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For the original hybrid inflation as well as the supersymmetric F-term and D-term hybrid models, we
calculate the level of non-Gaussianities and the power spectrum of curvature perturbations generated during
the waterfall, taking into account the contribution of entropic modes. We focus on the regime of mild
waterfall, in which inflation continues for more than about 60 e-folds N during the waterfall. We find that
the associated fNL parameter goes typically from fNL ≃ −1=Nexit in the regime with N ≫ 60, where Nexit

is the number of e-folds between the time of Hubble exit of a pivot scale and the end of inflation, down to
fNL ∼ −0.3 when N ≳ 60, i.e., much smaller in magnitude than the current bound from Planck.
Considering only the adiabatic perturbations, the power spectrum is red, with a spectral index
ns ¼ 1 − 4=Nexit in the case N ≫ 60, whereas in the case N ≳ 60, it increases up to unity. Including
the contribution of entropic modes does not change observable predictions in the first case, and the spectral
index is too low for this regime to be viable. In the second case, entropic modes are a relevant source for the
power spectrum of curvature perturbations, of which the amplitude increases by several orders of
magnitude. When spectral index values are consistent with observational constraints, the primordial
spectrum amplitude is much larger than the observed value and can even lead to black hole formation. We
conclude that, due to the important contribution of entropic modes, the parameter space leading to a mild
waterfall phase is excluded by cosmic microwave background observations for all the considered models.

DOI: 10.1103/PhysRevD.89.063519 PACS numbers: 98.80.Cq

I. INTRODUCTION

In the standard cosmological scenario, the large scale
structures of the Universe are seeded by the quantum
fluctuations of one or more scalar fields during a primordial
phase of exponentially accelerated expansion. Because of
this phase of inflation, the quantum field fluctuations
become classical and are stretched outside the Hubble
radius. They lead to a nearly scale invariant power spectrum
of curvature perturbations Pζ, for which the amplitude
and spectral index are constrained by cosmic microwave
background (CMB) observations. The recent results from
the Planck experiment [1] give the best bounds with
ln 1010Aζ ¼ 3.089� 0.027 and ns ¼ 0.9603� 0.0073
with 68% C.L., where Aζ is the value of Pζðk�Þ at the
scale k� ¼ 0.05 Mpc−1. Models of inflation predicting
ns > 1 are now ruled out at more than the 5σ level [2].
This is commonly thought to be the case of original

hybrid inflation [3]. In this two-field model, inflation is
realized in the false vacuum along a nearly flat valley of the
field potential. It ends with a nearly instantaneous waterfall
phase, triggered when the auxiliary field develops a
tachyonic instability. Hybrid models are well motivated
from the point of view of particle physics because they can
be embedded in frameworks like supersymmetry [4–9],

supergravity [10,11], and grand unified theories [12–14].
Other realizations of hybrid inflation in the context of string
theories [15–20] and extradimensional theories [21] have
also been proposed.
In addition to a blue tilted power spectrum, the original

hybrid model was thought to suffer from a problem of fine-
tuning of initial field values [22,23]. Moreover, because a
Z2 symmetry is broken at the end of inflation, it leads to the
formation of domain walls with dramatic consequences for
cosmology.
However, recent developments have shown that there

exists a regime in the parameter space of the original hybrid
model for which the final waterfall phase is sufficiently
mild for inflation to continue for more than 60 e-folds N
after the fields have crossed the critical instability point
[24,25]. In this scenario, topological defects are stretched
outside the observable Universe, thus escaping observation,
and the power spectrum of adiabatic perturbations is red,
possibly in agreement with CMB observations. Moreover,
the initial field values leading to inflation have been shown
to occupy an important proportion of the field space in a
large part of the potential parameter space [26–29], thus
solving the fine-tuning problem of initial conditions.
Similar conclusions have been obtained for the most
well-known supersymmetric realizations of the hybrid
model, the so-called F-term and D-term models [30]. In
the standard regime of a fast waterfall, the contribution of
the cosmic strings formed at the critical instability point
must be considered for these models. The F-term model
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was nevertheless found to be in tension with WMAP data,
whereas theD-term model was strongly disfavored [31,32].
With the Planck results, the degeneracy between the
spectral index and the string tension, which tends to favor
larger values for the spectral index, is strongly reduced, and
both models appear to be ruled out in the standard
regime [33].
The revival of the original hybrid scenario would be

nevertheless of short duration if the mild waterfall scenario
led generically to a large level of non-Gaussianities, with
a local fNL parameter outside the recent Planck bound
fNL ¼ 2.7� 5.8 (68% C.L.) [34] or if the power spectrum
of curvature perturbations is strongly affected by the
entropic modes along the waterfall trajectories.
The aim of this paper is to evaluate the power spectrum

of curvature perturbations and the contribution of entropic
modes, as well as the level of non-Gaussianities produced in
the mild waterfall regime, for the original hybrid scenario as
well as for the supersymmetric F-term and D-term models.
Our calculation therefore differs from Refs. [35–46] since
they consider only the scenario of a waterfall phase lasting
no more than a few e-folds. A similar calculation was
performed in Ref. [47] for the original model, and some
values for the parameters were found to lead to a large level
of local fNL, but the focus there was on super-Planckian field
evolution in a regimewhere the potential is dominated by the
separable terms. A similar analysis was also performed in
Ref. [48], but only for a single trajectory. In this paper, we
use a unified parametrization of the potential for the three
considered models (F-term, D-term, and original hybrid
inflation) and restrict the analysis to sub-Planckian field
values, such that supergravity corrections to the potential can
be neglected. In this regime, the potential is not separable.
We use the δN formalism to calculate the local fNL

parameter, both analytically and numerically, as well as the
amplitude and spectral index of the power spectrum of
curvature perturbations. As a cross-check, we have also
integrated numerically the linear multifield perturbations
and derived the exact power spectrum of curvature pertur-
bations. This latter method has been chosen to study the
time evolution of the field perturbations and their respective
contribution to the adiabatic and entropic modes during the
waterfall.1

Denoting by Nexit the number of e-folds between the
time of Hubble exit of a pivot scale and the end of inflation,
we find that the associated fNL parameter goes typically
from fNL ≃ −1=Nexit, when the waterfall lasts for N ≫ 60
e-folds, down to fNL ∼ −0.3 when N ≳ 60. In all cases the
magnitude of fNL does not exceed the bounds of Planck.
Considering only the adiabatic perturbations, the power
spectrum is red, with a spectral index ns ¼ 1 − 4=Nexit, in

the case N ≫ 60, whereas in the case N ≳ 60, it increases
up to unity, which apparently suggests the presence of a
parametric region, where the spectral index is in accordance
with the observation by Planck [25,30]. When including the
contribution of entropic modes, we find that the predictions
do not change in the first case (N ≫ 60). However, in the
second case (N ≳ 60), entropic modes are a sizeable source
for the power spectrum of curvature perturbations, and the
spectral index first takes lower values before eventually
increasing up to unity. However, the amplitude of the power
spectrum of curvature perturbations is enhanced by several
orders of magnitude and can even reach the level of black
hole formation. We conclude that due to the important
contribution of entropic modes, the parameter space lead-
ing to a mild waterfall phase is excluded by CMB
observations for all the considered models.
This paper is organized as follows. In Sec. II we give the

exact background multifield dynamics. Then we introduce
the δN formalism (Sec. III) and the linear theory of
multifield perturbations (Sec. IV). In Sec. V the considered
hybrid models are briefly described, and the unified para-
metrization of the potential is given. Section VI is dedicated
to the slow-roll dynamics during the mild waterfall phase.
In Secs. VII and VIII, we evaluate, respectively, the level of
non-Gaussianities and the power spectrum of curvature
perturbations and compare the analytical and numerical
results. In the conclusion (Sec. IX), we discuss the impact
of our results on the constraints of hybrid models and
envisage interesting perspectives to this work.

II. MULTIFIELD BACKGROUND DYNAMICS

Assuming that the Universe is filled with n nearly
homogeneous real scalar fields ϕi¼1;2.::;n, the background
dynamics is given by the Friedmann–Lemaître equations

H2 ¼ 1

3M2
pl

�
1

2

Xn
i¼1

_ϕ2
i þ Vðϕi¼1;:::;nÞ

�
; (1)

ä
a
¼ 1

3M2
pl

�
−
Xn
i¼1

_ϕ2
i þ Vðϕi¼1;:::;nÞ

�
; (2)

as well as by n coupled Klein–Gordon equations

ϕ̈i þ 3H _ϕi þ
∂V
∂ϕi

¼ 0; (3)

where H is the Hubble expansion rate, Mpl ≡mpl=
ffiffiffiffiffiffi
8π

p
is

the reduced Planck mass, Vðϕi¼1;:::;nÞ is the field potential,
and a dot denotes the derivative with respect to the cosmic
time t. Then one can define σ, the so-called adiabatic field
[50], which describes the collective evolution of all the
fields along the classical trajectory, and the velocity field

1Notice that separable universe techniques can also be used to
study the time evolution of both curvature and isocurvature
perturbations [49].
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_σ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

_ϕ2
i

s
: (4)

The equation of motion of the adiabatic field is given by

σ̈ þ 3H _σ þ Vσ ¼ 0; (5)

where

Vσ ≡
Xn
i¼1

ui
∂V
∂ϕi

; (6)

with ui being the components of a unit vector along the
field trajectory ui ≡ _ϕi= _σ.

III. δN formalism

The δN formalism, based on the separate universe
approximation (and other assumptions discussed, e.g., in
Ref. [51]), states that the curvature perturbation ζðx; tÞ on a
spatial hypersurface of uniform energy density is given by
the difference between the number of e-folds realized from
an initially flat hypersurface Nðt; xÞ≡ ln½ ~aðtÞ=aðtiÞ�,
where ~aðx; tÞ is the local scale factor, and the unperturbed
number of e-folds N0ðtÞ≡ ln½aðtÞ=aðtiÞ�. If we label,
respectively, by I and f the initial and final hypersurfaces,
one has

ζ ¼ δNf
i ≡ Nðt; xÞ − N0ðtÞ: (7)

Our initial hypersurface is chosen at the time t� corre-
sponding to the Hubble exit of the observable pivot scale
k� ¼ 0.05 Mpc−1 (in the rest of the paper, star subscripts
indicate quantities evaluated at t�). The final hypersurface
must be of uniform energy density. In this paper we are
interested in the curvature perturbations at the end of the
slow-roll regime, when one of the slow-roll parameters
reaches unity.
The field perturbations are close to Gaussian and have a

very small amplitude so that the observed curvature
perturbations are given to good accuracy by

ζ ≃Xn
i¼1

N;iδϕi þ
1

2

Xn
i;j¼1

N;ijδϕiδϕj; (8)

where we have used the notation

N;i ≡ ∂δNf
i

∂ϕi
i
; N;ij ≡ ∂2δNf

i

∂ϕi
i∂ϕi

j
: (9)

The amplitude of the reduced bispectrum is given by [52]

fNL ¼ −
5

6

P
i;jN;iN;jN;ij

ðPiN
2
;iÞ2

: (10)

One can also calculate the power spectrum amplitude and
spectral tilt as

Pζðk�Þ ¼
H2�
4π2

X
i

N2
;i; (11)

ns − 1 ¼ −2ϵ1� þ
2
P

ij
_ϕi�N;jN;ij

H�
P

iN
2
;i

; (12)

where ϵ1 ¼ − _H=H2 is the first slow-roll parameter.
Practically, instead of a final surface of uniform density,
we have chosen a final surface of the constant field value,
more precisely the value taken by the inflaton when the
nonperturbed trajectory breaks the slow-roll approxima-
tion. As explained later in Sec. VII, the e-fold differences
between these two surfaces is negligible compared to the
e-fold variations between trajectories reaching them. This
approximation leads therefore to accurate predictions. In
addition, we have checked numerically for all the consid-
ered parameter sets that these two possible final surfaces
give identical observable predictions.
We furthermore need to introduce the number of e-folds

Nt in the sense of a reparametrization of time, dNt ¼ Hdt,
implying that during de Sitter inflation, where aðtÞ ¼
expðHtÞ, Nt ¼ Ht. We use the subscript k to indicate its
value when a given scale k exits the horizon, � when this
scale is the pivot scale, and the subscript “end” to indicate
its value at a uniform density surface at the end of inflation.
As stated above, the latter can be practically obtained by
checking for the violation of the slow-roll conditions; cf.
also the discussion in Sec. VII B. Finally we define the
function

N ≡ Nt
end − Nt; (13)

giving the number of e-folds up to the end of inflation.

IV. LINEAR THEORY OF MULTIFIELD
PERTURBATIONS

A. Perturbed equations

The perturbed metric can be written as

ds2 ¼ a2½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞδijdxidxj�; (14)

where Φ and Ψ are the Bardeen potentials and η is the
conformal time, which is related to the cosmic time t as
dt ¼ adη. In the longitudinal gauge, the spatial nondiag-
onal Einstein equations perturbed at first order lead to
Φ ¼ Ψ, such that the (0,0), ð0; iÞ, and ði; iÞ equations read

−3HðΦ0 þHΦÞ þ∇2Φ

¼ 4π

m2
pl

Xn
i¼1

�
ϕ0
iδϕ

0
i − ϕ02

i Φþ a2
∂V
∂ϕi

δϕi

�
; (15)
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Φ0 þHΦ ¼ 4π

m2
pl

Xn
i¼1

ϕ0
iδϕi; (16)

Φ00 þ 3HΦ0 þ Φð2H0 þH2Þ

¼ 4π

m2
pl

Xn
i¼1

�
ϕ0
iδϕ

0
i − ϕ02

i Φ − a2
∂V
∂ϕi

δϕi

�
; (17)

where H≡ a0=a and δϕi is the perturbation of the scalar
field ϕi and where a prime denotes the derivative with
respect to the conformal time. On the other hand, the n
perturbed Klein–Gordon equations read

δϕ00
i þ 2Hδϕ0

i −∇2δϕi þ
Xn
j¼1

a2δϕj
∂2V

∂ϕi∂ϕj

¼ 2ðϕ00
i þ 2Hϕ0

iÞΦþ 4ϕ0
iΦ

0: (18)

The field perturbations are coupled to each other through the
cross-derivatives of the potential and the Bardeen potential.
By adding Eq. (15) to Eq. (17), and by using Eq. (16), one
obtains the evolution equation for the Bardeen potential,

Φ00 þ 6HΦ0 þ ð2H0 þ 4H2ÞΦ −∇2Φ

¼ −
8π

m2
pl

a2
Xn
i¼1

∂V
∂ϕi

δϕi: (19)

We want to obtain the curvature perturbation ζ, defined as

ζ ≡ Φ −
H

H0 −H2
ðΦ0 þHΦÞ: (20)

The background dynamics implies that H0 −H2 ¼
−4πσ02=m2

pl. By using Eq. (16), the comoving curvature
can thus be rewritten

ζ ¼ Φþ H
σ02

Xn
i¼1

ϕ0
iδϕi: (21)

From the background and the perturbed Einstein equations,
one can show that ζ evolves according to [53]

ζ0 ¼m2
pl

4π

H
σ02

∇2Φ

−
2H
σ02

�
a2

Xn
i¼1

ϕ0
i
∂V
∂ϕi

−
a2

σ02

�Xn
i¼1

ϕ0
i
∂V
∂ϕi

��Xn
i¼1

ϕ0
iδϕi

��

(22)

¼ m2
pl

4π

H
σ02

∇2Φ −
2H
σ02

⊥ija2
∂V
∂ϕi

δϕj; (23)

where the orthogonal projector ⊥ij ≡ Id − uiuj has been
introduced. For a single-field model, the second term

vanishes, and one recovers the one-field evolution of ζ.
For the multifield case, one sees that entropy perturbations
orthogonal to the field trajectory can be a source of curvature
perturbations, even after Hubble exit.

B. Numerical integration

For the numerical integration of the perturbations, we
refer to Ref. [53] and give here only the guidelines for the
calculation of the exact power spectrum of curvature
perturbations in a multifield scenario. It is convenient to
use the number of e-folds as the time variable. Some
equations are redundant, and one can, for instance, use the
Bardeen potential expressed directly in terms of the field
perturbations δϕi and their derivatives. After expanding in
Fourier modes, Eq. (18) reads [53]

d2δϕi

dNt2 þ ð3 − ϵ1Þ
dδϕi

dNt þ
Xn
j¼1

1

H2

∂2V
∂ϕi∂ϕj

δϕj þ
k2

a2H2
δϕi

¼ 4
dΦ
dNt

dϕi

dNt −
2Φ
H2

∂V
∂ϕi

: (24)

Here, δϕi ¼ δϕiðk; ηÞ, and we may use k ¼ jkj because of
isotropy.
The quantization of the field perturbations in the limit

k ≫ aH provides initial conditions for the δϕi. For the field
operator, we take

δϕiðη; xÞ ¼
Z

d3k
ð2πÞ3 ½aiðkÞe

−ik·xδϕiðk; ηÞ þ H:c:�; (25)

where h.c. stands for Hermitian conjugation and
½aiðkÞ; a†jðk0Þ� ¼ ð2πÞ3δijδðk − k0Þ. The normalized quan-
tum modes are defined by

vi;kðηÞ ¼ aδϕiðk; ηÞ: (26)

Neglecting the mass terms, they obey the equation
v00i;k þ k2vi;k ¼ 0, and in the regime k ≫ aH, one has

lim
k=aH→þ∞

vk;iðηÞ ¼ ke−ikðη−ηiÞ: (27)

In terms of the field perturbations, the initial conditions
(denoted by the subscript i.c. to avoid confusion with
previous notation) therefore read, up to a phase factor,

δϕi;i:c: ¼
1ffiffiffiffiffi
2k

p 1

ai:c:
; (28)

�
dδϕi

dNt

�
i:c:

¼ −
1

ai:c:
ffiffiffiffiffi
2k

p
�
1þ i

k
ai:c:Hi:c:

�
: (29)

It is not convenient to integrate the perturbations from the
onset of inflation, since the total number of e-folds can be
much larger than N�. To avoid the time consuming
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numerical integration of sub-Hubble modes behaving like
plane waves, it is convenient to start to integrate the
perturbations later, when the condition

k
Hðni:c:Þ

¼ Ck ≫ 1 (30)

is satisfied, where Ck is a constant characterizing the
decoupling limit. To summarize, the numerical integration
of multifield perturbations can be divided into four steps:
(1) The background dynamics is integrated until the

end of inflation, such that Nt
end and Nt

end − Nt� are
obtained.

(2) The background dynamics is integrated again, until
Nt

i:c: is reached. Initial conditions for the perturba-
tions are fixed at this time.

(3) For each comoving mode k, the background and the
perturbation dynamics are integrated simultaneously
from Nt

i:c: to Nt
end.

(4) The determination of the scalar power spectrum is
PζðkÞ ¼ 1=ð2π2ÞPijζij2, where i ¼ 1.::n stands for
the n independent initial conditions for the field
perturbations δϕi, ζi being the induced contributions
to the curvature perturbation ζ.

V. HYBRID MODELS

A. Original version

The original hybrid model of inflation was first proposed
by Linde [3]. Its potential reads

Vðϕ;ψÞ ¼ Λ

��
1 −

ψ2

M2

�
2

þ ϕ2

μ2
þ 2ϕ2ψ2

ϕ2
cM2

�
: (31)

The field ϕ is the inflaton; ψ is an auxiliary transverse field;
and M, μ, and ϕc are three parameters of mass dimension.
Inflation is assumed to be realized in the false vacuum [5]
along the valley hψi ¼ 0. In the usual description, inflation
ends when the transverse field develops a Higgs-type
tachyonic instability soon after the inflaton reaches the
critical value ϕc. From this point, the classical system is
assumed to evolve quickly toward one of its true minima
hϕi ¼ 0, hψi ¼ �M, whereas in a realistic scenario, one
expects the instability to trigger a tachyonic preheating
era [54–59].

B. Supersymmetric F-term model

Supersymmetric F-term inflation was proposed in
Refs. [4,5] and has subsequently been discussed exten-
sively in the literature. The underlaying details for our
present analysis are given in Ref. [30], and we only present
the main assumptions and results for the potentials here.
The superpotential is given by

W ¼ κŜð ^̄H Ĥ−m2Þ; (32)

where the superfield Ŝ is a gauge singlet and the superfields

Ĥ ( ^̄H) transform in the (anti)fundamental representation of
SUðN Þ. This implies a tree-level scalar potential

V0 ¼ κ2ðjH̄H −m2j2 þ jSH̄j2 þ jSHj2Þ; (33)

where now S, H, and H̄ are complex scalar fields. The D
term gives a large mass to the field combination
ð1= ffiffiffi

2
p ÞðH − H̄Þ, such that we do not need to consider

this field direction for the dynamics of fluctuations during
inflation. The waterfall field can be identified as ψ ¼
ð1= ffiffiffi

2
p ÞðH þ H̄iÞ and the inflaton field as ϕ ¼ ffiffiffi

2
p jSj. In

terms of these degrees of freedom, the tree-level potential is

V0ðϕ;ψÞ ¼ κ2m4

��
1 −

ψ2

4m2

�
2

þ ϕ2ψ2

4m4

�
(34)

¼ κ2

4
ϕ4
c

��
1 −

ψ2

2ϕ2
c

�
2

þ ϕ2ψ2

ϕ4
c

�
: (35)

In the potential valley where ϕ ≥ ϕc ¼
ffiffiffi
2

p
m and hψi ¼ 0,

the potential energy Λ ¼ κ2m4 spontaneously breaks super-
symmetry. At one-loop order, this leads to the following
correction to the potential,

V1 ¼
κ4N
128π2

�
ðϕ2 − ϕ2

cÞ2 log
�
κ2

ϕ2 − ϕ2
c

2Q2

�

þ ðϕ2 þ ϕ2
cÞ2log

�
κ2

ϕ2 þ ϕ2
c

2Q2

�
− 2ϕ4 log

�
κ2ϕ2

2Q2

��
;

(36)

where Q is a renormalization scale. Notice that the
derivatives of this potential with respect to ϕ that are
phenomenologically relevant for inflation are independent
of Q.
We are concerned in this work with the dynamics near

the critical point where ϕ ≈ ϕc and ψ ≈ 0. As discussed in
Ref. [30], treating the one-loop potential to linear order is a
good approximation in that regime. Of relevance is the first
derivative of the one-loop potential,

∂V1ðϕÞ
∂ϕ

����
ϕ¼ϕc

¼ κ4N
8π2

ϕ3
c log 2: (37)

To realize a substantial amount of e-folds below the critical
point, the relation κ ≪ ϕ2

c=M2
P must hold [30]. It can then

easily be derived that the second derivatives of the one-loop
potential may be neglected and that they do not yield a
phenomenologically relevant contribution to the spectral
tilt of the observable power spectrum [30].
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C. Supersymmectric D-term model

Here, the superpotential is [6,10]

W ¼ κŜ ^̄H Ĥ; (38)

where Ŝ is again a singlet and Ĥ and ^̄H transform according
to the one-dimensional representation of a U(1) gauge
group. Spontaneous symmetry breaking is induced by the
D term,

D ¼ g
2
ðjHj2 − jH̄j2 þm2

FIÞ; (39)

wheremFI is the Fayet–Iliopoulos term. The inflaton field is
again ϕ ¼ ffiffiffi

2
p jSj, whereas now the waterfall field is given

by ψ ¼ ffiffiffi
2

p jH̄j. The critical point, where ψ becomes
tachyonically unstable, is here

ϕc ¼
1ffiffiffi
2

p g
κ
mFI: (40)

In terms of these various fields and variables, the tree-level
potential can be expressed as

V0 ¼ κ2ðjHH̄j2 þ jSHj2 þ jSH̄j2Þ þ 1

2
D2

¼ g2

8
m2

FI

��
1 −

ψ2

2m2
FI

�
2

þ 2
κ2

g2
ϕ2ψ2

m4
FI

�

¼ κ4

2g2
ϕ4
c

��
1 −

g2

4κ2ϕ2
c
ψ2

�
2

þ g2

2κ2ϕ4
c
ϕ2ψ2

�
: (41)

The one-loop potential is readily obtained from its expres-
sion in the F-term case (36) when setting N ¼ 1.

D. Unified parametrization

In this paper, we study the original hybrid model as well
as the supersymmetric F-term and D-term variants in a
unified approach by considering the parametrization of the
two-field potential,

Vðϕ;ψÞ ¼ Λ

��
1 −

ψ2

M2

�
2

þ
�
ϕ

μ

�
p
þ 2ϕ2ψ2

M2ϕ2
c

�
; (42)

whereM and ϕc are, respectively, the position of the global
minima and of the critical point of instability along the
valley. In the case of the original model, one has p ¼ 2,
whereas the dynamics for the F-term and D-term models
near the instability point is well described when setting
p ¼ 1 [30]. The relations between the parameters of this
potential and the model parameters for F-term and D-term
inflation are given in Table I.
For the purpose of deriving the phenomenological

consequences of hybrid inflation, it is useful to note the
derivatives

∂V
∂ϕ ¼ pΛϕp−1

μp

�
1þ 4μpϕ2−pψ2

pM2ϕ2
c

�
; (43a)

∂V
∂ψ ¼ 4ψΛ

M2

�
ϕ2 − ϕ2

c

ϕ2
c

þ ψ2

M2

�
; (43b)

∂2V
∂ϕ2

¼ pðp − 1ÞΛϕp−2

μp
þ 4Λψ2

M2ϕ2
c
; (43c)

∂2V
∂ψ2

¼ 4Λ
M2

�
ϕ2 − ϕ2

c

ϕ2
c

þ 3ψ2

M2

�
; (43d)

∂2V
∂ϕ∂ψ ¼ 8Λψϕ

M2ϕ2
c
: (43e)

In particular, the first derivatives enter the slow-roll
equations of motion,

3H _ϕ¼−
∂V
∂ϕ ; 3H _ψ ¼−

∂V
∂ψ ; H2 ¼ V

3M2
pl

: (44)

We also make use of the standard definition for the slow-
roll parameters ηXY ¼ M2

pl½∂2V=ð∂X∂YÞ�=V, where X
and Y can be either of the canonically normalized fields
ϕ and ψ .

VI. INFLATION ALONG WATERFALL
TRAJECTORIES

We are interested in the field dynamics during the
waterfall regime, i.e., in the times after the field trajectories
cross the critical instability point ϕc. Tachyonic preheating
is triggered when the exponentially growing long-
wavelength perturbations of the auxiliary field ψ become
nonlinear. This only occurs when the tachyonic auxiliary
field mass is larger than the Hubble expansion rate,
m2

ψ > H2 ≃ V=ð3M2
plÞ, or equivalently when −ηψψ ≳ 1.

In the commonly studied large-coupling scenarios of
hybrid inflation, this condition is satisfied after no more
than a few e-folds after entering the waterfall phase.
However, there exists a large region in the parameter space
(the small coupling limit for the F-term and D-term
models) for which the waterfall phase lasts for more than

TABLE I. Parameters to be substituted into the potential (42) in
order to obtain the F- and D-term models close to the critical
point.

F term D term

Λ κ2m4 κ4

2g2 φ
4
c ¼ g2

8
m4

FI

ϕc

ffiffiffi
2

p
m gffiffi

2
p

κ
mFI

M 2m
ffiffiffi
2

p
mFI

1=μ
ffiffi
2

p
Nκ2 logð2Þ
4π2m

ffiffi
2

p
κg log 2

4π2mFI
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60 e-folds. We refer to this situation as the mild waterfall.
The field evolution in this regime has been studied for the
original hybrid model in Refs. [24,25] and for the F-term
andD-term models in Ref. [30]. In this section, we rederive
the mild waterfall dynamics for the unified potential of
Eq. (42). For the purpose of an analytic description, we
follow Ref. [25] and divide the field evolution below the
critical point into three phases:

(i) Phase 0: when the second term of Eq. (43b) and the
first term of Eq. (43a) dominate.

(ii) Phase 1: when the first term of Eq. (43b) and the first
term of Eq. (43a) dominate.

(iii) Phase 2: when the first term of Eq. (43b) and the
second term of Eq. (43a) dominate.

Classically, the phase 0 does not last more than about one
e-fold [25]. Moreover, in a realistic scenario, the quantum
diffusion of the auxiliary field dominates over the classical
dynamics very close to the critical instability point. For
these reasons we do not consider the phase 0 but only the
phases 1 and 2.
Following the derivation of Ref. [25], it is convenient to

parametrize the fields as

ϕ≡ ϕceξ; ψ ≡ ψ0eχ ; (45)

where ψ0 is the initial condition for the auxiliary field at the
critical point of instability. During the slow-roll waterfall
regime, one has ξ < 0 and jξj ≪ 1, which is consistently
verified by the explicit solutions.

A. Phase 1

Solving the slow-roll equations, one finds that the field
trajectories during phase 1 follow the relation

ξ2 ¼ pM2ϕp−2
c

4μp
ðχ − χiÞ (46)

as long as the temporal minimum (corresponding to the
ellipse where dV=dψ vanishes) is not reached. In this case,
phase 1 connects to phase 2 at the point ðξ2; χ2Þ, with

χ2 ≡ ln

� ffiffiffiffi
p

p
ϕ

p
2
cM

2μp=2ψ0

�
: (47)

One obtains the number of e-folds realized in phase 1 by
integrating

dξ
dNt ≃ −

pϕp−2
c M2

pl

μp
: (48)

Imposing that Nt ¼ 0 at the critical point, one finds

ξ ¼ −
pM2

plϕ
p−2
c

μp
Nt: (49)

The temporal minimum for the field ψ is located on the
trajectories

ξ ¼ −
ψ2
0e

2χ

2M2
: (50)

It is reached during phase 1 if the condition

χ2 <
pϕpþ2

c

16μpM2
(51)

is satisfied. One therefore gets

ξ2 ≡
8<
:−

ffiffiffi
p

p
ϕ
p
2
−1

c M
2μp=2

ffiffiffiffiffi
χ2

p
for χ2 >

pϕpþ2
c

16μpM2

− pϕp
c

8μp for χ2 <
pϕpþ2

c
16μpM2

: (52)

The number of e-folds N1 realized in phase 1 then follows
as

N1 ¼

8>><
>>:

ffiffiffiffi
χ2

p
μp=2M

2
ffiffiffi
p

p
ϕ
p
2
−1

c M2
pl

for χ2 >
pϕpþ2

c
16μpM2

ϕ2
c

8M2
pl

for χ2 <
pϕpþ2

c
16μpM2

: (53)

B. Phase 2

The slow-roll equations in phase 2 yield the trajectory

ξ2 ¼ ξ22 þ
pM2ϕp−2

c

8μp
½e2ðχ−χ2Þ − 1�: (54)

Once again, we have to distinguish between the possibility
that this trajectory reaches the temporal minimum at some
point before the end of inflation and the possibility that
the temporal minimum is not reached during inflation. In
phase 2, the temporal minimum is reached when

ξ ¼ ξ2T:M: ≡ −
M2

2ϕ2
c
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

4ϕ4
c
þ ξ22 −

pϕp
c

8μp

s
: (55)

On the other hand, inflation ends before reaching the
temporal minimum when

ηψψ ≃ 8M2
plξ

M2
≃ −1: (56)

In the opposite case, where the temporal minimum is
reached before the end of inflation, the slow-roll conditions
are violated when

ηϕϕ ≃
4M2

plψ
2

ϕ2
cM2

≃ 1: (57)
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By using Eq. (50), one thus finds that

ξend ¼
(− ϕ2

c
8M2

pl
for jξendj > jξ2T:M:j

− M2

8M2
pl

for jξendj < jξ2T:M:j
: (58)

During phase 2 and before reaching the temporal minimum,
assuming that ξ ≪ 1 and χ2 > 1=2, the slow-roll equations
in e-fold time can be solved exactly, and one finds [25]

ξðNtÞ ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pM2

2ϕp−2
c μp

s
ðc0 − cÞfðNtÞ − c0 − c
ðc0 − cÞfðNtÞ þ c0 þ c

; (59)

where c≡ ffiffiffiffiffiffiffiffiffiffi
χ2=2

p
, c0 ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 − 1=4
p

and

fðNtÞ ¼ exp

�
8

ffiffiffi
2

p
c0pϕ

p
2
−1
c M2

plðNt − N1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pμpM2

p �
: (60)

A good approximation can be obtained by considering the
limit jξj ≫ jξ2j, where one can obtain

1

ξ
−

1

ξend
¼ 8M2

pl

M2
ðNt − Nt

endÞ: (61)

The number of e-folds realized along the temporal
minimum is obtained by integrating

dξ
dNt ¼

8M2
plξ

ϕ2
c

: (62)

This gives

Nt
end − Nt

2T:M: ¼
ϕ2
c

8M2
pl

ln

�
ξend
ξ2T:M:

�
; (63)

where Nt
2T:M: is the value of the parameter Nt when

ξ ¼ ξ2T:M.. If we understand the model specified by the
potential (42) as an effective theory valid below the Planck
scale, we should impose that ϕc ≪ Mpl, and consequently,
the number of e-folds realized after reaching the temporal
minimum is very low.

VII. NON-GAUSSIANITIES FROM THE MILD
WATERFALL PHASE

A. Analytical results

In this section, we calculate the level of non-
Gaussianities using the δN formalism. We denote the time
at which the transition between the phases 1 and 2 occurs
by t1;2 and the time of Hubble exit of the pivot scale k� by
t�. We need to distinguish the case when the pivot scale
leaves the Hubble radius in phase 2 (case 1: long waterfall
phase, with Nt

end ≫ 60 and t� > t1;2) from the case when

horizon exit occurs in phase 1 (case 2: moderately long
waterfall phase, with Nt

end ≳ 60 and t� < t1;2).

1. Case 1: Hubble exit in phase 2

The first step for calculating the local fNL parameter with
the δN formalism is to derive the number of e-folds until
the end of inflation starting from an arbitrary initial point
ðξi; χiÞ in field space. To compare with the observational
bounds, we then use this result to evaluate the quantities
N;ϕ, N;ψ , N;ϕϕ, N;ϕψ , and N;ψψ for the pivot scale k�, at
which the unperturbed background fields take the values
ðξ�; χ�Þ.
We first consider the case when inflation ends before the

temporal minimum is reached. Integrating the slow-roll
equation of motion in phase 2 gives the trajectories

ψ2 ¼ ψ2
0e

2χ ¼ 2ϕ2
cðξ2 − ξ2i Þ þ ψ2

0e
2χi : (64)

(This equation also determines χend when replacing
ξ → ξend and χ → χend.) The above relation can be used
in combination with the slow-roll equation for ϕ to derive
the number of e-folds that elapse while the fields evolve
from ðξi; χiÞ to ðξend; χendÞ,

Nt
end − Nt

i ¼ −
M2

8M2
pl

Z
ξend

ξi

dξ

ξ2 − ξ2i þ ψ0e2χi
2ϕ2

c

: (65)

Defining C≡ −ξ2i þ ψ0e2χi=ð2ϕ2
cÞ, one finds

Nt
end − Nt

i ¼ −
M2

8M2
pl

ffiffiffiffi
C

p

×
�
arctan

�
ξendffiffiffiffi
C

p
�
− arctan

�
ξiffiffiffiffi
C

p
��

(66)

if C > 0 and

Nt
end − Nt

i ¼ −
M2

8M2
pl

ffiffiffiffi
C

p

×

�
arctanh

�
ξendffiffiffiffi
C

p
�
− arctanh

�
ξiffiffiffiffi
C

p
��

(67)

if C < 0.
For applying the δN formalism, we need to evaluate the

e-fold derivatives with respect to ϕi and ψ i, evaluated in
the limit where ξi → ξ and χi → χ, where ξ and χ belong to
the unperturbed waterfall trajectory, and for which the
relations

ψ2
0e

2χ ¼ 2ϕ2
cξ

2 (68)

and
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ξ ¼ −
M2

8M2
plðNt

end − Nt − M2

8M2
plξend

Þ (69)

are satisfied. Note that in this limit, one gets C → 0, and
one can expand Eqs. (66) and (67) in a Taylor series to
obtain

Nt
end − Nt

i ¼
M2

8M2
pl

�
1

ξend
−

1

ξi
þ jCj
3ξ3i

−
jCj
3ξ3end

�
; (70)

which is a consistent generalization of Eq. (61). We
use this expression to calculate the e-fold derivatives
N;ϕ; N;ψ ; N;ϕϕ; N;ϕψ , and N;ψψ around the field configura-
tion ðξi; χiÞ. For the purpose of calculating these deriva-
tives, we can now relabel ðξi; χiÞ → ðξ; χÞ. [For example,
ξ has now a different purpose than the integration variable
in Eq. (65)]. We thus obtain

N;ϕ ¼ M2

8ϕceξM2
pl

�
1

ξ2
−

2

3ξ2
þ 2ξ

3ξ3end

�

≃ M2

24ϕcM2
plξ

2
(71)

and

N;ψ ¼ M2

8M2
pl

�
ψ

3ϕ2
cξ

3
−

ψ

3ϕ2
cξ

3
end

�

≃ M2ψ

24ϕ2
cM2

plξ
3
: (72)

The approximations above are valid when jξj < jξendj and
thus jξ3j ≪ jξ3endj. As we eventually replace ξ → ξ�, these
relations are well satisfied for the present purposes. By
using ψ ¼ −

ffiffiffi
2

p
ϕcξ, we notice the useful relation

N;ϕ ¼ −
1ffiffiffi
2

p N;ψ : (73)

For the second derivatives, when keeping only the
leading terms, we find

N;ψψ ¼ M2

24ϕ2
cM2

pl

�
1

ξ3
−

1

ξ3end

�
≃ M2

24ϕ2
cM2

plξ
3
; (74)

N;ϕϕ ≃ 4M2

24ϕ2
cM2

plξ
3
; (75)

and

N;ϕψ ¼ −
M2ψk

8ϕ3
ceξM2

plξ
3
≃ 3

ffiffiffi
2

p
M2

24M2
plϕ

2
cξ

3
: (76)

One can now evaluate the fNL parameter at the pivot scale
k�. We first notice that

N;ϕϕ ¼ 4N;ψψ ≃ 4

3
ffiffiffi
2

p N;ϕψ : (77)

Using that inflation lasts forNexit ¼ Nt
end − Nt� e-folds after

the horizon exit of the pivot scale, and evaluating the above
derivatives for ðξ; χÞ ¼ ðξ�; χ�Þ, we obtain

fNL ≃ 5

18

�
24M2

plξ�
M2

�
≃ −

5

3ðNexit − M2

8M2
plξend

Þ ≪ 1: (78)

In the case of the F-term and D-term models, this
expression reduces to

fNL ≃ −
5

3ðNexit þ 1Þ : (79)

The level of non-Gaussianities is therefore negative and
very low, typically fNL ≈ −0.03 for the F-term and D-term
models.
We finally consider the situation where the temporal

minimum for the field ψ is reached in phase 2 before the
end of inflation. Then, we need to evaluate

N ¼ NT:M:� þ Nend
T:M:: (80)

The first term on the right-hand side is the number of
e-folds realized between t� and the time when the temporal
minimum is reached. The second term is the number of
e-folds realized along the temporal minimum up to the end
of inflation.
Starting from an arbitrary initial field value in phase 2,

one finds the value of ξ at which the trajectory crosses the
temporal minimum,

ξ2T:M: ¼ −
M2

2ϕ2
c
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

4ϕ4
c
þ ξ2i þ ψ2

i =ð2ϕ2
cÞ

s
: (81)

For evaluatingNT:M
�;ϕ ., one can take Eq. (70) and replace ξend

by ξ2T:M.. For the derivatives, we again replace ðξi; χiÞ →
ðξ; χÞ and notice that

dξ2T:M:

dξ
¼ −ξ

M2

2ϕ2
c
− ξ2T:M:

: (82)

This gives an additional term −ðdξ2T:M:=dϕiÞ=ξ2T:M: in the
round brackets of Eq. (71), which is negligible compared to
the leading term. Next, using Eq. (63), one can calculate

Nend
T:M:;ϕ ¼ ϕc

8M2
plξ2T:M:

dξ2T:M:

dξ
¼ ϕc

M2
pl

OðξÞ: (83)
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Since jξj< jξendj¼ϕ2
c=ð8M2

plÞ, we find that Nend
T:M:;ϕ≪NT:M

�;ϕ .,
provided ϕc ≪ Mpl, as one should require for the effective
theory description to be valid.
In a similar way, one finds that the leading terms in

Nend
T:M:;ψ , N

end
T:M:;ψψ , N

end
T:M:;ϕψ , and N

end
T:M:;ϕ;ϕ, as well as in fNL,

are not modified when the temporal minimum is reached,
except that ξend must be replaced by ξT:M:. As a conse-
quence, the level of non-Gaussianities is reduced compared
to the contributions from NT:M:� and cannot in any case
increase up to an observable level.

2. Case 2: Hubble exit in phase 1

Now we consider the situation where the pivot scale exits
the Hubble radius in the phase 1. We first consider the case
where the temporal minimum is not reached. To obtain the
spectra using the δN approach, we need to generalize the
analysis of Sec. VI A, where we have fixed the initial value
of ξ to zero, to more general initial values ξi, such that we
can obtain the necessary e-fold derivatives.
By integrating the slow-roll equations of motion, we

obtain the trajectory

ξ2 − ξ2i ¼
pϕp−2

c M2ðχ − χiÞ
4μp

: (84)

Equation (48) gives the number of e-folds elapsing from the
point ðξi; χiÞ until reaching ðξ2i; χ2Þ, where phase 1 ends,

N1 ¼ Nt
2 − Nt

i ¼ −
μpðξ2i − ξiÞ
pM2

plϕ
p−2
c

; (85)

where ξ2i ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2i þ pϕp−2

c M2ðχ2 − χiÞ=ð4μpÞ
q

, Nt
i is the

value of the parameter Nt at the initial point ðξi; χiÞ, Nt
2 its

value at ðξ2i; χ2Þ, and χ2 is again given by Eq. (47).
The number of e-folds between the point ðξi; χiÞ and the

point where inflation ends in phase 2 due to the violation of
the slow-roll conditions is then given by N1 þ N2, where
N2 are the e-folds between the onset of phase 2 ðξ2i; χ2Þ and
the violation of slow roll. For the following purposes, we
can again drop the index i on the initial field values, i.e.,
ðξi; χiÞ → ðξ; χÞ and ðϕi;ψ iÞ → ðϕ;ψÞ. The e-fold first
derivatives then read

N;ϕ ¼ 1

ϕk
ðN1;ξ þ N2;ξÞ; (86)

N;ψ ¼ 1

ψk
ðN1;χ þ N2;χÞ: (87)

We first evaluate Eq. (87). The first term gives

N1;χ ¼ −
μp

pϕp−2
c M2

pl

dξ2i
dχ

¼ M2

8M2
plξ2

; (88)

and the second term yields

N2;χ ¼ −
pϕp−2

c M2

16ξ2μ
p

dN2

dξ2i
: (89)

Using Eq. (70) with ξ2i and χ2i instead of ξi and χi for the
number of e-folds realized in phase 2, one gets

dN2

dξ2i
¼ M2

8M2
plξ

2
2i

�
1 −

2

3
þ 2ξ32i
3ξ3end

�
≃ M2

24M2
plξ

2
2i
; (90)

and thus one obtains

N2;χ ¼ −
pϕp−2

c M4

384ξ32M
2
plμ

p ¼ −
1

12χ2
N1;χ ; (91)

where the last expression is found by inserting the value of
ξ2 from Eq. (52). Since χ2 > Oð1Þ [it is a large logarithm
cf. Eq. (47)], the dominant term in Eq. (87) comes from the
number of e-folds realized during phase 1. In the following,
we will therefore neglect the term N2;χ , such that

N;ψ ≃ M2

8M2
plξ2ψ

: (92)

We now turn to Eq. (86). For the first term, one finds

dN1

dξ
¼ −

μp

pM2
plϕ

p−2
c

�
ξ

ξ2
− 1

�
; (93)

and for the second term,

dN2

dξ
¼ dN2

dξ2i

ξ

ξ2
≈

M2ξ

24M2
plξ

3
2

: (94)

Using the appropriate expression from Eq. (52) for ξ22, one
sees that

dN1

dξ
¼ 6χ2

�
ξ2
ξ
− 1

�
dN2

dξ
: (95)

Hence again, we may neglect the contribution coming from
the number of e-folds in phase 2 and obtain from Eq. (93)

N;ϕ ≃ μp

pM2
plϕ

p−1
c

: (96)

Moreover, since ψ� ≪ ψ2, we may use that N;ϕ ≪ N;ψ .
For the second derivatives, one can again show that

the dominant terms come from the number of e-folds in
phase 1. One therefore obtains

N;ψψ ¼ −
M2

8M2
plξ2ψ

2

�
1þ 1

2χ2

�

≃ −
M2

8M2
plξ2ψ

2
≃ −

1

ψ
N;ψ ; (97)
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N;ϕψ ≃ −
M2ξ

8M2
plξ

3
2ϕcψ

≃ −
ξ

ξ22ϕc
N;ψ ; (98)

and

N;ϕϕ ¼ μp

pM2
plϕ

p−2
c ϕ2

�
−1þ ξ

ξ2
−

1

ξ2
þ ξ2

ξ32

�
(99)

≃ −
μp

pM2
plϕ

p−2
c ξ2ϕ

2
c

: (100)

Now we can evaluate the parameter fNL in the limit
where the derivatives with respect to the field ϕ as well as
the contribution from the number of e-folds in phase 2 are
negligible. One finds

fNL ≃ −
5

6

N;ψψ ðN;ψÞ2
ðN;ψÞ4

≃ 20M2
plξ2

3M2

≃ −
10

ffiffiffiffi
p

p
M2

plϕ
p=2−1
c

3Mμp=2
ffiffiffiffiffi
χ2

p
: (101)

For the F-term model, this implies

jfNLj≃
5κ

ffiffiffiffiffi
N

p ffiffiffiffiffiffiffiffiffiffi
log 2

p
M2

pl

6
ffiffiffi
2

p
πm2

ffiffiffiffiffi
χ2

p ≲ 0.13
ffiffiffiffiffi
χ2

p
; (102)

where the maximal negative value of fNL is obtained when
the waterfall lasts just about 60 e-folds, i.e., when κ

ffiffiffiffiffi
N

p
≈

m2=M2
pl [30]. Particle physics experiments impose a lower

bound on m, inducing the upper bound
ffiffiffiffiffi
χ2

p ≲ 6. The
negative amplitude of the fNL parameter is therefore never
higher than about unity, which is below the Planck
sensitivity. We have plotted in Fig. 1 the level of local
non-Gaussianities given by Eqs. (101) and (78), as a
function of κ for the F-term model with different values
of m. For the D-term model, the level of non-Gaussianities
is given by the same expression, withmFI instead ofm. It is
independent of the model parameter g, apart from loga-
rithmically through the

ffiffiffiffiffi
χ2

p
factor.

For the original model, requiring 60 e-folds along the
waterfall imposes Mμ≳ 40M2

pl [24]. The level of non-
Gaussianities is independent of the parameters Λ and ϕc
(except through

ffiffiffiffiffi
χ2

p
), and its maximal negative value is

therefore of about fNL ≃ −0.3, as for the F-term and
D-term models. In Table II we give the level of non-
Gaussianities from the analytical approximations in the
original model for various parameter sets, covering
the qualitatively different regimes, and compare them to
the numerical results. Notice finally that the particular case
where the temporal minimum is reached in phase 1 is not
relevant because that would imply that χ2 ≪ 1, and thus the
quantum diffusion would still be dominating at the time of
Hubble exit of the observable scales.

At this point, we can justify our choice of a final
hypersurface fixed at ξ ¼ ξend, instead of a surface of
constant energy density. Considering only phase 2, one gets
that ψ end is given by

ψ2
end ¼ 2ϕ2

cðξ2end − ξ2i Þ þ ψ2
i : (103)

In the context of the δN formalism, one can evaluate the
shift Δðψ2

endÞ induced by a perturbations of the fields at the
time of Hubble crossing of the pivot scale. For a perturba-
tion of the auxiliary field, one gets

Δðψ2
endÞ

Δψ�
¼ 2ψ� ¼ 2

ffiffiffi
2

p
ϕcξ�; (104)

whereas a perturbation of the ϕ field leads to

Δðψ2
endÞ

Δϕ�
¼ 4ϕcξ�: (105)

The potential at the end of inflation is given by

Vðϕend;ψ endÞ ¼ Λ

�
1þ 2ξend

ψ2
end

M2

�
; (106)

and therefore, in order to reach a surface of constant
density, the shift in ψ end should be compensated by a shift
in ξend, which reads, respectively,

Δξend
Δψ�

¼ 4
ffiffiffi
2

p
ϕcξ�

M2
; (107)

Δξend
Δϕ�

¼ 8ϕcξ�
M2

: (108)
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FIG. 1 (color online). Local fNL parameter as a function of κ,
for the F-term model, with, from left to right, m ¼ 10−4Mpl,
m ¼ 10−3Mpl, m ¼ 10−2Mpl, and m ¼ 10−1Mpl. The bold dots
are the numerical results using the δN formalism. The dotted
horizontal line corresponds to fNL ¼ −5=½3ðNexit þ 1Þ� [the
approximate result from Eq. (101)] and the dashed lines to
Eq. (101), which are, respectively, valid for t� > t1;2 and t� < t1;2.
We assume for simplicity that Nexit ¼ 60.
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Considering that ξ� ≃ −M2=ð8M2
plN�Þ, one obtains that

Δξend
Δψ�

¼
ffiffiffi
2

p

2

Δξend
Δϕ�

≪ 1: (109)

In the limit jξ�j ≫ jξendj, the corresponding shift in
Eqs. (71), (72), (75), (74), and (76) induced by the different
choices for the final hypersurface can therefore be safely
neglected.
In the case where the pivot scale exits the Hubble radius

in phase 1, one can evaluate the shift of ξ22 as Δξ22 ¼ −Δξ2�
and Δξ22 ¼ −pϕp−2

c M2Δχ�=ð4μpÞ for field perturbations,
respectively, in the longitudinal and transverse directions.
By usingΔðψ2

endÞ¼−2ϕ2
cΔξ22 and thenΔξend¼2Δψ2

end=M
2,

it is straightforward to show that

Δξend
Δψ�

≪ 1;
Δξend
Δϕ�

≪ 1: (110)

Since the dominant terms in N;ϕ, N;ψ , N;ϕϕ, N;ψψ , and N;ϕψ
come from the variation of the number of e-folds in phase 1,
and because here again the shift in the terms coming from
the number of e-folds in phase 2 can be neglected, one can
conclude that our results are independent of the possible
choices for the final hypersurface.

B. Numerical analysis

The analytical results of the previous section are valid
under some approximations, namely, i) the slow-roll
approximation, ii) a sharp transition between phase 1
and phase 2, iii) the final hypersurface given by the
condition ξ ¼ ξend [according to Eq. (58)] instead of a
uniform density condition, iv) the Taylor expansion (70) of
the number of e-folds in phase 2, and v) some terms
neglected in the e-folds derivatives. To check the validity
and the accuracy of our results, we have implemented a

numerical calculation that makes use of the δN formalism.
Practically, we use the following algorithm:
(1) Perform a numerical integration of the exact multi-

field background dynamics, from the critical insta-
bility point, where we set Nt ¼ 0, until the end of
inflation in order to obtain the total number of
e-folds Nt

end of inflation along that part of the field
trajectory.

(2) Perform an integration of the background dynamics
from the critical point down to the time t� of Hubble
exit of the pivot scale k� ¼ 0.05 Mpc−1. With the
help of the first step, we know that the exit point
is reached when the e-fold parameter equals
Nt� ¼ Nt

end − Nexit.
(3) Perform a numerical integration of the field dynam-

ics from initial conditions on a 3 × 3 grid of values
centered on ðϕ�;ψ�Þ. Determine of the number of
e-folds N to reach the final hypersurface.

(4) Perform a numerical evaluation of the derivatives N;i
and N;ij. The fNL parameter as well as the amplitude
Pζ and the spectral tilt ns of the power spectrum of
curvature perturbations can then be computed by
using Eqs. (10), (11), and (12).

For the stability of the code, notice that the differences
between the initial conditions need to be carefully chosen,
sufficiently small for the numerical derivatives N;i and N;ij
to be accurate, but at the same time sufficiently large for
the differences between the values of N to be much larger
than the integration steps (which cannot be lower than
ΔN ∼ 10−4 without increasing unreasonably the integration
computing time).
Another numerical issue is related to the choice of the

final hypersurface. It is particularly tricky to define it
numerically because the variation of the false vacuum
potential along the waterfall trajectories is so tiny that it
cannot be resolved due to the limited numerical precision.
We have thus considered the following alternatives: i) defin-
ing the final hypersurface as the end of the slow-roll

TABLE II. Comparison of the power spectrum, its tilt, and the non-Gaussianities in the original model for various illustrative points in
parameter space, representing the horizon exit of the pivot scale during the qualitatively different phases. We compare the approximate
analytical results with the numerical results obtained using the δN formalism, assuming instantaneous reheating.

Parameters Regime fnumNL fappNL nnums napps Pnum
ζ ðk�Þ Papp

ζ ðk�Þ
M ¼ φc ¼ 0.01Mpl; μ ¼ 105Mpl;Λ ¼ 10−20M4

pl t1;2 < t� −0.030 −0.029 0.929 0.930 0.017 0.019
M ¼ φc ¼ 0.001Mpl; μ ¼ 106Mpl;Λ ¼ 10−30M4

pl t1;2 < t� −0.033 −0.033 0.921 0.921 1.1 × 10−6 1.3 × 10−6

M ¼ 0.001Mpl;φc ¼ 10−5; μ ¼ 106Mpl;Λ ¼ 10−30M4
pl t1;2 < t� −0.033 −0.032 0.921 0.921 0.0011 0.012

M ¼ 0.01Mpl;φc ¼ 0.1Mpl; μ ¼ 105Mpl;Λ ¼ 10−20M4
pl t1;2 < t� < tTM −0.030 −0.030 0.929 0.929 1.8 × 10−4 1.9 × 10−4

M ¼ 0.001Mpl;φc ¼ 0.1Mpl; μ ¼ 106Mpl;Λ ¼ 10−30M4
pl t1;2 < t� < tTM −0.033 −0.032 0.921 0.921 1.1 × 10−10 1.3 × 10−10

M ¼ φc ¼ 0.01Mpl; μ ¼ 104Mpl;Λ ¼ 10−20M4
pl t� < t1;2 −0.10 −0.11 0.881 0.880 0.23 0.29

M ¼ φc ¼ 0.01Mpl; μ ¼ 103.8Mpl;Λ ¼ 10−20M4
pl t� < t1;2 −0.17 −0.18 0.946 0.955 1.2 1.36

M ¼ φc ¼ 0.001Mpl; μ ¼ 105Mpl;Λ ¼ 10−30M4
pl t� < t1;2 −0.14 −0.15 0.78 0.77 2.9 × 10−4 4.6 × 10−4

M ¼ φc ¼ 0.001Mpl; μ ¼ 104.8Mpl;Λ ¼ 10−30M4
pl t� < t1;2 −0.23 −0.24 0.77 0.77 0.021 0.035

M ¼ 0.001Mpl;φc ¼ 10−4Mpl; μ ¼ 105Mpl;Λ ¼ 10−30M4
pl t� < t1;2 −0.12 −0.13 0.82 0.81 6.1 × 10−3 8.4 × 10−3

M ¼ 0.001Mpl;φc ¼ 10−4Mpl; μ ¼ 104.8Mpl;Λ ¼ 10−30M4
pl t� < t1;2 −0.20 −0.21 0.83 0.84 0.15 0.21
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regime, more precisely when one of the slow-roll param-
eters reaches unity; ii) implementing the uniform energy
condition after the end of inflation, when, for instance,
ρend ¼ 0.99ρinf (in this case the effects of the tachyonic
preheating are considered to be negligible, and the classical
trajectories are assumed to be valid down to the final
hypersurface); iii) defining a hypersurface of uniform
potential energy density without including the constant
term V0 ¼ Λ. We did not find noticeable differences
between these possible methods.
At the critical instability point, the classical dynamics of

the auxiliary field is dominated by the quantum diffusion.
Classical trajectories must therefore be seen as emerging
from this quantum stochastic regime. They are valid once
the classical vacuum expectation value of the auxiliary field

fulfills ψ ≫
ffiffiffiffiffiffiffiffiffiffiffi
hψ2

qui
q

, where ψqu is the operator for the

quantum field fluctuations around the classical expectation
value ψ . For the numerical integration of the field dynam-
ics, we take for the initial condition of the auxiliary field at
the critical instability point the value given by the process
of quantum diffusion [24,30],

ψ0 ≃
ffiffiffi
κ

p
M3

F

2
ffiffiffi
3

p
π3=4ðln 2Þ1=4 for the F term; (111)

ψ0 ≃ gm3
FI

8
ffiffiffiffiffi
3κ

p
π3=4ðln 2Þ1=4 for the D term; (112)

ψ0 ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛμM

96π3=2

r
for the original model; (113)

and only consider the trajectory as valid when ψ ≫ ψ0.
For the F-term model, we have plotted in Fig. 1 the local

fNL parameter calculated numerically as a function κ, for
different values of the mass parameter m in the range
10−4Mpl < M < 0.1Mpl. For comparison, the analytical
approximations derived in the previous section are also
presented. Numerical and analytical results agree well, with
fNL values ranging typically from −0.03 down to −0.3, as
long as m≲ 0.01Mpl. For larger values, in the regime
t� < t1;2, our approximation given by Eq. (101) is not valid
anymore, and the jfNLj parameter takes lower values. This
is because the e-fold derivatives with respect to the field ϕ
become an important contribution to the level of non-
Gaussianities. We can draw identical conclusions for the
D-term model, where the level of non-Gaussianitiy is
nearly independent of the coupling g.
For the original model, the parameter space has two

additional dimensions, and it is more difficult to explore it
entirely with our numerical method. However, we present
in Table II a comparison of numerical and analytical results
for a few sets of parameters corresponding to the different
regimes. This serves as a check that the numerical results
are in agreement with the analytical approximations.

VIII. POWER SPECTRUM OF CURVATURE
PERTURBATIONS AND CONTRIBUTION OF

ENTROPIC MODES

A. Using the δN formalism

The amplitude and spectral index of the power spectrum
of curvature perturbations at the end of inflation can be
calculated by using the δN formalism, as explained in
Sec. III. For the spectral index, in addition to the e-fold
derivatives that have been calculated in the previous
section, one needs to know the field derivatives at the
time of Hubble exit of the pivot scale.

1. Case 1: Hubble exit in phase 2

In the generic case where t� > t1;2, one obtains

dϕ
dNt ¼ −

8M2
plϕcξ

2

M2
¼ −

1

3N;ϕ
; (114)

dψ
dNt ¼

ffiffiffi
2

p 8M2
plϕcξ

2

M2
¼ −

1

3N;ψ
: (115)

Because observable scales exit the Hubble radius near the
critical instability point, one has ϵ� ≪ 1, so that it can be
neglected. Using Eq. (12), one then finds

ns − 1≃ 32ξ�M2
pl

M2
≃ −

4

ðNexit − M2

8M2
plξend

Þ : (116)

This formula corresponds to the one derived in
Refs. [25,30], assuming that the waterfall trajectories are
effectively single field. For the amplitude of the power
spectrum of curvature perturbations, one gets

Pζðk�Þ≃ ΛM4

16 × 242π2M6
plϕ

2
cξ

4�

≃
4ΛM2

plðNexit − M2

8M2
plξend

Þ4

9π2M2ϕ2
c

: (117)

Here also the results of Refs. [25,30] are recovered.
Therefore, the regime corresponding to t� > t1;2 is effec-
tively single field. The F-term and D-term models generate
a red tilted power spectrum, but the spectral index is too low
when compared to CMB observations. For the original
model, it is in principle possible to increase its value up to
ns ≃ 0.94 by increasing Λ that is a free parameter and
therefore Nexit. However, in this case inflation is realized
at an energy scale near the limit imposed by the search for
B-mode polarization in the CMB.
Finally, for the original model, notice that our comment

regarding the specific case where the trajectories reach the
temporal minimum before the end of inflation still applies,
and ξend can be replaced by ξ2.TM in Eq. (117).
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2. Case 2: Hubble exit in phase 1

In the case where the potential parameters are tuned such
that t� < t1;2, we find

dϕ
dNt ¼ −

pϕp−1
c M2

pl

μp
¼ −

1

N;ϕ
; (118)

dψ
dNt ¼ −

8M2
plψξ

M2
¼ −

ξ

N;ψξ2
: (119)

By using these equations as well as the relations
N;ψ ≫ N;ϕ, N;ψψ ≫ N;ψϕ, and N;ψψ ≫ N;ϕϕ, we obtain
the leading term for the spectral index,

ns − 1≃ 16M2
plξ�

M2
: (120)

When ξ� → ξ2, it is connected to the spectral index for
t� > t1;2. Notice that, instead of increasing when the
Hubble exit occurs deeper in phase 1, the spectral index
first takes lower values than expected for effectively single-
field trajectories. This behavior is shown in Fig. 5, which
gives the spectral index as a function of κ for the F-term
model and different values of M. This is because jξ2j, and
thus jξ�j, first increases with κ. The spectral index increases
up to unity only when ξ� → 0. From Eq. (120) only, one
can conclude that it is possible to find a spectral index value
in agreement with CMB observations. It turns out, how-
ever, that the power spectrum amplitude is strongly
modified in this case by entropy perturbations and cannot
fit to CMB observations, as explained in the following.
The amplitude of the power spectrum is given by

Pζðk�Þ≃ ΛM2μp

192π2pM6
plϕ

p−2
c χ2ψ

2�
: (121)

In the case where t� ≃ t1;2, we replace ψ� ¼ ψ0 expðχ2Þ,
such that the amplitude is

Pζðk�; t� ≃ t1;2Þ≃ Λμ2p

48π2p2M6
plϕ

2p−2
c χ2

; (122)

and it connects continuously to what is found in Eq. (117)
for t� > t1;2. When the Hubble exit of the scale k� occurs
deeper in phase 1, we see using Eqs. (46) and (49) that the
amplitude grows exponentially as

Pζðk�Þ × exp

�
2χ2

�
1 −

Nt�2

N2
1

��
; (123)

where N1 is the number of e-folds in phase 1 (between
the critical point and the transition to phase 2) and N�

t is
the number of e-folds between the critical point and the
horizon exit of the scale k� (i.e., the value of the parameter

Nt at horizon exit, provided Nt ¼ 0 at the critical point).
The spectrum then may reach a maximal amplitude
typically larger than unity,

Pζðt� ≃ 0Þ≃ ΛM2μp

192π2p2M6
plϕ

p−2
c χ2ψ

2
0

: (124)

It is important to notice that there is no freedom to fix the
amplitude of the curvature power spectrum independently
of its spectral index because ψ� in Eq. (121) is related to ξ�
through Eq. (46) describing the waterfall trajectory in
phase 1. Then, considering that ψ0 takes values given by
Eq. (111), (112), or (113) depending on the model and that
χ2 only depends logarithmically on the model parameters
(it is typically of order unity and cannot be used to rescale
by a significant amount the amplitude of the spectrum), one
can see that for parameter values κ ∼M2=M2

pl orMμ ∼M2
pl

(to which corresponds the regime where Nend ≳ 60 and
Hubble exit of observable modes in phase 1) the power
spectrum amplitude is several orders of magnitude larger
than 10−9.
Figures 4 and 5 for the F-term model illustrate this

exponential growth that prevents the amplitude to be in
agreement with CMB observations when the spectral tilt is
in the allowed range by CMB observations. As mentioned
in the previous section, the case where the temporal
minimum is reached in phase 1 is not relevant because
of the quantum diffusion.

B. From the numerical integration
of multifield perturbations

We now compare with the results obtained from the
methods explained in Sec. IV. By integrating the multifield
perturbations, one can follow their sub-Hubble and super-
Hubble evolution throughout the waterfall phase and
identify the contributions of the fields to the rescaled
adiabatic and entropic perturbations, which are, respec-
tively, defined as [53]

δπa ¼
_ϕδϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _ψ2

q þ _ψδψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _ψ2

q ; (125)

δπe ¼
_ψδϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _ψ2

q þ
_ϕδψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _ψ2

q : (126)

We have plotted in Figs. 2 and 3 the evolution of curvature,
rescaled adiabatic, and entropic perturbations for the
F-term model (but we find similar behaviors for the
D-term and the original models) for the cases t� > t1;2
and t� < t1;2, respectively.
In the first case, the curvature perturbations freeze when

they become super-Hubble, as expected for an effectively
single-field model. Notice also that in the sub-Hubble
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regime, the adiabatic perturbations induced by the initial
conditions for δϕ with δψ initially set to zero correspond
to the entropy perturbations induced by δψ with δϕ
initially set to zero and vice versa. This is expected
because the field perturbations evolve as independent
plane waves with identical amplitudes in the sub-Hubble
regime and because

δπa ¼ cos θδϕ − sin θδψ ; (127)

δπe ¼ sin θδϕþ cos θδψ ; (128)

where θ is the angle between a unit vector tangential to the
field trajectory and the ϕ ¼ 0 direction.
In the second case (t� < t1;2), we observe that super-

Hubble curvature perturbations receive contributions from
entropy perturbations that are generated during the field
evolution in phase 1 and then are frozen during phase 2.
This corresponds to the strong enhancement of the power
spectrum amplitude according to Eq. (123) obtained within
the δN formalism.
We have compared the analytical approximations of the

previous section to the numerical results for the power
spectrum amplitude and spectral index. For the F-term
model, we have plotted in Figs. 4 and 5 the amplitude and
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FIG. 2 (color online). Evolution of the power spectrum of
curvature perturbations (black) as well as of rescaled adiabatic
(dashed) and entropic (dotted) perturbations, generated, respec-
tively, by initial perturbations of ϕ (blue and red curves) and ψ
(green and yellow curves), and the power spectrum of curvature
perturbations (black curve) for a pivot scale k� ¼ 0.05 Mpc−1

and F-term potential parameters m ¼ 10−3 and κ ¼ 5 × 10−8.
These parameters correspond to the case t� > t1;2.
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FIG. 3 (color online). Evolution of the power spectrum of
curvature perturbations (black) as well as of rescaled adiabatic
(dashed) and entropic (dotted) perturbations, sourced respectively
by initial perturbations of ϕ (blue and red curves) and ψ (green
and yellow curves), and the power spectrum of curvature
perturbations (black curve) for a pivot scale k� ¼ 0.05 Mpc−1

and F-term potential parameters m ¼ 10−3 and κ ¼ 3 × 10−7.
These parameters correspond to the case t� < t1;2.
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FIG. 4 (color online). Amplitude of the power spectrum of
curvature perturbations from the analytic approximations based
on the δN formalism (Hubble exit in phase 1: dashed); from the
numerical integration (points); and assuming effectively single-
field trajectories (solid) as a function of the κ parameter for the
F-term model, for a pivot scale k� ¼ 0.05 Mpc−1, and, from left
to right, m ¼ 10−3=10−2=10−1.
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FIG. 5 (color online). Spectral index of the power spectrum of
curvature perturbations derived from the analytic approximations
based on the δN formalism (Hubble exit in phase 1: dashed/phase
2: short dashed); derived from the numerical integration (points);
and assuming effectively single-field trajectories (solid), as a
function of the κ parameter for the F-term model, for a pivot scale
k� ¼ 0.05 Mpc−1, and, from left to right, m ¼ 10−3=10−2=10−1.
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the spectral index of the power spectrum of curvature
perturbations as a function of the parameter κ, for various
values ofM in the F-term model. For comparison, we have
also plotted the effective single-field slow-roll predictions
and the analytical approximations derived in the previous
section. These plots illustrate the general agreement we find
between the different methods and the important modifi-
cation of the power spectrum of curvature perturbations
when compared to the predictions assuming an effectively
single-field dynamics. As expected, for the D-term model,
we find very similar results.
For the original model, we have compared in Table II the

power spectrum amplitude and spectral index for some
parameter sets corresponding to the different regimes. For
the spectrum amplitude, we observe a strong discrepancy
(up to 30%) between numerical results and the analytical
approximation in the regime where t� < t1;2. However, it
must be noticed that a tiny modification of Nt

2 − Nt
end can

affect importantly the spectrum amplitude in this regime.
Since this quantity cannot be evaluated analytically with a
very good precision (even more since we assume a sharp
transition between phase 1 and phase 2, which is not
exactly the case), such a strong discrepancy can be
explained. In the case t� > t1;2, numerical and analytical
results agree well. Finally, we observe that when the
temporal minimum is reached in phase 2 before the end
of inflation, the predictions from the numerical and the
approximate analytical methods only show marginal devi-
ations because jξ2.TMj ≈M2=ϕ2

c ≪ 1 in this particular
regime.

IX. CONCLUSION

Using two different methods—the δN formalism and the
numerical integration of the linear multifield perturbations—
we have calculated the level of non-Gaussianities and the
power spectrum of curvature perturbations produced in the
parametric regime of a mild waterfall phase in models of
hybrid inflation.
We have investigated the supersymmetric F-term and

D-term models as well as the original nonsupersymmetric
hybrid model. To study these within a unified analysis, we
have introduced a common parametrization for the different
variants of the potential. For the F-term and D-term
models, the mild waterfall regime occurs in the small
coupling limit, when κ ≲M2=M2

pl. For the original model,
this happens when μM > M2

pl. We have only considered
field values lower than Planck mass, as it is commonly
imposed for an effective field theory description to be valid.
The defining feature of the mild waterfall regime is that the
last 60 e-folds of inflation are realized after the fields pass
the critical point, such that possible cosmological defects
are stretched outside the observable Universe. The obser-
vational predictions are modified, and if one assumes that
the waterfall trajectories are effectively single field, one
obtains spectral index values from ns ¼ 1 − 4=Nexit, when

observable scales leave the Hubble radius in the so-called
slow-roll phase 2 where the slope of the potential in the
valley direction is dominated by the terms involving the
auxiliary field of the waterfall (t� > t1;2), and up to unity
when this happens in the first phase (t� < t1;2), where the
slope along the inflationary valley dominates. Prior to the
present analysis, the model was therefore considered as
possibly in agreement with CMB observations [25,30].
However, since the scalar field trajectories are turning
during the waterfall regime toward the minima of the
potential, one might expect a large contribution of entropic
modes to the power spectrum of curvature perturbations, as
well as a high level of local non-Gaussianities. The quanti-
fication of these contributions and the resulting signatures
and the resolution of the question of the phenomenological
viability of hybrid inflation in the mild waterfall regime are
the main results of the present paper. For this purpose, we
have derived analytical approximations for the local fNL
parameter and the power spectrum amplitude and tilt,
which agree well with the numerical results.
For all the models, we find that the generic regime cor-

responding to t� > t1;2 is effectively described by single-
field dynamics, with fNL ≈ −5=ð3ðNexit þ 1ÞÞ ≈ 0.03,
which is nearly independent of the potential parameters.
For the spectrum amplitude and the spectral index, we
confirm the results of Refs. [24,25,30] by using both the δN
formalism and the linear theory of multifield perturbations.
The resulting spectral index is outside and below the
bounds imposed by CMB experiments, and this regime
is therefore strongly disfavored.
For the particular regime where the parameters are tuned

so that t� < t1;2, we find that the waterfall trajectories
cannot be considered as effectively single field. The level of
non-Gaussianities increases, with negative values of fNL
down to about minus unity. Notice, however, that in no case
do we find that the level of non-Gaussianity exceeds the
recent bounds from the Planck experiments. Regarding
the power spectrum of curvature perturbations, we find that
the entropic modes are an important source of the super-
Hubble curvature perturbations, enhancing the power
spectrum by several orders of magnitude, up to a maximal
amplitude larger than unity, which is far from the CMB
constraints and would lead to the formation of primordial
black holes. When scales exit the Hubble radius deeper in
the first slow-roll phase, the spectral index first takes lower
values than expected for an effectively single-field model
and then increases up to unity. However, values for the
spectral index that are in agreement with CMB constraints
always appear in conjunction with a power spectrum
amplitude that is much higher than the measured one.
Contrary to what was thought before [24,25,30], it is
therefore impossible to find parameters in agreement with
CMB observations.
We leave for a future work the particular case where the

waterfall lasts typically 1 < N ≲ 60, for which we expect a
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modification of the slow-roll prediction of inflation along
the valley. We also would like to emphasize that the levels
of non-Gaussianities are calculated in this paper at the end
of the inflationary era. In principle, they can be subse-
quently modified during the reheating era. In Ref. [60],
some models are found for which the non-Gaussianities are
enhanced during the reheating. But in the context of a
tachyonic preheating phase, applying the δN formalism
seems to be a very challenging issue. Another interesting
perspective would be to forecast the constraints on hybrid
models from the CMB distortions generated by the per-
turbations from the waterfall phase at the end of inflation.
Finally, we would like to mention that in the regime
where the dynamics of both the fields is stochastic [61],

observable predictions have not been derived so far.
Studying this regime will nevertheless require new methods
since the classical dynamics is not valid in this case.
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