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Most of the mass of ordinary matter has its origin from quantum chromodynamics (QCD). A similar
strong dynamics, dark QCD, could exist to explain the mass origin of dark matter. Using infrared fixed
points of the two gauge couplings, we provide a dynamical mechanism that relates the dark QCD
confinement scale to our QCD scale, and hence provides an explanation for comparable dark baryon and
proton masses. Together with a mechanism that generates equal amounts of dark baryon and ordinary
baryon asymmetries in the early Universe, the similarity of dark matter and ordinary matter energy densities
can be naturally explained. For a large class of gauge group representations, the particles charged under
both QCD and dark QCD, necessary ingredients for generating the infrared fixed points, are found to have
masses at 1–2 TeV, which sets the scale for dark matter direct detection and novel collider signatures
involving visible and dark jets.
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I. INTRODUCTION

Over the last few decades, cosmological observations
have firmly established that an unknown form of matter,
dark matter (DM), is present in the Universe. Within the
context of the standard ΛCDM cosmology, the recent
Planck data have determined the cold dark matter energy
density to the highest precision: ΩDMh2 ¼ 0.1199�
0.0027 [1], which is a factor of ΩDM=ΩB ¼ 5.44�
0.14 times the baryon energy density. To explain the
cold dark matter energy density, weakly interacting
massive particles have served as the leading candidate
[2]. Their masses are related to the electroweak scale, and
their number density or relic density is from a thermal
freeze-out mechanism.
Ordinary matter, on the other hand, has its mass coming

from the proton (or neutron) mass mp, which is related to
the QCD confinement scale ΛQCD in the Standard Model
(SM). Its number density originates from a baryon-
antibaryon asymmetry. Because of the similarity of the
dark matter and ordinary matter energy densities, it is very
likely that a strong dynamics similar to QCD exists in the
dark matter sector, and the dark matter energy density
follows the same story as in our QCD sector. The dark
matter energy density would then be a product of the dark
baryon mass mD and its number density nD. To have
comparable ΩDM and ΩB, one needs to have mD ∼mp if a
common asymmetry mechanism provides nD ∼ nB, which
can be realized through many mechanisms [3–19] (see
Ref. [20] for a recent review). It is less trivial to have the
dark matter mass comparable to the proton mass or the
QCD scale. In this paper, we are trying to provide a natural
explanation of mD ∼mp, or equivalently, for having a dark
QCD scale comparable to our QCD scale, ΛdQCD ∼ ΛQCD.

Given a new QCD-like dynamics in the dark sector, the
dark QCD confinement scale ΛdQCD depends on both the
gauge coupling value at the far UV and its beta function
from the matter content. Even if one chooses the same dark
QCD gauge coupling as our QCD coupling in the UV, the
exponential dependence of the confinement scale on the
beta function can still generate ΛdQCD far away from ΛQCD.
Unless the dark QCD sector is an exact copy of our QCD
sector, which would be a big surprise, additional mecha-
nisms are required to have the dark QCD and our QCD
couplings related to each other at a scale not too high, in
order to suppress the renormalization running effects.
For a single non-Abelian gauge group, increasing the

multiplicity of matter content can suppress the first term in
the beta function and potentially generate a nontrivial and
perturbative infrared fixed point (IRFP) [21]. For the QCD
and dark QCD gauge groups, SUðNcÞQCD × SUðNdÞdQCD,
the two gauge couplings can have coupled beta functions as
well as related IRFP values, α�s and α�d, if some matter fields
are charged under both gauge groups. Since we have not
observed any additional particles charged under QCD
below around the top quark mass, the fields charged under
both gauge groups should have a mass at a scale M ≳mt
(for simplicity, we assume a common mass for them).
Below the scaleM, the IRFPs will be lifted and both gauge
couplings run independently to generate ΛQCD and ΛdQCD,
respectively. The requirement of ΛdQCD ∼ ΛQCD from the
dark matter energy density will prefer to haveM not too far
away fromΛQCD or ΛdQCD. To illustrate our idea, we show a
schematic representation of gauge coupling runnings from
a far UV scale—for instance, the Planck scale—to the
confinement scales in Fig. 1. Once the field content is fixed,
the gauge couplings at the IRFPs are also fixed. Our QCD
gauge coupling value at MZ and the IRFP gauge coupling
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α⋆s atM can then be used to determine the decoupling scale
M. OnceM is determined, the dark QCD running belowM
is also known and the dark QCD confinement scale can be
determined. The dark QCD scale, ΛdQCD, is therefore
related to our QCD scale and fully determined by the field
content.
Our paper is organized as follows: In Sec. II, we study

many models that can provide IRFPs and relate ΛdQCD to
ΛQCD. We pay special attention to the distribution of the
scale M for different models that satisfy ΛdQCD ∼ ΛQCD. In
Sec. III, we construct a concrete renormalizable model to
relate the dark baryon to the ordinary baryon number
densities and to explain the ratio ΩDM=ΩB. We discuss
collider signatures and the dark matter direct-detection rate
of this model in Sec. IV and conclude in Sec. V.

II. THE SCALE OF DARK QCD

Assuming an asymptotic-free QCD-like dynamics in
the dark sector, the dark baryon in this sector could be a
stable particle and serve as a dark matter candidate.
Neglecting the electroweak symmetry, we have the gauge
group SUðNcÞQCD × SUðNdÞdQCD. For simplicity, we
only consider the case Nd ¼ Nc ¼ 3 and fundamental
representations for fermions and scalars under the gauge
group. Other representations will not change the generic
conclusions of this paper. Other than nfcðnfdÞ Dirac
fermions and nscðnsdÞ complex scalars as fundamentals
of SUðNcÞ½SUðNdÞ�, we also introduce nfj Dirac fer-
mions and nsj complex scalars as bifundamentals of
SUðNcÞ × SUðNdÞ, which are crucial to relating the IRFP
gauge couplings in the two sectors. The particle content
is summarized in Table I.
At two-loop level, the two gauge couplings gc and gd

affect each other’s running. Defining the beta func-
tions as dgc=dðlog μÞ ¼ βcðgc; gdÞ and dgd=dðlog μÞ ¼
βdðgc; gdÞ, we have the beta functions at the two-loop
level as [22]1

βcðgc; gdÞ ¼
g3c

16π2

�
2

3
TðRfÞ2ðnfc þ NdnfjÞ þ
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þ
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�
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34

3
C2
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�

þ g3cg2d
ð16π2Þ2 ½2C2ðRfÞTðRfÞ2Ndnfj þ 4C2ðRsÞTðRsÞNdnsj �: (1)

The formula for βdðgc; gdÞ is obtained from βcðgc; gdÞ by interchanging the indexes c↔d. Here, C2ðGcÞ ¼ Nc and
C2ðGdÞ ¼ Nd are the quadratic Casimirs of the adjoint representations, C2ðRfÞ ¼ C2ðRsÞ ¼ ðN2

c;d − 1Þ=ð2Nc;dÞ are the

FIG. 1 (color online). An illustrative picture of the gauge
coupling runnings from a UV scale to the confinement scales.
Different UV boundary gauge couplings can lead to the same
IRFPs. After decoupling particles charged under both groups at a
scale M, both couplings run again below M and generate
compatible confinement scales ΛQCD and ΛdQCD.

TABLE I. Matter content of the model. Multiplicities are for
Dirac (vectorlike) fermions and complex scalars. In particular,
nfc ≥ 6 to accommodate the SM quarks. Fields that are neutral
under SUðNcÞQCD × SUðNdÞdQCD are not shown.

Field SUðNcÞQCD SUðNdÞdarkQCD Multiplicity

SM fermion Nc 1 nfc
SM scalar Nc 1 nsc
DM fermion 1 Nd nfd
DM scalar 1 Nd nsd
Joint fermion Nc Nd nfj
Joint scalar Nc Nd nsj

1In Ref. [22], chiral fermions are used. In our notation, we use Dirac fermions, so there is an additional factor of 2 in the formula.
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quadratic Casimirs of the fundamental representations,
TðRfÞ ¼ 1=2, and TðRsÞ ¼ 1=2. We have checked and
found that the electroweak gauge couplings and the top
Yukawa coupling have negligible effects on the QCD
and dark QCD couplings in the infrared. Similarly to the
Banks-Zaks fixed point for a single gauge coupling [21],
one can solve the zero beta-function equations
βc;dðgc; gdÞ ¼ 0 and obtain the perturbative IRFP as

α�s ≡ α�sðnfc ; nsc ; nfd ; nsd ; nfj ; nsjÞ;
α�d ≡ α�dðnfc ; nsc ; nfd ; nsd ; nfj ; nsjÞ; (2)

with αs ¼ g2c=4π and αd ¼ g2d=4π. Here, we assume that
there are no masses for the fermions and scalars
between the UV scale and a lower scale of M and
no threshold corrections for the IRFP calculation.
Assuming a common mass M for all scalars and
fermions except the QCD quarks and dark fermions
charged only under dark QCD, the QCD coupling
values, αsðMÞ ¼ α�s and αsðMZÞ ¼ 0.1197� 0.0016
[23,24], can be used to determine the decoupling scale
M. For some representative models, we show the IRFP
gauge coupling values and the decoupling scale M in
Table II.
Once the scale M and the dark QCD coupling value

αdðMÞ ¼ α�d are known, we calculate the dark QCD gauge
coupling from the scale M to a lower scale. Because the
gauge coupling αd increases as the scale decreases, at a
lower scale the dark QCD coupling can be large enough to
trigger confinement and chiral symmetry breaking. The
actual determination of such a scale requires a nonpertur-
bative calculation. As a guidance, we use the chiral-
symmetry-breaking condition from Cornwall, Jackiw and
Tomboulis effective potential [25], which has αdC2ðRfÞ >
π=3 or αd > π=4 [26]. From this condition, we define the
dark QCD scale through the relation αdðΛdQCDÞ ¼ π=4.
Applying the same calculation to our QCD scale, we have
the relation between the proton mass and ΛQCD as
mp ≈ 1.5ΛQCD. We apply this relation to the dark QCD
and obtain the dark matter (dark baryon) mass as
mD ≈ 1.5ΛQCD. Similar to light flavors in our QCD, the

dark quark masses have been assumed to be much lighter
than ΛdQCD, and their contributions to the dark baryon mass
can be neglected. We show the values of mD for different
models in the last column of Table II.
Before we present the numerical results of the scale ofM

for different models, we first provide an approximate and
analytic calculation. Below the scale M and using only the
one-loop beta function, the running of the couplings can be
solved analytically and is given by

α−1i ðμÞ ≈ α−1i ðMÞ −
~βi
2π

log

�
μ

M

�
; (3)

where ~βi ¼ ð2
3
nfi − 11Þ. Using that the coupling at the

confinement scale is αiðΛiÞ ¼ π=4 and that αiðMÞ ¼ α�i ,
we can solve these equations for the confinement scales Λi
and obtain the ratio of the two confinement scales as

ΛQCD

ΛdQCD
≈ e

2π
~βcα�c

�
1−

~βcα�c
~βdα

�
d

�
; (4)

where we have used the perturbative IRFP gauge couplings
with α�i ≪ π=4. Without a delicate cancellation between the
two terms in the parenthesis, the ratio is O½e2π=ð~βcα�cÞ� ∼
Oð10−4Þ for ~βc ¼ −7 and α�c ≈ 0.1. A mild cancellation
around 20% for the two terms in the parenthesis can have
ΛdQCD=ΛQCD ∼ 5 and comparable confinement scales.
The ordinary QCD coupling running from MZ to the

decoupling scaleM is determined by the known SMmatter.
Higher values of M will lead to smaller values of α�c and
require more tuning in the parenthesis of Eq. (4), and are
therefore disfavored. So, to have comparable ΛdQCD and
ΛQCD, the decoupling scale M is preferred to be close
to MZ.
Given that the number of models that are asymp-

totically free in the far UV and exhibit IRFPs is finite,
we can also analyze the distribution of DM masses
numerically. Requiring 0.05 ≤ α�s ≤ 0.1 and a perturbative
α�d leaves Oð104Þ models for which we analyze the
correlation between the scale M and the dark baryon mass.
If we imagine that nD=nB ¼ Oð1Þ, a model is viable if

TABLE II. The perturbative IRFP coupling values, decoupling scale M, and dark baryon mass mD for some representative models.
Matter fields that are charged under both gauge symmetries decouple at a mass scale M, which is determined from α�s and αsðMZÞ ¼
0.1197� 0.0016 [23,24].

Model nfc nfd nfj nsc nsd nsj α�s α�d M (GeV) mD (GeV)

A 6 5 3 0 2 0 0.095 0.175 518 31
B 6 6 3 1 0 0 0.083 0.120 2030 8.6
C 6 6 3 2 2 0 0.070 0.070 13500 0.32
D 7 7 2 2 0 2 0.078 0.168 3860 72
E 7 7 2 2 1 2 0.090 0.133 869 3.5
F 8 8 2 2 0 1 0.074 0.149 7700 29
G 8 8 2 2 1 1 0.082 0.118 2244 1.2
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1.5 < mD=mp < 15, such that the experimental value of
ΩDM=ΩB can be explained up to a range of a factor of 3,
leaving some room for numerical uncertainties. We show
the distribution of numbers of models in M in Fig. 2. As
expected from our analytical estimates, in order to explain
the experimental value of ΩDM=ΩB ∼ 5, lower values of M
are clearly preferred. For the majority of models,
M ≲ 2 TeV, which is the mass scale of particles charged
under both QCD and dark QCD and also determines the
interaction strength between these two sectors.

III. ASYMMETRY FROM LEPTOGENESIS

Having discussed the relation between the dark baryon
and ordinary baryon masses, we now turn to the question of
obtaining nD ∼ nB. While there are many models to achieve
this goal, we only present one simple renormalizable model
following the leptogenesis idea [27] and use it as a guidance
for dark QCD phenomenologies. Leptogenesis is a well-
known mechanism to explain the baryon asymmetry of the
Universe (BAU). It uses CP-violating, out-of-equilibrium
decays of heavy right-handed neutrinos, Ni, to generate a
lepton asymmetry at high scales. This lepton asymmetry is
then partially transferred into asymmetry in the quark
sector through electroweak sphaleron processes.
In addition to the lepton asymmetry, it is also possible to

generate an asymmetry of other quantum numbers from Ni
decays [28,29]. In the following, we show a model to
generate both the BAU and the dark BAU at the same time.
Differently from Ref. [28,29], our model will have the
baryon and the dark baryon asymmetries controlled by the
same model parameters, and nD=nB ¼ Oð1Þ can be
achieved naturally.
The main idea is to generate an asymmetry for a particle

that can decay into ordinary baryons and dark baryons, so
nB and nD can share the same source of asymmetry. The
bifundamental particles of QCD and dark QCD are natural

candidates for this. For instance, one can induce an
asymmetry in a ð3̄; 3Þ1=3 fermion Y1, such that
ΔnY1

≡ nY1
− nȲ1

≠ 0. Note that we only write down the
quantum numbers under SUð3ÞQCD × SUð3ÞdQCD × Uð1ÞY,
since all fields involved will be SUð2Þweak singlets. Since
Y1 carries both QCD and dark QCD colors, its decays will
distribute the asymmetry evenly between the visible and the
dark sectors. To generate the asymmetry via leptogenesis,
we introduce a ð3̄; 3Þ1=3 scalar Φ with Yukawa couplings:

L ⊃ kiȲ1ΦNi þ H:c: (5)

Here, Ni ði ¼ 1; 2; 3Þ are three heavy right-handed neu-
trinos with Majorana masses Mi (Mi < Mj for i < j) that
could also be responsible for generating small SM neutrino
masses through the seesaw mechanism. Out-of-equilibrium
decays of N1 in the early Universe can generate asymme-
tries ΔnY1

≡ nY1
− nȲ1

and ΔnΦ ¼ −ΔnY1
, provided

that Im½k21ðk�2Þ2� is nonzero. An estimate of the amount
of asymmetry generated from these decays will be
presented later.
Additional fields and couplings are required to allow the

asymmetry to be transferred to baryons and dark baryons.
We introduce a second bitriplet fermion Y2 transforming as
ð3̄; 3Þ−2=3, and the Yukawa couplings

L ⊃ κ1ΦȲc
1Y2 þ κ2ΦȲ2eR þ κ3ΦX̄LdR þ H:c:; (6)

where Yc
1 ¼ CYT

1 , and C is the charge conjugation operator.
Here, eR and dR are the right-handed SM charged leptons
and down-up quarks, respectively, with the flavor indices
suppressed. For simplicity, we assume that the Φ field is
lighter than Yi, but with a small mass hierarchy. Then, we
have the decay chains Y1 → Ȳ2 þ Φ† followed by Y2 →
Φþ eR and Φ → XL þ d̄R. The asymmetries that are
initially stored in the Φ and Y1 fields are distributed as
follows:

ΔndR ≡ 3nB ¼ 3ΔnY1
; (7)

ΔneR ≡ nL ¼ −ΔnY1
; (8)

ΔnX ≡ 3nD ¼ −3ΔnY1
; (9)

where we have taken into account that each (dark) quark
carries 1=3 of the (dark) baryon number. The B-L asym-
metry is given by nB − nL ¼ 2ΔnY1

. Weak interaction,
Yukawa interactions, and electroweak sphaleron processes
will redistribute the asymmetries across SM quarks and
leptons. Assuming that the lepton flavors equilibrate, we
use the well-known relation nB ¼ 28=79nB-L [30,31] to
obtain the ratio of nD=nB as

jnDj
nB

¼ 79

56
: (10)
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FIG. 2 (color online). The distribution of numbers of models in
terms of the decoupling scale M, after satisfying the requirement
of 1.5 < mD=mp < 15. The lower limit of M is related to
requiring α�s ≤ 0.1.
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The interactions introduced in Eqs. (5) and (6) conserve a
dark matter Z2 symmetry. Under this Z2, we find the fields
X, Φ, eR, Y1 to be odd and Y2 and Ni to be even. So, the
dark baryon constructed from three X fields is Z2 odd and
stable.
Before we calculate the energy density ratio, we

digress into discussing how to obtain ΔnY1
from lepto-

genesis. The lightest right-handed neutrino,N1, must decay
sufficiently out of equilibrium. This is possible if the decay
rate ΓN1

¼ 9jk1j2M1=ð16πÞ is not too different from the
Hubble expansion rate of the Universe HðT ¼ M1Þ at a
temperature T ¼ M1. This condition, ΓN1

∼HðM1Þ,
roughly translates to jk1j2 ∼M1=ð1017 GeVÞ, so it
can be easily satisfied for a N1 mass below the Planck
scale.
The CP asymmetry in the decay N1 → Y1Φ† can be

inferred from the known leptogenesis result [32]. In
the hierarchical limit, M2 ≫ M1, and neglecting finite
temperature corrections, it is given by [33]

ϵ ¼ ΓðN1 → Y1Φ†Þ − ΓðN1 → Ȳ1ΦÞ
ΓðN1 → Y1Φ†Þ þ ΓðN1 → Ȳ1ΦÞ

≈ −
3

2

1

8π

Im½k21ðk�2Þ2�
jk1j2

M1

M2

: (11)

In the strong washout regime, ΓN1
≫ HðM1Þ, the final

asymmetry can be estimated as [34,35]

QY1
ð∞Þ ¼ π2

6zfK1

ϵQeq
N1
ð0Þ; (12)

where Qi ¼ ni=s are the entropy-normalized particle den-
sities, K1 ¼ ΓN1

=HðM1Þ, and zf is the freeze-out temper-
ature where the washout decouples, with zf ∼ 7 − 10 for
K1 ¼ 10 − 100. The equilibrium N1 density at high tem-
peratures is approximately given by Qeq

N1
ð0Þ ≈ 4=g⋆, with

g⋆ ≈ 300 in our model. Choosing M1 ¼ 1013 GeV,
jk1j ¼ jk2j ¼ 0.1, and M2 ¼ 10M1, we have QY1

ð∞Þ≈
2 × 10−9 sinð2φÞ, where φ is the relative CP phase in
the couplings k1;2. In comparison, the observed baryon-to-
entropy ratio today is 9 × 10−11 [35]. Therefore it is easy to
see that a large enough asymmetry can be generated to
explain the observed baryon and dark baryon asymmetries
of the Universe.
After discussing asymmetry generation, we now come

back to calculate ΩDM=ΩB, which is simply given by

ΩDM

ΩB
¼ nDmD

nBmp
≈
79

56

mD

mp
: (13)

Assuming the same nD=nB ¼ 79=56 for all models, we
show the dark matter energy densities in Fig. 3 for the
representative models in Table II. Note that while we
show a variety of models here, only models D, E, F, and
G have the necessary particle content to implement the

asymmetry mechanism in this section. Among different
models, the model “E” has a dark matter mass around
3.5 GeV, and the ratio ΩDM=ΩB ≈ 4.9, which is very
close to the measured value from the Planck
Collaboration.
A prominent issue in asymmetric dark matter model

building is that the dark matter–antidark matter annihi-
lation rate must be sufficiently efficient to prevent a large
symmetric relic density. In our model, this potential
problem is naturally solved because the dark baryon
and antibaryon annihilation into dark pions is very
efficient, similar to the proton and antiproton annihilation
in the SM. The dark pions do not carry a dark baryon
number, so they can decay into SM particles (unless they
have their discrete symmetries for stability, for instance in
Refs. [37–39], which we do not consider here). We
discuss their properties in the next section for the
phenomenology of our model.

IV. LHC AND DARK MATTER
PHENOMENOLOGY

So far, the chiral symmetry, SUðnfdÞL × SUðnfdÞR,
associated with the dark quarks is unbroken. To provide
masses to the otherwise massless Nambu-Goldstone
bosons or dark pions, πd, we adopt the Higgs portal
and introduce the dark-flavor-blind interactions,
X̄XH†H=Λ, which can be easily UV-completed by intro-
ducing a gauge singlet field S with two couplings X̄XS
and SH†H. The dark pion mass has the approximate
relation m2

πdf
2
πd ∼mXΛ3

dQCD, with the dark quark mass

A B C D E F G
0.1

0.5
1.0

5.0
10.0

50.0
100.0

Models

D
M

B

FIG. 3 (color online). The ratios of the dark baryon energy
density over the ordinary baryon energy density for different
models in Table II. The dark lines are the ratios ΩDM=ΩB
calculated using Eq. (13) for different models, while the orange
(grey) bands are obtained by letting the dark baryon mass
vary between 1=2 and 2 times the estimated value, to account
for the uncertainty of the nonperturbative estimation of ΛdQCD
(a more precise calculation could be done at Lattice [36]). The
green line is the measured value of ΩDM=ΩB from the Planck
Collaboration.
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mX ∼ v2EW=Λ.
2 The dark pion masses are controlled by

additional UV parameters and can well be below the dark
baryon mass.3

The dark QCD and our QCD sectors are coupled
to each other through the bifundamental particles,
whose mass scale M is crucial for the phenomenology
of this class of dark QCD models. Integrating out the
bifundamental Φ field, one can generate the operator
κ23XLd̄RdRX̄L=M2

Φ. After Fiertz transformation, this
operator becomes κ23X̄LγμXLd̄RγμdR=M2

Φ. First of all,
one can see that the dark parity is broken and the
dark pion can decay into SM quarks from the operator,
iκ23fπdmdπdd̄γ5d=M2

Φ, using the dark chiral Lagrangian.
For ΛdQCD > ΛQCD, the decay width of πd is estimated
to be κ43f

2
πdm

2
dmπd=ð32πM4

ΦÞ. For MΦ=κ3 ∼ 1 TeV, the
dark pion is generically a stable particle at colliders
unless πd is heavy enough to decay into strange quarks.
When the dark pion mass is below 3mπ, it can only
decay into a pair of photons at loop level or high-
multiplicity final state via off-shell pions and has an
even longer lifetime.
The effective operator, κ23X̄LγμXLd̄RγμdR=M2

Φ, can also
be used to induce both dark matter-nucleon spin-
independent and spin-dependent scattering. For the
dominant spin-independent scattering, the matrix element
for scattering off a proton or neutron is given by [43]
Mp;n ¼ κ23=ð4M2

ΦÞJ0XJ0p;n, where J0X ¼ hDjX̄γ0XjDi≈
3 and J0p;n ¼ hp; njd̄γ0djp; ni ≈ 1; 2. Then the spin-
independent dark baryon–neutron cross section is
calculated to be

σSID-n ¼
2232κ43μ

2
D−n

16πM4
Φ

¼
�
1 TeV
MΦ=κ3

�
4

× 3 × 10−40 cm2; (14)

where μD-n is the reduced mass of the dark baryon
and ordinary neutron system. For mD ≈ 3.5 GeV and
MΦ=κ3 ¼ 1 TeV, the cross section is close but below
the current limits from light dark matter searches
[44,45].
In our model, we have additional particles charged

under the SM QCD with masses at the decoupling scale
M. The lightest additional QCD charged state Φ can be
produced in pairs at the LHC. Each Φ can decay into
one quark and one dark quark, Φ → Xd̄R. After hadro-
nization, the ordinary quark will behave as a jet at
colliders. The story for the dark quark is slightly
different. After hadronization in the dark sector, both

dark baryons and dark mesons can exist in the final
state. If dark pions are stable particles at colliders, the
total dark jet behaves as missing energy. The final signal
is two QCD jets plus missing transverse energy, well
covered by the current SUSY search [46,47]. Recasting
the results in Ref. [47] with 11.7 fb−1 at 8 TeV and
including the multiplicity factor for the Φ field with
respect to the squark production in SUSY models, the
current constraint is MΦ ≳ 600 GeV.
On the other hand, if the dark pions decay into SM

quarks inside detectors, only a fraction of the dark jet
momentum contributes to the transverse missing energy
momentum, and a dedicated search beyond the SUSY
search is required. The closest signature to search
for the Φ is the four-jet final state and paired dijet
resonance search. Compared to the limits of top squark
in Fig. 3 of Ref. [48], the constraint on the Φ mass is
MΦ ≳ 400 GeV after taking into account the multiplicity
factor. The actual constraints should be weaker because
not all X-dark-jet energy is registered in the calorimeter.

V. CONCLUSIONS

To conclude, we have provided a simple explanation
for why the dark QCD scale could be related to the SM
QCD scale, or why the dark baryon mass could be
similar to the proton or neutron mass. IRFP points from
gauge coupling runnings play an essential role. The two
gauge couplings are related to each other until a
decoupling scale M, where particles charged under both
gauge groups get their masses. We have scanned all the
models with fundamental representations and asymptotic-
free runnings in the far UV, and found that the majority
of models with mD ∼mp have a decoupling scale M
around 1 TeV. We have also provided a simple renor-
malizable model to explain nD ∼ nB based on the lepto-
genesis mechanism and a sharing of dark baryon and
ordinary baryon asymmetries. Therefore, a dark QCD
with fixed-point gauge couplings in the infrared provides
a dynamical explanation for the similarity of dark matter
and ordinary matter energy densities that is observed in
nature.
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2The Yukawa coupling of dark quarks to the Higgs boson is
∼m2

πdf
2
πd=ðvEWΛ3

dQCDÞ, which is suppressed by at least a power of
f2πd=Λ

2
dQCD ∼ 1=ð4πÞ2 and will not affect the SMHiggs properties

in a significant way.
3Other phenomenological studies of the dark pion or a general

dark QCD sector can be found in Refs. [40–42].
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