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We propose a mechanism by which the inflaton can generate baryogenesis, by taking the inflaton to be a
complex scalar field with a weakly broken global symmetry, and present a new version of the Affleck–Dine
mechanism. The smallness of the breaking is motivated both by technical naturalness and a requirement for
inflation. We study inflation driven by a quadratic potential for simplicity and discuss generalizations to
other potentials. We compute the inflationary dynamics and find that a conserved particle number is
obtained toward the end of inflation. We then explain in detail the later decay to baryons. We present two
promising embeddings in particle physics. (i) The first is using high-dimension operators for a gauge
singlet; we find this leads to the observed asymmetry for decay controlled by the ∼grand unified theory
scale, and this is precisely the regime where the effective field theory applies. (ii) The second is using a
colored inflaton, which requires small couplings. We also point out two observational consequences: a
possible large-scale dipole in the baryon density and a striking prediction of isocurvature fluctuations for
which the amplitude is found to be just below current limits and potentially detectable in future data.
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I. INTRODUCTION

The Standard Model of particle physics is a major
success of modern physics, accurately describing all
laboratory observations, and recently confirmed by LHC
data [1,2]. On the other hand, there are several cosmologi-
cal observations that are left unaccounted for. One is the
asymmetry between matter and antimatter.
Cosmological observations in the CMB, and other

measurements, have revealed that the asymmetry between
matter and antimatter is small. It is normally quantified by
the parameter η, which is the average baryon-to-photon
ratio in the Universe, with the small value

ηobs ≈ 6 × 10−10: (1)

As discovered by Sakharov [3], any particle physics
mechanism that seeks to account for this, starting from a
state of symmetry, requires (i) the violation of baryon
number, (ii) the breaking of C and CP symmetry, and
(iii) out-of-equilibrium processes. These conditions are not
effectively satisfied by the Standard Model of particle
physics, strongly suggesting new physics.
One might try to avoid this problem by simply imagining

that the Universe began with the asymmetry. However, such
a proposal appears both unsatisfying and unlikely due to
cosmological inflation, a phase of exponential expansion in
the early Universe [4,5]. Evidence is continually mounting,
including recent CMB data [6,7], that this paradigm
explains not only the large-scale homogeneity and isotropy

but also the density inhomogeneities and temperature
anisotropies. An important consequence is that such an
exponentially growing phase would wipe out any initial
baryon number.
Ordinarily, to avoid this problem due to cosmological

inflation, one introduces a collection of new fields that enter
well after the inflationary phase in order to generate a
baryon number. There exist many proposals for baryo-
genesis of this sort; for reviews, see, e.g., Refs. [8–10]. One
popular mechanism is to introduce new physics around the
electroweak scale and achieve baryogenesis at the electro-
weak phase transition; e.g., see Refs. [11–14]. As we have
yet to see any new physics at the LHC, which is probing
this energy regime, it is important to consider the possibil-
ity that baryogenesis is associated with much higher
energies. Perhaps the only known probe to physics at very
high energies is through inflation.
In this paper, and accompanying paper [15], we show

that, although inflation wipes out any initial matter/
antimatter asymmetry, the asymmetry can still be generated
by the inflaton itself. The key reason this is possible is that
the inflaton acquires a type of vacuum expectation value
(vev) during inflation, and this information is not wiped out
by the inflationary phase. To connect this to baryogenesis,
we will put forward a new variation on the classic Affleck–
Dine [16] mechanism for baryogenesis, which uses scalar
field dynamics to obtain a net baryon number. In the
original proposal, Affleck and Dine used a complex scalar
field, usually thought to be unrelated to the inflaton but
possibly a spectator field during inflation, to generate
baryons in the radiation or matter eras.
Many interesting versions and constraints, often includ-

ing connections to supersymmetry, have been found for
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these types of Affleck–Dine models; some interesting
works appears in Refs. [17–35]. For instance, Ref. [33]
considers an interesting leptogenesis model. In Ref. [22] an
interesting extradimensional model was put forward. In
Ref. [24] radiative corrections were considered. In Ref. [25]
connections to graviton dark matter were investigated. In
Ref. [29] corrections from moduli were computed. Many
works have been in the context of supergravity, such as the
very interesting work in Ref. [20], which has overlap
with our work here. However, with no current evidence for
(low-scale) supersymmetry, it is very useful to consider less
restrictive frameworks. Here we provide a general model
using only the tools of effective field theory, constrained by
the latest cosmological data. Our model will be minimal
and predictive.
Here we propose a new model where the aforementioned

complex scalar field is the inflaton itself. We study
both particle physics and cosmological aspects of our
model, including current observational constraints. This
work is a full treatment of the basic idea summarized in our
accompanying paper [15]. Our key ideas and findings are
summarized as follows:
(1) We propose that the inflaton is a complex scalar field

with a weakly broken global Uð1Þ symmetry. For
simplicity, we consider inflation driven by a sym-
metric quadratic potential, plus a subdominant
symmetry-breaking term.

(2) We find that a nonzero particle number is generated
in the latter stage of inflation. After inflation this can
decay into baryons and eventually produce a thermal
Universe.

(3) We propose two promising particle physics models
for both the symmetry breaking and the decay into
baryons:
(a) Using high-dimension operators, which is

preferable if the inflaton is a gauge singlet.
(b) Using low-dimension operators, which is natural

if the inflaton carries color.
(4) We find that model i predicts the observed baryon

asymmetry if the decay occurs through operators
controlled by ∼ grand unified theory (GUT) scale,
and this is precisely the regime where the effective
field theory applies.

(5) We find that model ii requires small couplings to
obtain the observed baryon asymmetry; which may
be interesting in supersymmetric contexts.

(6) We find that the model allows a large-scale baryon
dipole in the Universe, for which the amplitude
depends on the number of e-foldings of inflation.

(7) We find that the model predicts a baryon isocurva-
ture fluctuation at a level consistent with the latest
CMB bounds and is potentially detectable in future
generations of data.

The basic outline of this paper is as follows: In Sec. II we
specify the model and computational techniques, in Sec. III

we obtain results for the scalar field asymmetry, in Sec. IV
we discuss the decay into baryons, in Sec. V we discuss
constraints from inflation, in Sec. VI we discuss particle
physics realizations, in Sec. VII we mention possible
observational consequences, in Sec. VIII we discuss our
results, and in the Appendix we present further analytical
results.

II. COMPLEX SCALAR MODEL

Consider a complex scalar field ϕ, coupled to gravity,
with dynamics governed by the standard two-derivative
action (signature þ − −−, units ℏ ¼ c ¼ 1)

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ j∂ϕj2 − Vðϕ;ϕ�Þ

�
: (2)

With a canonical kinetic sector, our entire freedom comes
from the specification of the potential function V. For our
purposes, it will be useful to decompose the potential into a
“symmetric” piece Vs and a “breaking” piece Vb, with
respect to a global Uð1Þ symmetry ϕ → e−iαϕ,

Vðϕ;ϕ�Þ ¼ VsðjϕjÞ þ Vbðϕ;ϕ�Þ: (3)

To describe inflation we assume that the symmetric piece
Vs dominates, even at rather large field values where
inflation occurs. By expanding ϕ around 0, we assume
that the symmetric piece contains a quadratic mass term

VsðjϕjÞ ¼ m2jϕj2; (4)

which clearly respects a ϕ → e−iαϕ global symmetry. It is
well known that a purely quadratic potential (without
higher-order corrections to Vs) will establish large field,
or “chaotic” inflation [36]. This is a simple model of
inflation that will provide a useful pedagogical tool to
describe our mechanism for baryogenesis. As we will
discuss in Sec. V, such a model is in good agreement with
the spectrum of density fluctuations in the Universe, though
it is in small tension with recent Planck constraints on
tensor fluctuations [7]. However, generalizing to other
symmetric inflationary potentials is straightforward, such
as models that “flatten” at large field values.
The global symmetry is associated with a conserved

particle number. So to generate a nonzero particle number
(that will decay into baryons), we add a higher-dimension
operator that explicitly breaks the global Uð1Þ symmetry

Vbðϕ;ϕ�Þ ¼ λðϕn þ ϕ�nÞ; (5)

with n ≥ 3. Note that other terms, such as
∼ðϕn−1ϕ� þ ϕ�n−1ϕÞ, would also break this Uð1Þ sym-
metry. Since we do not expect any qualitative differences to
our central results, we restrict ourselves to the simple
symmetry breaking potential given in Eq. (5). Another
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motivation of focusing purely on this simple potential is
that it is protected by a discrete Zn symmetry of the
form ϕ → e2πi=nϕ. This symmetry forbids the generation
of many other operators, such as ∼ðϕ2 þ ϕ�2Þ, which
would cause the Uð1Þ symmetry to be broken even
at low energies. Instead the Zn protects the structure
of the Lagrangian under renormalization group flow.
Possible corrections that can be generated include
∼λ2ðϕ2n þ ϕ�2nÞ=M4

Pl, which is entirely negligible in our
regime of interest. In short, our model includes the set of
leading operators that respect a discrete Zn symmetry and
weakly breaks a global continuous Uð1Þ symmetry.
We assume that the breaking parameter λ is very small

(in appropriate units to be discussed in Sec. V) so that the
global symmetry is only weakly broken. This assumption
of very small λ is motivated by two main reasons:
(1) Since λ is responsible for the breaking of a sym-

metry, it is technically natural for it to be small
according to the principles of effective field theory.

(2) The smallness of λ is an essential requirement on any
inflationary model so that such higher-order correc-
tions do not spoil the flatness of the potential Vs.
(The breaking term adds steep positive and negative
parts to the potential in the complex plane, unless λ
is small.)

As should be expected, the smallness of λ favors a small
baryon-to-photon ratio, as we examine in detail later.
Although the global symmetry ϕ → e−iαϕ is explicitly

broken by the higher-dimension operator λðϕn þ ϕ�nÞ, this
theory does respect the ϕ↔ϕ� symmetry, which is the
charge conjugation symmetry. However, in order to satisfy
the Sakharov conditions for baryogenesis, this charge
conjugation (and CP) symmetry can be broken sponta-
neously. Affleck and Dine [16] assumed it was broken
spontaneously by some light field that acquires a vev in the
radiation or matter eras.
In this work, we identify ϕ with the inflaton and use the

inflationary phase to obtain a vev for ϕ. As a result we are
unifying inflation with baryogenesis.

A. Particle/antiparticle asymmetry

For the above class of models, we would like to compute
the details of the inflationary phase, the postinflationary
phase, and ultimately the transfer of energy to radiation
including baryons. To begin, we note that since n ≥ 3, then
at late times the inflaton ϕ becomes small, the ϕ → e−iαϕ
symmetry violating term becomes negligible, and the
symmetry becomes respected. By Noether’s theorem this
is associated with a conserved particle number,

ΔNϕ ¼ Nϕ − Nϕ̄ ¼ i
Z

d3x
ffiffiffiffi
gs

p ðϕ� _ϕ − _ϕ�ϕÞ; (6)

where d3x
ffiffiffiffi
gs

p
is the spatial volume measure. Nϕ (Nϕ̄) is

the number of ϕ particles (antiparticles), and later we will

relate ΔNϕ to baryon number. Since ϕ is taken to be the
inflaton, then we know to excellent approximation that ϕ is
homogeneous on large scales. So in a Friedmann Robertson
Walker (FRW) universe, the spatial integral can be immedi-
ately performed in terms of some comoving volume Vcom
and scale factor aðtÞ, giving

ΔNϕ ¼ Nϕ − Nϕ̄ ¼ iVcoma3ðϕ� _ϕ − _ϕ�ϕÞ: (7)

To be self-consistent, we ignore spatial gradients, and the
equation of motion for ϕ is

ϕ̈þ 3H _ϕþm2ϕþ λnϕ�n−1 ¼ 0; (8)

where H ¼ _a=a is the Hubble parameter. The evolution of
the field, including the early-time behavior during slow-roll
inflation and the late-time behavior as the field acquires
elliptic motion around the origin, is shown in Fig. 1 for two
different initial conditions.
By taking a time derivative of ΔNϕ and using the

equation of motion, it is simple to obtain an alternate
expression for ΔNϕ at some final time tf in terms of its
value at some initial time ti,

ΔNϕðtfÞ ¼ ΔNϕðtiÞ

þ iλVcomn
Z

tf

ti

dtaðtÞ3ðϕðtÞn − ϕ�ðtÞnÞ: (9)

FIG. 1 (color online). Field evolution in the complex ϕ plane for
n ¼ 3 and λMPl=m2 ¼ 0.006, with initial condition ρi ¼
2

ffiffiffiffiffi
60

p
MPl. Left is zoomed out and shows early-time behavior

during slow-roll inflation. Right is zoomed in to ϕ ¼ 0 and shows
late-time elliptic motion. Blue (upper) curve is for initial angle
θi ¼ π=2, and red (lower) curve is for initial angle θi ¼ −5π=12.
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It is appropriate that the integral has a prefactor of λ, as the
particle number must be conserved in the λ → 0 limit.
We now rewrite the complex field in polar coordinates

ϕðtÞ ¼ 1ffiffiffi
2

p ρðtÞeiθðtÞ: (10)

Substituting into Eq. (9) leads to

ΔNϕðtfÞ ¼ ΔNϕðtiÞ

− λ
Vcomn
2
n
2
−1

Z
tf

ti

dtaðtÞ3ρðtÞn sinðnθðtÞÞ: (11)

We will find this integral representation to be very
convenient, as we explain in the next subsection.

B. Small coupling approximation

At leading order in λ, we can reduce the complexity of
the problem significantly. Since the expression in Eq. (11)
already has a factor of λ in front of the integral, then to first
order in λ, we only need to evaluate the quantities in the
integral to zeroth order in λ.
By assuming the field begins deep in the inflationary era,

then any initial number of ϕ particles are diluted by
inflation, and so we can ignore ΔNϕðtiÞ. Then as the field
evolves at zeroth order in λ, it evolves radially in the
complex ϕ plane. This means that we can simply take
θðtÞ ¼ θi as a constant and allow ρðtÞ to oscillate; i.e., we
allow ρðtÞ to take the sign of the field, either positive or
negative. This reduces the problem significantly to solving
only a single ordinary differential equation. At first order in
λ, ΔNϕ is simply

ΔNϕðtfÞ ¼ −λ
Vcomn
2

n
2
−1 sinðnθiÞIðti; tfÞ; (12)

where

Iðti; tfÞ≡
Z

tf

ti

dtaðtÞ3ρ0ðtÞn: (13)

Here ρ0 is a real valued function satisfying the quadratic
potential version of the equation of motion

ρ̈0 þ 3H0 _ρ0 þm2ρ0 ¼ 0; (14)

with corresponding Friedmann equation (we assume flat
FRW)

H2
0 ¼

ε0
3M2

Pl

; ε0 ¼
1

2
_ρ20 þ

1

2
m2ρ20; (15)

where MPl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the reduced Planck mass. So by

solving for a single degree of freedom in a quadratic

potential, we have an expression for the particle number in
the small λ regime.
It is worthwhile to note that for particular values of the

initial angle θi, such that θi ¼ pπ
n jp ∈ Z, no asymmetry is

generated due to the ∼ sinðnθiÞ factor. In this case, the
classical motion of the field is exactly radial as we can
assume _θi ¼ 0 (nonzero _θ is quickly erased by Hubble
friction). Near these special values of the initial angle, there
is a large isocurvature fluctuation [see eq. (79)]. In the
following, since we are interested in baryogenesis, we
consider θi to be a typical generic value rather than these
special ones.

C. Dimensionless quantities

Although ΔNϕ is dimensionless, it is extrinsic, depend-
ing on the size of the Universe. It is useful to define a
related intrinsic quantity, namely, the particle density

Δnϕ ¼ ΔNϕ

Vcoma3
: (16)

But this is now dimensionful. To obtain a dimensionless,
intrinsic measure of asymmetry, we divide by the energy
density ε0:

A≡mΔnϕ
ε0

: (17)

This is appropriate because at late times the energy density
is provided by a gas of nonrelativistic ϕ and anti-ϕ particles
with energy density

ε0 ¼ mðnϕ þ nϕ̄Þ: (18)

This means that at late times, the dimensionless asymmetry
variable A reduces to

A ¼ Δnϕ
nϕ þ nϕ̄

¼ nϕ − nϕ̄
nϕ þ nϕ̄

; (19)

which is clearly a good measure of the asymmetry.
Moreover, we would like to introduce dimensionless

variables. We introduce a dimensionless time variable τ, a
dimensionless field variable ρ̄, and a dimensionless Hubble
parameter H̄ as follows:

τ≡mt; ρ̄≡ ρ0
MPl

; H̄ ≡H0

m
: (20)

In terms of these new variables, we can express A as

A ¼ −fnðτi; τfÞ
λMn−2

Pl

m2
sinðnθiÞ; (21)

where the dimensionless function fn is given by
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fnðτi; τfÞ ¼
n

2
n
2
−1

Īðτi; τfÞ
aðτfÞ3ε̄ðτfÞ

; (22)

where

Īðτi; τfÞ≡
Z

τf

τi

dτaðτÞ3ρ̄ðτÞn: (23)

The dimensionless field ρ̄ satisfies the dimensionless
version of the differential equation (14). While aðτÞ; ε̄
satisfy the dimensionless version of the Friedmann equa-
tion (15). We have now extracted all the dimensionful
parameters of the theory, leaving the task of solving for fn.
To do so, we perform numerics and then give an analytical
estimate. From now on, we only use the dimensionless
variables introduced in this section.

III. ASYMMETRY RESULTS

A. Numerical findings

Although we cannot exactly solve this nonlinear differ-
ential equation analytically in general, we can solve it
numerically. (See the Appendix for exact analytical results
in the Affleck–Dine regime).
In the limit in which we take τi very early during slow-

roll inflation and we take τf very late after inflation (a type
of ϕ-matter dominated era), then fn becomes independent
of both τi and τf. It becomes a constant only dependent on
the power n. The reason is the follows: At very early times
during slow-roll inflation, aðτÞ is exponentially small, so
the lower part of the integral is negligible. At very late times
during the ϕ-matter dominated era, ρ̄ redshifts away, so the
upper part of the integral becomes negligible. Instead only
the “middle” part of the integral is important, the latter
stage of inflation just before the transition to matter. This is
seen in Fig. 2 where we plot the integrand of Ī for n ¼ 3 as
a function of τ. So most of the ϕ (or anti-ϕ) particles are
generated in the latter stage of inflation.
It is useful to note that for quadratic inflation an

approximate time for the start of the matter era is given
by τ − τi ∼

ffiffiffiffiffiffiffiffi
3=2

p
ρ̄i − 1, as will be derived in the next

subsection. Let us now compare to Fig. 2. In the figure we
chose ρ̄i ¼ 2

ffiffiffiffiffi
60

p
(corresponding to Ne ≈ 60), which gives

τ − τi ≈ 18. Indeed this corresponds to the end of the sharp
rise and fall of the integrand; it then begins to oscillate and
redshift away in the matter era. This region is shifted to
slightly earlier times in the inflationary era as we increase
n, which we elaborate on in the next subsection.
Moreover, the denominator of fn is easily shown to be

independent of τf at late times. In summary this means that
fn approaches a constant that we denote cn that is
independent of the initial and final times in this limit:

cn ¼ fnðτi → −∞; τf → ∞Þ: (24)

So our leading-order approximation for the asymmetry
takes on the simple form

A ¼ −cn
λMn−2

Pl

m2
sinðnθiÞ: (25)

Numerically solving the dimensionless ordinary differ-
ential equation for ρ̄ and then integrating leads to the
following results for the coefficient cn for the first few n:

c3 ≈ 7.0; c4 ≈ 11:5; c5 ≈ 14:4; c6 ≈ 21:8;

c7 ≈ 34:8; c8 ≈ 59:3; c9 ≈ 107; c10 ≈ 201:

(26)

In the next subsection, we derive an analytical expression
for the coefficients cn, valid in the large n regime; see
Eq. (41). In Fig. 3 we plot the coefficients cn for a range of
n ≥ 3, comparing the numerical results to the upcoming
approximate analytical results.
We have also solved the full coupled complex system

numerically; see Fig. 1 for a representative plot of the field
evolution. In Fig. 4 we plot the full numerical result for A as
a function of λd ≡ λMPl=m2 for n ¼ 3, and we compare it
to this leading-order approximation. We have taken the
field to begin during slow-roll inflation at ρi ¼ 2

ffiffiffiffiffi
60

p
MPl

(corresponding to Ne ≈ 60), which is relevant for the full
numerical solution, though it is irrelevant to the leading-
order approximation as we discussed earlier.
In Fig. 4 we have presented the results of two different

initial angles θi. We note that the θi ¼ π=2 case is
considerably more accurate than the θi ¼ 5π=12 case.
We can understand this difference as follows: In addition

FIG. 2 (color online). The integrand that appears in the
asymmetry parameter A [see Eqs. (21), (22), (23)], which is
proportional to the total number of ϕ − ϕ̄ particles. In this plot we
have n ¼ 3 and initial conditions ρ̄i ¼ 2

ffiffiffiffiffi
60

p
, ai ¼ 1. The large

peak is in the latter phase of inflation; so this is where most of the
ϕ (or anti-ϕ) particles are produced.
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to the leading-λ approximation, we expect higher-order
corrections. These higher-order corrections should involve
higher harmonics in 3θi. So while the first term is propor-
tional to sinð3θiÞ, higher terms will include pieces propor-
tional to sinð6θiÞ, etc. For special values of θi, such as
θi ¼ π=2, this piece proportional to sinð6θiÞ vanishes,
while it does not vanish for a generic value of θi, such
as θi ¼ 5π=12. Furthermore, higher-order terms will
involve higher powers of λ; this explains the departure
from the analytical result as we increase λ.

B. Analytical estimate

In the previous subsection, we reported on our numerical
results for the coefficient cn in Eq. (26) for 3 ≤ n ≤ 10.
Later, in Sec. VI Awe discuss an interesting possibility that
high n may be of interest. So here we would like to
calculate the cn for high n. We will find that our result is
surprisingly accurate even for small n.
To compute the asymmetry, we need aðτÞ and ρ̄ðτÞ,

which come from solving the dimensionless versions of
Eqs. (14),(15). In the slow-roll regime, the ̈ρ̄ is small in the
equation of motion for ρ̄, and the kinetic term _̄ρ2=2 is small
in the equation for H̄. To make this explicit, we rewrite
these equations with factors of δ next to these small terms,
i.e.,

δ ̈ρ̄þ 3H̄ ρ̄þρ̄ ¼ 0; (27)

H̄2 ¼ 1

3

�
δ

2

ðdρ̄
dτÞ

2

þ 1

2
ρ̄2
�
: (28)

This allows for a consistent power series expansion as
follows:

ρ̄ ¼ ρ̄a þ δρ̄b þ � � � (29)

H̄ ¼ H̄a þ δH̄b þ � � � (30)

In the final result, we will replace δ → 1. For an approxi-
mation to Ī, we only need the first few terms in the
expansion. After a straightforward calculation, we find the
solution

ρ̄aðτÞ ¼ ρ̄i −
ffiffiffi
2

3

r
ðτ − τiÞ; (31)

ρ̄bðτÞ ¼
1

3

�
1

ρ̄aðτÞ
−

1

ρ̄i

�
; (32)

H̄aðτÞ ¼
ρ̄aðτÞffiffiffi

6
p ; (33)

H̄bðτÞ ¼
1

3
ffiffiffi
6

p
�

2

ρ̄aðτÞ
−

1

ρ̄i

�
: (34)

Recall that the integrand of Ī is∼āðτÞ3ρ̄ðτÞn. Since it is only
a power law in ρ̄, the first term ρ̄a will suffice, while for ā
the first and second terms in H̄ are required, as the scale
factor is an exponential of this, so higher accuracy is
required. After integrating the Hubble parameter H̄a þ H̄b,
we find the following expression for the scale factor in the
slow-roll regime, including a subleading correction:

FIG. 3 (color online). A plot of the asymmetry coefficient cn as
a function of n. The blue is the exact numerical result, and the red
is the approximate analytical result given in Eq. (41) and derived
in Sec. III B.

FIG. 4 (color online). A plot of A vs λd ≡ λMPl=m2 for n ¼ 3
with an initial amplitude during inflation of ρi ¼ 2

ffiffiffiffiffi
60

p
MPl. The

solid curves are the exact numerical results, and the dashed curves
are the small λ analytical results given by Eq. (25) with c3 ¼ 7.0.
The blue (upper) curves are for an initial angle of θi ¼ π=2, and
the red (lower) curves are for an initial angle of θi ¼ 5π=12.
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aðτÞ ≈
ai expðτ−τiffiffi6p ðρ̄i − 1

3ρ̄i
Þ − ðτ−τiÞ2

6
Þ

ð1 −
ffiffi
2
3

q
τ−τi
ρ̄i
Þ1=3

: (35)

For large n the integral Īðτi; τfÞ [Eq. (39)] is dominated
by the late stage of inflation rather than the matter era. For a
concrete approximation, let us use the slow-roll regime
from the start of inflation until the slow-roll parameter
reaches ϵ ¼ 3, which corresponds to the equation of state
w ¼ 0, the start of the matter era. This corresponds to using
an end point of integration of

τf ¼ τi þ
ffiffiffi
3

2

r
ρ̄i − 1 (36)

and ignoring the contribution from the matter era as it is
relatively small for large n.
We now perform a change of variable from τ to b, where

b≡
ffiffiffi
3

2

r
ρ̄i − ðτ − τiÞ: (37)

The corresponding approximate value of the integral
becomes

Ī ≈ a3i

�
2

3

�ðn−1Þ=2 ρ̄ie3ρ̄
2
i =4ffiffiffi
e

p

×
Z ffiffi

3
2

p
ρ̄i

1

dbbn−1 exp

�
−
b2

2
þ bffiffiffi

6
p

ρ̄i

�
: (38)

Since we are assuming the Universe began deep in the
slow-roll regime, we can take ρ̄i large and ignore the b=ρ̄i
term inside the exponential and send the upper limit of the
integral to ∞. We are then able to rewrite the integral as

Ī ≈ a3i 2
n−3=23−ðn−1Þ=2

ρ̄ie3ρ̄
2
i =4ffiffiffi
e

p Γ1
2
ðn=2Þ; (39)

where Γa is the incomplete gamma function, defined as

ΓaðzÞ≡
Z

∞

a
dttz−1e−t: (40)

We now form the coefficient cn defined by Eqs. (22), (24).
To do so, we need to divide Ī by aðτÞ3ε̄ðτÞ. This cancels the
factor of a3i ρ̄i expð3ρ̄2i =4Þ in Eq. (39), as this is just an
extensive factor and independent of n. The final result for
cn is then

cn ≈ ~c2n=23−n=2nΓ1
2
ðn=2Þ; (41)

where ~c absorbs anyOð1Þ factors that are independent of n;
it accounts for the transition of ρ̄, a from inflation to matter
eras, and we find its value to be ~c ≈ 6.64. This result for cn

is asymptotically correct for large values of n and also
provides a good estimate for moderate values of n; see
Fig. 3 for comparison to the exact numerical results.

IV. DECAY INTO BARYONS

We would now like to compute the relationship between
this asymmetry parameter A defined in Eq. (19) and the
final productions of baryons. Recall that the baryon
asymmetry is defined as the ratio of baryon difference to
photon number at late times,

η ¼ ðnb − nb̄Þf
ðnγÞf

¼ ðNb − Nb̄Þf
ðNγÞf

; (42)

where f indicates the late-time, or “final,” value after decay
and thermalization. We would like to relate this to the ϕ
asymmetry parameter A and the details of how ϕ decays.
We associate with each ϕ particle a baryon number bϕ;

for instance, bϕ ¼ 1 or bϕ ¼ 1=3 in simple models (see
Sec. VI). We assume that the decay of ϕ and all subsequent
interactions is baryon number conserving, so we can relate
the final number to the initial number as

ðNb − Nb̄Þf ¼ bϕðNϕ − Nϕ̄Þi; (43)

where i indicates the early-time, or “initial,” value before
decay and thermalization (but well after the baryon-violating
processes have stopped). We can now rewrite η as

η ¼ bϕ
ðNϕ − Nϕ̄Þi

ðNγÞf
¼ bϕA

ðNϕ þ Nϕ̄Þi
ðNγÞf

: (44)

So we need to evaluate the number of ϕ particles at early
times and the number of photons at late times.
At early times we can relate the number of ϕ particles to

the energy density as

ðNϕ þ Nϕ̄Þi ¼ Vcomða3εÞi=m; (45)

and the energy density is related to the Hubble parameter as

ðεÞi ¼ 3M2
PlðH2Þi: (46)

On the other hand, at late times we can relate the number
of photons to the number density as

ðNγÞf ¼ Vcomða3nγÞf; (47)

and the number density is related to the temperature as

ðnγÞf ¼ 2ζð3Þ
π2

ðT3Þf: (48)
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Hence, we express η as

η ¼ 3π2bϕ
2ζð3Þ

M2
PlA
m

ða3H2Þi
ða3T3Þf

: (49)

Note that both the numerator and denominator here are
separately time independent. It is nontrivial to exactly
compute these final parameters as a function of initial
conditions as it depends on the details of the decay and
thermalization. However, a good approximation arises by
assuming that the thermalization is rapid. This means that
we can simply evaluate both the initial and final quantities
around the time of decay.
We denote the decay rate of the ϕ field as Γϕ.

Thermalization occurs around H ≈ Γϕ [37]. The energy
density in the radiation era is

ε ¼ π2

30
g�T4; (50)

where g� is the number of relativistic degrees of freedom,
which is typically g� ∼ 102. Then by setting ε ¼ 3H2M2

Pl ≈
3Γ2

ϕM
2
Pl and solving for T, we have an estimate of the reheat

temperature:

Tr ≈
�

90

g�π2

�
1=4
Γ1=2
ϕ M1=2

Pl : (51)

Substituting T with the reheat temperature Tr and H ≈ Γϕ

into Eq. (49), we obtain

η ≈
βπ7=2g3=4� bϕ
27=431=253=4

AΓ1=2
ϕ M1=2

Pl

m
; (52)

where β is anOð1Þ fudge factor that accounts for the details
of the transition from the ϕ era to the thermal era. The
precise value of β is not important for our qualitative
conclusions, but we do expect it to be of order 1.
Finally, we insert the expression for A from Eq. (25) to

obtain our result for the baryon-to-photon ratio:

η ≈ −cn
βπ7=2g3=4� bϕ
27=431=253=4

λΓ1=2
ϕ Mn−3=2

Pl

m3
sinðnθiÞ: (53)

For this η to match with the observed value
ηobs ≈ 6 × 10−10, we require λΓ1=2

ϕ Mn−3=2
Pl =m3 to take on

a particular value, namely,

λΓ1=2
ϕ Mn−3=2

Pl

m3

����
req

≈ 7 × 10−11c−1n

×

�
g3=4�
30

βbϕj sinðnθiÞj
�
−1
; (54)

where the subscript “req” indicates that this is the
“required” value for agreement with ηobs. Inside the

parenthesis is a term that should be Oð1Þ, since we
expect

j sinðnθiÞj ∼ 1; bϕ ∼ 1; β ∼ 1; g� ∼ 102 (55)

(provided θi is not near a special value, as mentioned
earlier). As a result, the prefactor of ∼7 × 10−11c−1n is most
important here.

V. CONSTRAINTS FROM INFLATION

A. Quadratic inflation

During inflation we assume that the potential is domi-
nated by the symmetric m2ϕ�ϕ term, and so to first
approximation the motion is radial. We can thus keep
the phase of our complex field fixed, ϕ ¼ ρeiθi=

ffiffiffi
2

p
, and

write the potential and the so-called slow-roll parameters as

V ¼ 1

2
m2ρ2; (56)

ϵsr ≡M2
Pl

2

�
V 0

V

�
2

¼ 2M2
Pl

ρ2
; (57)

ηsr ≡M2
Pl
V 00

V
¼ 2M2

Pl

ρ2
: (58)

Also, the number of e-foldings is given by

Ne ¼
1

MPl

Z
ρi

ρend

dρffiffiffiffiffi
2ε

p ¼ ρ2i − ρ2end
4M2

Pl

: (59)

Hence, the modes that describe the Universe on large scales
are emitted when the field value is

ρi ≈ 2
ffiffiffiffiffiffi
Ne

p
MPl (60)

and inflation ends for ρend ∼MPl (when εsr ∼ 1).
For any simple single-field slow-roll model of inflation,

the squared amplitude of density fluctuations is predicted to
be

Δ2
R ¼ Vi

24π2M4
Plϵsr

; (61)

where Vi is the potential energy when modes leave the
horizon. The observed value is Δ2

R;obs ≈ 2.45 × 10−9 from
WMAP and Planck data [6,7]. For the simple quadratic
model, we have

Δ2
R ≈

N2
em2

6π2M2
Pl

: (62)

Hence, in order to have the correct amplitude of density
fluctuations, the mass of the field must be
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m ≈
ffiffiffi
6

p
πΔR;obsMPl

Ne
≈ 1.5 × 1013 GeV

�
60

Ne

�
: (63)

We have indicated that Ne ¼ 60 is a good reference
value, but its precise value can be smaller if the reheat
temperature is low. The precise relationship between the
number of e-foldings of inflation and the scale of interest k
is given by [38]

Ne ¼ 62 − ln
k
aH

þ 1

4
ln

Vi

ð1016 GeVÞ4

þ 1

4
ln

Vi

Vend
−

1

12
ln
Vend

εreh
; (64)

where Vend is the potential energy at the end of inflation and
εreh is the energy density at the start of reheating. For
typical high-scale inflation models, such as quadratic
inflation, Vi ∼ ð1016 GeVÞ4. For efficient reheating this
leads to Ne ∼ 60, while for inefficient reheating, say
Hreh ∼ 1 eV, we have Ne ∼ 50, for a typical CMB scale
k. For Ne ∼ 50–60 the spectral index ns ¼ 1 − 6εsr þ
2ηsr ≈ 1 − 2=Ne is in excellent agreement with observation
ns ≈ 0.96 [6,7].
On the other hand, a small problem with these quadratic

models is the tensor-to-scalar ratio, which is r ¼ 16εsr ≈
8=Ne and is somewhat large and just outside the 2 sigma
region of recent Planck CMB constraints [7]. However, it is
important to note that the details of the inflationary
potential are not crucial to our baryogenesis mechanism.
We can easily construct other potentials which flatten at
large field values, decreasing the tensor-to-scalar ratio, and
still provide the same qualitative mechanism for baryo-
genesis as outlined in this work. For the present purposes, it
is enough to use the above mass scale m and number of e-
foldings Ne as characteristic values (with m having the
greatest variability between different inflationary models).

B. Implications for baryogenesis

An important constraint is that the symmetry-breaking
term in the potential λðϕn þ ϕ�nÞ be subdominant during
inflation. Since this contribution to the potential goes
negative at large field values, we obviously need it to be
small during inflation. Writing ϕ in terms of polar
variables, the constraint is

λ

2n=2−1
ρni cosðnθiÞ ≪

1

2
m2ρ2i : (65)

Then using ρi ¼ 2
ffiffiffiffiffiffi
Ne

p
MPl, and demanding this to be true

for all θi, gives the following upper bound on λ:

λ ≪ λ0 ≡ m2

2n=2Nn=2−1
e Mn−2

Pl

: (66)

For typical values of mass and duration of inflation (e.g.,
m ∼ 1013 GeV and Ne ∼ 60), this provides an important
bound on λ for each n.
We now use the threshold value λ0 to rewrite the

condition for the correct baryon-to-photon ratio (54) as a
condition on the decay rate:

Γϕ;req ≈ 10−7 eV × 2nþ1Nn−2
e c−2n

�
λ0
λ

�

×

�
m

1013 GeV

�
2
�
g3=4�
30

βbϕj sinðnθiÞj
�
−2
: (67)

To provide concrete quantitative results for the required
decay rate, we need to choose some characteristic values
for parameters. For instance, if we assume that the coupling
λ is a factor of 10 smaller than its inflationary upper bound
λ0, and take βbϕj sinðnθiÞj ≈ 1, m ≈ 1.5 × 1013 GeV,
Ne ≈ 55, g� ≈ 102, and we insert the cn from Eq. (26)
[or Eq. (41)], then for each of the different n (from 3 to 10),
we find that the required decay rate is

n ¼ 3 ⇒ Γϕ;req ≈ 4 × 10−5 eV;

n ¼ 4 ⇒ Γϕ;req ≈ 2 × 10−3 eV;

n ¼ 5 ⇒ Γϕ;req ≈ 10−1 eV;

n ¼ 6 ⇒ Γϕ;req ≈ 6 eV;

n ¼ 7 ⇒ Γϕ;req ≈ 2 × 102 eV;

n ¼ 8 ⇒ Γϕ;req ≈ 9 × 103 eV

n ¼ 9 ⇒ Γϕ;req ≈ 3 × 105 eV;

n ¼ 10 ⇒ Γϕ;req ≈ 107 eV: (68)

It is important to compute the associated reheat temperature
using Eq. (51). For n ¼ 3, corresponding to the lowest
value of Γϕ;req, the reheat temperature is still substantial:
Tr ∼ 102 GeV. For higher n, Γϕ;req increases, so too does
Tr; e.g., for n ¼ 10, Tr ∼ 108 GeV—all much higher than
∼MeV, the characteristic temperature of the Universe at the
onset of big bang nucleosynthesis.
Having established a consistent cosmology of inflation,

reheating, and big bang nucleosynthesis, we would now
like to go further and explore if such decay rates are
plausible in various particle physics frameworks.

VI. PARTICLE PHYSICS MODELS

In the following, we introduce two different types of
particle physics models. First, we consider ϕ to be a gauge
singlet, and, second, we consider ϕ to carry color. For each
model we estimate the decay rates and compare to the
required decay rates Γϕ;req to obtain ηobs.
Our upcoming estimates of the decay rates will involve a

perturbative analysis. At the end of inflation when the
field value is large, a nonperturbative regime involving
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parametric resonance can sometimes take place. However,
its existence and/or effectiveness is highly model depen-
dent. In particular there can be self-resonance and/or
resonance into other fields. The possibility of self-
resonance could arise from the nonlinear ∼λðϕn þ ϕ�nÞ
term in the action. However, it can be shown that since this
term is assumed to be subdominant during inflation, it is
even more subdominant after inflation, and the correspond-
ing resonance is entirely inefficient and negligible. So this
justifies our perturbative treatment while ignoring non-
perturbative self-resonance. The possibility of resonance
into other fields is interesting and is possible future work
that we discuss later in the discussion section. In this case
its existence depends on the value of the couplings to other
fields, such as the Higgs. It is radiatively stable and self-
consistent to assume these couplings are sufficiently small
that this too is ignorable. We assume, for simplicity, that
this is the case in the present work.

A. High-dimension operators

In the simplest case, one can take ϕ to be a gauge singlet.
In this case there are many operators which could couple ϕ
to Standard Model degrees of freedom. This is problematic
because there is no argument based on degree of freedom
counting (namely, gauge redundancy) as to why the particle
number contained in ϕ should only decay into quarks, etc.,
generating baryons. For instance, one could include
operators, such as ∼ϕH†H or ϕf̄f, which would violate
baryon-number conservation, and ϕ would just decay to
Higgs or fermions, etc.
However, a natural way around this problem of ϕ

decaying into nonbaryonic particles is to suppose that
the global Uð1Þ symmetry is almost an exact symmetry of
nature (or at least in the ϕ sector). This assumption is
consistent with the requirement that the Uð1Þ breaking
is small for a consistent model of inflation, which is
technically natural, although the symmetry is not expected
to be exact.
The reason for this is the following. We begin by

imaging we have some Uð1Þ global symmetry. However,
we know that global symmetries cannot be exact in
quantum gravity (one way to see this is from the “black-
hole-no-hair theorem” which forbids a black hole to carry
any baryon number, and therefore the Uð1Þ baryon sym-
metry cannot be exact). So a complete theory should allow
for at least a weak breaking of the symmetry. Symmetries
are often broken by some high-dimension operator, repre-
senting the breaking due to some microscopic, perhaps
Planckian, physics. Another way to argue this is to just
impose a Zn symmetry and assume n is greater than 4,
which is a reasonable model building assumption. For high
n, the breaking parameter will need to satisfy λ≲
ðfew= ffiffiffiffi

G
p Þ4−n to be consistent with inflation. This is

compatible with quantum gravity expectations.

This suggests the intriguing possibility of using a high
value of n in the breaking term. For instance, we can
imagine that the Uð1Þ symmetry breaking occurs at
dimension n ≥ 8 operators. If this is the case, then all
low-dimension operators, such as ∼ϕH†H, which break the
Uð1Þ or discrete Zn symmetries, would be forbidden.
For definiteness, let us take n ¼ 8 and suppose that the

Uð1Þ symmetry is intact for all dimensions 7 or lower
(which is protected against radiative corrections by a Z8

symmetry). Since ϕ carries baryon number, then up to
dimension 7, it could only decay into quarks. It is well
known that at dimension 6 the Standard Model degrees of
freedom allow for gauge singlet operators carrying baryon
number of the form qqql. In fact there are five types of such
operators [39], but the full details do not concern us here.
To construct a Uð1Þ invariant operator, we multiply the
qqql operator by ϕ (ϕ�) and build the Uð1Þ symmetric
dimension-7 operator

ΔL ∼
c
Λ3

ϕ�qqqlþ H:c:; (69)

where we are suppressing indices for brevity. Here we have
introduced an energy scale Λ that sets the scale of new
physics (and the cutoff on the field theory), and c is some
dimensionless coupling. In this case we have bϕ ¼ 1,
as this operator causes ϕ to decay into three quarks
(and a lepton).
The decay rate associated with this operator is roughly

Γϕðϕ → qþ qþ qþ lÞ ∼ c2

8π

m7

Λ6
: (70)

We now compare this to the required decay rates from
Eq. (68). For the case of n ¼ 8, we would need this to be
Γϕ ∼ 104 eV. For m ≈ 1.5 × 1013 GeV and c ¼ Oð1Þ, we
find that the model has the required decay rate for

Λ ∼ 1016 GeV; (71)

which is intriguingly around the GUT scale. Similarly, if
we push the breaking off to even higher operators, such as
n ¼ 10 or n ¼ 12, then the model requires slightly smaller
Λ, approaching Λ ∼ 1015 GeV, which is still close to the
GUT scale.
Since we are using high-dimension operators, we are

studying only an effective field theory. As such, we need to
check that the parameters are within the regime of validity
of the theory. There are two basic constraints: The first is
that the physics that is being integrated out is below the
scale of quantum gravity EQG; i.e., it would be rather
unrealistic if we were appealing to physics beyond the
quantum gravity scale to UV complete the theory. The
second is that the inflationary regime, which probes scales
of order Hubble, is below the cutoff of the field theory.
Together these two constraints imply
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Hi ≪ Λ ≪ EQG: (72)

Since Hi ∼ 1013;14 GeV for high-scale inflation models,
and EQG ∼ 1018;19 GeV, then we require values for Λ
around Λ ∼ 1015;16 GeV for the effective field theory to
make sense. Remarkably, this is precisely the value found
above to obtain ηobs.
To summarize, if the visible sector has an almost exact

Uð1Þ symmetry that is broken only by high-dimension
operators (n ≥ 8), then the leading operator, allowed by
symmetry, that mediates ϕ decay is dimension 7, and the
decay products are quarks and leptons. After imposing
constraints from inflation on the breaking parameter and by
taking the dimension-7 operator to be controlled by the
GUT scale, which is within the regime of validity of the
effective field theory, we can obtain the observed matter/
antimatter asymmetry ηobs.

B. Colored inflaton

Another possibility is to allow the inflaton to carry color
and to transform under the fundamental representation of
SUð3Þc. We give ϕ a color index, i ¼ r; w; b, and allow for
“up” ϕu and “down” ϕd versions and different generations
labelled by g. In addition to the usual symmetric mass term,
etc., we can construct Uð1Þ-violating terms in the potential
that respect the SUð3Þc symmetry. For instance, at dimen-
sion n ¼ 3, we can introduce the breaking term

Vbðϕ;ϕ�Þ ¼ λgg
0g00εii0i00ϕ

i
ugϕ

i0
dg0ϕ

i00
dg00 þ H:c.; (73)

where εijk is the totally antisymmetric tensor, and we have
summed over color indices and different generations. We
need one up and two down for a gauge singlet under electric
charge. We also need at least two different generations, or
otherwise the antisymmetric tensor will cause the term to
vanish. For simplicity we have written down the leading
Uð1Þ-violating operator, dimension n ¼ 3. As in the
previous subsection, we could imagine that the symmetry
is only broken by some higher-dimension operators; such a
generalization is straightforward.
To compute the generated particle number, we should

repeat the analysis from Secs. II and III, but now with
various indices to track. We expect the basic qualitative
conclusions from those sections to be the same, so we will
not go through those details here. Moreover, corrections
from gluons should be small at these high energies due to
asymptotic freedom [40,41].
Since ϕ carries color, we can readily build operators that

mediate ϕ decay into quarks, while respecting the global
symmetry, such as the following dimension-4 operator

ΔL ∼ yϕi�qif̄ þ H:c.; (74)

where f is some color neutral fermion and y is a type of
Yukawa coupling. In this case we have bϕ ¼ 1=3, as this

operator causes ϕ to decay into one quark (and another
fermion). This decay rate is roughly

Γϕðϕ → qþ f̄Þ ∼ y2

8π
m: (75)

For high-scale inflation, such as quadratic inflation that we
discussed earlier, the inflaton mass is large m ∼ 1013 GeV,
so one would require an extremely small value of y to
obtain decay rates comparable to the required values we
computed earlier in Eq. (68) (of course that was only for the
gauge singlet case, but we expect similar values within an
order of magnitude). For example, in order to have
Γϕ ∼ eV, we would need y ∼ 10−10. In generic models
of particle physics, such a small dimensionless coupling
would not normally be radiatively stable. In certain
settings, such as supersymmetry (which would provide
extra motivation for the existence of such colored scalars,
or “squarks”), one could examine if some nonrenormaliza-
tion theorem may help to stabilize y at such small values.
Perhaps a more promising possibility would be to push

the Uð1Þ symmetry breaking parameter to values much
smaller than is required by the inflationary constraint. This
is, as mentioned earlier, technically natural. Recall from
Eq. (67) that the required decay rate to obtain the correct
value of η is inversely proportional to λ. So by making λ
extremely small, we can raise the values in Eq. (68) to much
higher values (recall those values were based on
λ ∼ λ0=10). A consistent model would then only require
a moderately small value for y.

VII. OBSERVATIONAL CONSEQUENCES

A. Large-scale dipole

As in the original Affleck–Dine model, an interesting
feature of this mechanism is that the dynamics respect C
(and CP) symmetry, but it is broken spontaneously by the
state of the Universe. In the present work, this is due to the
initial value of the inflaton field in the complex plane. It is
often thought that any initial conditions are wiped out by
inflation, but the vev of the inflaton is evidently not. Instead
this initial condition has a very important consequence for
the final matter/antimatter in the Universe; it determines if
the imbalance favors matter or antimatter. Recall from
Eq. (53) that η depends on the initial angle of the inflaton:

η ∝ − sinðnθiÞ: (76)

Since we expect the initial angle to be randomly distributed
in the domain θi ∈ ½0; 2π�, then we expect η to be a random
variable, with 50% chance positive (matter domination; see
the blue curve in Fig. 1) and 50% chance negative
(antimatter domination; see the red curve in Fig. 1).
If inflation only lasted for the minimum number of

e-foldings, say, 50–60, then the initial θi angle can be
inhomogeneous on the scale of order today’s horizon. This
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translates directly into an inhomogeneity in η on the
corresponding scale. Recent Planck results have bounded
the curvature of the Universe to be small [7],

jΩkj≲ 10−2; (77)

which indicates that inflation did last at least slightly longer
than the absolute minimum required. But there exist various
arguments regarding fine-tuning of the inflaton potential to
suggest that it may not have lasted much more than this
[42]. If this is the case, then a small spatial variation would
arise in η. Since this would be a superhorizon mode, it
would appear as a dipole across the Universe. Its magnitude
would be correlated with Ωk and potentially detectable. In
fact it could conceivably be related to existing CMB
anomalies [43].
Another possibility is that our pocket Universe arose

from bubble nucleation in an eternally inflating false
vacuum. In this case there exist arguments based on
Coleman De Luccia [44] tunneling to indicate that the
resulting bubble would be completely homogeneous
(plus small quantum fluctuations). This would forbid the
formation of such a dipole. On the other hand, this process
would produce an infinite number of different bubbles,
each with a different value of θi; a multiverse of different
baryon densities.

B. Isocurvature fluctuations

Quantum fluctuations from inflation provide an excellent
candidate for the origin of density fluctuations in the
Universe. In simple single-field models, only a curvature
(“adiabatic&quot;) fluctuation is generated, due to fluctua-
tions in the inflaton. Earlier, in Eq. (61), we mentioned the
amplitude of these fluctuations Δ2

R.
For multifield inflationary models, an isocurvature

(“entropic”) fluctuation is also generated [45]. This is
due to quantum fluctuations in the field orthogonal to
the classical field trajectory, which leaves the total density
unchanged. Since we are studying complex (two-field)
inflation, there will be isocurvature fluctuations in ϕ, and
these will generate isocurvature fluctuations in the baryon
density.
The orthogonal fluctuations are in the angular variable θ,

with mean value θi and hjδϕj2iiso ¼ ρ2i hδθ2i=2. During
inflation, this orthogonal fluctuation is a light (Goldstone)
field with an approximately scale-invariant spectrum of
fluctuations of amplitude [46]

hδθ2i ≈ γ2

4π2
H2

i

ρ2i
; (78)

where Hi is the Hubble parameter during inflation, ρi is the
corresponding radial field value, and γ is an Oð1Þ factor
that accounts for Brownian motion during inflation.

In the radiation era, after all annihilations have occurred,
but well before equality, the baryon density is related to θ
by nb ∝ − sinðnθÞ. Working to first order, we can relate the
early-time baryon fluctuations to the θ fluctuations as

δnb
nb

����
early

¼ nδθ cotðnθiÞ: (79)

Note that near special values of the initial angle
θi ¼ pπ

n jp ∈ Z, this leading-order approximation breaks
down. This first-order approximation is valid whenever
there is a non-negligible average baryon number, which is
necessary for baryogenesis.
We would now like to determine the corresponding

isocurvature fluctuations in the CMB temperature. By
definition, the isocurvature fluctuation satisfies

0 ¼ δρiso ¼ mbδnb þmcdmδncdm þ δργ; (80)

where we have included baryons, dark matter, and radia-
tion. We assume that for all species s, other than baryons,
the fluctuations are adiabatic, i.e., δns=ns − δnγ=nγ ¼ 0 for
s ≠ b. If we divide Eq. (80) by ρb ¼ mbnb, it is easy
to show that this implies δnb=nb ≫ δργ=ργð¼ 4δT=
T ¼ ð4=3Þδnγ=nγÞ at early times. Hence, the entropy
perturbation is

δη

η
¼ δnb

nb
−
δnγ
nγ

≈
δnb
nb

����
early

: (81)

Using this result and using the fact that entropy perturba-
tions are approximately conserved outside the horizon, we
find that the isocurvature contribution to the temperature at
late time reentry is

�
δT
T

�
iso

¼ −
6

15

Ωb

Ωm

δη

η
: (82)

We have included a factor of 6/5 due to the Sachs– Wolfe
effect [47] (the details for which we shall not go into here).
Putting together Eqs. (78), (79), (81), (82) leads to the
following result for the squared isocurvature fluctuations:

��
δT
T

�
2
�

iso
≈

9γ2

225π2
Ω2

b

Ω2
m

n2H2
i

ρ2i
cot2ðnθiÞ: (83)

We now compute the adiabatic temperature fluctuation.
Recall from Eq. (61) the formula for the adiabatic density
fluctuations. To convert this to an adiabatic temperature
fluctuation requires averaging over spherical harmonics,
etc. The net result is roughly a factor of 1/20 difference, i.e.,

��
δT
T

�
2
�

adi
≈

1

20

H2
i

8π2M2
Plϵsr

; (84)
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(using Vi ≈ 3H2
i M

2
Pl). Since the isocurvature fluctuation

is small, we can use this adiabatic fluctuation as an
approximation for the total fluctuations.
The ratio of the isocurvature fluctuations to the total

fluctuations is called αII . Putting together Eqs. (83), (84),
we obtain

αII ≈
32γ2

5

Ω2
b

Ω2
m

n2M2
Plϵsr

ρ2i
cot2ðnθiÞ: (85)

Planck data reveal that the baryon-to-matter ratio is
Ωb=Ωm ≈ 0.16. Let us take γ ∼ 2 as a representative value
and cotðnθiÞ ∼ 1, which gives an isocurvature fraction,

αII ∼ 0.7
n2M2

Plϵsr
ρ2i

: (86)

Note that this result holds for any simple inflationary
potential.
If we now specialize to the case of quadratic inflation, we

have ϵsr ≈ 1=ð2NeÞ and ρi ≈ 2
ffiffiffiffiffiffi
Ne

p
MPl. Then setting

Ne ≈ 55, we have our prediction for the isocurvature
fraction:

αII ∼ 3 × 10−5n2: (87)

Recent Planck results have provided an upper bound on
cold dark matter isocurvature fluctuations of [7]

αII < 3.9 × 10−2; 95% confidence; (88)

and we shall use this as a rough bound on baryon
isocurvature fluctuations. This suggests that only ridicu-
lously large values of n (n > 36) are ruled out, but such
values are unrealistic anyhow. For the lowest value of n,
namely, n ¼ 3, we predict αII ∼ 3 × 10−4, i.e., two orders
of magnitude below the current bound. On the other hand,
in Sec. VI Awe explained that moderately high values of n
are especially interesting. For instance, if we take
n ¼ 8; 10; 12, then our prediction is αII ∼ 3 × 10−3, i.e.,
only 1 order of magnitude below the current bound. This is
quite exciting as it is potentially detectable in the next
generation of data.

VIII. DISCUSSION AND CONCLUSIONS

In this work we have proposed a way to directly unify
early Universe inflation and baryogenesis, with motivation
from the Affleck–Dine mechanism. We developed in great
detail the basic proposal summarized in our accompanying
paper [15].

A. Inflationary models

As a concrete example, we studied the simplest
inflation model; a quadratic (“chaotic”) inflation poten-
tial. Other potential functions, such as hilltop models,

cosine potentials (“natural inflation”), or other non-
polynomial potentials which are concave down during
inflation, are marginally preferred by recent CMB data
[7]. Our methods are directly applicable to these cases
and can be adopted straightforwardly. Our idea is simply
to use a symmetric potential for inflation, under a Uð1Þ
global symmetry, and then introduce a sufficiently weak
breaking that does not spoil the flatness of the potential.
This will generate a particle number during the latter
stage of inflation. Other inflationary models, which
go far beyond this minimal inflationary setup, such
as models dominated by higher-derivative kinetic
terms, appear to be disfavored for over predicting
non-Gaussianity, etc.

B. Particle physics models

We proposed two interesting particle physics models of
this idea. The first model was to promote the Uð1Þ
breaking to the level of a good symmetry until high-
dimension operators n ≥ 8. This allows ϕ to be a gauge
singlet and then decay to quarks (and leptons) through
dimension-7 operators while still conserving baryon
number. If the decay is controlled by the scale
Λ ∼ 1015−16 GeV, then we obtain good agreement with
the observed baryon-to-photon ratio. Importantly, this
value for Λ is precisely in the regime of validity of
the field theory, between the Hubble scale and the Planck
scale. The second model was to promote ϕ to a colored
scalar and allow decay to quarks readily through lower-
dimension operators. This requires a very small breaking
parameter, which is technically natural, or a very small
coupling to quarks, which deserves further exploration in
contexts such as supersymmetry.

C. Inflaton constraints

An important parameter in the analysis is the inflaton
mass m. As can be seen in Eq. (67), the required decay
rate to obtain the observed asymmetry scales as
Γϕ;req ∝ m2. So if m is much smaller than the m ∼
1013 GeV used as a reference value in this work, then the
required decay rates become much smaller. If decay
occurs through high-dimension operators, then this is
easily achieved, while if decay occurs through low-
dimension operators, then this becomes more difficult.
In simple models of inflation, the mass of the inflaton
tends to be related, within an order of magnitude or so, to
the Hubble parameter. So this intertwines parameters of
high-energy particle physics and the energy scale of
inflation in an interesting way (complimentary to the
difficulty at low energies [48]). In particular, this means
that decay through low-dimension operators, as would be
allowed by a colored inflaton, tends to favor high-scale
inflation. In turn this favors appreciable tensor modes,
which are being actively searched for.
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D. Large-scale dipole

A distinguishing feature of these models, compared to
other more common forms of baryogenesis, is that the
dynamics respect the C and CP symmetry. Instead it is
broken spontaneously by the initial state of the inflaton
in the complex plane. For an initially inhomogeneous
inflaton field, different regions of the Universe will
acquire different baryon-to-photon ratios in the late
Universe. This is an exciting property of the theory.
This would allow for a large-scale dipole in the baryon
density in the Universe and could even be relevant to
CMB anomalies [43]. This is analogous to, and may be
correlated with, a large-scale dipole in the dark-matter-
to-photon density in the Universe. Indeed the latter can
occur if the dark matter is comprised of axions with a
large Peccei–Quinn scale [49,50]. So if one were to
observe a dipole in one or both of these densities, it
would provide tremendous clues about the early
Universe and fundamental physics. Alternatively, these
effects would be small if there were many e-foldings of
inflation or if our pocket Universe arose from bubble
nucleation.

E. Isocurvature—prediction

We also found that these models predict a baryonic
isocurvature fluctuation at a level consistent with current
observational bounds, and summarized in Eqs. (85), (86)
for any symmetric potential Vs. For the quadratic
inflation case, we found an isocurvature fraction, 1 or
2 orders of magnitude below the current bounds,
potentially detectable in the next generation of experi-
ments. For other choices of the symmetric poten-
tial Vs, the slow-roll parameter εsr will be different.
This parameter is related to the tensor-to-scalar ratio by
r ¼ 16ϵsr. For simple models of inflation, ρi ∼ fewMPl,
so all parameters are essentially fixed, leaving a rela-
tionship between the isocurvature fraction αII and the
tensor-to-scalar ratio r. An observational confirmation of
this relationship would make our proposal quite
compelling.

F. Isocurvature—comparison

Let us compare the aforementioned isocurvature
fluctuation to the usual Affleck–Dine scenario where
ϕ is not the inflaton. In that case, there is no obvious
reason why the vev of the field during inflation ρi ¼ffiffiffi
2

p jϕij must be larger than MPl. Instead if ρi is some-
what smaller, say of order the GUT scale, then the
isocurvature fraction would be very large (at least for
reasonably high-scale inflation) and already ruled out
[51]. By contrast, the current proposal of identifying ϕ
with the inflaton naturally explains why ρi is of the
order of or slightly larger than MPl, which is especially
interesting.

G. Small scales

Another important subject is the possibility of inhomo-
geneity on very small scales. In this paper we focused on
the homogeneous mode of the inflaton (plus large-scale
inhomogeneities in Sec. VII). A potentially important
consideration is the possibility of preheating after inflation
[52]. Under certain conditions, nonlinear dynamics will
lead to explosive production of high k modes, and the
breakup of ϕ, possibly into objects such as Q balls [53,54]
and oscillons [55–57]. If this is efficient, it could throw the
field up the potential in different ways in different patches
of the Universe. This means that the effective θi could be
different in different patches of the universes on small
scales. After decay, this would lead to patches of baryons
and antibaryons [58], which would presumably annihilate
during thermalization, reducing the final value of η. On the
other hand, this explosive process may raise the reheat
temperature, raising the final value of η. So there are
potentially competing effects. Such a process should only
be important if the potential is strongly nonlinear, which is
not the case for quadratic inflation, or if there is significant
couplings to other bosonic fields, such as∼ϕ�ϕH†H. These
considerations will be important for some inflationary
models and are a topic of future work.
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APPENDIX: ANALYTICAL VERSION
OF AFFLECK–DINE

In Ref. [16] Affleck and Dine studied a simpler problem.
They studied a scalar field in a (noninflationary) back-
ground, with a known Hubble parameter, say H ¼ 2=3t for
matter era or H ¼ 1=2t for radiation era, with some initial
starting value for the field, say ρi. To solve this problem to
order λ, the authors used a perturbative technique, where
they solved for the field at zeroth order in λ and then used
this as a source term to solve for the field at first order in λ,
where the latter solution involved tracking the full complex
field. This led to an approximation for the asymmetry A in
terms of some constants that they obtained numerically.
Here we mention that by using the techniques of Secs. II

A, II B we can solve this problem much more rapidly
(only needing the zeroth-order solution and solving only a
single ordinary differential equation, rather than a coupled
system), and we obtain the coefficients analytically.
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At zeroth order the equation of motion for the field (after
factorizing for eiθi ) is

ρ̈0 þ 3H _ρ0 þm2ρ0 ¼ 0; (A1)

with H specified by the background (here we will not
rescale the field byMPl to make it dimensionless, sinceMPl
is not relevant in this computation). In the Affleck– Dine
case, one recognizes that the field is frozen at early times
when H ≫ m. So we impose initial conditions: _ρ ¼ 0 at
early times. It is then easy to solve this differential equation.
For the matter and radiation cases, the solution is

ρ0ðtÞ ¼
sinðmtÞ
mt

ρi; Matter (A2)

ρ0ðtÞ ¼ 21=4Γð5=4Þ J1=4ðmtÞ
ðmtÞ1=4 ρi; Radiation; (A3)

where Γ is the (complete) gamma function. This allows us
to readily perform the integral that appears in ΔNϕ

[Eq. (12)] by taking the limits of integration ti ¼ 0 and
tf ¼ ∞. We write the scale factor in each case as

a ¼ a0

�
t
t0

�
2=3

; Matter (A4)

a ¼ a0

�
t
t0

�
1=2

; Radiation (A5)

in terms of some arbitrary reference constants a0; t0. The
integral that appears in ΔNϕ

I ≡
Z

∞

0

dtaðtÞ3ρ0ðtÞn; (A6)

can be easily performed in each of the eras. We find

I ¼ a30ρ
n
i

t20m
3
bn; Matter (A7)

I ¼ a30ρ
n
i

t3=20 m5=2
dn; Radiation; (A8)

where

bn ≡
Z

∞

0

dττ2−n sinðτÞn; (A9)

dn ≡ 2n=4Γð5=4Þn
Z

∞

0

dττ3=2−n=4J1=4ðτÞn: (A10)

The first few values of these constants are

b3 ¼
π

4
; b4 ¼

π

4
; b5 ¼

5π

32
;

b6 ¼
π

8
; b7 ¼

77π

768
; b8 ¼

π

12
; (A11)

d3 ¼
2Γð5=4Þ3

31=4
ffiffiffi
π

p
Γð3=4Þ ≈ 0.521;

d4 ¼
4Γð5=4Þ5ffiffiffi
π

p
Γð3=4Þ3 ≈ 0.750: (A12)

To compute Awe need to divide by the energy density ϵ0
at late times. It is simple to show that at late times we have

ϵ0 ¼
ρ2i
2t2

; Matter (A13)

ϵ0 ¼
ffiffiffi
2

p
Γð5=4Þ2m2ρ2i
πðmtÞ3=2 ; Radiation: (A14)

Now recall the definition of the asymmetry parameter
A from Eqs. (12), (16), (17). Putting the pieces together
in the Affleck–Dine regime, we obtain

A ¼ − ~bn
λρn−2i

m2
sinðnθiÞ; Matter (A15)

A ¼ − ~dn
λρn−2i

m2
sinðnθiÞ; Radiation; (A16)

where

~bn ≡ n

2n=2−2
bn; (A17)

~dn ≡ πn

2ðn−1Þ=2Γð5=4Þ2 dn: (A18)

This is in rough agreement with Ref. [16], where the
authors computed the constant prefactors for n ¼ 4 numeri-
cally using their alternate technique. Their numerics is
found to be in small error ∼10%–20% from the correct
values obtained analytically here.
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