fields during inflation
translate in the ln½Δ�. It is clear from the expression above
that the definition of pm in (6.19) differed by a proportion-
ality constant C ≃ Oð1Þ. The expression above would have
been modified by the term ∼Δ ln½C� ≪ 1 which can be
safely neglected, thus confirming that the choice of the
minimal value of the momentum (infrared cutoff) (6.19) is
insensitive to multiplicative factors of Oð1Þ for Δ ≪ 1.

VII. CONCLUSIONS AND FURTHER QUESTIONS

The recent CMB data from Planck distinctly show a
persistence of large-scale anomalies, among them a sup-
pression of the power spectrum for large scales, in the
region of the Sachs-Wolfe plateau for l≲ 10. Motivated by
the possibility that these anomalies, in particular the
suppression of power at low multipoles, are of primordial
origin perhaps heralding new physics on superhorizon
scales, we studied the effect of initial conditions arising
from a rapid evolution of the inflaton during a brief stage
prior to slow roll. Such a rapid evolution, or fast-roll stage,
leads to the equations for the mode functions of scalar and
tensor perturbations that features a potential which is
localized in conformal time. The effect of this potential
translates into non-Bunch-Davies conditions on the mode
functions during the slow-roll stage, the Bogoliubov
coefficients being determined by the properties of the
potential during the pre-slow-roll stage.
Implementing methods from potential scattering theory,

we obtained general properties of these Bogoliubov coef-
ficients, in particular their superhorizon and subhorizon
behavior. The effect of these initial conditions on the power
spectra of scalar and tensor perturbations is encoded in an
initial condition transfer function T ðkÞ. We showed that for
wave vectors that exited the Hubble radius during the very

early stages of slow roll the large-scale transfer function
T ðk ≈ 0Þ leads to a suppression of the power spectrum for
attractive potentials, such as those found previously for the
case of a fast-roll stage [43–45,47]. Furthermore, for modes
that are inside the Hubble radius during most of the slow-
roll stage, T ðkÞ ≲ 1=k4, suggesting that the effect of initial
conditions determined by pre-slow-roll stage is strongly
suppressed for higher multipoles and would not modify the
small-scale aspects of the CMB, such as acoustic peaks.
Since the initial conditions impact mainly large scales,

we were motivated to study their effect on the infrared
sector of typical minimally coupled scalar field theories
with typical self-interactions λϕp with p ¼ 3, 4 when the
slow-roll stage is a (nearly) de Sitter cosmology. The
correlation functions of light scalar fields with mass M ≪
H (H is the Hubble parameter during de Sitter inflation)
feature infrared divergences manifest as poles in
Δ ¼ M2=3H2. These infrared divergences lead to a
dynamical generation of mass if the bare mass of the scalar
field vanishes.
For p ¼ 3 we find that the infrared singularity of

bare massless theory leads to the formation of a
nonperturbative condensate which reaches a fixed value
at long times and implies the dynamical generation of
a mass M ¼ ffiffiffi

3
p

Hð λ
2πHÞ1=3½T ð0Þ�1=6. For p ¼ 4, we find

M ¼ H½9λT ð0Þ
2π2

�1=4. In both cases the emergence of a
dynamical infrared generated mass yields scalar power
spectra with anomalous dimensions that depend nonana-
lytically on initial conditions, namely PsðkÞ ∝ kΔ where for
p ¼ 3, 4, respectively, we find

Δð3Þ ¼
�
λ

ffiffiffiffiffiffiffiffiffiffi
T ð0Þp

2πH

�2
3

; Δð4Þ ¼
�
λT ð0Þ
2π2

�1
2

: (7.1)

In an expanding cosmology, all of the quanta of a field
can decay into quanta of the same field as a consequence of
the lack of energy conservation and kinematic thresholds.
The time-dependent decay width of single-particle states
are enhanced by the infrared divergences that are also
responsible for the dynamical generation of mass. We
obtain the modification of the decay width for single-
particle states induced by the non-Bunch-Davies initial
conditions. For p ¼ 3 we find

Γðk; ηÞ≃ 9λ2T ð0ÞT 2ðkÞ
π2H2Δð−ηÞð−kηÞ6 : (7.2)

The decay of a single-particle state yields an entangled
quantum state of the daughter particles, entanglement being
a consequence of momentum conservation. We implement
the field theoretical version of the Wigner-Weisskopf
method adapted to inflationary cosmology to obtain the
full quantum state that results from the time evolution and
decay of an initial single-particle state. This method yields
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manifestly unitary time evolution of the quantum state. In
Ref. [80] it was realized that this quantum state features
entanglement and correlations between subhorizon and
superhorizon quanta. Tracing over the superhorizon
degrees of freedom leads to an entanglement entropy that
grows as more modes exit the horizon during inflation. We
obtain the modifications of this entanglement entropy from
non-Bunch-Davies initial conditions. The main change to
the entanglement entropy from non-Bunch-Davies initial
conditions is through its dependence on the decay width.
In all cases studied in this article, the initial conditions

from a fast-roll stage prior to slow roll that result in an
initial condition transfer function that suppresses the power
of scalar perturbations at large scales also result in a
suppression of the infrared effects: dynamical masses,
anomalous dimensions of scalar power spectra and decay
widths of quantum states.
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APPENDIX A: CALCULATION OF Σðk; η1;η2Þ
In this Appendix, we calculate the self-energy (5.4) to

leading order in Δ and in the long time limit η1, η2 → 0.
The first step is to perform the angular integration

in (5.4), making the substitution p≡ jk − qj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 − 2kq cos θ

p
and dðcos θÞ ¼ −pdp=kq so that

Z
d3qfðjqjÞgðjk − qjÞ

¼ 2π

Z
dðcos θÞ

Z
dqq2½…�

¼ 2π

k

Z
∞

0

dqqfðjqjÞ
Z

kþq

jk−qj
dppgðjpjÞ: (A1)

This simplifies the integration to

Σðk;η1;η2Þ¼
9λ2

π2H2kη1η2
S�ðk;η1ÞSðk;η2Þ

×
Z

∞

0

dqqSðq;η1ÞS�ðq;η2Þ

×
Z

kþq

jk−qj
dppSðp;η1ÞS�ðp;η2Þ

≡ 9λ2

π2H2kη1η2
S�ðk;η1ÞSðk;η2ÞJðk;η1;η2Þ; (A2)

where

Jðk; η1; η2Þ ¼
Z

∞

0

dqqSðq; η1ÞS�ðq; η2Þ

×
Z

kþq

jk−qj
dppSðp; η1ÞS�ðp; η2Þ: (A3)

As with the tadpole, this integral features infrared
divergences for massless, minimally coupled fields.
From the discussion of the tadpoles, it should be clear
that there are infrared divergences for q, p → 0, namely in
the integration regions q≃ 0; q≃ k. The integral is
evaluated with the same method as for the tadpole, isolating
the regions of infrared divergences by introducing an
infrared cutoff, keeping the most infrared singular terms
of the mode functions in the band of wave vectors up to the
infrared cutoff extracting the leading order poles in Δ and
set ν ¼ 3=2 for wave vectors larger than the cutoff since
these integrals are infrared finite for finite cutoff in the limit
Δ → 0. Therefore, we write in obvious notation

J ¼
Z

μ

0

dq½…� þ
Z

∞

μ
dq½…�≡ Jh þ Ji: (A4)

The Jh integral is evaluated by using q < μ ∼ 0 so that
with k ≫ μ the argument of the p integral can be evalu-
ated at p ¼ k and the p integral becomes simply
2kqSðk; η1ÞS�ðk; η2Þ and

Jh ¼
Z

μ

0

dqqSðq;η1ÞS�ðq;η2Þ
Z

kþq

jk−qj
dppSðp;η1ÞS�ðp;η2Þ

∼2kSðk;η1ÞS�ðk;η2Þ
Z

μ

0

dqq2Sðq;η1ÞS�ðq;η2Þ: (A5)

Using the long wavelength and long time form of the mode
functions given by Eq. (3.63), we find

Jh ¼ Sðk; η1ÞS�ðk; η2Þ
��

4

η1η2

�
ν−1=2 kΓ2ðνÞ

π

�
T ð0Þ μ

2Δ

2Δ
:

(A6)

To evaluate the Ji integral, care must be taken around the
poles. There will be infrared divergences for q ¼ k so that
the integral is separated as

Ji ¼
Z

∞

μ
dq½…�

¼
Z

k−μ
μ

dq½…�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

JðaÞi

þ
Z

k

k−μ
dq½…�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
JðbÞi

þ
Z

kþμ

k
dq½…�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

JðcÞi

þ
Z

∞

kþμ
dq½…�:

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
JðdÞi

(A7)
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Since the integrals away from the infrared limit, namely

JðaÞ=ðdÞi , are finite for finite μ, we can set in these integrals

ν ¼ 3=2 as they do not feature poles in Δ. In which case,
these integrals are subleading with respect to Δ and need
not be considered for a leading order calculation.
The only integrals remaining for the leading-order

contribution are Jðb;cÞi . Consider this:

JðbÞi ¼
Z

k

k−μ
dqqSðq;η1ÞS�ðq;η2Þ

Z
kþq

jk−qj
dppSðp;η1ÞS�ðp;η2Þ:

(A8)

After the change of variable q ¼ k − r to leading order,
we obtain

JðbÞi ≃kSðk;η1ÞS�ðk;η2Þ
Z

μ

0

dr
Z

2kþr

r
dppSðp;η1ÞS�ðp;η2Þ:

(A9)

The leading-order contribution arises from the lower limit
of the r integral. This contribution is obtained by integrat-
ing in a small region around the lower limit using the mode
functions (3.63) and approximating T ðpÞ≃ T ð0Þ þ
Oðp2Þ þ � � � and keeping only the p ¼ 0 term in this
expansion because the higher order terms will not yield
poles in Δ. We find

Z
2kþr

r
dppSðp; η1ÞS�ðp; η2Þ

¼ ΓðνÞΓðν − 1Þ
2π2

�
4

η1η2

�
ν π

4
ðη1η2Þ1=2T ð0Þr2−2ν þ � � � ;

(A10)

where the dots stand for terms that will not yield poles in Δ
as Δ → 0. Finally, carrying out the r integral we find

JðbÞi ¼ kSðk; η1ÞS�ðk; η2Þ
ΓðνÞΓðν − 1Þ

2π2

�
4

η1η2

�
ν

×
π

4
ðη1η2Þ1=2

μ2Δ

2Δ
þ � � � : (A11)

The next term JðcÞi can be evaluated in a similar manner,
but now we change variables in the q integral to q ¼ kþ r
and recognize that the lower limit in the p integral is now
q − k ¼ r upon changing variables in the q integral. Again
the p integral is dominated by the lower limit, which can be
extracted just as in the previous case finally leading to

JðcÞi ¼ JðbÞi : (A12)

Expanding the pole terms

μ2Δ

2Δ
¼ 1

2Δ
þ ln½μ� þ � � � (A13)

all of the terms with ln½μ� cancel among all of the different
contributions. This is easily seen by taking the μ derivative
of J given by Eq. (A4) as the arbitrary cutoff μ has been
introduced simply to split the integrals and the total integral
cannot depend on μ.
Finally, to leading order

J ¼ Jh þ JðbÞi þ JðcÞi þOðΔ0Þ

¼ 2k
Sðk; η1ÞS�ðk; η2Þ

η1η2
T ð0Þ

�
1

Δ
þOðΔ0Þ

�
: (A14)

Combining this result with (A2) we finally find

Σðk; η1; η2Þ ¼
18λ2T ð0Þ
π2H2Δ

jSðk; η1Þj2
ðη1Þ2

jSðk; η2Þj2
ðη2Þ2

þOðΔ0Þ:
(A15)

APPENDIX B: WIGNER-WEISSKOPF THEORY
AND UNITARITY

In this Appendix we summarize the main aspects of the
nonperturbative Wigner-Weisskopf method to study the
quantum state from particle decay for consistency. More
details are available in Refs. [64,65,79,80].
The interaction picture states are expanded in terms of

Fock states associated with the creation and annihilation
operators αk, α

†
k, namely,

jΨðηÞiI ¼
X
n

CnðηÞjni: (B1)

As shown in earlier, the time evolution of a state in the
interaction picture is given by

i
d
dη

jΨðηÞiI ¼ ĤIðηÞjΨðηÞiI (B2)

so that the (conformal) time evolution of the coefficients is
given by

d
dη

CnðηÞ ¼ −iX
m

CmðηÞhnjĤIðηÞjmi: (B3)

While this is exact, the solution is an infinite hierarchy, and
finding an exact solution is impractical. This can be vastly
simplified by making the assumption that the initial state,
jAi, only couples to a single set of intermediate states, jκi,
where this assumption is exact if the situation is confined to
processes of OðHIÞ (which is valid for this work). Under
this assumption, the coefficients obey
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d
dη

CAðηÞ ¼ −iX
κ

hAjHIðηÞjκiCκðηÞ
d
dt

CκðηÞ

¼ −ihκjHIðηÞjAiCAðηÞ; (B4)

where
P

κ is over all states that couple to jAi via first order
in HI .
Considering the general situation of particle decay,

A → κ1; κ2;…, where initially at some time, η ¼ ηo, the
state is given by jΨðηoÞi ¼ jAi. This is equivalent to the
initial condition CnðηoÞ ¼ δn;A. Upon integrating the sec-
ond of (B4), one obtains

CκðηÞ ¼ −i
Z

η

0

dη0hκjHIðη0ÞjAiCAðη0Þ
d
dη

CAðηÞ ¼ −
Z

η

0

dη0
X
κ

hAjHIðηÞjκihκjHIðη0ÞjAiCAðη0Þ:

(B5)

It proves useful to make the definition

ΣAðη; η0Þ ¼
X
κ

hAjHIðηÞjκihκjHIðη0ÞjAi: (B6)

Note that this is equal to (5.4). Then

d
dη

CAðηÞ ¼ −
Z

η

ηo

dη0ΣAðη; η0ÞCAðη0Þ: (B7)

The relation between this method and the Dyson
resummation is discussed in detail in Ref. [75]. It can be
shown that this treatment is nonperturbative, and the time
evolution of the coefficients is slow, which justifies a
derivative expansion. The derivative expansion is done by
introducing the term

W0ðη; η0Þ ¼
Z

η0

ηo

dη00ΣAðη; η00Þ;

d
dη0

W0ðη; η0Þ ¼ ΣAðη; η0Þ; W0ðη; ηoÞ ¼ 0 (B8)

so that integrating (B7) by parts leads to

Z
η

ηo

dη0ΣAðη; η0ÞCAðη0Þ

¼ W0ðη; ηÞCAðηÞ −
Z

η

ηo

dη0W0ðη; η0Þ
d
dη0

CAðη0Þ: (B9)

For a weakly interacting theory, such that HI ∼OðλÞ and
λ ≪ 1, the second term is at higher order in perturbation
theory and may be discarded. To leading order, (B7)
simplifies drastically to

d
dη

CAðηÞ ¼ −W0ðη; ηÞCAðηÞ þOðλ4Þ; (B10)

with the simple solution

CAðηÞ ¼ e
−
R

η

ηo
dη0W0ðη0;η0Þ: (B11)

Interpretation of this result follows from the analysis in
Minkowski space-time. It has been shown that the imagi-
nary part of the integral will provide the second-order
energy shift while the real part provides the decay width,
similar to Fermi’s golden rule. This is made explicit in the
literature with the result that

Z
η0

ηo

dη00ΣAðη0; η00Þ ¼ iδEð1Þ
A ðη0Þ þ 1

2
Γðη0Þ; (B12)

where the real part matches (5.7) exactly. Finally, the full
time dependence of the coefficient can be written as

CAðηÞ ¼ e−i
R

dη0δEð1Þðη0Þe−
1
2

R
dη0ΓAðη0Þ: (B13)

Since the probability of measuring particle A is jCAj2 and
with the discussion in Sec. V A, the interpretation of Γ as
the decay rate is clear. It has also been shown that the
Wigner-Weisskopf method produces the same results for
the self-consistent mass generation discussed earlier [75].
One of the main goals is to study the entanglement

entropy from tracing over superhorizon degrees of freedom.
Thus, it is important to make sure that the loss of
information encoded in the entanglement entropy is a
genuine effect of the tracing procedure and not a conse-
quence of approximations in the evolution of the quantum
state. In this Appendix, the discussion follows Refs. [79,80]
where it is shown that the Wigner-Weisskopf approxima-
tion and its Markovian implementation maintain unitary
time evolution.
Using (B5) consider

X
κ

jCκðηÞj2 ¼
Z

η

η0

dη1C�
Aðη1Þ

Z
η

η0

dη2Σðη1; η2ÞCAðη2Þ:

(B14)

Inserting 1 ¼ Θðη1 − η2Þ þ Θðη2 − η1Þ, it follows that
X
κ

jCκðηÞj2 ¼
Z

η

η0

dη1C�
Aðη1Þ

Z
η1

η0

dη2Σðη1; η2ÞCAðη2Þ

þ
Z

η

η0

dη2CAðη2Þ
Z

η2

η0

dη1Σðη1; η2ÞC�
Aðη1Þ:

(B15)

Using Σðη1; η2Þ ¼ Σ�ðη2; η1Þ, relabeling η1↔η2 in the
second line of (B15), and using (B7), one can show
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X
κ

jCκðηÞj2 ¼ −
Z

η

η0

dη1

�
C�
Aðη1Þ

d
dη1

CAðη1Þ

þ CAðη1Þ
d
dη1

C�
Aðη1Þ

�

¼ −
Z

η

η0

dη1
d
dη1

jCAðη1Þj2 ¼ 1 − jCAðηÞj2;

(B16)

where the initial condition CAðη0Þ ¼ 1 has been used.
This is the statement of unitary time evolution, namely

jCAðηÞj2 þ
X
κ

jCκðηÞj2 ¼ jCAðη0Þj2: (B17)

To leading order in the Markovian approximation, the
unitarity relation becomes

X
κ

jCκðηÞj2 ¼ −2
Z

η

η0

jCAðη1Þj2 Re½W0ðη1; η1Þ�dη1

¼ 1 − jCAðηÞj2;
(B18)

where CAðη0Þ ¼ 1.
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