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We propose a new scenario for early cosmology, where inflationary de Sitter phase dynamically occurs.
The effect emerges as a result of dynamics of the topologically nontrivial sectors in the expanding Universe.
Technically the effect can be described in terms of the auxiliary fields that effectively describe the dynamics
of the topological sectors in a gauge theory. Inflaton in this framework is an auxiliary topological
nonpropagating field with no canonical kinetic term, similar to known topologically ordered phases in
condensed matter systems. We explain many deep questions in this framework using the so-called weakly
coupled “deformed QCD” toy model. While this theory is a weakly coupled gauge theory, it preserves all
the crucial elements of strongly interacting gauge theory, including confinement, nontrivial θ dependence,
degeneracy of the topological sectors, etc. We discuss a specific realization of these ideas using a scaled up

version of QCD, coined as QCD, with the scale MPL ≫ ΛQCD ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

EWMPL
3
p

∼ 108 GeV. If no other

fields are present in the system, de Sitter phase will be the final destination of evolution of the Universe. If
other interactions are present in the system, the inflationary de Sitter phase lasts for a finite period of time.
The inflation starts from the thermal equilibrium state long after the QCD-confinement phase transition at

temperature Ti ∼ ΛQCD

ffiffiffiffiffiffiffiffi
Λ
QCD

MPL

q
. The end of inflation is triggered by the coupling with gauge bosons from the

standard model. The corresponding interaction is unambiguously fixed by the triangle anomaly. The
number of e-folds in the QCD-inflation framework is determined by the gauge coupling constant at the
moment of inflation, and estimated as Ninf ∼ α−2s ∼ 102.
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I. INTRODUCTION AND MOTIVATION

It is well known that the deep issue inflation addresses
(among many other things) the origin of the large-scale
homogeneity of the observable Universe [1–3]. The crucial
element of this idea is to have a period of evolution of the
Universe that can be well approximated by the de Sitter
behavior. In this case the scale parameter aðtÞ and the
equation of state takes the following approximate form

aðtÞ ∼ expðHtÞ; ϵ ≈ −p: (1)

It is normally assumed that such an equation of state can be
achieved in quantum field theory (QFT) by assuming the
existence of a scalar matter field Φ with a nonvanishing
potential energy density VðΦÞ. The shape of this potential
energy can be adjusted in such a way that the contribution
to energy density and pressure is in agreement with the
above equation of state. The inflationary scenario can be
described in a simplified way as follows: at the initial time,
the scalar field Φ is displaced from the minimum of its
potential. Since the potential VðΦÞ is tuned to be very flat,
the scalar field motion is very slow. Therefore, the scalar
field potential energy density remains almost constant,
whereas all other forms of matter redshift. Thus, at some
time ti, the scalar field potential energy starts to dominate
and inflation begins. Once the scalar field has decreased to

a critical value that in many models is close to the Planck
scale MPL, the scalar field kinetic energy begins to
dominate over the potential energy and inflation ends at
time tr. There are many problems with this picture. We
shall not address those problems in the present work
but refer the reader to review articles [4,5]; see also
very recent papers [6,7], which address the problems
the inflation paradigm faces after Planck2013. The
only element that is crucial for the entire framework
outlined above is merely the existence of a new dynamical
degree of freedom, the inflaton which is typically approxi-
mated by a scalar field Φ, while its dynamics are governed
by the potential VðΦÞ. Even in string inspired models
the presence of such a dynamical field seems unavoid-
able. For example, in construction [8] the inflaton field
is associated with one of the moduli; see [2,3] with
overviews of many other models.
In the present work we advocate a fundamentally differ-

ent view on the nature and origin of the inflaton field. We
shall argue that the role of the inflaton may play an
auxiliary topological field that normally emerges in
description of a topologically ordered gauge system.
These fields do not propagate; they do not have canonical
kinetic terms, as they are auxiliary fields effectively
describing the dynamics of the topological sectors that
are present in the system. Nevertheless, the effects that are
described in terms of these topological fields are quite
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physical and very real, as we shall argue in the
present work.
The gauge theory that has all the features required to

describe the inflationary phase in the evolution of the
Universe is very much the same as strongly coupled QCD
but with a drastically different scale, much larger than
conventional ΛQCD. Many relevant elements that are
required for the inflationary phase to be operational have
in fact been tested using the numerical lattice Monte Carlo
simulations. However, in order to study some deep physical
properties of the system related to the large distance
behavior, we formulate a simplified version of QCD, the
so-called “deformed QCD,” which is a weakly coupled
gauge theory, but nevertheless preserves all the crucial
elements of strongly interacting QCD, including confine-
ment, nontrivial θ dependence, degeneracy of the topo-
logical sectors, etc. The emergence of the dynamical
inflationary phase is much easy to explain using the
analytically tractable “deformed QCD” model, rather than
referring to some specific numerical results.
For impatient readers, we formulate here the basic

findings of our studies. The key element for our work is
the presence of the degenerate topological sectors in
the gauge theory denoted as QCD with the scale
ΛQCD ≫ ΛQCD. The dynamics of these pure gauge sectors
in the gravitational expanding background can be formu-
lated in terms of an auxiliary topological field. The relevant
dynamics of this auxiliary field precisely represent the
physics that are normally attributed to the inflaton. QCD is
an asymptotically free gauge theory such that the UV
completion requirement is obviously satisfied in the model.
The inflation with almost de Sitter behavior aðtÞ ∼ expðHtÞ
starts from the thermal equilibrium state at temperature

Ti ∼ ΛQCD

ffiffiffiffiffiffiffiffi
Λ
QCD

MPL

q
long after the QCD-confinement phase

transition at Tc ∼ ΛQCD. The inflation ends as a result of

interaction of the QCD fields with gauge bosons from the
standard model.
An educated reader may immediately get suspicious with

the question: how could a gapped theory with typical
fluctuations r ∼ 1=ΛQCD ever influence the physics with a
vastly different scale r ∼ 1=H, where H is the Hubble
expansion rate at the time Ti? One of the main objectives of
the present work is precisely to address this question using
a weakly coupled deformed QCD where computations can
be performed in a theoretically controllable way. A short
answer on this question is that QCD behaves similarly to a
topologically ordered condensed matter (CM) system that
is normally gapped but still remains highly sensitive to
arbitrary large distances.
It might be instructive to get some intuitive picture of the

inflaton in this framework formulated in terms of a CM
analogy before we proceed with formal computations.
Imagine we are studying the Aharonov-Casher effect.
We insert an external charge into a superconductor when

the electric field is exponentially suppressed ∼ expð−r=λÞ,
with λ being the penetration depth. Nevertheless, a neutral
magnetic fluxon will still be sensitive to an inserted
external charge at an arbitrary large distance in spite of
the screening of the physical field. The effect is purely
topological and nonlocal in nature and can be explained in
terms of pure gauge sectors that are responsible for these
long range dynamics. Imagine now that we are studying
the same effect but in an expanding universe. The corre-
sponding topological sectors will be modified due to the
external background. However, this modification cannot be
described in terms of any dynamical fields, as there are no
propagating long range fields in the system as the physical
electric field is screened. For this simplified example, the
dynamics of the inflaton correspond to the effective
description of the topological sector variation when the
background changes. The effect is obviously nonlocal in
nature as the Aharonov-Casher effect itself is a nonlocal
phenomenon. Furthermore, the effect cannot be formulated
in terms of any physical propagating degrees of freedom
(such as Φ field mentioned above) as pure gauge, but
topologically nontrivial configurations cannot be described
in terms of a local physical propagating field Φ. We
elaborate on this analogy in a much more precise and
specific way in Appendix A of this work.
Our presentation is organized as follows. In Sec. II we

overview the weakly coupled deformed QCD model. In
Sec. III we use this model to describe the relevant effects
in terms of auxiliary nonpropagating topological fields. In
particular, we discuss the nondispersive θ-dependent con-
tribution to the energy EvacðθÞ, which cannot be expressed
in terms of any physical propagating degrees of freedom;
see below. As this contact term cannot be associated with
any physical fields, we coin this type of energy the “strange
energy” in this paper. We also discuss how this strange
energy varies when the background changes. The basic idea
of Sec. II and Sec. III is to reveal some very deep properties
of the strange energy using a simplified model. Many of
these properties are well studied using the numerical lattice
computations in strongly coupled QCD, but it is very
instructive to understand these fundamental features using
some analytical methods in a simplified model. In Sec. IV
we assume that the physics in strongly coupled QCD are
very much the same as in the weakly coupled deformed
QCD model. With this assumption we demonstrate the
emergence of the de Sitter-like behavior in the expanding
Universe when scale parameter aðtÞ shows the exponential
growth, aðtÞ ∼ expðHtÞ. In Sec. V we sketch our vision of
the reheating epoch and explain how it could, in principle,
emerge in this framework. We conclude in Sec. VI with a
large number of questions and problems for future studies
within this new framework, which we call the QCD
inflation. In particular, we comment on how this funda-
mentally new type of strange energy can be, in principle,
studied in a terrestrial table-type laboratory experiment by
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measuring some specific corrections to the observed
Casimir forces.

II. THE NATURE OF THE STRANGE ENERGY
IN THE DEFORMED QCD MODEL

The goal here is to present an overview of the deformed
QCD model where the relevant dynamics describing the
strange vacuum energy can be explicitly seen and studied.
This theory is a weakly coupled gauge theory, but never-
theless preserves all the crucial elements of strongly interact-
ing QCD, including confinement, nontrivial θ dependence,
degeneracyof the topological sectors, etc.Furthermore, it has
been claimed [9,10] that there is no phase transition in the
passage from weakly coupled deformed QCD to strongly
coupledQCD.Acrucial element for thiswork is the presence
of the contact nondispersive term in topological susceptibil-
ity, see below, which cannot be associated with any physical
propagatingdegreesof freedom.As this contribution to theθ-
dependent portion of the energyEvacðθÞ is the key element in
our discussions in the present work, we specifically concen-
trateonthenatureandoriginof this term.Precisely thisenergy
that cannot be expressed in terms of real propagating degrees
offreedomwillbe thesourceof theQCD inflationasweargue
in Sec. IV.
We start with pure Yang-Mills (gluodynamics) with

gauge group SUðNÞ on the manifold R3 × S1 with the
standard action

SYM ¼
Z
R3×S1

d4x
1

2g2
tr½F2

μνðxÞ�; (2)

and add to it a deformation action [9,10],

ΔS≡
Z
R3

d3x
1

L3
P½ΩðxÞ�; (3)

built out of the Wilson loop (Polyakov loop) wrapping the
compact dimension

ΩðxÞ≡ P½ei
H

dx4A4ðx;x4Þ�: (4)

The parameter L here is the length of the compactified
dimension that is assumed to be small. The coefficients of
the polynomial P½ΩðxÞ� can be suitably chosen such that
the deformation potential (3) forces unbroken symmetry at
any compactification scales. At small compactification L,
the gauge coupling is small so that the semiclassical
computations are under complete theoretical control [9,10].
As described in [9,10], the proper infrared description of

the theory is a diluted gas of N types of monopoles,
characterized by their magnetic charges, which are propor-
tional to the simple roots and affine root αa ∈ Δaff of the
Lie algebra for the gauge group Uð1ÞN . For a fundamental
monopole with magnetic charge αa ∈ Δaff , the topological
charge Q and the Yang-Mills action SYM are given by

Q ¼
Z
R3×S1

d4x
1

16π2
tr½Fμν

~Fμν� ¼ � 1

N
;

SYM ¼
Z
R3×S1

d4x
1

2g2
tr½F2

μν� ¼
8π2

g2
jQj: (5)

The θ-parameter in the Yang-Mills action can be included
in a conventional way,

SYM → SYM þ iθ
Z
R3×S1

d4x
1

16π2
tr½Fμν

~Fμν�; (6)

with ~Fμν ≡ ϵμνρσFρσ .
The partition function for the system of interacting

monopoles, including θ parameter, can be represented in
the dual sine-Gordon form as follows [9–11]:

Z½σ� ∼
Z

D½σ�e−Sdual½σ�;

Sdual½σ� ¼
Z
R3

d3x
1

2L

�
g
2π

�
2

ð∇σÞ2

− ζ

Z
R3

d3x
XN
a¼1

cos

�
αa · σ þ θ

N

�
; (7)

where ζ is magnetic monopole fugacity that can be
explicitly computed in this model using the conventional
semiclassical approximation. The θ parameter enters the
effective Lagrangian (7) as θ=N, which is the direct
consequence of the fractional topological charges of the
monopoles (5). Nevertheless, the theory is still 2π periodic.
This 2π periodicity of the theory is restored not due to the
2π periodicity of the Lagrangian (7). Rather, it is restored as
a result of summation over all branches of the theory when
the levels cross at θ ¼ πðmod2πÞ and one branch replaces
another and becomes the lowest energy state, as discussed
in [11]. Finally, the vacuum energy density of the system
EvacðθÞ follows from (7) and is given by

EvacðθÞ ¼ −
Nζ

L
cos

�
θ

N

�
; (8)

where jθj < π corresponds to the first branch. We should
note that the θ parameter is assumed to be zero in this work.
Nevertheless, we keep the θ parameter explicitly in some
formulas below because it allows us to reconstruct many
important and exact relations such as the couplings to other
fields. To avoid any confusion that may occur from the
appearance of the θ parameter in some formulas in this
work, we should emphasize that the θ it is not a dynamical
variable in this work such that the axion field is not present
in this system.
Our goal now is to understand the nature of this θ-

dependent portion of the vacuum energy (8) as it plays a
key role in our discussions in the next sections. As we shall
argue below, this energy is very different from conventional
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energy normally attributed to physical states. In fact, the
vacuum energy EvacðθÞ, as we shall discuss below, cannot
be associated with any physical propagating degrees of
freedom. Before we demonstrate this unusual feature, we
have to make a short detour.
We start our short detour with an overview on formu-

lation and resolution of the so-called Uð1ÞA problem in
strongly coupled QCD [12–14], which is ultimately related
to the strange nature of the vacuum energy (8). We
introduce the topological susceptibility χ, which plays a
crucial role in the resolution of the Uð1ÞA problem as
follows:1

χðθ ¼ 0Þ ¼ ∂2EvacðθÞ
∂θ2

����
θ¼0

¼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi;

(9)

where the θ parameter enters the Lagrangian (6) along with
topological density operator qðxÞ ¼ 1

16π2
tr½Fμν

~Fμν� and
EvacðθÞ is the vacuum energy density that can be explicitly
computed in the deformed QCD model (8). It is important
that the topological susceptibility χ does not vanish in spite
of the fact that q ¼ ∂μKμ is total divergence. This feature is
very different from any conventional correlation functions
that normally must vanish at zero momentum if the
corresponding operator can be represented as total diver-
gence. Furthermore, any physical jni state gives a negative
contribution to this diagonal correlation function:

χdispersive ∼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi

∼ lim
k→0

X
n

h0jqjnihnjqj0i
−k2 −m2

n
≃ −

X
n

jcnj2
m2

n
≤ 0; (10)

where mn is the mass of a physical jni state, k → 0 is its
momentum, and h0jqjni ¼ cn is its coupling to topological
density operator qðxÞ. At the same time the resolution of the
Uð1ÞA problem requires a positive sign for the topological
susceptibility (9), see the original reference [14] for a
thorough discussion:

χnon-dispersive ¼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi > 0. (11)

Therefore, there must be a contact contribution to χ, which
is not related to any propagating physical degrees of
freedom, and it must have the “wrong” sign. The wrong
sign in this paper implies a sign which is opposite to any
contributions related to the physical propagating degrees of
freedom (10). The strange energy in this paper implies the
θ-dependent portion of the energy (9) which cannot be

formulated in terms of conventional propagating degrees of
freedom as it has pure nondispersive nature according to
Eqs. (10) and (11).
In the framework [12] the contact term with the wrong

sign has been simply postulated, while in Refs. [13,14] the
Veneziano ghost (with a wrong kinetic term) had been
introduced into the theory to saturate the required property
(11). Furthermore, as we discuss below, the contact term
has the structure χ ∼

R
d4xδ4ðxÞ. The significance of this

structure is that the gauge variant correlation function in
momentum space,

lim
k→0

Z
d4xeikxhKμðxÞ; Kνð0Þi ∼

kμkν
k4

; (12)

develops a topologically protected “unphysical” pole that
does not correspond to any propagating massless degrees of
freedom but nevertheless must be present in the system.
Furthermore, the residue of this pole has the wrong
sign, which precisely corresponds to the Veneziano ghost
contribution saturating the nondispersive term in a gauge
invariant correlation function (11),

hqðxÞqð0Þi ∼ h∂μKμðxÞ; ∂νKνð0Þi ∼ δ4ðxÞ: (13)

We conclude this short detour with the following remark.
The entire framework, including the singular behavior of
hqðxÞqð0Þi with the wrong sign, has been well confirmed
by numerous lattice simulations in the strong coupling
regime, and it is accepted by the community as a standard
resolution of the Uð1ÞA problem. Furthermore, it has been
argued long ago in Ref. [15] that the gauge theories may
exhibit the “secret long range forces” expressed in terms of
the correlation function (12).
We now return to the deformed QCD model where every

single question (including the nondispersive nature of
strange energy) can be answered as we are dealing with
the weakly coupled gauge theory. The study of this object
precisely shows how the nondispersive vacuum energy
(i.e., energy not related to any propagating degrees of
freedom) may emerge in the system. As we shall argue in
Sec. IV, precisely this type of energy, which is fundamen-
tally not describable in terms of physical propagating
degrees of freedom, may be responsible for the QCD
inflation.
The topological susceptibility in the deformed QCD

model can be explicitly computed as it is saturated by
fractionally charged, weakly interacting monopoles, and it
is given by [11]

χYM ¼
Z

d4xhqðxÞ; qð0Þi ¼ ζ

NL

Z
d3x½δðxÞ�; (14)

which precisely corresponds to the vacuum energy (8) in
this model after differentiation with respect to the θ
parameter according to (9). The topological susceptibility

1We use the Euclidean notations where path integral compu-
tations are normally performed.
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has the required wrong sign as this contribution is not
related to any physical propagating degrees of freedom, and
it has a δðxÞ function structure that implies the presence of
the pole (12). However, there are no physical massless
states in the system as it is gapped, and the computations
[11] leading to (14) are accomplished without any topo-
logical or any other unphysical degrees of freedom. Instead,
this term is described in terms of the tunneling events
between different (but physically equivalent) topological
sectors in the system. The monopoles in this framework are
not real particles; they are pseudoparticles that live in
Euclidean space and describe the physical tunneling
processes between different topological sectors jki and
jkþ 1i. The strange energy of the system (8) should be
interpreted as the number of tunneling events per unit of
time L per unit of volume V:

�
number of tunneling events

VL

�
¼ Nζ

L
; Evac ¼ −

Nζ

L
;

(15)

where ζ is the monopole fugacity to be understood as a
number of tunneling events for a given type of monopole
per unit of time L. There are N different types of mono-
poles, which explains the normalization in Eq. (15).
Precisely this interpretation reveals the nondispersive
nature of this strange energy that cannot be attributed to
any physical propagating degrees of freedom. It is quite
obvious that the nature of this strange energy is very
different from conventional vacuum energy formulated in
terms of a dynamical scalar field Φ, such as the Higgs field,
which is the key player of the standard model, or the
conventional inflaton field, which is the key player of the
inflation formulated in terms of a dynamical Φ field [2,3].
From the discussions presented above, it must be

obvious that this strange energy that will eventually be
responsible for the QCD inflation has nondispersive nature,
i.e., cannot be associated with any physical propagating
degrees of freedom. Furthermore, the strange energy
cannot be seen at any level in perturbation theory as
ζ ∼ expð−1=g2Þ. Finally, the generation of this strange
energy can be thought of as a nonlocal phenomenon as
the tunneling events that are responsible for Evac are
formulated in terms of the transitions between distinct
topological sectors jki. At the same time, these jki sectors
are constructed by using the large gauge transformation
operator T , which itself is a nonlocal operator; see
Appendix A 3 for the details. Nevertheless, as we shall
argue below, this strange vacuum energy (15) is finite and
uniquely defined and cannot be removed from the system
by any subtractions or redefinitions of the observables. The
arguments are based on exact Ward identities; see Sec. III.
One should also note that all these unusual features have
been well studied in strongly coupled QCD using the lattice

numerical simulations, see e.g., [16], with a large number
of references on the original lattice results.
In the next section we shall rederive the same δðxÞ

function (14) in terms of an auxiliary topological field for
deformed QCD. This will further illuminate the infrared
(IR) nature of the contact term. It will also reveal the nature
of the topologically protected massless pole (12) that
results from the dynamics of an auxiliary topological field.
Precisely this field will play a key role in our discussions of
the QCD inflation in Sec. IV as its dynamics will be
determined by the evolution of the nonpropagating aux-
iliary topological field.

III. TOPOLOGICAL AUXILIARY FIELD
AS AN INFLATON

The goal of this section is to express the same strange
vacuum energy (15) in terms of a quantum field that
accounts for the physics of the tunneling transitions
discussed above. We should emphasize that the reformu-
lation of the same physics in terms of a quantum field,
rather than in terms of explicit computation of the partition
function by summing over all topological sectors, is
not a mandatory procedure but a matter of convenience.
Similarly, the description of a topologically ordered phase
in condensed matter physics in terms of the Chern-Simons
(CS) effective Lagrangian is a matter of convenience rather
than a necessity. The same comment also applies to our
case when an auxiliary, not dynamical, topological field
(effectively describing the dynamics of the topological
sectors), the inflaton, is introduced for the great conven-
ience, as we shall see in a moment.
When the same physics are reformulated in terms of a

quantum field, all the unusual features discussed above will
be much easier to understand. Furthermore, the correspond-
ing reformulation of the system in terms of a quantum field
will be extremely useful in addressing the question of
possible changes to the strange energy when the back-
ground varies; see Sec. III B and Appendix A. In addition,
the reformulation of the system in terms of a quantum field
is the key element in the formulation of the problem of the
reheating epoch within the QCD inflation framework; see
Sec. V. Finally, one should keep in mind that the inflaton is
an emergent field: it only appears in the confined QCD
phase, while in the deconfined phase it does not appear
in the system. This simple comment will have, in fact,
some profound observational consequences when one
compares the QCD inflaton with conventional Φ inflaton
that always existed in the system; see Sec. VI for the related
discussions.

A. Topological auxiliary field as a source
of the strange energy

The basic idea to describe the IR physics in terms of an
auxiliary field is to insert the corresponding δ-function into
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the path integral with a Lagrange multiplier and integrate
out the fast degrees of freedom while keeping the slow
degrees of freedom that are precisely the auxiliary fields.
This formal trick is widely used in particle physics and CM
physics. In particular, it is extremely useful in the descrip-
tion of the topologically ordered phases when the IR
physics is formulated in terms of the topological CS-like
Lagrangian; see, e.g., [17] and references therein. One
should emphasize that the corresponding CM physics, such
as the calculation of the braiding phases between quasi-
particles, computation of the degeneracy, etc., can be
computed (and in fact originally had been computed)
without the Chern-Simons Lagrangian and without aux-
iliary fields. Nevertheless, the discussions of the IR physics
in terms of CS-like effective action is proven to be very
useful, beautiful, and beneficial.
For the deformed QCD model, the corresponding com-

putations have been carried out in [16] where it has been
demonstrated that all unusual properties of the strange
energy (15), including its nondispersive nature, can be
formulated in terms of auxiliary long range topological
aðxÞ; bðxÞ fields with the action

Z½σ; b; a�∼
Z

D½b�D½σ�D½a�e−Stop½b;a�−Sdual½σ;b�;

Stop½b; a� ¼
−i

4 πN

Z
R3

d3xbðxÞ ~∇2
aðxÞ;

Sdual½σ; b� ¼
Z
R3

d3x
1

2L

�
g
2π

�
2

ð∇σÞ2

− ζ

Z
R3

d3x
XN
a¼1

cos

�
αa · σ þ

θ − bðxÞ
N

�
: (16)

In this formula the topological action Stop½b; a� can be
expressed as a conventional CS effective Lagrangian [16],
but in this work we keep only components represented by
the scalar bðxÞ; aðxÞ fields relevant for the present
discussions.
Now we can compute the strange energy, which has the

physical meaning of the number of the tunneling events per
unit of volume per unit of time (15), in terms of the auxiliary
fields. The corresponding formula can be represented in
terms of the correlation function h ~∇2

aðxÞ; ~∇2
að0Þi as

follows:

Evac ¼ −N2lim
k→0

Z
d4xeikxhqðxÞ; qð0Þi ¼ −

Nζ

L

Z
d3xδ3ðxÞ

¼ −
Nζ

L
; where qðxÞ ¼ −1

4πNL
~∇2
aðxÞ: (17)

We obviously reproduce our previous result (14), (15), but
now it is formulated in terms of the long range auxiliary
topological fields. We emphasize again that we have not
introduced any new degrees of freedom into the system.

The fluctuating bðxÞ; aðxÞ fields simply reflect the long
distance dynamics of the degenerate topological sectors that
exist independently from our description in terms of
bðxÞ; aðxÞ fields. However, in previous computations
(14), (15) we had to sum over all monopoles and their
positions, interactions, and orientations. Now this problem is
simplified as it is reduced to the computation of the
correlation function constructed from the auxiliary fields
governed by the action (16).
We shall argue in Sec. IV that the strange energy (14),

(15) can serve as the vacuum energy during the inflation
period in the expanding Universe. Therefore, we identify
the corresponding auxiliary ½aðxÞ; bðxÞ� fields that satu-
rate this energy (17) with inflaton in this model. We
emphasize again that the corresponding dynamics cannot
be formulated in terms of a canonical scalar field Φ with
any local potential VðΦÞ as it is known that the dynamics
governed by CS-like action is truly nonlocal. There is a
large number of CM systems (realized in nature) where
CS action plays a key role in explicit manifestation of the
nonlocality in the system. It has also been argued that the
deformed QCD model, which is explored in this section,
also belongs to a topologically ordered phase with many
features that normally accompany the topological phases
[16]. What is important is that the auxiliary ½aðxÞ; bðxÞ�
fields emerge in the system only in the confined phase. In
the deconfined phase the strange energy (14), (15)
vanishes because the topological susceptibility vanishes
in the deconfined phase. This is in huge contrast to the
conventional inflaton Φ field that always existed in the
system.
What is the physical meaning of this auxiliary field aðxÞ,

which we identify with inflaton? What is the best way to
visualize it on the intuitive level? From our construction,
one can easily see that aðxÞ does not carry a color index.
Still, it is not a color singlet as it has nontrivial trans-
formation properties under large gauge transformation [16].
In fact, our field ∇iaðxÞ transforms as the KiðxÞ. One
should not confuse the aðxÞ field with magnetic potential in
this model. The physical magnetic potential is character-
ized in this model by roots αa ∈ Δaff of the Lie algebra in
contrast with transformation properties of the aðxÞ field
that essentially represent a longitudinal portion of KiðxÞ.
The best intuitive way to think about the aðxÞ field is to
imagine a coherent superposition (of non-Abelian gauge
fields) that has nontrivial properties under large gauge
transformations. This superposition is precisely represented
by the longitudinal component of Ki operator. What is the
physical meaning of the bðxÞ field? As we discuss in
Sec. V, this field can be thought as an external axion θðxÞ
field, without a kinetic term, though.
The vacuum energy of the system computed in terms of

the aðxÞ field is given by Eq. (17). Is this energy physically
observable? Our ultimate answer is “yes,” as we cannot
redefine the energy-momentum operator to remove this
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strange energy (15), (17) from the system.2 Our argument
supporting this claim goes as follows. Let us insert a
massless quark into the system. In this case the Ward
identity requires that

R
d4xhqðxÞ; qð0ÞiQCD ¼ 0, in contrast

with expression (14) derived for pure gauge theory. The
simplest way to understand this Ward identity is to
represent the topological susceptibility as the second
derivative with respect to θ. But physics must be θ
independent in the presence of a massless quark as the θ
parameter can be rotated away by redefinition of the
corresponding chiral Fermi field. Therefore, χQCD must
vanish in the presence of a massless quark in the system.
How could it happen if the physical degree of freedom can
only contribute to χQCD with the negative sign according to
Eq. (10)? The answer is that this negative conventional
dispersive contribution (saturated by the η0 meson) must
cancel with nondispersive contribution (14), which cannot
be associated with any physical degrees of freedom. This
cancellation is the key element of the resolution of the
Uð1ÞA problem [12–14]. The explicit computations in this
model support this exact cancellation:

hqðxÞ; qð0ÞiQCD ¼ ζ

NL2

�
δðxÞ −m2

η0
e−mη0 r

4πr

�
;

χQCD ¼
Z

d4xhqðxÞ; qð0ÞiQCD ¼ 0: (18)

The moral is that this strange vacuum energy is very
physical and plays a crucial role in the resolution of the
celebrated Uð1ÞA problem as it saturates the Ward identity.
In the deformed QCD model this strange energy resulted
from the dynamics of an auxiliary topological field iden-
tified with inflaton. We treat this contribution to the vacuum
energy (and corresponding fields saturating it) as physically
observable entities, as argued above.
One can also compute a gauge variant correlation

function,

lim
k→0

Z
d4xeikxh∇iaðxÞ;∇jað0Þi ∼

kikj
k4

: (19)

The massless pole (19) has precisely the same nature as the
pole in the Veneziano construction (12). Our comment here

is that in spite of the gap in the system, some correlation
functions constructed from the inflaton aðxÞ field are still
highly sensitive to the IR physics. Furthermore, while the
behavior (19) at small k can be considered to be very
dangerous as it includes k4 in the denominator (which is
normally attributed to the negative norm states in QFT), the
physics described here are perfectly unitary and causal as
aðxÞ is in fact auxiliary rather than propagating dynamical
field as all questions can be formulated and answered even
without mentioning the auxiliary topological fields. The
behavior (19) also hints at the possibility of nonlocal
effects (which, indeed, are known to be present in this
system [16]).

B. Strange energy and the inflaton field in the
expanding Universe

In this section we address the very hard question: how
does the strange energy (15) vary when the system couples
to the gravity? We can rephrase and simplify the same
question as follows: how does the rate of the tunneling
processes change when the system is considered in a time-
dependent background? In principle, the strategy to carry
out the corresponding computations is as follows:
(1) find the classical solution in a nontrivial background

that generalizes the fractionally charged monopoles
reviewed in Sec. II;

(2) compute the path integral measure of the corre-
sponding generalized solutions, similar to the mo-
nopole fugacity ζ from Sec. II. It includes analysis of
zero as well as of nonzero modes with corresponding
corrections due to the background;

(3) compute the interaction between generalized pseudo-
particles to present the system in the dual form, similar
to Eq. (7). The corresponding expression for the
effective action should depend now on the parameters
of a background such as the Hubble constant H;

(4) represent the system in terms of the auxiliary
topological fields similar to Eq. (16). The corre-
sponding corrections (due to the background) in the
coefficients of the action will represent the desired
result.

Unfortunately, a solution even of the first step from this
program even in weakly coupled deformed QCD is not
known. A resolution of the entire program is not even
feasible. Therefore, the honest answer to the question
formulated at the beginning of this section is that the exact
answer is unknown. Nevertheless, there are a few general
arguments that may provide us with some hints on possible
dependence of the strange energy (15) from a background
that will be parametrized in what follows by the Hubble
parameter H. In general, one should expect that for a
sufficiently weak background (which we always assume to
be the case) the correction to all observables, including the
vacuum energy, can be represented as the power corrections
of H, i.e.,

2In fact, one can argue that the generation of the strange energy
is not the only manifestation of the topological sectors in the
gauge theory. A similar contribution with a “wrong sign,” which
is not related to any physical degrees of freedom, was previously
observed in computations of black-hole entropy [18]. The
corresponding contact term from [18] leads to the well-known
mismatch between computations of the black-hole entropy and
entropy of entanglement for vector gauge fields. It has been
conjectured in [19] that this mismatch is the consequence of the
same topological sectors of the gauge theories that is the subject
of the present work. In fact, this conjecture is supported in some
way by computations in a simplified model [20]; see also [21,22]
with related discussions.
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EvacðHÞ ¼
X
p

cpHp; c0 ¼ −
Nζ

L
: (20)

There are two sets of generic arguments that suggest that
p in Eq. (20) can only be even, i.e., p ¼ 0; 2; 4…. The
generic arguments, as usual, may have some loopholes.
The first set of arguments presented in [23], based on the
investigation of possible corrections due to the short
distance physics parametrized by scale M. It has been
argued that corrections should be in form ∼ðH=MÞ2 if the
low energy description is local. At the same time, explicit
computations [24–26] in a number of simple models
suggest that the corrections could be much larger
∼ðH=MÞ, which correspond to p ¼ 1. Computations
[27,28] are also in conflict with the generic argument
[23]. It is not the goal of the present work to analyze these
conflicting results. Rather, we want to point out that
sometimes a generic argument may fail because an
assumption may be violated in some hidden way, which
is very difficult to trace. We come back to this point with a
similar example that is known to occur in the QCD physics.
The second set of generic arguments is based on

renormalization group analysis; see original papers
[29–31] and recent review [32]. The authors of
Refs. [29–32] also argue that only even powers may enter
Eq. (20). The arguments are based on the locality and
general covariance. We do not wish to analyze in this
paper any possible loopholes in general arguments of
Refs. [29–32]. The only comment we want to make is
that an assumption of locality might not be so harmless for
non-Abelian gauge theories such as QCD, in contrast with a
simple massive scalar field theory. Indeed, while QCD has
a gap in gauge invariant sectors, it nevertheless demon-
strates a high IR sensitivity in gauge variant sectors in terms
of a topologically protected massless pole (19). This pole
is not screened by the confinement mechanism and is
eventually responsible for the contact term that saturates the
strange energy (15) that is the source of inflation as we shall
advocate in the next section. The same IR physics may lead
to some nonlocal effects. In fact, the weakly coupled
deformed QCD model, reviewed in Sec. II, indeed shows
some signs of nonlocal physics. In particular, in this system
one can explicitly demonstrate the presence of the degen-
erate states that are classified by a nonlocal operator, while
all local expectation values identically coincide for degen-
erate states [16]. The presence of such degenerate states in a
gapped theory is a typical manifestation of a topologically
ordered phase when the system is characterized by a
nonlocal operator.
Furthermore, with few additional simplifications one can

explicitly see how the linear ∼H correction may indeed
emerge in the deformed QCD model; see Appendix Awith
some technical details. The main point of the estimates
presented in Appendix A is that the long range auxiliary
field that saturates the strange energy (15) and that is

identified with inflaton will mix with the background field
expressed in terms of the Hubble parameter H. Precisely
this mixture leads to the linear correction ∼H. A simplified
estimate presented in Appendix A also demonstrates a deep
analogy with the nonlocal Aharonov-Casher effect men-
tioned in the introduction as an intuitive picture of the
inflation in our framework. One can explicitly see from
Appendix A 3 how the nonlocality enters the physics in
terms of inherently nonlocal large gauge transformation
operator T .
We conclude this subsection with a few more examples

that may further support our main assumption that the
correction in Eq. (20) may be order ∼H. The first example
is an explicit computation in the weakly coupled deformed
QCD model when it is defined on a finite size manifold R
rather than in infinite space-time. The computed correction
behaves as ∼R−1 [33]. Our second example is the numerical
lattice computations in strongly coupled QCD when the
vacuum energy also shows a linear type correction ∼R−1

[34]. Our final example is an analysis of the operator
product expansion in QCD that suggests that the lowest
correction must have dimension 4, which represents the
dimension of the F2

μν operator. This argument is very
similar in spirit to general arguments of Refs. [29–32]
mentioned after Eq. (20). It turns out that the corrections
could be much larger as a result of the IR sensitive physics
when nonlocality enters as Fμν

1
∂2 Fμν instead of the naively

expected behavior F2
μν [35].

The linear correction can be interpreted in the terminol-
ogy of [29–32] as a possibility of running cosmological
constant at very low μ ∼H as a result of the IR sensitivity
when nonlocal physics may emerge as a result of non-
locality of the operator T ; see Appendix A 3 for some
details. This renormalization is obviously nonperturbative
in nature, as all effects discussed in this work, including the
strange energy, cannot be seen at any level in perturbation
theory as ζ ∼ expð−1=g2Þ as they are originated from the
deep IR physics.

IV. SCALED UPQCD and Inflationary de Sitter Phase

This is the main section of the present work. Based on
the arguments presented in the previous Sec. III B and
Appendix A 4 we assume in what follows that the first
nonvanishing correction to the strange vacuum energy
scales as ∼H when the scaled up version QCD is defined
in the expanding background characterized by the
Hubble parameter H. In other words, the expression for
the vacuum energy in the context of the Friedmann-
Lemaître-Robertson-Walker (FLRW) universe assumes
the following form:

EFLRWðHÞ ∼ ½Λ4

QCD
þHΛ3

QCD
þOðH2Þ�; (21)

similar to our analysis of the weakly coupled deformed
QCD model (20). There are two crucial points here:
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(1) The corrections start with a linear term ∼H. The
source of this linear term as argued above is the
inherent nonlocality of the large gauge transforma-
tion operator T which itself is the key element in the
mechanism of generating the strange energy. We
shall see in a moment that this term, ∼HΛ3

QCD
, will

drag the Universe into de Sitter state.
(2) The strange energy (21) vanishes in deconfined

QCD phase above the phase transition. The corre-
sponding inflaton field ϕðxÞ, generating (21), and
replacing the aðxÞ field from Sec. III, does not exist
in the deconfined QCD phase; see Appendix A 4 for
specific technical details. This should be contrasted
with conventional inflationary models when the field
Φ and the corresponding potential VðΦÞ always
existed in the system.

A. On an interpretation of the strange energy

Before we start with the computations, we want to
elaborate on the physical meaning of EFLRWðHÞ. We
interpret this energy as the energy that is generated due to
the tunneling processes when transitions are happening
all the time between topologically different but physi-
cally identical states, as explained in Sec. III. When the
system is placed into the FLRW background, the corre-
sponding rate of transitions changes as a result of Hubble
expansion. This variation of the rate is reflected by
Eq. (21) in the form of H-dependent corrections. The
source of this strange energy can be represented in terms
of the inflaton field ϕðxÞ with a number of unusual
features, as discussed in Sec. III. However, we should
emphasize that the energy (21) is very different in nature
from conventional vacuum energy determined by the
vacuum expectation value hΦi and its potential VðhΦiÞ,
similar to the Higgs model. In particular, the energy (21)
cannot be formulated in terms of a dynamical field Φ
with canonical kinetic term and local potential VðΦÞ, as
explained in Sec. III using weakly coupled deformed
QCD model as a theoretically treatable example. This
feature is a simple reflection of the fact that the physics
of the tunneling processes and the corresponding gen-
erated energy cannot be described in terms of a local
dynamical field Φ, as the tunneling between topologi-
cally distinct sectors is a fundamentally nonlocal phe-
nomenon. Furthermore, the energy (21) vanishes above
the QCD phase transition in deconfined phase as this
structure emerges only as a result of confinement. In
other words, our auxiliary fields ½ϕðxÞ; bðxÞ� do not exist
in the deconfined phase. This is again in huge contrast
with conventional inflationary scenarios when VðΦÞ
always existed, before and after the inflation.
Our second comment before we start our computations is

the formulation of the prescription that the relevant energy
that enters the Einstein equations is in fact the difference
ΔE≡ E − EMink between the energies of a system in a

nontrivial background and Minkowski space-time geom-
etry, similar to the well-known Casimir effect when the
observed energy is a difference between the energy
computed for a system with conducting boundaries and
infinite Minkowski space. In this framework it is quite
natural to define the “renormalized vacuum energy” to be
zero in the Minkowski vacuum wherein the Einstein
equations are automatically satisfied as the Ricci tensor
identically vanishes.
Such a definition ΔE≡ ðEFLRW − EMinkÞ for the vac-

uum energy was advocated in the present context for the
first time in 1967 by Zeldovich [36], who argued that
ρvac ¼ ΔE ∼ Gm6

p, with mp being the proton’s mass. Later
on, such a definition for the relevant energy ΔE≡
ðEFLRW − EMinkÞ that enters the Einstein equations was
advocated from different perspectives in a number of
papers; see, e.g., relatively recent works [37–42]. See also
review article [32] with a background on the subject and a
large number of references. This prescription is consistent
with the renormalization group approach advocated in
[29–32]. In fact, it is a direct consequence of the renorm-
alization group approach when we fix a physical parameter
at one point of normalization to predict its value at a
different normalization point. In the context of Eq. (21) it
implies that the vacuum energy that enters the Einstein
equations is ΔE≡ ðEFLRW − EMinkÞ at a normalization
point μ ∼H. As we already mentioned, this prescription
is consistent with the Einstein equations when the vacuum
energy approaches zero, ΔE → 0 for Minkowski space-
time geometry, which itself may be considered as a limiting
case with H → 0.
Our final comment before we start the computations

goes as follows. The energy (21) can be interpreted as a
running cosmological constant within the renormaliza-
tion group approach advocated in [29–32] with the only
difference that odd powers of H are also included in the
series as a result of the IR sensitivity and nonlocality, as
discussed in Sec. III B and Appendix A. This linear
correction can be interpreted in terminology [29–32] as a
possibility of running the cosmological constant at very
low μ ∼H. This running is originated from nonperturba-
tive and nonlocal physics and cannot be seen at any finite
level in perturbation theory, as entire strange energy
cannot be generated in perturbation theory. Nevertheless,
all terms in expansion (21) are finite and uniquely
defined, similar to our discussions in a simplified model
in Sec. III where all computations are under complete
theoretical control. Furthermore, this energy is not
generated during the deconfined phase, as it starts to
emerge only in the confined QCD phase.

B. Inflationary de Sitter phase

With these preliminary remarks on QCD and its relation
to cosmology, we can now write down the Friedman
equation as follows:
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H2 ¼ 8πG
3

ðρInf þ ρRÞ ¼
8πG
3

ðᾱHΛ3

QCD
þ ρRÞ;

ρInf ¼ ᾱHΛ3

QCD
; ρR ¼ π2

30
NðTÞT4;

NðTÞ ¼ NbðTÞ þ
7

8
NfðTÞ; (22)

where we introduce notations for the corresponding energy
density ΔE ¼ ᾱHΛ3

QCD
with ᾱ being a dimensionless

parameter of order one and we neglected higher order
correctionOðH2Þ. We also introduce notation ρInf ¼ ΔE to
emphasize that this term will drive the Universe to the de
Sitter inflationary phase as we shall see in a moment.
The inflation in this framework starts from a thermal

equilibrium state with NðTÞ massless degrees of freedom
(at time of inflation), which will eventually be responsible
for the reheating to be discussed in Sec. V. If we identify
these massless degrees of freedom with standard model
(SM) particles, then NðTÞ ∼ 102. We note that SM fields
are indeed almost massless at high temperature when
inflation starts, but they become massive, except photons,
at present temperatures. It is also possible that some other
fields, beyond SM particles, are massless at such high
temperatures, but we do not speculate on this point in the
present work. As we shall see in a moment, the inflation in
this framework starts long after the QCD phase transition
such that NðTÞ in Eq. (22) does not include any QCD
physical states as they are heavy at that time. It is important
to emphasize that the corresponding energy ᾱHΛ3

QCD

emerges soon after the QCD phase transition. However,
the energy ᾱHΛ3

QCD
starts to compete with ρR at much later

times, when QCD is in a deep confined regime.
The radiation component in Eq. (22) scales as ρR ∼ a−4

such that ρInf starts to dominate the Universe at some point
when H approaches the constant value H0; see the estimate
below. This state of evolution of the Universe is a starting
point of the inflationary regime. To quantify the analysis,
we shall introduce a subscript 0 in ρR0 for the value when
ρR0 ¼ ρInf;0 ¼ 1=2ρc and a0 ¼ 1. In different words, sub-
script 0 shows the moment in evolution of the Universe
when energy density related to inflation becomes the
dominating component exceeding the radiation component.
The Hubble parameter H0 and the temperature T0 when

the inflation effectively starts in this model can be estimated
as follows:

H0 ∼
8πG
3

ðᾱΛ3

QCD
Þ; ρR0 ≃ ρInf;0 ≃ 1

2
ρc

⇒ T0 ≃ ΛQCD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱ
ΛQCD

MPL

s �
40

πN

�
1=4

; (23)

where MPL is defined as usual, MPL ¼ 1=
ffiffiffiffi
G

p
. Assuming

that T0 is much higher than the electroweak scale,

T0 ≫ MEW one can estimate a lower bound for the
QCD related physics determined by a new scale ΛQCD,

ΛQCD ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

EWMPL
3

q
∼ 108 GeV: (24)

As anticipated,

T0

ΛQCD

∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱ
ΛQCD

MPL

s �
40

πN

�
1=4

≪ 1; (25)

and therefore the physical massive QCD degrees of free-
dom indeed do not participate in the thermodynamical
equilibrium when inflation effectively starts in this model at
T0 and do not contribute to NðTÞ as stated above.
One can solve the Friedman equation (22) with the

following result:

H ¼ 4πG
3

ᾱΛ3

QCD
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4πG
3

ᾱΛ3

QCD

�
2

þ 8πGρR0
3a4

s
: (26)

To analyze the solution of this equation, it is convenient to
define a characteristic scale ā⋆ when two terms under the
square root in Eq. (26) become equal,

ā4⋆ ¼ 3

2πG
ρR0

ðᾱΛ3

QCD
Þ2 : (27)

In terms of these parameters the behavior of the energy
density ρInf related to the inflation can be conveniently
represented as follows:

ρInf ¼ ᾱHΛ3

QCD
¼ 4πG

3
ᾱ2Λ6

QCD

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�ā⋆
a

�4
r #

: (28)

One can explicitly see from this solution that for a ≪ ā⋆ the
radiation component dominates in Eq. (22), while for a ≫
ā⋆ the inflation component dominates with the following
asymptotic behavior:

ρInf ¼
8πG
3

ᾱ2Λ6

QCD

�
1þ 1

4

�
ā⋆
a

�
4
�
;

H ¼ 8πG
3

ᾱΛ3

QCD

�
1þ 1

4

�
ā⋆
a

�
4
�
; a ≫ ā⋆: (29)

As stated previously, the Hubble parameter is approaching
the constant value H0 at asymptotically large a ≫ ā⋆.
In different words, the evolution of the Universe in this
model approaches a de Sitter state at asymptotically large
a → ∞, as claimed above. The radiation component can
also be easily computed in this framework. Its asymptotical
behavior is given by

ρR ¼ 2πG
3

ᾱ2Λ6

QCD
·

�
ā⋆
a

�
4

; a ≫ ā⋆: (30)
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As expected, the radiation becomes a subdominant com-
ponent for large a ≫ ā⋆. As an explicit expression for H is
known, one can explicitly compute the equation of state
(EoS) for the inflationary phase in this system. To simplify
the formula, we only consider the asymptotical behavior at
large a ≫ ā⋆. In this case one can differentiate Eq. (29) and
substitute to a general equation for _H ¼ −4πGðρþ pÞ to
arrive to the following expression:

ðρþ pÞ ¼ 2

3
· ᾱΛ3

QCD
H ·

�
ā⋆
a

�
4

; a ≫ ā⋆: (31)

One can represent this EoS for the inflationary (almost) de
Sitter behavior in the following conventional form:

ω≡ p
ρ
≃ −1þ 2

3

�
ā⋆
a

�
4

; a ≫ ā⋆; (32)

such that the EoS will approach −1 from above, and the
Universe is dragged into a de Sitter state at asymptotically
large a. In fact, the scale factor growth is exponentially fast
already in close vicinity of a > ā⋆, as Eq. (32) suggests.
Therefore, with very good accuracy, one can use the
following expression for the scale factor aðtÞ for all
a > ā⋆ (though it is formally valid only for a ≫ ā⋆):

aðtÞ ∼ expðH∞tÞ; H∞ ¼ 8πG
3

ᾱΛ3

QCD
;

ω ¼ −1; a > ā⋆; (33)

whereH∞ is determined by Eq. (29) at asymptotically large
a. In other words, it takes only a single e-fold (single
Hubble time ∼H−1

∞ ) in the evolution of the Universe when
the de Sitter behavior (33) effectively becomes fully
operational, and formula (33) can be used during entire
inflationary regime as Hubble constant H indeed stays
almost constant during the inflation.
We conclude this section with two comments. First,

equations similar to Eq. (21) were previously postulated in
[43,44] (admittedly, with very little understanding of what
is behind this formula3) to describe the dark energy as a
result of the QCD dynamics. Most importantly, this

postulate has been (successfully) confronted with obser-
vations; see [48–56] and many references therein, where it
has been claimed that this model is consistent with all
presently available data.4

Our second comment is as follows. In the analysis
presented in this section we completely ignored the
interaction with other fields. If no other light fields
interacting with ½ϕðxÞ; bðxÞ� are present in the system,
the regime (33) would be the final destination of our
Universe. However, the interaction of auxiliary ½ϕðxÞ; bðxÞ�
fields with light particles does exist in this system, and, in
fact, the end of inflation is triggered precisely by this
interaction. As we shall see below, the corresponding
relevant coupling is unambiguously fixed by the well-
known triangle anomaly and transformation properties of
the path integral under the chiral transformations. However,
the “theory of reheating” is still to be developed for this
framework as it is fundamentally different in nature from
the conventional picture when a dynamical inflaton Φ
transfers its energy to light particles. Therefore, we cannot
borrow the technique [2,3] that is well developed for the
conventional inflaton models. Nevertheless, we opted to
sketch some thoughts on this matter with a hope that it may
help to develop the theory of reheating within the QCD-
inflationary proposal in future.

V. A FEW THOUGHTS ON REHEATING

It is well known that for the inflation to end, one should
couple the relevant fields responsible for inflation (in our
case this role is played by ½ϕðxÞ; bðxÞ� fields) with light
degrees of freedom of the standard model such that the
energy generated during inflation can be released by
producing particles and radiation. This is the so-called
reheating period. To simplify things, we assume that QCD
has one quark in fundamental representation that interacts
with the electroweak (E&W) gauge bosons precisely in the
same way as conventional QCD quarks do. In this case all
couplings and algebraic structures of the interacting terms
are unambiguously fixed. The conventional interactions
AμJμ of QCD quarks with E&W gauge bosons is not
relevant for our purposes as the fields responsible for
inflation are in fact auxiliary topological fields ½ϕðxÞ; bðxÞ�
that interact with SM particles only as a result of anomalous
coupling with a background. Therefore, in what follows we
only consider the interaction of the SM particles with
auxiliary ½ϕðxÞ; bðxÞ� fields responsible for inflation.

3In particular, the fact that the system does not violate gauge
invariance, unitarity, causality was demonstrated in a follow-up
paper [45]; see also [46] with related discussions. In the present
formulation in terms of the auxiliary fields from Sec. III these
features are trivially satisfied as the entire system can be reformu-
lated in terms of auxiliary topological nonpropagating fields when
the questions on unitarity and causality do not even emerge. The
question on the possibility of linear-like corrections due to the
background field were later addressed in the holographic QCD
model in [47] and computed in the deformed QCD model in [33].
Such linear-like corrections were also supported by the lattice
studies [34]. Finally, as recently discussed in [16], the system may
demonstrate some nonlocal features. This nonlocality and IR
sensitivity may falsify the main assumption leading to the conven-
tional H2 prediction, as discussed in Sec. III B and Appendix A.

4A short warning signal is as follows: the authors of some
papers mentioned above use the auxiliary quantum fields as the
classical fields that satisfy the classical equations of motion. This
is obviously a wrong procedure. In particular, a computation of
derivative ð∂p=∂ρÞ and identification of it with the speed of
sound c2s really makes no sense as there is no propagation with
such speed because there are no physical propagating degrees of
freedom in the system. It is quite obvious that one cannot interpret
c2s < 0 in such a computation as instability of a system.
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The interaction of the bðxÞ field with SM particles that is
relevant for this paper occurs as a result of anomaly. To
simplify things further, we consider the interaction of
the bðxÞ field with E&M photons only. A coupling of
the bðxÞ with other gauge bosons can be unambiguously
reconstructed using the Wess-Zumino-Novikov-Witten
(WZNW) Lagrangian [57], but we keep a single E&M
field Fμν to simplify the notations and outline the idea on
the possible reheating mechanism. In our context the
corresponding coupling has the following form:

Lbγγ ¼
αðH0Þ
8π

NQ2½θ − bðxÞ� · Fμν
~Fμν; (34)

where αðH0Þ is the fine-structure constant measured at
moment H0, i.e., during the period of inflation, Q is the
electric charge of the QCD quark, and Fμν is the usual
electromagnetic field strength. The coupling (34) is unam-
biguously fixed because the auxiliary bðxÞ field always
accompanies the θ parameter in a specific combination
ðθ − bðxÞÞ, as explained in Appendix A 4. The coupling
(34) describes the anomalous interaction of the topological
auxiliary bðxÞ field with E&M photons. We assume θ ¼ 0 in
Eq. (34) once coupling with the bðxÞ field is reconstructed.
One should remark here that a similar coupling of the

photons with the axion θðxÞ field in the context of infla-
tionary cosmology was considered long ago [58] with many
follow-up proposals. It has also been known that this
interaction leads to instability with respect to particle
production and radiation. Therefore, the interaction (34)
may potentially serve as a source of reheating. The crucial
difference of the present studies with Ref. [58] is that our field
bðxÞ is not a dynamical field similar to a physical propagating
axion field considered in [58]. Rather, it is an auxiliary
topological bðxÞ field that does not propagate and has no
kinetic term. It other words, the instability with respect to
radiation may occur in our system not due to the fluctuations
of a dynamical (pseudo)scalar field. Rather, the correspond-
ing radiation might be generated as a result of fluctuations of
the auxiliary bðxÞ field. Therefore, the underlying dynamics
of the fluctuations eventually leading to the radiation
(reheating epoch) is fundamentally different from conven-
tional radiation by a propagating (pseudo)scalar axion field.
The corresponding theory of reheating within the QCD-

inflationary proposal is yet to be developed. In this
framework the bðxÞ field should be treated as a coherent
field representing the rate of tunneling events in the system.
It varies and fluctuates as a consequence of expansion,
rather than as a result of the presence of a kinetic term. As a
result of these fluctuations in the time-dependent back-
ground, the bðxÞ field radiates real physical particles in the
expanding Universe. This radiation occurs in spite of the
fact that bðxÞ itself is not a dynamical field. This is
precisely the way in which the energy (generated due to
the tunneling processes and expressed in terms of auxiliary
½ϕðxÞ; bðxÞ� fields), in principle, can be transferred to the

SM particles. In the weakly coupled deformed QCD model
the corresponding computational procedure is outlined as
steps 1–4 in Sec. III B. These computations, in principle,
should predict the dynamics of the fluctuating auxiliary
topological fields ½ϕðxÞ; bðxÞ� in the expanding Universe.
Eventually, this process of the energy transfer should be
responsible for the termination of the inflationary epoch.
As we already mentioned, we do not have developed

machinery to carry out such computations along the lines
outlined above. However, we can make a few simple
estimates and provide some analogies with a physical
system that is known to exist in nature and is realized in
heavy ion collisions; see below.
It is clear that the relevant scale that enters the problem is

H during the inflation time, rather than the ΛQCD scale
itself. Indeed, the expectation value for the bðxÞ field
obviously vanishes in Minkowski space-time hbðxÞi ¼ 0.
Furthermore, no radiation of physical photons may occur in
the Minkowski vacuum even though the ½ϕðxÞ; bðxÞ� fields
do fluctuate to saturate the H-independent term in expan-
sion (21). In other words, all effects that lead to the
radiation must be proportional to small corrections ∼H
exclusively due to expansion, similar to (21). The same
conclusion also follows from the observation that for a
constant b in Eq. (34), the Lagrangian represents a total
derivative and cannot lead to any radiation, such that
physical effects must be proportional to _b. In this frame-
work the number of e-foldings in the QCD inflation is
determined by the time τinst when the instability due to the
radiation is fully developed. This is exactly the time scale
when the entire energy (28), (29) generated during the
inflation is transferred to SM light fields.
To estimate the time scale τinst, we note that τ−1inst ∼H

must be proportional to H as the only relevant scale of the
problem, as explained above. Furthermore, the effect must
be proportional to the coupling constant with some power
k, i.e., τ−1inst ∼ αk. In fact, we expect that k ¼ 2 is a similar
phenomenon with identically the same interaction (34) as
has been actually discussed in the literature in context of
heavy ion physics; see details in Appendix B. The role of
the auxiliary bðxÞ field from Eq. (34) is played by the so-
called axial chemical potential, which is also an auxiliary
field in the heavy ion physics (B2). Combining all factors
together, we arrive to the following estimate:

τ−1inst ∼Hα2s ;⇒ τinst ∼
1

Hα2s
⇒ NInf ∼

1

α2s
; (35)

where the number of e-folds NInf is, by definition, the
coefficient in front of H−1 in the expression for τinst. In
Appendix B we discuss an analogy with a very similar
problem to the helical instability studied in heavy ion
physics. The relevant point, for our present estimates (35),
is that a similar instability also develops in strongly coupled
gauge theory as the energy can be transferred not only to
photons but to q̄q pairs as well. In this case, the instability
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develops much faster as it will be determined by the strong
coupling αs, which we expect to enter Eq. (35). In any
event, at the inflationary scale the strong coupling constant
αs and the weak coupling constant αw do not differ much
and are numerically, up to factor two, very close to each
other. Therefore, we do not distinguish between them in our
very crude dimensional estimate (35). The important point
is that the estimate (35) shows thatNInf could easily achieve
the required number of e-folds NInf ≥ 70 as the strong
coupling αs ∼ 0.1 is already small at the inflation scale.
We want to repeat once again that the estimate (35) must

be taken with a grain of salt as it is essentially based on
dimensional analysis, while solid computation machinery
has yet to be developed as outlined above. We present this
estimate exclusively with a demonstrational purpose to
emphasize that the number of e-folds NInf ≥ 70 might be
related to the gauge dynamics and be expressed in terms of a
small gauge coupling constant within the QCD- inflation
framework, rather than being related to the properties of the
classical inflaton potential VðΦÞ with the corresponding
slow-roll requirements. What is more important is that we
anticipate that this number should be expressed (eventually)
in terms of the gauge coupling constants we know and love.
As we emphasized above, the theory of reheating in

QCD inflation has yet to be developed. Therefore, we
do not know answers to many relevant questions.5

Nevertheless, we anticipate that all small parameters that
are normally required for successful inflation will be
(eventually) expressed in our framework in terms of a
small gauge coupling constant during the reheating time
because precisely this interaction modifies the EoS (32) by
producing small corrections ∼α2s , similar to (35). Density
perturbations in this framework are generated by the
auxiliary topological fields ½ϕðxÞ; bðxÞ� that are responsible
for the (almost) de Sitter behavior (33). The standard
prediction for all inflationary models (including our frame-
work) is that the fluctuations are (almost) scale invariant as
a consequence of the de Sitter symmetries during the
inflation phase [3]. Therefore, we have not much new to
say regarding this standard and very generic prediction of

the inflationary idea. While prediction on scale invariance
of perturbations is identical to conventional inflationary
models, a computational scheme for the size of the
perturbations in our framework is very different from the
standard procedure. The same comment also applies to
estimations of the spectral index nS and its deviation from
unity, which we expect to be expressed in terms of a gauge
coupling constant, similar to Eq. (35), i.e., jnS − 1j ∼ α2s .
All these hard problems are reduced in our framework to

study the equation of state (32) at the end of the inflationary
phase when helical instability develops and the interaction
plays a key role. Therefore, the corresponding corrections
should be proportional to the gauge coupling constant
similar to our dimensional analysis of NInf . We anticipate
that the relevant technique to study these hard questions
will be similar in spirit to the technique employed in study
of the helical instability in heavy ion physics and reviewed
in Appendix B: in both cases the instability leads to the
decreasing of an auxiliary _bðxÞ field that was the original
source of instability. In heavy ion physics the correspond-
ing auxiliary field is identified with the axial chemical
potential (B2), which is indeed getting reduced as a result
of the instability. In our cosmological context such flow of
energy implies that the fate of instability is to reduce the
inflationary Hubble constant (33). The corresponding
inflationary energy that is proportional to H will be
transferred to the light particles, which is precisely the
destiny and fate of the reheating epoch.

VI. CONCLUSION AND FUTURE DIRECTIONS

In the present work we advocate an idea that the inflaton
field is not a fundamental local field. Instead, the role of the
inflaton plays an auxiliary topological field that effectively
describes the dynamics of topological sectors in the gauge
theory when it is considered in the expanding Universe.
The corresponding energy in this framework has a funda-
mentally different nature than conventional energy when a
theory is formulated in terms of a fundamental dynamical
field Φ, for example in the Higgs model. In particular, it
cannot be expressed in terms of any propagating physical
degrees of freedom as the corresponding energy has a
nondispersive nature.6 Similar auxiliary nonpropagating

5For example, it is obvious that the ρInf cannot stay the same
while its energy flows to radiation as a result of interaction, while
formula (22) suggests its (almost) constant value expressed in
terms of Λ ¯QCD. It is clear that all formulas presented above are
written by ignoring the interaction and assuming an instant
“equilibration” when the gravity immediately fills up the ρInf
portion of energy that was just used as a result of radiation. In
reality it must be clear that it takes some time to fill this energy,
which is obviously a very long process as the corresponding
energy transfer is proportional to the gravitational constant, while
removing this energy is a much faster process as it is proportional
to a gauge coupling. Answering this and many other questions
would eventually predict the fate of the Universe. The corre-
sponding analysis is well beyond the scope of the present paper,
as it requires the understanding of problems such as reheating,
back reaction, and many other related questions within this
framework.

6The corresponding physics is well understood in QCD. In
particular, the nondispersive contribution to the topological
susceptibility with the wrong sign, and corresponding the θ-
dependent portion to the energy, are well confirmed by the lattice
studies; see, e.g., [16] with a large number of references on the
original lattice studies. It is also well known that the topological
susceptibility (and the energy associated with it) vanishes in the
deconfined phase. We use a simplified gauge theory, the weakly
coupled deformed QCD, reviewed in Sec. II and Sec. III to
explain all these strange features using the auxiliary ½ϕðxÞ; bðxÞ�
fields. It provides us with some simple intuitive picture of the
system that is difficult to explain using the original numerical
lattice QCD results.
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topological fields are known to play an important role in
many condensed matter systems realized in nature. The
energy in our system is generated due to the tunneling
processes describing the transitions between topologically
different but physically equivalent winding states. The
inflaton field that effectively describes these transitions
in the expanding background emerges after the confine-
ment and deconfinement phase transitions. This field
ceases to exist in the deconfined phase, in contrast with
all conventional inflationary scenarios when local Φ field
and its potential VðΦÞ always exist in the system. This
topological field does not have a kinetic term, and it does
not propagate as it is an auxiliary field. These features in
fact may have some profound observational consequences
as we shall argue below.

A. Assumptions

Our construction is based on three basic assumptions:
(1) We assume an existence of a scaled up version of

QCD that is coined in this paper as QCD. It is not
really a very new idea as a similar construction
(though in a different context) has been suggested a
long time ago and it is known as technicolor; see the
recent review article [59]. We do not discuss any
connections with technicolor models in the present
paper. However, in principle, the corresponding
studies might be worthwhile to explore as the
ΛQCD scale (24) could be quite appropriate for these
purposes. The only constraints on QCD are the
following: it must be an asymptotically free gauge
theory to satisfy the UV completion requirement,
and also ΛQCD ≫ 108 GeV to avoid interference
with E&W physics.

(2) We adopt the paradigm that the relevant definition of
the energy that enters the Einstein equations is
ΔE≡ ðE − EMinkÞ, similar to the Casimir effect.
This is an absolutely consistent procedure for for-
mulating a QFT in a curved background as discussed
in Sec. IVA. This element in our analysis is also not
very new, and in fact such a definition for the
vacuum energy in the present context was advocated
for the first time in 1967 by Zeldovich [36]; see [32]
for review.

(3) A novel element that was not widely discussed
previously in the literature is an assumption that
the strange vacuum energy (21) receives the linear
corrections ∼H in apparent contradiction with con-
ventional arguments that the corrections must be
quadratic ∼H2; see Sec. III B with details on pros
and cons of each argument. An explicit computation
that could resolve this issue even in a weakly
coupled toy model is hard to carry out; see steps
1–4 in Sec. III B. Similar in spirit, the nonlocal
features are known to be present in many gapped
topologically ordered condensed matter systems

realized in nature. This nonlocality may falsify the
main assumption leading toH2 prediction, as argued
in Sec. III B and Appendix A.

B. Basic result

With these three assumptions just formulated, we have
argued that the Universe had a period of inflationary
(almost) de Sitter phase characterized by behavior (33).
We also argued that the regime (33) would be the final
destination of our Universe if interaction with SM fields is
switched off. When the coupling is switched back on, the
end of inflation is triggered precisely by this interaction
which itself is unambiguously fixed by a triangle anomaly.
We also presented an order of magnitude estimates based
on dimensional arguments for the number of e-folds (35).

C. Other profound consequences of the framework

In the context of our framework many problems of
conventional inflationary scenario, see, e.g.[5], are auto-
matically resolved within the QCD inflation. Instead of
saying “automatically resolved” it is more appropriate to say
that these problems do not even emerge in our framework.
In particular, as is known, the initial value of the inflaton
field Φin (in the conventional scenario) must be larger than
the Plank scale to provide a sufficient number of e-foldings
N ∼ ðΦin=MPLÞ2. A similar constraint is also required to
support a slow-roll condition. Also, the coupling constant
must be unnaturally small to satisfy some observational
constraints. Furthermore, the scenarios of self-producing
inflationary universes are related to a physical scalar
dynamical field Φ and properties of the potential VðΦÞ.
In contrast, in our framework, no new fundamental

propagating degrees of freedom ever emerge in the system.
Instead, the dynamics of the degenerate topological sectors
are described in terms of the auxiliary topological non-
propagating field. In addition, there are no fine-tuned
coupling constants in the system as there is a single
relevant ΛQCD scale that could be far away from the
Planck mass (24). Still, the inflationary de Sitter behavior
(33) would emerge for this value of ΛQCD. In fact, this scale
cannot be determined from de Sitter behavior (33) itself,
but must be fixed from observations by computing, e.g.,
the density perturbations. Furthermore, our topological
½ϕðxÞ; bðxÞ� fields are auxiliary fields; they fluctuate, but
they do not have canonical kinetic terms, and they emerge
only after the QCD phase transition; see footnote 6. In
other words, these fields and the energy associated with
them simply do not exist at earlier times, and, therefore, the
trans-Planckian problem does not even emerge.
Another problem known as the singularity problem

(which states in our context that an initial singularity is
unavoidable if the Einstein gravity is coupled to a scalar
inflaton field [60]) is also naturally resolved. Again, it is
better to say that the problem does not even emerge as the
fundamental scalar field Φ does not exist in the system.
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Indeed, our “auxiliary” scalar fields ½ϕðxÞ; bðxÞ� are not
fundamental fields, but rather should be considered as
effective descriptions of the dynamics of degenerate topo-
logical sectors in confined phase. These fields cease to exist
above the QCD phase transition, as explained above.

D. Related effects

We conclude this work by mentioning two related
phenomena that are similar in spirit but characterized by
drastically different scales. First, as we already mentioned,
the energy described by a formula similar to Eq. (21)
[which eventually leads to the de Sitter behavior (33)] has
been postulated as the driving force for the dark energy; see
footnotes 3 and 4 for some comments. The model has been
(successfully) confronted with observations; see [48–56]
and many references therein, where it has been claimed that
this proposal is consistent with all presently available data.
Our comment here is that history of the evolution of the
Universe may repeat itself by realizing the de Sitter behavior
twice in its history. The QCD dynamics were responsible for
the inflation in the early Universe, while the QCD dynamics
are responsible for the dark energy in the present epoch.
Our last comment is as follows. As we discussed at

length in this paper, the heart of the proposal is a
fundamentally new type of energy that is not related to
any propagating degrees of freedom. Rather, this novel
(nondispersive) contribution to the energy is formulated in
terms of the tunneling processes between topologically
different but physically identical states. Our comment
relevant to the present study is that this fundamentally
new type of energy can be, in principle, studied in a
laboratory by measuring the so-called topological Casimir
effect as suggested in [22,61]. The point is that if the
Maxwell theory is defined on a compact manifold there will
be a new contribution to the vacuum energy, in addition to
the conventional Casimir energy. This fundamentally new
contribution emerges as a result of tunneling processes,
rather than due to the conventional fluctuations of the
propagating photons with two physical polarizations. This
effect does not occur for the scalar field theory, in contrast
with conventional Casimir effect, which is operational for
both scalar andMaxwell fields. This extra energy computed
in [22,61] is the direct analog of the strange energy that is
the key player of the present paper. Furthermore, this
fundamentally new type of energy can also be formulated
in terms of auxiliary topological fields similar to
½ϕðxÞ; bðxÞ� fields introduced in this work; see [22] for
the details. In fact, the proposal [22,61] has been motivated
in an attempt to test the nature of the strange energy as the
critical element of the present studies.7
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APPENDIX A: LINEAR CORRECTION ∼H
IN DEFORMED QCD

The main goal of this Appendix is to argue that the linear
correction∼H indeed emerges in the deformed QCDmodel
when the system is considered in the de Sitter background.
Unfortunately, the conventional computation scheme to
carry out a proper computation as outlined in steps 1–4 in
Sec. III B is not feasible due to the challenging technical
problems. Therefore, we use a few additional simplified
assumptions formulated below when the computations can
be explicitly performed. First, we assume that the changes
that occur in the system due to the curved background can
be expressed in terms of the same effective Lagrangian (16)
with the same auxiliary topological fields aðxÞ; bðxÞ as
before but written in a covariant way, without any addi-
tional terms. Second, due to some technical simplifications,
we can estimate a correction to the energy due to the
background field at θ ≠ 0, which is proportional to
θ2ð1þOðHÞÞ. We assume that the θ dependence (8) is
not modified by the background. Therefore, entire modi-
fication due to the background can be reconstructed for any
θ, including θ ¼ 0. In this case the correction to the energy
assumes the form EvacðθÞ ¼ − Nζ

L ½1þOðHÞ� cosðθNÞ with a
calculable coefficient in front of H.
First, we explain our approach with estimations of the

θ-dependent portion of the vacuum energy in flat space in
Sec. A 1. Our simplified procedure (which can be easily
generalized to a curved background) leads to a parametri-
cally correct expression given by Eq. (8). It encourages
us to use the same approximate method to estimate the
θ-dependent portion of the vacuum energy in a curved
background where we indeed observe the emergence of the
linear correction ∼H; see Sec. A 2. The corresponding
linear correction ∼H is interpreted in Sec. A 3 as a result of
mixture of the gravitational background with the topologi-
cal auxiliary field. With this interpretation we further
elaborate on the analogy with Aharonov-Casher effect
mentioned in the introduction. This analogy can now be
formulated in much more precise and specific ways.
Finally, in Sec. A 4 we make a few comments on the
application of these results to strongly coupled QCD.

1. Simplified treatment of the strange energy
in flat geometry at θ ≠ 0

The θ-dependent portion of the vacuum energy in our
system is known exactly, and it is given by (8), (15).
Furthermore, this strange energy that cannot be associated
with any propagating degrees of freedom can be expressed

7The idea to test some intriguing vacuum properties relevant
for cosmology in a laboratory is not a very new idea. It has been
advocated by Grisha Volovik for years; see recent review [62] and
references therein.
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in terms of a correlation function (17) expressed in terms of
auxiliary topological fields; see [16] with all technical
details. Our goal here is to reproduce this formula using a
very simplified procedure that can be generalized to a
curved background when a corresponding exact formula is
not known, as we discussed in Sec. III B.
The action for the scalar auxiliary topological bðxÞ; aðxÞ

fields for our purposes can be approximated as follows:

S½b; a� ¼ −i
4πN

Z
R3

d3xbðxÞ ~∇2
aðxÞ

− ζN
Z
R3

d3x cos

�
θ − bðxÞ

N

�
; (A1)

where we neglected the fluctuations of the massive physical
scalar σ field by putting σ ¼ 0 in Eq. (16). The conven-
tional way to compute the strange energy in terms of the
auxiliary fields is to integrate out the bðxÞ field, compute
the corresponding correlation function at zero momentum
transfer, and express the vacuum energy in terms of this
correlation function, as discussed in details in Ref. [16].
The corresponding computational procedure in a curved

background is a very challenging problem. Therefore, we
use the following simplified procedure for our estimates.
We integrate out the bðxÞ field at θ ≠ 0, assuming that the
fluctuations are small and keeping the quadratic term in cos
expansion, i.e., we consider the quadratic action

S½b;a� ¼ −i
4πN

Z
R3

d3xbðxÞ ~∇2
aðxÞþ ζ

2N

Z
R3

d3x½θ−bðxÞ�2;

(A2)

which is known to reproduce all essential features of the
system, such as topological susceptibility; see Ref. [16] for
details. As the bðxÞ field has no kinetic term, it is expressed
in terms of the aðxÞ field as follows:

δL½b; a�
δbðxÞ ¼ 0 → bðxÞ ¼ θ þ i

4πζ
~∇2
aðxÞ: (A3)

We substitute this expression for bðxÞ to Eq. (A2) to arrive
at the following effective action that determines the
dynamics of the topological fields:

S½b; a� ¼ −iθ
4πN

Z
R3

d3x½ ~∇2
aðxÞ�

þ 1

2ζN
1

ð4πÞ2
Z
R3

d3x½aðxÞ ~∇2 ~∇2
aðxÞ�: (A4)

In our exact treatment in Ref. [16], at θ ¼ 0 we computed
the corresponding Green’s function, the topological sus-
ceptibility, and the strange energy that follows from (A4) at
θ ¼ 0 when the first term in (A4) identically vanishes. We
reproduced all previous results obtained without even

mentioning the auxiliary topological bðxÞ; aðxÞ fields.
As the corresponding direct computational scheme outlined
in Sec. III B represents a very challenging technical
problem for a curved space background, we shall use a
simplified procedure for the estimation that can be gener-
alized to a curved background. What is also important is
that all relevant elements of the system in this estimate can
be understood in a simple and intuitive way such that the
nature of the strange energy becomes less mysterious.
The idea is to compute the portion of the strange energy

entering in combination with the θ parameter in the
expansion EvacðθÞ. Therefore, we shall only concentrate
on the first term proportional to θ in Eq. (A4) in this section
to collect the terms proportional to θ2. To proceed with our
task, we first remind an exact formula for the vacuum
expectation value for the topological density operator that
directly follows from the definition (6),

hiqi ¼ 1

VL
∂SðθÞ
∂θ ; (A5)

where VL is the 4-volume. In the deformed QCDmodel the
corresponding expression for the vacuum energy EvacðθÞ
is known (8). Therefore, the expectation value for the
topological density can be represented as follows:

hqðxÞi ¼ −i
ζ

L
· sin

�
θ

N

�
; SðθÞ≡ VL · EvacðθÞ;

EvacðθÞ ¼ −
Nζ

L
· cos

�
θ

N

�
: (A6)

We note that the expectation value hqðxÞi [not the operator
qðxÞ itself] is complex, as it should be as we are working in
the Euclidean space-time when a complex phase appears in
the path integral formulation. The same imaginary expect-
ation value is known to occur in exactly solvable two-
dimensional QED; see, e.g, [22] with references on the
original results. In Minkowski space-time hqðxÞi assumes a
real value proportional to θ at small θ. The expectation
value hqðxÞi has dimension four as the topological charge
Q ¼ R

d4xqðxÞ representing a specific configuration of
monopoles and antimonopoles as a dimensionless number.
The expectation value hqðxÞi vanishes at θ ¼ 0 as it should
because the equal number of monopoles and antimono-
poles contribute to hqðxÞi with equal weight, while for θ ≠
0 the monopole’s distribution is asymmetric, leading to a
nonvanishing expectation value (A6).
Now wewant to interpret the known results (A6) at small

θ ≪ 1 in a simple, intuitive way. This interpretation will
play a key role in our discussions on the generalization of
the system to a curved background considered below when
exact formulas are not known. First, we consider a
single monopole’s contribution to the action (A4) with
aðxÞ ¼ 1=jxj. As we intend in our simplified treatment to
estimate only an additional contribution proportional to θ,
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we limit ourselves by studying the first term in action (A4)
proportional to θ. A single monopole contributes to the
θ-dependent portion of the action as follows:

ΔSðsinglemon.Þ ¼
−iθ
4πN

Z
R3

d3x½ ~∇2
aðxÞ� ¼ iθ

N
: (A7)

Now we should multiply this amount to the topological
density ð− iζ

LÞ · ðθNÞ from Eq. (A6) at small θ. It represents
the difference between the densities of monopoles and
antimonopoles that contribute to (A7) with the opposite
signs. Finally, one should multiply the obtained result with
the total volume ðLVÞ and N to account for all types of
monopoles in the entire 4-volume. As a result of these
multiplications, we arrive at the following order of magni-
tude estimate for the extra action due to nonvanishing θ:

ΔStotal ≃
�
iθ
N

�
·

�
−iζ
L

�
·

�
θ

N

�
· ðLVÞ · N ≃ θ2ζV

N
: (A8)

This represents a parametrically correct estimate consistent
with the exact result (A6) for small θ ≪ 1. The key
observation here is that the system is gapped, but the
auxiliary topological field aðxÞ is not screened. In other
words, the auxiliary topological field aðxÞ is effectively
long ranged, as discussed in great details in Sec. III and
specifically after Eq. (19). This is precisely the source of
nonvanishing contribution to the action (A7) from a single
pseudoparticle with asymptotic behavior aðxÞ ¼ 1=jxj in a
plasma with a finite Debye screening length. Such a
behavior of the system should be contrasted with the
well-known three-dimensional Polyakov’s model where a
similar monopole’s potential is screened, the contact term
vanishes, and all effects (related to the θ parameter)
disappear; see a few additional comments in Sec. A 3.

2. Corrections to the strange energy in de
Sitter background

The main goal of this subsection is to generalize the
simplified estimates (A7) and (A8), which represent the
θ-dependent portion of the strange energy, on a time-
dependent background parametrized by the Hubble con-
stant H. We do not want to destroy the weak coupling
regime of the deformed QCD. Therefore, we do not change
parameter L, which is the length of the compactified 4th
dimension in this system. Instead, we want to model the de
Sitter behavior by modifying the geometryR3 of the system
defined by the topological action (A1). With this purpose
we consider three-dimensional Minkowski space Rð1;2Þ
with a Lorentzian signature instead of the original
Euclidean signature R3 that enters (A1). After that, one
can introduce a scale factor aðtÞ that models the expansion
of the Universe. The next conventional step is to use the
conformal time η instead of physical time t:

dη ¼ dt
aðtÞ : (A9)

To simplify the analysis, we concentrate on the de Sitter
behavior with the following properties:

_aðtÞ
aðtÞ≡H; aðηÞ ¼ −

1

Hη
; H ¼ const: A10

Furthermore, we assume that H is much smaller than all
other scales of the problem. As the next step, we follow a
conventional procedure when the scale factor aðtÞ can be
removed from the action by introducing ā and b̄ fields and
rescaling the dimensional parameter ζ of the system as
follows:

ā≡ aðtÞa; b̄≡ b; ζ̄ ≡ a3ðtÞζ: (A11)

Our study of the strange energy is formulated using the
Euclidean signature in terms of pseudoparticles (monop-
oles) that describe the tunneling events; see text after
Eq. (15). Therefore, once parameter H is introduced into
the system, we return to the metric with the Euclidean
signature using conventional analytical continuation. As a
result of this procedure, we arrive at the following action in
terms of new b̄ðx; ηÞ and āðx; ηÞ fields:

S½b̄; ā� ¼ −i
4πN

Z
d2xdηb̄ðx; ηÞ

�
~∇2
āðx; ηÞ þ 2

η

∂āðx; ηÞ
∂η

�

þ ζ̄

2N

Z
d2xdη½θ − b̄ðx; ηÞ�2;

~∇2 ≡ ∂2

∂x2
þ ∂2

∂η2 : (A12)

In formula (A12) we use x for two expanding coordinates,
while η in Eq. (A12) represents the Euclidean con-
formal time.
We should remark here that both technical elements

employed in deriving (A12) describing the action with
Euclidean signature in curved space are conventional
technical tools; see, e.g., [3]. In particular, in the case of
a massive field with a canonical kinetic term, the problem is
reduced to a conventional QFT in a flat background with
the only new element being that a time-dependent effective
mass appears in the description:

m2
eff ≡ a2m2 −

1

a
∂2a
∂η2 ¼ a2m2 −

2

η2
: (A13)

Our original topological action (A2) does not have a
canonical kinetic term as the system does not describe
any propagating degrees of freedom. As a result of this
difference with the canonical case (A13), the only new
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element that emerges in Eq. (A12) is an extra term
½2b̄η ∂āðx;ηÞ

∂η �.
As our system (A12) is formulated in the same terms as

the original formulation (A2), we simply repeat all the steps
leading to the simplified estimates (A7) and (A8), taking
into account an additional term in squared brackets (A12).
As a result of this procedure, we arrive at the following
extra contribution from a single pseudoparticle with the
asymptotic behavior āðx; ηÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ η2

p
:

ΔSðsinglemon.Þ ¼
−iθ
4πN

Z
d2xdη

�
~∇2
āðx; ηÞ þ 2

η

∂āðx; ηÞ
∂η

�

¼ iθ
N

�
1þ

Z
dη
η

�
¼ iθ

N

�
1 −H

Z
dt

�

¼ iθ
N

�
1 −O

�
Hffiffiffi
ζ3

p
��

; (A14)

where in the last term we returned to the physical time t
variable instead of the conformal time η. Furthermore, we
cut off the integral

R
dt at the scale 1=ζ, which is the only

physical scale of the problem and roughly corresponds to a
typical time scale of the tunneling events. The correspond-
ing correction ∼H will also enter formula (A8) in front of
the θ2 term. Assuming that the θ dependence is not altered
by a curved background, we formulate our final estimate in
the same form as presented in Sec. III B:

EvacðHÞ ¼ −
Nζ

L

�
1 −O

�
Hffiffiffi
ζ3

p
��

: (A15)

Formula (A15) represents an extra contribution to strange
energy due to the tunneling events in the expanding
background parametrized by the Hubble constant H. In
the Euclidean formulation the same extra energy describes
the variation of the monopole density as a result of the
expansion.

3. Interpretation

Our goal here is to explain a highly nontrivial phenome-
non represented by Eq. (A15) with a linear correction ∼H
that naively contradicts a conventional viewpoint that the
correction must be quadratic; see Sec. III B. One can
explicitly see from Eq. (A14) that the crucial element
for the linear correction to emerge is the presence of the
long range topological field that mixes with the background
represented by the Hubble parameter H. Indeed, if in
Eq. (A14) instead of ā ∼ r−1 we used a screened massive
field, i.e., φðrÞ ∼ expð−mrÞ=r, we would obviously get the
vanishing contribution from the large distances. This is in
fact exactly the case for three-dimensional Polyakov’s
model, which is known to produce a vanishing contact
term as all physical results are θ independent in that model
in a large volume limit. Therefore, the origin of linear
correction ∼H lies in understanding of the long range

behavior of the topological field in a gapped system.
Formally, this long range behavior is formulated in terms
of the contact term proportional to the δðxÞ function (17), or
what is the same in terms of the massless pole (19).
Normally, a pole at zero mass corresponds to a massless

gauge boson. Or it might be a result of the spontaneous
symmetry breaking effect. However, we do not have any
physical massless states in the system. What is a symmetry
that could be responsible for behavior (19)? Furthermore,
this pole must have a residue with a wrong sign such that it
cannot be identified with any physical propagating mass-
less degree of freedom. In weakly coupled deformed QCD
the contact term is saturated by monopoles that describe the
tunneling between physically identical but topologically
different winding jni states. Therefore, one can interpret the
symmetry that is responsible for such a behavior as the
invariance under the large gauge transformations, as argued
in [47]. It is important to emphasize that while the operator
T is formally constructed as an operator of gauge trans-
formations, this operator does change the state as a result of
global effect, i.e., T jni ¼ jnþ 1i. Therefore, one should
treat T as “improper” gauge transformation (the “large
gauge transformation”). Still, T commutes with the
Hamiltonian ½T ; H� ¼ 0. Precisely this feature (19) with
a topologically protected massless pole is eventually
responsible for the linear correction (A15) to the strange
energy as any massive physical states cannot produce such
type of effects.
It is quite instructive to present some analogy with a

system that is realized in nature and that exhibits similar
properties. While there are many (topologically ordered)
systems that demonstrate similar features, we concentrate
on the well-known Aharonov-Casher effect as formulated
in [63]. The relevant part of this work can be stated as
follows. If one inserts an external charge into a super-
conductor when the electric field is exponentially sup-
pressed ∼ expð−r=λÞ, with λ being the penetration depth, a
neutral magnetic fluxon will still be sensitive to an inserted
external charge at an arbitrary large distance. The effect is
purely topological and nonlocal in nature. The crucial
element why this phenomenon occurs in spite of the fact
that the system is gapped is very similar to our case. First of
all, it is the presence of different topological states un
(number of Cooper pairs) in the system and “tunneling”
between them (nonvanishing matrix elements between un
and unþ1 states) as described in [63]. Those states are
analogous to the topological sectors jni in our work. As a
result of the tunneling, an appropriate ground state UðθÞ
must be constructed, as discussed in [63], analogous to the
jθi vacuum construction in gauge theories. This state UðθÞ
is an eigenstate of the so-called “modular operator” that
commutes with the Hamiltonian. In our work an analogous
role plays the large gauge transformation operator T such
that T jθi ¼ expð−iθÞjθi. An explicit construction of the
operator T is known: it is a nonlocal operator similar to the
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nonlocal modular operator from Ref. [63]; see Appendix in
Ref. [47] for some technical details in the given context.
Our system is transparent to topologically nontrivial pure
gauge configurations, similar to transparency of the super-
conductor to the “modular electric field” from Ref. [63].
Such a behavior of our system can be thought of as a
nonlocal topological effect similar to the nonlocal
Aharonov-Casher effect as formulated in [63].
We should emphasize again that the are no any physical

propagating massless degrees of freedom in the system.
The description of the system in terms of auxiliary
topological fields saturating the correlation function (19)
with a seemingly massless pole is not mandatory but a
matter of convenience. Similarly, the description of a
topologically ordered phase in condensed matter physics
in terms of the Chern-Simons effective Lagrangian is a
matter of convenience rather than a necessity. In fact all
relevant features of topologically ordered phases (such as
braiding phases or degeneracy of the ground state) have
been originally established without any auxiliary Chern-
Simons fields. The same comment also applies to our case
when the inflaton is an auxiliary, not dynamical, topologi-
cal field that effectively describes the dynamics of the
topological sectors of the gauge system in the expanding
Universe. In principle, one could follow steps 1–4 from
Sec. III B to compute the correction (A15) without any
auxiliary fields. However, our estimate (A15) demonstrates
the convenience of the topological field that we identify
with the inflaton. Furthermore, the formal similarities with
the Aharonov-Casher effect presented above make the
analogy mentioned in the introduction on the nature of
the inflaton field much more specific and precise.

4. Generalization to four-dimensional QCD

In previous subsections we have argued, using the weakly
coupled deformed QCD model, that the correction to the
strange energy could demonstrate a linear ∼H scaling rather
than the naively expected ∼H2 scaling. In strongly coupled
QCD we cannot use the same technique, as our semiclassical
computation is not justified. However, as claimed in [10], the
transition from weakly coupled deformed QCD to strongly
coupled QCDmust be smooth, without any phase transitions
on the way. Therefore, one should expect that the same linear
scaling should hold in the strongly coupled regime as well.
This is precisely the key assumption of Sec. III B and Sec. IV
and, in fact, of the entire framework advocated by the present
paper. Below, we present an additional argument further
supporting this assumption.

The argument is based on the observation that the crucial
element leading to the linear ∼H scaling is the presence
of an effectively massless auxiliary topological field
expressed by the correlation function (19). The assumption
of the continuity in the passage from the weakly coupled to
the strongly coupled regime is formulated in terms of the
topological fields as a prescription that the only dimen-
sional parameter ζ=L from weakly coupled deformed QCD
becomes Λ4

QCD
in strongly coupled QCD. The inflaton field

aðxÞ from the deformed QCD construction is replaced by
the ϕðxÞ field in strongly coupled QCD. The new inflaton
field ϕðxÞ should be identified with the longitudinal
component of KμðxÞ ∼ ∂μϕðxÞ such that topological den-
sity operator is qðxÞ ∼□ϕðxÞ assumes the same form as

qðxÞ ∼ ~∇2
aðxÞ from the deformed QCD model. Another

auxiliary field bðxÞ always enters the effective descrip-
tion along with the θ parameter in the combination
θ → ½θ − bðxÞ�. In strongly coupled QCD the bðxÞ must
keep its transformation properties. As a result of these
replacements, we arrive at the following effective low
action for the topological ½b;ϕ� fields:

S½b;ϕ�¼−i
Z
R4

d4xbðxÞ□ϕðxÞþ1

2
Λ4

QCD

Z
R4

d4x½θ−bðxÞ�2:

(A16)

This action replaces Eq. (A2) for weakly coupled deformed
QCD. There is a fundamental difference between Eq. (A2)
and (A16). In the former case the corresponding action has
been derived in [16] from the first principles in the weakly
coupled gauge theory, while in the later case it has been
reconstructed above assuming the continuity in the passage
from the weakly coupled to the strongly coupled regime.
Nevertheless, one can argue that (A16) represents a

correct description of the low energy physics. In particular,
it saturates the contact term in the topological susceptibility
(12), (13). Indeed, one can integrate the bðxÞ field in
Eq. (A16) such that the effective action for θ ¼ 0 becomes

S½ϕ� ¼ Λ−4
QCD

·
1

2

Z
R4

d4xϕðxÞ□□ϕðxÞ: (A17)

Such an effective action written in the form
R
d4xq2ðxÞ ∼R

d4xð∂μKμÞ2 has been, in fact, postulated by Veneziano
[13,14] as the key element in the resolution of the Uð1ÞA
problem. The relevant correlation functions can be explic-
itly evaluated now from Eq. (A17) with the results

hqðxÞqð0Þi ∼ h□ϕðxÞ;□ϕð0Þi ∼
R
D½ϕ�e−SðϕÞ□ϕðxÞ□ϕð0ÞR

D½ϕ�e−SðϕÞ ∼ Λ4

QCD
· δ4ðxÞ

lim
k→0

Z
d4xeikxhKμðxÞ; Kνð0Þi ∼ lim

k→0

Z
d4xeikxh∂μϕðxÞ; ∂νϕð0Þi ∼ Λ4

QCD
·
kμkν
k4

: (A18)
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The main point here is that the effective action (A16) does
reproduce all relevant elements (12), (13) that are known to
be present in strongly coupled QCD.
Now we can repeat all the steps we employed in previous

subsections A 1, A 2, and A 3 to generalize our system to a
curved background characterized by the Hubble parameter
H. In particular, we introduce the rescaled field, similar to
Eq. (A11) as follows:

ϕ̄≡ a2ðtÞϕ; b̄≡ b; Λ̄QCD ≡ aðtÞΛQCD: (A19)

In terms of the rescaled variables the action in the Euclidean
signature assumes the following form:

S½b;ϕ� ¼ −i
Z

d3xdη · b̄ðx; ηÞ
�
□ϕ̄ðx; ηÞ þ 4

η

∂ϕ̄ðx; ηÞ
∂η

�

þ 1

2
Λ̄4

QCD

Z
d3xdη · ½θ − b̄ðx; ηÞ�2;

□≡ ∂2

∂x2
þ ∂2

∂η2 ; (A20)

where we use x for three expanding coordinates while η is
the Euclidean conformal time. The structure of this action is
very much the same as the action for the weakly coupled
gauge theory given by Eq. (A12). The extra term ∼ðbηÞ · ð∂ϕ̄∂ηÞ
describing the mixture of the inflaton field with a curved
background also assumes the same structure. However, we
cannot proceed with estimations similar to Eq. (A14)
because there are no well-defined weakly interacting
pseudoparticles (similar to the monopole instanton) in
strongly coupled QCD. Nevertheless, it is natural to expect
that the correction to the strange energy due to the
expanding Universe will also exhibit the linear scaling
similar to Eq. (A15), i.e.,

EvacðHÞ ¼ −N2Λ4

QCD

�
1 −O

�
H

ΛQCD

��
: (A21)

This expectation is based on the observation that the key
element leading to the linear correction in Eq. (A15) is the
presence of the long range topological field as explained in
Sec. A 3. This feature is obviously present in the strongly
coupled regime (A18), in close analogy with the corre-
sponding expressions (17) and (18) derived for the weakly
coupled deformed QCD. In both cases the linear term can
be interpreted as the result of the mixture of the topological
inflaton field ð∂ϕ̄∂ηÞ with the curved background represented
by ð1ηÞ.

APPENDIX B: INDUCED θindðxÞ, THE HELICAL
INSTABILITY, AND THE LINEAR ∼H SCALING

IN HEAVY ION COLLISIONS.

The goal of this Appendix is to present some analogy
with a system that has precisely the structure of (34). The

structure of (34) has emerged in the context of the present
work as the coupling between the auxiliary field bðxÞ and
physical gauge fields, and it was was the crucial element in
our presentation on a possible reheating mechanism within
the QCD- inflation scenario in Sec. V. The same structure
also emerges in the context of heavy ion physics. To be
more specific, it was suggested a while ago [64–68] that the
so-called induced theta vacua jθindi can be created in heavy
ion collisions. This direction of studies became a very
active area of research after an appropriate observational
signature had been suggested [69] and theoretical compu-
tations of the effect had been put on a solid theoretical
ground [70]; see also related papers [71–73] with specific
applications to heavy ion collisions, and also review paper
[74] which covers some recent theoretical development.
The experimental studies at the relativistic heavy ion
collider (RHIC), Brookhaven [75], and, more recently,
at the LHC [76] apparently support the basic picture
advocated in [69–74].
The basic idea advocated in [69–74] can be explained as

follows in a few lines. Let us assume that an effective
θð~x; tÞind ≠ 0 is induced as a result of some nonequlibrium
dynamics, as suggested in Refs. [64–68]. The θð~x; tÞind
parameter enters the effective Lagrangian as follows:

LθðxÞ ¼ −
g2

64π2
θindðxÞϵμνρσFaμνFaρσðxÞ; (B1)

which is very similar in spirit to Eq. (34) describing the
interaction between the auxiliary field bðxÞ and physical
gauge fields. In the context of heavy ion collisions the
θindðxÞ plays the same role as bðxÞ does in the present work.
In both cases these fields are not dynamical, and in both
cases they reflect the changes related to the variation of
the environment (colliding nuclei versus the expanding
Universe). In both cases these auxiliary fields code the
information on modification of the topological sectors as a
result of this variation. It is obvious that the typical scales
are very different in these two problems: in the expanding
Universe the scale is determined by the Hubble parameter
H, while in heavy ion physics a typical scale is determined
by a correlation length of the θindðxÞ, which is the size of a
nuclei L. What is important is that in both cases these scales
are parametrically smaller than internal fast fluctuations,
i.e.,H ≪ ΛQCD and L−1 ≪ ΛQCD scales correspondingly. It
allows to treat of bðxÞ and θindðxÞ as the external slow
varying background fields when the effective Lagrangian
approach (34) and (B1) is correspondingly justified.
In the context of heavy ion collisions the interaction (B1)

has received a lot of attention because it implies that the
local parity (P) and charge parity (CP) invariance of QCD
is broken on the scales where correlated θð~x; tÞind ≠ 0 is
induced. As a result of this violation, one should expect a
number of P and CP violating effects taking place in the
region where θð~x; tÞind ≠ 0. In particular, in the presence of
an external magnetic field ~B or in the case of the rotating
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system with angular velocity ~Ω an electric current directed
along ~B or ~Ω, correspondingly, will be induced, resulting in
separation of charges along those directions. This leads to a
number of effects such as the “charge separation effect,”
“chiral magnetic effect,” “chiral vortical effect,” etc.; see
review article [74] for a short introduction into the field.
Apparently, the corresponding effects have been observed
at the RHIC [75] and confirmed at the LHC energies [76].
QCD itself obviously does not break P and CP invariance
on the fundamental level. It implies that all these effects
must be measured on an event-by-event basis when the
θindðxÞ parameter assumes a different value with a different
sign in each given event.
In the context of the present work it is important to notice

that for a time-dependent and spatial-independent θðtÞind ≠
0 can be represented as nonvanishing axial chemical
potential for a massless fermion ψ . Indeed, one can perform
in the path integral a Uð1ÞA chiral time-dependent trans-
formation to rotate away the coupling (B1). The corre-
sponding interaction reapers in the form of a nonvanishing
axial chemical potential ðμL − μRÞ ≠ 0. To be more precise,

ψ → exp

�
i
θðtÞind

2

�
ψ ;

ψ̄γμDμψ → ψ̄γμDμψ þ ðμL − μRÞψ̄γ0γ5ψ ;
μ5 ≡ ðμL − μRÞ≡ _θðtÞind; (B2)

see also [74] for a physical interpretation of this relation:
ðμL − μRÞ ¼ _θðtÞind. One should comment here that the
axial chemical potential μ5 does not correspond to any
conserved charges, in contrast with the conventional chemi-
cal potential μ, which is related to the conservation of the
baryon charge. Nevertheless, μ5 can be used in computations
assuming it is a slow varying function of time.

In the context of our work when the typical fluctuations
of bðxÞ (playing the role of θðtÞind, as explained above) are
of the order ofH, one can also identify j_θðtÞindj→ j _bðtÞj∼H
with a local generation of jμ5j ∼H on those scales. With
these identifications, one can use the recent studies [77] on
computation of the helical instability in plasma with the
result that the time scale of the plasma instability is [77]:

τinst ∼
1

α2sμ5
: (B3)

With our identification jμ5j ∼H in cosmological context
we arrive to estimate (35). It has been also argued in [77]
that the fate of this instability is to reduce μ5, which itself is
a source of this instability. In our cosmological context it
implies that the fate of instability is to reduce the infla-
tionary Hubble constant (33). The corresponding infla-
tionary energy (22) that is proportional to H will be
transferred to the light particles, which is precisely the
destiny of the reheating epoch.
We conclude the appendix with one more short remark

on the analogy between heavy ion collisions characterized
by θðtÞind and cosmology characterized by bðxÞ in our
framework. The point is that a linear dependence on H as
discussed in Sec. III B can be, in principle, tested in the
context of heavy ion collisions as discussed in [73]. The
key element in studying the local violation of the P and CP
invariance is that the typical correlation length for θðtÞind in
the heavy ion collisions context is played by a size of a
nuclei L. When the size of a nuclei varies, the effect must
scale as L−1, which plays the role of the Hubble parameter
H in the cosmological context. Available experimental data
apparently support the L−1 scaling law as the studies have
been performed for a number of nuclei with different sizes:
Au79; Pb82;C29; see [73] for the details.
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