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The observed hemispherical power asymmetry in cosmic microwave background radiation may have
originated from the modulations of superhorizon long-wavelength modes. In this work, we unveil different
aspects of asymmetries generated from the long-wavelength mode modulations. We show that the same
mechanism that leads to the observed cosmic microwave background hemispherical power asymmetry via
superhorizon long-mode perturbation also yields dipole asymmetry in (a) the tensor perturbations power
spectrum and (b) the halo bias parameter. These are different phenomena relevant to different cosmological
histories, but both share the same underlying mechanism in generating asymmetries in the sky. We obtain
the set of consistency conditions relating the amplitude of dipole asymmetries generated on tensor
perturbations and halo bias parameter to the amplitude of dipole asymmetry generated on cosmic
microwave background power spectrum. In addition, we show that this mechanism does not produce dipole
asymmetry in acceleration expansion in an ΛCDM Universe because the superhorizon curvature
perturbation is conserved in this background.
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I. INTRODUCTION

In theories of the early Universe, it is conceivable that our
observable Universe is a patch of a much larger universe.
For example, the inflationary period [1] does not necessarily
last only 60 e-folds or so to solve minimally the horizon and
the flatness problems today. But it is natural to imagine that
inflation lasts longer. Indeed, we can think about preinfla-
tionary effects on our observable Universe. Two main
preinflationary effects are bubble collisions and long-mode
modulations. Historically, Grishchuk and Zeldovich were
the first who proposed that the superhorizon perturbations
can generate large-scale temperature fluctuations on the
cosmic microwave background (CMB) [2].
The idea of looking for the fingerprints of the preinfla-

tionary physics in the sky is boosted again with the
detection of hemispherical asymmetry on the CMB as
reported by the Planck collaboration [3], which was also
observed by Wilkinson Microwave Anisotropy Probe
(WMAP) data [4]. In the case that the observed anomaly
is not a statistical artifact, it can be viewed as a new
challenge for simple single-field inflationary models [5,6].
In this venue, Erickcek et al. [7] and Gordon [8] argued that
the modulation of the superhorizon perturbations can be the
source of this asymmetry. However, this modulations must
be treated carefully, since it can produce large temperature
perturbations on the CMB map on which there are strict

constrains on the departure from isotropy (mainly from
quadrupole and octupole moments) [9].
The aim of this paper is not to study the fundamental

origin of this long-mode modulation. Instead, assuming the
existence of this large-amplitude long-wavelength mode,
we would like to examine the consequences of such long-
mode modulations on various cosmological parameters. In
particular, we examine whether or not the same mechanism
that generates dipolar asymmetry on the CMB power
spectrum can also generate dipole asymmetry on (a) tensor
perturbations, (b) the halo bias parameter, and (c) the dark
energy acceleration expansion. Our findings show that the
long modulation induces dipole asymmetry, at least, in
principle, in cases (a) and (b) but not in case (c) in a ΛCDM
background. We also relate the amplitude of dipole
asymmetry generated in tensor perturbations and halo bias
parameters to the amplitude of dipole asymmetry generated
on the CMB power spectrum. In this view, our study
provides a set of consistency conditions for the asymme-
tries generated on seemingly different cosmological
observables and histories that can be tested in future
observations; see also Ref. [5] for similar lines of thought.
Having said this, recently, the possibility of exciting long-
mode perturbations in open inflation models via bubble
nucleation was put forward in Ref. [10], which is very
intriguing.
A phenomenological parametrizations of the dipolar

asymmetry is defined via

P1=2
R ðk;xÞ ¼ P1=2iso

R ðkÞð1þ AðkÞp̂:x=xCMBÞ; (1)

*abolhasani@ipm.ir
†baghram@ipm.ir
‡firouz@mail.ipm.ir
§mh.namjoo@ipm.ir

PHYSICAL REVIEW D 89, 063511 (2014)

1550-7998=2014=89(6)=063511(13) 063511-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.063511
http://dx.doi.org/10.1103/PhysRevD.89.063511
http://dx.doi.org/10.1103/PhysRevD.89.063511
http://dx.doi.org/10.1103/PhysRevD.89.063511


in which R is the comoving curvature perturbation,
PRðk;xÞ is the asymmetric curvature perturbations power
spectrum, Piso

R is the isotropic power spectrum, AðkÞ is
the amplitude of the dipolar asymmetry, the direction of
anisotropy is shown by p̂, and xCMB is the comoving
distance to the surface of last scattering. The recent data
from the Planck mission indicates that the amplitude of the
asymmetry is A ¼ 0.072� 0.022 for large angular scales,
l < 64. Data analysis shows that the best fit for the
anisotropy direction is ðl; bÞ ¼ ð227;−27Þ [3].
As mentioned above, besides the observational effects on

the CMB temperature fluctuations, the superhorizon long
mode will also introduce nontrivial effects on the early and
late-time cosmological observables. In Sec. II, we formu-
late the asymmetry induced from long-mode perturbations
for general field fluctuations and apply this formalism
for asymmetry generated in tensor perturbations. In Sec. III,
we focus on the modulation of the halo bias parameter,
and in Sec. IV, we study the effect of long modes on the
deceleration parameter followed by discussions and con-
clusions in Sec. V. We present the technical analysis of
calculating the cross-correlation between one scalar and
two graviton perturbations in nonattractor backgrounds in
the Appendix.

II. ASYMMETRY ON A GENERAL FIELD
FLUCTUATION BY LARGE-SCALE

PERTURBATION

In this section, we investigate how a long-wavelength
scalar perturbation can modulate the statistics of a general
field O on smaller CMB scales, yielding a hemispherical
asymmetry on its power spectrum PO. The field of interest,
O, is kept arbitrary, but we are mainly interested in the
cases in which O represents the curvature perturbations R
or the tensor perturbations. In particular, it is shown in
Ref. [12] that when O ¼ R the amplitude of the dipole
asymmetry in the curvature perturbation power spectrum,
AR, is proportional to the amplitude of local non-
Gaussianity, flocNL. In deriving this conclusion, it was
essential that only one field sources the curvature
perturbation.
With this discussion in mind, now we extend the analysis

in Ref. [12] for general O. Similar to the single source
assumption employed in Ref. [12], in what follows, we
assume that only one field, say δϕ, has a non-negligible
three-point cross correlation with O, hδϕOOi ≠ 0. That is,
any other large-scale field, δσi; i ¼ 1; 2.::, has a negligible
correlation in the form of hδσiOOi, yielding negligible
modulations1. Under the above assumptions, and as long as
the above correlation is concerned, the long-wavelength
mode is effectively the comoving curvature perturbation
RL. In other words, the information in three-point function

hδϕOOi is encoded in hROOi. This can be seen if one
writes down R in terms of δϕ and δσi perturbations,
R ¼ cϕδϕþP

iciδσi, with some coefficients cϕ and ci.
We are interested in asymmetry generated on the power

spectrum of the operator O defined in Fourier space via

hOkOk0 i ¼ ð2πÞ3δ3ðkþ k0ÞPOðkÞ; PO ≡ k3

2π2
POðkÞ:

(2)

Following the parametrizations given in Eq. (1), the dipole
asymmetry in the power spectrum ofO in Fourier space can
be modeled by

POðkÞ≃ Piso
O ðkÞð1þ 2AOðkÞp̂:x=xnÞ; (3)

where Piso
O ðkÞ is the isotropic part of the power spec-

trum and AOðkÞ represents the amplitude of the dipole
asymmetry that we are interested in. By the above
parametrizations, we can write

∇POk

POk

≃ 2AOp̂
xn

; (4)

which will be used later.
We assume that there exists a large superhorizon mode

RL with the amplitudePRL and the comoving wave number
kL, superimposed on the entire observable Universe:

RL ¼ RkL sinðkL:xÞ ¼ PR
1=2
L sinðkL:xÞ: (5)

Note that PRL is the power spectrum of the long mode
obtained via ensemble averaging in a very large box [11]. In
this view, for small-scale perturbations inside this very large
box, k ≫ kL, the quantum fluctuations of O are treated as
random statistical variables. In this view, the size of our
observed Universe is given by H−1

0 , in which H0 is the
current Hubble constant but the long mode that causes the
modulation has the wavelength λL ≫ H−1

0 . As usual, for our
small CMB-scale modes k, we work in the Fourier space
with the volume V. For this picture to work, the volume of
the Fourier space should be bigger than H−1

0 but smaller
than λL, so we have the following hierarchy in mind:

H−3
0 < V ≪ k−3L : (6)

Now, let us parametrize the three-point cross correlation
function hRðkLÞOðk1ÞOðk2Þi in the squeezed limit
kL → 0 by

hRðkLÞOðk1ÞOðk2Þi

≡ð2πÞ3δðkLþk1þk2Þ
�
12

5
fRO
NL

�
PRðkLÞPOðk1Þ: (7)1Actually, we need the weaker requirement that hδσiOOi → 0

in the squeezed limit kL → 0.
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In this view, the parameter fRO
NL measures the three-point

cross correlations of R and O, which is a generalization of
the usual local non-Gaussianity parameter flocNL. Note that
for O ¼ R, we have fRR

NL ¼ flocNL.
The essential point to note is that the effect of the long

wavelength curvature perturbation on small-scale pertur-
bations is just a rescaling of their background. This is

because the small CMB-scale perturbations cannot probe
the spatial variation associated with the long-wavelength
perturbations kL. Consequently, we expect that the cos-
mological observations, which only probe the cosmic
background will not be affected by long mode modulation.
Keeping in mind that the curvature perturbation is not
necessarily constant on superhorizon scales, this yields [12]

hRðkLÞOðk1ÞOðk2Þi≃ hRðkLÞhOðk1ÞOðk2ÞiRðkLÞi

≃
�
RðkLÞ

�
RðkLÞ

∂
∂RðkLÞ

hOðk1ÞOðk2Þi þR
:
ðkLÞ

∂
∂R: ðkLÞ

hOðk1ÞOðk2Þi
��

: (8)

Here, hOðk1ÞOðk2ÞiRðkLÞ means that we calculate
hOðk1ÞOðk2Þi in the background of RðkLÞ. To obtain
the above relation, we have assumed the Bunch–Davies
initial condition so the non-Gaussianity effects deep inside
the horizon are negligible. Furthermore, as emphasized at
the beginning of this section, it is essential that only one
field has a nonzero three-point correlation with O so
hOðk1ÞOðk2Þi depends on the modulations of a single
field that can be absorbed in RðkLÞ, as we did in Eq. (8).

Now comparing Eq. (7) with Eq. (8), one has

12

5
fRO
NL PRL

PO ≃ PRL

∂PO

∂RL
þ 1

2
∂tPRL

∂PO

∂R: L
: (9)

On the other hand, if RL is responsible for the asymmetry
of the power spectrum of field O, we have

∇PO ¼ ∂PO

∂RL
∇RL þ ∂PO

∂R: L
∇RL

:
: (10)

Noting that, in coordinate space, ∇RL ¼ kLRL and
RL ¼ P1=2

RL
, we have

RL∇PO ¼ ∂PO

∂RL
kLPRL

þ 1

2

∂PO

∂R: L
kLP

:

RL
: (11)

Comparing this with Eq. (9) yields

∇PO

PO
≃ 12

5
fRO
NL kLP

1=2
RL

: (12)

Finally, using Eq. (4), one obtains

AO ≃ 6

5
fRO
NL xnkLP

1=2
RL

: (13)

This is one of the main results for this section. This formula
relates AO, the amplitude of the dipole asymmetry in PO,
to the cross-term coupling fRO

NL and the amplitude of the

long-mode perturbations P1=2
RL

.

Now, we can use Eq. (13) to obtain the amplitude of
modulation for some interesting examples.

A. CMB power spectrum dipole asymmetry

The first example corresponds to the case O ¼ R, so we
can calculate the dipole asymmetry in the CMB power
spectrum similar to Refs. [12–18]; see also Refs. [19–21].
With fRR

NL ¼ flocNL, the amplitude of the CMB dipole
asymmetry, AR, from Eq. (13) is obtained to be

AR ≃ 6

5
flocNLxnkLP

1=2
RL

: (14)

To obtain observable dipolar asymmetry from the
long-mode modulation, one needs PRL

≫ PRðkCMBÞ.
However, for perturbations to be under control, we require
R2

L ≃ PRL
ðkLÞ ≲ 1. On the other hand, imposing the

octupole Q3 constraints on CMB anisotropies [9,12] yields

6

5
ðkLxnÞP1=2

RL
≲ 32Q3

1=3 ∼ 10−1: (15)

Plugging Eq. (15) in Eq. (14), we obtain our upper bound
consistency condition for the amplitude of the CMB dipolar
asymmetry [12]

jARj≲ 10−1jflocNLj: (16)

However, it is pointed out in Refs. [9,13] that there is
another term in the total curvature perturbation proportional
to R2

L. This brings another constraint from the quadrupole
Q2 on CMB. This changes the above bound to [9,13]

jARj≲ 0.02jflocNLj1=2: (17)

See, however, Ref. [22] for a possible way to avoid this
bound. To obtain observable dipole asymmetry consistent
with the Planck observation, we need jARj ¼ 0.07� 0.02.

Equation (17) is an interesting result, relating the
amplitude of the hemispherical asymmetry to the level
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of non-Gaussianity in the system. This was first obtained
by Lyth in Ref. [13] for the conventional curvaton scenario
in which the entire curvature perturbation is sourced
by the curvaton field. For the single-field attractor models
of inflation with the Bunch–Davies initial condition
in which the level of non-Gaussianity is related to the
spectral index ns via [23] flocNL ∼ ns − 1, Eq. (17) yields
jARj≲ 10−2ðns − 1Þ1=2 ∼ 10−3, which is too small to be
observable.
As speculated in Ref. [12], one can obtain large

hemispherical asymmetry in models of nonattractor single-
field inflation in which the curvature perturbation is not
frozen on a superhorizon scale and large observable non-
Gaussianity can be generated independent of ns via [24–27]

flocNL ¼ 5ð1þ c2sÞ
4c2s

; (18)

where cs is the sound speed of cosmological perturbations
during the nonattractor phase. With flocNL ∼ few, one
can saturate both the Planck constraints on local non-
Gaussianity [28] and the observed CMB bipolar asymme-
try. As discussed in Ref. [12], Eq. (18) holds only during
the short nonattractor phase, which precedes the last 60 or
so e-folds of inflation. As a result, once the attractor phase
of inflation has been reached, one obtains the usual relation
fNL ∼ ns − 1, so the amplitude of bipolar asymmetry on
smaller CMB scales rapidly becomes negligible. This
built-in scale dependence of fNL can address the quasar
constraints on AR on scales smaller than Mpc−1 [29].

B. Tensor perturbations asymmetry

As a second interesting example, we obtain the ampli-
tude of the dipole asymmetry in the tensor perturbations
power spectrum, AT , induced by the long-wavelength
mode.
Consider the three-dimensional spatial metric on the

surface of constant time [23]

ds2ð3Þ ¼ aðtÞ2e2Rðt;xÞð3Þgijdxidxj; (19)

in which

ð3Þgij ¼ δij þ hij þ
1

2
hilhlj þ…; ∂ihij ¼ hii ¼ 0: (20)

With this convention, det ð3Þgij ¼ 1 and hij represents the
two degrees of freedom associated with the tensor
perturbations.
Setting O ¼ hij in Eq. (7) and parametrizing the cross-

correlation function hRhijhkli by fRh
NL, the amplitude of the

tensor perturbations dipole asymmetry, AT , from Eq. (13),
is obtained to be

AT ≃ 6

5
fRh
NLxnkLP

1=2
RL

: (21)

This is an interesting result: if there is an enhanced large-
scale curvature perturbation that modulates the CMB
curvature perturbations, it can also modulate the tensor
perturbations power spectrum. The amplitude of this
enhancement is controlled by fRh

NL, which measures the
cross-correlation hRhijhkli. Comparing the amplitude of
tensor modulation in Eq. (21) to the corresponding scalar
perturbation modulation AR given in Eq. (14), we obtain
the following consistency condition:

AT

AR
≃ fRh

NL

flocNL
: (22)

Note that the above relation is valid for all single-field
inflationary models with the Bunch– Davies initial con-
dition, including nonattractor models. It is worth it to
mention that the tensor perturbations freeze out after
horizon crossing independent of the model of inflation.
As a result, any correlation and modulation for the tensor
field occurs during inflation and mainly at the time of
horizon crossing. However, depending on the model, the
curvature perturbation can evolve even after inflation and
still has a chance to have correlation with other fields. This
is particularly the case in models of multiple-field inflation
such as in a curvaton scenario in which the curvature
perturbations are generated at or after the end of inflation by
light fields other than the inflaton field. Hence, Eq. (22)
does not work for, e.g., the curvaton model. In such models,
the curvaton field does not contribute to the inflationary
phase, either at the background level or to perturbations. As
a result, the tensor perturbation can correlate only with the
inflaton field at horizon crossing. However, after inflation,
this is the curvaton field that has the main role in
perturbations and modulating the curvature perturbation.
Let us consider the models of single-field slow-roll

inflation. As mentioned before, we know that these models
can not generate the observed CMB dipole asymmetry, i.e.,
for these models, AR ≪ 0.07. However, we consider these
models as a platform to demonstrate the implication of our
consistency condition Eq. (22) as a proof of concept. From
Maldacena’s analysis [23], flocNL and fRh

NL are related to the
curvature perturbations spectral index ns and to the tensor
perturbation spectral tilt nT via

12

5
flocNL ¼ −ð1 − nsÞ;

12

5
fRh
NL ¼ 2ϵ ¼ −nT; (23)

in which ϵ ¼ −H: =H2 is the slow-roll parameter and H is
the Hubble expansion rate. Also note that nT is related to
the ratio of the amplitude of the tensor perturbations to the
amplitude of the scalar perturbations via the consistency
condition r ¼ 16ϵ ¼ −8nT . As a result, Eq. (22) yields
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���� AT

AR

����≃ nT
ns − 1

¼ r
8ð1 − nsÞ

: (24)

Observationally, this is a very interesting result in which
the ratio of the dipole asymmetries in tensor perturbations
and the scalar perturbations is given by the ratio of nT and
1 − ns. This is a hybrid of the two consistency relations
flocNL ∼ 1 − ns and r ¼ −8nT . As an estimation of AT , using
the Planck constraints r≲ 0.13 and ns ≃ 0.96, from
Eq. (24), we obtain AT ≲ 0.4AR. With the observational
bound AR ≃ 0.07, this yields the prediction AT ≲ 0.03.
It is interesting to see whether or not the upcoming analysis
of the CMB polarization data by the Planck team can
detect this level of hemispherical asymmetry on tensor
perturbations.
As mentioned above, Eq. (24) holds for the single-field

attractor models with the initial Bunch–Davies vacuum in
which the Maldacena’s consistency relations, Eq. (23), are
at work. However, as mentioned above, simple single-field
models of inflation cannot produce large enough dipole
asymmetry, i.e., AR ≪ 0.07 in these scenarios. Therefore,
single-field slow-roll models predict AT ≪ 0.03. This is too
small to be detected observationally. Therefore, one has to
look for alternatives.
As shown in Ref. [12] and in the previous subsection, the

single-field nonattractor models that violate Maldacena’s
consistency condition are able to produce a large observ-
able dipole asymmetry as given in Eq. (18). Therefore, it is
an interesting question to calculate the correlation function
hRh2i directly in nonattractor models to obtain fRh

NL. This
analyses were performed in the Appendix A. The shape of
the bispectrum as given in Eq. (A7) is very different than
the results obtained by Maldacena. There are two reasons
for this. First, since R evolves on superhorizon scales, the
profile of its wave function is different than that of the usual
attractor model. This has to be taken into account when
calculating the in-in integrals. Second, in the process of
field redefinition (see the Appendix for details), unlike in
Maldacena’s analysis, one cannot neglect terms containing
R
:
. However, in the squeezed limit in which kL ≪ k1 ≃ k2,

the shape function in Eq. (A7) collapses to the result
obtained by Maldacena in the attractor phase as given in
Eq. (A8). As a result, the relation fNL ∼ ϵ as given in
Eq. (23) still holds for nonattractor models. However, we
note that the relation between ns − 1 and flocNL as given in
Eq. (23) does not hold in nonattractor model, and one has
to use Eq. (18). Using the expressions for fRh

NL and flocNL,
respectively, from Eqs. (23) and (18), we obtain

AT

AR
≃ 2ϵc2s

3ð1þ c2sÞ
¼ csr

24ð1þ c2sÞ
; (25)

in which, in the second equality, the relation r ¼ 16csϵ has
been used. This equation should be compared with Eq. (24)
obtained for the attractor models.

In models of nonattractor inflation, ϵ decays like ϵ ∝ a−6
[24], so at the end of nonattractor phase, ϵ and r become
exponentially small (assuming the nonattractor phase has a
few e-foldings). This means that the amplitudes of tensor
perturbations are very small in the nonattractor model [25].
Therefore, the ratio AT=AR in the nonattractor phase is
much smaller than the corresponding value in conventional
slow-roll models. Taking r≲ 0.1 and cs ≲ 1, we obtain
AT ≃ 3 × 10−4. It is unlikely that the future cosmological
observations can detect such a small dipole asymmetry in
the tensor perturbations power spectrum.
To summarize, here, we have shown that the long-mode

modulation induces dipole asymmetry not only on the
curvature perturbations power spectrum but also on the
tensor mode perturbations power spectrum. However, none
of the single-field models studied so far can generate
detectable dipole asymmetry on the tensor power spectrum.
For the single-field slow-roll model, AT ≪ 0.03 because
AR generated in these models is too small to match the
observed value. On the other hand, for the nonattractor
models, AT is even smaller than this value because, in these
models, the amplitudes of tensor perturbations are sup-
pressed. As a result, to obtain detectable dipole asymmetry
in the tensor perturbations power spectrum, one has to look
for multiple-field models in which more than one field
contributes to the curvature perturbations. In multiple-field
scenarios, the specific formulas Eqs. (24) and (25) do not
hold. Therefore, for a given multiple-field inflation model,
one has to explicitly calculate hRh2i and correspondingly
obtain the amplitude of fRh

NL and see whether large enough
AT is generated.

III. MODULATED BIAS

In this section, we show how the long-wavelength
modulation RL from curvature perturbation can affect
the distribution of galaxies in sky through the halo bias
parameter. The large-scale structure observables deal with
the statistics of luminous matter, (i.e., galaxies and cluster
of galaxies) sitting in the center of dark matter halos [30].
The statistics of galaxies such as the correlation functions,
power spectrum, and the probability distribution function
are related to the dark matter halo statistics. With the
assumption that each dark matter halo is a host of a galaxy
[31], this relation is parametrized through bias parameter
b ¼ δh=δm, where δh and δm are the halo density pertur-
bation and the dark matter density perturbation, respec-
tively. To show the effect of long-wavelength modulation,
we study its effect on the threshold of nonlinear structure
formation. In spherical collapse [32], a region of R under-
goes a gravitational instability when its density perturbation
becomes greater than the critical density δc ≃ 1.68. This
is obtained by considering the evolution of an overdense
region in the cosmological background. The overdense
region behaves like a closed Friedmann Universe with
spatial curvatureΔk and density of ρ̄M þ ΔρM, where ρ̄M is
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the background density and ΔρM is the excess density. The
critical density δc ¼ ΔρMðcÞ=ρ̄M is related to the critical
excess of mass ΔρMðcÞ, where the structure enters the
nonlinear regime.
In a recent work [33], it was shown that the bias

parameter is a potential important observable in Large
Scale Structure (LSS) to detect the primordial anisotropy
through the nonlinear effect (non-Gaussianity). In this
work, we just investigate the effects of anisotropy induced
from the long-wavelength mode in the linear regime due to
its effect on the critical density.
To study the effects of the long-mode modulation on the

statistics of the structures, we use the peak-background
splitting method [34], where the total matter density
contrast δ≡ δρm=ρm, is separated into the long and short
wavelengths

δ ¼ δs þ δl þ δL; (26)

where δs is the density contrast of the structure associated
with the short wavelength, δl is the density contrast from
the long-wavelength mode in the observable Universe, and
δL represents the density perturbation originating fromRL.
(The different scales presented in this splitting are shown
in Fig. 1). The criteria to have a structure is that the local
density perturbation δs of structure passes the critical
density threshold, satisfying the condition

δs > δeffc ≡ δc − δl − δL; (27)

where we have assumed that the scale of structures is much
smaller than the Hubble radius, λs ≪ H−1

0 . Consequently,

we assume that the effect of superhorizon long-mode
modulation is similar to the effect of the long mode inside
horizon. Both long modes change the critical density by
the amount calculated in Eq. (27). Another important point
to emphasize here is that we want to compare the statistics
of structures in two different spatial positions where the
amplitude of long-mode modulation is slightly different.
This means that the mean density of matter is almost the
same inside the Hubble radius, while the perturbations are
slightly different in the dipole direction.
The long-wavelength mode changes the spherical col-

lapse threshold, so we expect to have a change in the
statistics of the structures in the Universe. We would like to
calculate the probability of having structures with mass
M≡ 4=3πR3ρm (or equivalently the regions of radius R)
and accordingly to calculate the bias parameter. To go
further, we define the effective height parameter as

νeff ≡ δeffc

σðMÞ ¼ ν − δl þ δL
σðMÞ ; (28)

in which ν≡ δc=σðMÞ and σðMÞ is the mass variance. The
ν parameter plays a crucial role in the statistics of the
collapsed object. In Fig. 2, we plot the height parameter vs
the redshift. For high mass objects in the Universe, the
variance is lower; consequently, the height parameter is
larger (meaning that their statistics are smaller). The red-
shift dependence of the height parameter comes from the
growth function of structures. As the Universe becomes
dark-energy dominated, the growth of the structures
decreases; consequently, we will have a small mass density

FIG. 1 (color online). This is a schematic figure representing
perturbation scales in a peak-background splitting scenario. The
large black-solid circle represents our observable Universe with
radiusH−1

0 , which is situated inside the super Universe. The small
black-solid circles represent the structures (i.e., Galaxy clusters)
in scale of Mpc. The green solid wavy curves represent the
density contrasts in structure scale δs. The blue dotted curve is the
long-mode perturbation δl inside the horizon. The red long-
dashed curve is the superhorizon mode δL in the asymmetry
direction p̂.

 1

 10

 0.001  0.01  0.1  1  10

ν(
M

,z
)

z

M=1010Msun

M=1011Msun

M=1012Msun

M=1013Msun

M=1014Msun

FIG. 2 (color online). In this figure, we plot the height
parameter ν ¼ δc=σðM; zÞ vs redshift for different mass scales
that are probed via LSS. The black solid line indicates the height
parameter for M ¼ 1012M⊙, which is a typical mass scale of
luminous red galaxies.
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and larger height function. The shift in height parameters
occurs in z ∼ 0.3 as in Fig. 2.
Now, we can define the bias parameter from the

modulated number density of the structures. The halo
density contrast is defined as

δh ¼
nðM; νeffÞ − n̄ðMÞ

n̄ðMÞ ; (29)

where n̄ðMÞ is the background number density of structures
with mass M and nðM; νeffÞ is the modulated number
density. Now, the bias parameter is defined as

b ¼ − 1

σðMÞ
∂ ln n̄ðMÞ

∂ν ¼ − 1

σðMÞ
f0

f
; (30)

where we assumed the universality condition for the mass
function of structures, which means that they are only a
function of the height parameter, n̄ðMÞ ∝ fðνÞ. The prime
here and below indicates the derivative with respect to ν.
Now, the bias parameter becomes a function of δL, in
contrast to the standard case.
Considering the fact that both δl and δL should be

smaller than the critical density and also δl ≫ δL so the
effect of long mode modulation is subleading, we can
expand the bias parameter in terms of δL as

b ¼ b0 þ
∂b0
∂δL δL ¼ b0 − 1

σðMÞ b0
0δL; (31)

where b0 represents the background unmodulated bias.
Now, we can go further and write the bias parameter in the
terms of universality function f and b0 as

bðxÞ ¼ b0 þ b20

�
f00f
f02

− 1

�
δL: (32)

Correspondingly, the gradient of bias associated with the
long-wavelength mode is obtained to be

∇bðxÞ
b

¼ b0

�
f00f
f02

− 1

�
∇δL ≡ b0F ðνÞ∇δL; (33)

in which

F ðνÞ≡ f00f
f02

− 1: (34)

To go further, we can relate the long-mode modulation of
density perturbation to modulation in the Bardeen potential
via the Poisson equation,

δL ¼ 2

3

∇2Φ
ð1þ zÞH2

0Ω0
m
≃ 2

5

DðzÞ∇2RL pri

H2
0Ω0

m
¼ M̄ðzÞ∇̄2RL pri;

(35)

where DðzÞ is the growth factor, Ω0
m is the current fraction

of matter energy density, M̄ðzÞ≡ 2DðzÞ=5Ω0
m, and

∇̄2 ≡∇2=H2
0. To obtain the approximate equality in

Eq. (35), we assumed that for the very long wavelength
the transfer function is unity, TðkÞ≃ 1 (i.e., the growth of
the potential function is scale independent). In this case, we
use the relation Φ ¼ 9

10
ð1þ zÞDðzÞΦpri in which Φpri

represents the primordial value of Φ at the start of radiation
(end of reheating), which is related to the primordial value
of RL via Φpri ¼ 2

3
RL pri. Consequently, the gradient of the

bias is obtained to be

∇bðxÞ
b

≃ b0FM̄ðzÞ∇ð∇̄2RL priÞ: (36)

Interestingly we see that the gradient in bias is related to the
gradient in ∇2RL pri. This analysis also shows another
manifestation of the long-wavelength mode’s effect on
cosmological parameters. It shows that, if the long-mode
modulation is the source of dipole asymmetry on the CMB
power spectrum, it will also induce dipole asymmetry on
the LSS bias parameter. The long-mode modulation intro-
duces the asymmetry in the bias parameter because of its
effect on perturbations. As we have indicated in the
introduction, the long-mode modulation does not affect
the background because of the rescaling, but it shows up at
the perturbation level.
Let us define the amplitude of the bias dipole asymmetry

Ab via

b ¼ b0ð1þ Abx̂:p̂Þ: (37)

As a result, the gradient of the bias parameter is translated
into

∇b
b0

¼ Abp̂
xLSS

; (38)

where xLSS is the comoving distance from the observer to
the structure where the bias parameter is measured.
So far, our discussions were generic and model

independent. Now, we assume that the long-mode
modulation has the simple sinusoidal form as given in
Eq. (5). Combining Eqs. (36) and (38), the anisotropy bias
parameter can be written as

Ab ≃ b0F ðνÞxLSSM̄ðzÞ∇ð∇̄2RL priÞ

¼ b0F ðνÞM̄ðzÞ
�
xLSS
xCMB

��
kL
H0

�
2

½kLxCMBP
1=2
RL

�: (39)

To simplify further, we assume the initial conditions are
Gaussian and the probability function of structure forma-
tion has a universal form, nðMÞ ∝ fðνÞ. To be more
specific, we assume the Press– Schechter universality
function [35], in which
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fðνÞ ¼ νffiffiffiffiffiffi
2π

p e−ν2=2 (40)

and

F ðνÞ ¼ − ν2 þ 1

ðν2 − 1Þ2 : (41)

For almost all observational cases in which ν ≪ 1, F
is a decreasing function of ν. Furthermore, F diverges at
ν ¼ 1, corresponding to very high massive cluster of
galaxies (O ∼ 1014M⊙). However, because of the low
statistics of the cluster of galaxies, this is not suitable to
obtain the bias parameter with the present and near-future
cosmological data.
Now, we can use the observational constraint [12]

kLxCMBP
1=2
RL

≤ 10−1 to put an upper bound on the bias
parameter anisotropy. On the other hand, the detection of
dipole anisotropy in CMB, A≃ 0.07, and the assumption
of non-Gaussianity at the order of fNL ≤ 10 (which is
compatible with Planck data) can be used to put an upper
bound on the anisotropic bias as

0.007 × b0F ðνÞM̄ðzÞ
�
xLSS
xCMB

��
kL
H0

�
2

≤ Ab ≤ 10−1

× b0F ðνÞM̄ðzÞ
�
xLSS
xCMB

��
kL
H0

�
2

: (42)

This is our main result in this section.
In a realistic case, taking the galaxy samples from Sloan

Digital Sky Survey data release 9 [36], the mean redshift of
the survey is set to z ¼ 0.57, which results in M̄ ∼ 1 and
xLSS=xCMB ∼ 2200=14000 ∼ 0.15. Furthermore, the linear
bias parameter obtained from the red luminous galaxies
with ν ∼ 0.8 is b0 ∼ 0.8 and jF j ∼ 12.5. Taking the long
mode to be, say, twice as big as the Hubble radius,
kL=H0 ∼ 1=2, the upper bound on the amplitude of the
bias dipole is obtained to be

Abðz≃ 0.5Þ ≤ 3 × 10−2: (43)

We have omitted our lower bound on the asymmetric bias
because the long-mode modulation could be much longer
than the observable Universe and make the lower bound
very small. This value is too small to be observed by
today’s large-scale surveys but will be observable with the
future large-scale structure surveys like Large Synoptic
Survey Telescope (LSST). Indeed, this is within the error
bar of the bias parameter and the errors originated from the
peculiar velocity. The LSST, which is designed to obtain a
photometric redshift for 4 billion galaxies with the dis-
tribution peaking around z ¼ 1, can be used to determine
the galaxy bias with high accuracy. The galaxy cluster
count with a combination of other cosmological observa-
tions, such as the weak gravitational lensing and CMB data,

can measure the bias parameter in the redshift range
between 0 to 1, with a precision as good as 2% accuracy
[37]. Consequently, the anisotropy change in the bias
parameter must be greater than this error bar (systematic
and statistic errors) to be detected in this redshift range.
In Fig. 3, we plotted the bias anisotropy parameter vs

redshift for two different mass scales, in which we calculated
the bias parameter. The figure shows that in an optimistic
case with high redshift z ∼ 1 the upper bound of the LSST is
lower than the anisotropy calculated from a long mode with
the size twice the size of the observable Universe. In a
optimistic situation, if one can measure the matter power
spectrum in 21 cm in future observations such as Square
Kilometre Array with z ∼ 10, which results in M̄ ∼ 1.5 and
xLSS=xCMB ∼ 10000=14000 ∼ 0.7 and assuming the same
values for linear bias, F ðνÞ and kL=H0, we obtain

Abðz≃ 10Þ ≤ 2 × 10−1: (44)

This is an Oð20%Þ change in the bias parameter. This is
within the range of the observational detection.

IV. DIPOLE ASYMMETRY IN ACCELERATION
EXPANSION?

Since we have studied dipole asymmetries generated in
the tensor perturbations power spectrum and halo bias
parameter, it is an interesting question if one searches for
dipole asymmetries in late-time cosmological phenomena.
In particular, we look into the possibility of generating
dipole asymmetry in dark-energy acceleration expansion
induced from the long-mode modulation. Somewhat
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FIG. 3 (color online). In this figure, we have plotted the bias
anisotropy upper bound vs redshift, assuming the universal mass
function of Press–Schechter formalism. We have set M ¼
1011M⊙ (red long-dashed line) and M ¼ 1013M⊙ (blue dashed
line) and kL=H0 ¼ 1=2. The solid black horizontal line indicates
the upper limit precision of the LSST project.
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related to this idea, Kolb et al. [38] have employed the idea
of superhorizon perturbations to explain the late-time
cosmological acceleration. But shortly after their proposal,
it was shown that this idea does not work [39,40].
Employing the separate universe approach, the line

element in the comoving gauge in the presence of
long-wavelength modulation is

ds2 ¼ −dt2 þ ā2ðtÞe2RLðx;tÞδijdxidxj; (45)

in which aðtÞ is the background (average) scale factor of
our patch and R denotes the curvature perturbation in the
comoving gauge. Again we do not mention the origin of
this modulation or its shape, but we just assume that this
modulation can have slight variations in our observable
patch. What we have in mind is that this modulation is the
same that caused the hemispherical asymmetries in the
CMB power spectrum, in the tensor perturbations power
spectrum, and in the bias that were studied in previous
sections. In this view, all we need is that there exists a long-
mode modulation with large amplitude, i.e.,PRL

≫ PRCMB
.

The above form of the metric suggests that the effective
scale factor in each Hubble patch is given by

aðx; tÞ ¼ āðtÞeRðx;tÞ: (46)

As a result, the effective Hubble expansion rate, H ¼ a
:
=a,

is given by

Hðx; tÞ ¼ H̄ðtÞ þR
:

Lðx; tÞ; (47)

in which H̄ðtÞ represents the background homogeneous
Hubble parameter. This equation suggests that the Hubble
expansion rate is modified in the presence of the long-
wavelength mode. It is important to note that if RL is time
independent, then it has no effect on H because, in this
limit, RL can be absorbed into a rescaling of dxi without
affecting the expansion dynamics. Naively, one may
imagine that a mild variation of RL across the observable
patch may result in a variation in H. Here, we examine this
idea critically for the case in which the acceleration
expansion is driven by a cosmological constant to see
whether or not RL can be time dependent in a late-time
accelerating universe.
It is convenient to work with the deceleration parameter

q defined via

q≡− aa
::

a
: 2 : (48)

With the effective scale factor and the Hubble parameter
given in Eqs. (46) and (47), and to linear order in RL ≪ 1
and R

:
=H ≪ 1, we get

qðxÞ≃ q̄ − 2RL

:
ðxÞ

H̄
ð1þ q̄Þ −RL

::
ðxÞ

H̄2
; (49)

in which q̄ represents the background homogeneous
deceleration parameter in the absence of modulation.
To go further, we need to calculate RLðx; tÞ and its time

derivatives in the late-time accelerating expanding Universe
and relate it to its primordial value at the end of inflation
RL pri. To find the time evolution of curvature perturbations,
one can use the dynamical equation of the Bardeen
potential Φ. In general, the dynamical equation for the
Bardeen potential cannot be solved exactly. Usually,
solutions contain elliptic integrals even on the superhorizon
scales. Fortunately, for the case at hand, the situations
simplify considerably. We consider the late-time universe
containing only matter and the cosmological constant. For
both of these fluids, the perturbations in pressure is zero.
On the other hand, the sound speed of fluctuations is
defined in the comoving gauge via δPc ¼ c2sδρc. As a
result, for both fluids, the sound speed of fluctuations is
zero. Therefore, the effective sound speed of the total
perturbations is zero, too. In this limit, one can show that
there exists an invariant of the dynamical equation. In
addition, one can also show that this invariant quantity
coincides with the gauge-invariant curvature perturbation
R. To see this, consider the evolution equation for the
Bardeen potential [41],

u00 − c2sΔu − θ00

θ
u ¼ 0; (50)

where

θ≡ 1

a

�
1þ p̄

ρ̄

�−1=2
(51)

and u is defined as u≡ Φ=ðρ̄þ p̄Þ1=2.
As argued above, for our late-time Universe containing

only matter and the cosmological constant cs ¼ 0. In this
limit, one can easily manipulate the above equation to show
that the quantity X defined via

X ≡ θ2
�
u
θ

�0
(52)

is a constant of integration. On the other hand, using
the definitions of u and θ, and noting that R ¼
Φ −H=H

: ðΦ
:
þHΦÞ, one can easily show that R ∝ X.

As a result,R is constant too. This indicates that there is no
change in the deceleration parameter as given in Eq. (49).
This indicates that the long-mode modulation does not
induce asymmetry in acceleration expansion associated
with the cosmological constant.
Having said this, it is possible to generate dipole

asymmetry in late-time acceleration expansion if one
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considers other sources of dark energy. Our conclusion
above was valid for the cosmological constant in which the
sound speed is zero. If one considers dynamical model of
dark energy, such as the quintessence model, then the
sound speed associated with the scalar field fluctuations is
not zero. As a result, in the model containing the mixed
fluids of matter and quintessence,R can be time dependent
on superhorizon scales. It is an interesting question to see
how the long-mode modulation can generate dipole asym-
metry in acceleration expansion for this scenario. However,
this is beyond the scope of this work.
Observationally, the possibility of anisotropic acceler-

ation expansion is an intriguing idea. although there are
some controversies about the amplitude and the direction of
dipole asymmetry in the deceleration parameter; see, e.g.,
Refs. [42] and [43]. Some older works studied this effect
observationally [44]. Also recently, this issue has been
revisited by many authors [42,43,45–47]. Bonvin et al.
showed that the dipole associated with the luminosity
distance is a useful observational tool that can be used
to determine the Hubble parameter as a function of redshift
H(z). They showed that our peculiar velocity relative to the
CMB can induce dipole asymmetry on the luminosity
distance parameter. There are also some other works
dealing with the effects of peculiar velocities associated
with the observers and supernovas [48–50]. The typical
correction to the luminosity distance parameter due to the
peculiar velocities can be estimated to be ΔdL=dL ≃ vpec=c
[48,49]. The typical peculiar velocities of supernovas are at
the order of ∼100 km=s, which leads to ΔdL=dL ∼ 10−3.
One may expect that the dipole correction due to the
peculiar velocity of Earth is in the same direction as
the dipole of the CMB [51] . But the observed dipole of
the luminosity distance is at least 1 order of magnitude
lager than the expected asymmetry emerging from peculiar
velocities [43]. Moreover, there are also controversies
on whether or not its dipole is aligned with the CMB
dipole [42]. Recently, Zhao et al. claimed that they found
a significant anisotropy with dipole amplitude A1 ¼
0.466þ0.255−0.205 , which has an angle 95.7° with the CMB
dipole [42].

V. CONCLUSION AND DISCUSSIONS

The observed asymmetries in the CMB trigger the
interest in long mode modulation as a probable explanation
for the observed anomalies. In Ref. [12], it was shown that
there is an upper bound consistency relation between the
anisotropy of the CMB and the amount of local non-
Gaussianity induced by this long-wavelength mode. The
CMB temperature anisotropy moments put strict con-
straints on the amplitude of the anisotropy. In this work,
following Ref. [12], we presented a general formalism to
investigate the consistency relation between the amplitude
of dipole asymmetry and local non-Gaussianity induced
by the superhorizon mode. Then, we showed that this

long-mode power enhancement introduces a modulation on
tensor perturbations. This suggests that further studies
check the possibility of the tensor mode perturbation
enhancement via the CMB B-mode polarization, which
will be studied with more accuracy by the Planck team
next year. We have obtained the consistency conditions
Eqs. (24) and (25), respectively, in the attractor and
nonattractor single-field inflationary models for the ratio
AT=AR. As discussed, the key point is that the tensor modes
remain frozen after horizon crossing so any modulation of
the long mode on tensor perturbations is encoded at and
near the time of horizon crossing. In this view, tensor
perturbations are insensitive to features happening at the
end or after inflation, such as in the curvaton scenario.
Having said this, none of these two single-field scenarios

can produce a detectable AT . Single-field slow-roll models
fail to generate large enough dipole asymmetry in the CMB
curvature perturbation power spectrum, so their prediction
is AT ≪ 0.03. On the other hand, nonattractor models are
able to generate large enough dipole asymmetry in the
CMB curvature perturbation power spectrum with large
enough flocNL as given in Eq. (18). However, in the non-
attractor model, it turns out that ϵ and r are very small, so
from the consistency condition Eq. (25), we obtain that AT
is too small to be detectable. Having said this, our
consistency condition Eq. (24) should be viewed as a
proof of concept that, in principle, a long-mode modulation
can yield dipole asymmetry in the tensor perturbations
power spectrum. In practice, one has to look for a multiple-
field model of inflation to see if a large observable AT can
be generated.
Recently, in Ref. [52], the Maldacena consistency con-

dition that fNL ∼ 1 − ns has been revisited. It is argued that
for the standard single-field slow-roll models, considering
all contributions, one finds fNL ¼ 0 with corrections
quadratic in kL. Having said this, our results, as long as
observational considerations are concerned, are intact. This
is because, in order to have observable dipole asymmetry,
one has to go beyond the simple single-field slow-roll
inflation models [12], such as nonattractor models, in
which the argument of Ref. [52] does not apply.
As another interesting example, we have looked into

effects of long-mode modulation on the halo bias param-
eter. Defining the bias dipole asymmetry parameter, Ab, we
found an upper bound on Ab given by Eqs. (39) and (42).
We found that Ab ∝ ∇ð∇2RLÞ. This implies that, in
general, the direction of bias dipole is different than the
direction of the CMB power spectrum dipole. Furthermore,
the amplitude of the bias dipole compared to the amplitude
of the CMB power spectrum is suppressed by the factor
fNLðxLSS=xCMBÞ. As a result, to get a higher value of Ab,
one has to look at higher redshift structures that have a
higher value of xLSSS=xCMB. We argued that an Oð20%Þ
modulation in the bias parameter can be obtained for the
matter power spectrum in 21 cm observations with z ∼ 10.
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However, in general, the detection of anisotropy in the bias
parameter is more difficult than the anisotropy in distances.
This is because we need enough statistics (i.e., number of
galaxies) in different directions in order to reduce the shot
noise in the galaxy power spectrum and investigate the
change in the bias parameter.
Finally, we have studied the effects of long-mode

modulation on the acceleration expansion. We have shown
that in ΛCDM no dipole asymmetry in the acceleration
expansion is generated. This is because in a ΛCDM
background R is conserved on superhorizon scales so
the effects of R can be absorbed into a constant coordinate
transformation. To induce dipole asymmetry in accelera-
tion, one has to look for models in which dark energy is
realized dynamically, i.e., in the quintessence model, in
which the sound speed of scalar perturbations is not zero
and for the mixture of the matter and the dark energy fluids
R can evolve on superhorizon scales.
In the early Universe cosmological backgrounds, the

long-mode modulation can change the Hubble expansion
rate and introduce a dipole anisotropy on it. So it is natural
to think that cosmological parameters that are related to the
Hubble expansion are affected by the long-mode modu-
lations. For example, the observations that use the Baryon
Acoustic Oscillations as a standard ruler will be affected
because the angular diameter distance and the sound
horizon of baryonic oscillations are modulated. The other
interesting example is the study of big bang nucleosyn-
thesis (BBN) in the presence of long-mode modulation. As
in standard BBN calculations, we have to compare the rate
of nuclear interactions with the rate of the Hubble expan-
sion. The former is a property of particle physics and
nuclear physics that are not affected by the long mode,
while the Hubble expansion rate is affected by the long-
mode modulation. As a result, one expects to see dipole
asymmetry in hydrogen and helium distributions. It will be
an interesting question to study these predictions in details
and compare them with the observations.
Our main goal in this work was to demonstrate that if the

observed dipole asymmetry in the CMB power spectrum is
from the long mode modulation then this effect will also
show its fingerprints on different cosmological observables
relevant to different cosmological histories. One can find
the consistency conditions relating the amplitude of the
CMB dipole asymmetry to the dipole asymmetries induced
in the power spectrum of tensor perturbations and the halo
bias parameter. A detection or otherwise of any of these
predicted asymmetries will have profound implications on
inflation dynamics and also for the possible preinflationary
physics.
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APPENDIX: ANALYSIS OF hRhijhkli FOR
THE NONATTRACTOR MODEL

In Sec. II B, we have borrowed Maldacena’s analysis
[23] for the three-point function hRhijhkli to obtain the
relation between AT and AR in the attractor single-field
models as given in Eq. (24). Here, we generalize
Maldacena’s analysis to nonattractor inflation models in
whichR is not conserved on superhorizon scales during the
nonattractor phase.
We consider the single-field nonattractor models given

by the action [53]

S ¼
Z

d4x

�
M2

P

2
Rþ PðX;ϕÞ�; (A1)

in which X ≡−gμν∂μϕ∂νϕ=2. The above action is not the
most general action for the single-field models, but it is
generic enough, which can shed light on the value of
hRhijhkli in the nonattractor scenarios.
To perform the perturbation analysis, we chose

the comoving gauge in which δϕ ¼ 0 and the tensor
perturbations hij are written as

hij ¼ a2ðtÞe2Rĥij; (A2)

in which det ĥij ¼ 1. To second order, we have

ĥij ≃ δij þ γij þ
1

2
γilγlj; (A3)

in which γii ¼ γij;i ¼ 0, so the tensor perturbations are
transverse and traceless.
We are interested in cubic action containing one scalar

perturbation and two gravitons. We skip the details of this
analysis and provide the final form of the cubic action,

SRγ2 ¼
Z

d4x
ϵa5

2c2s
γ
:
ijγ
:
ij∂−2R

:
; (A4)

supplemented with the field redefinitions

R ¼ Rc − 1

32
γijγij þ

1

16
∂−2ðγij∂2γijÞ (A5)

and

γij ¼ γijc − a2ϵ
c2s

ð∂−2R
:

cÞγ: ij: (A6)

Here, ϵ ¼ −H: =H2 is the slow-roll parameter, and cs is the
sound speed of scalar perturbations.
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Compared to attractor cases, there are some important
modifications that one has to take into account. First, the
wave function of R is different in the nonattractor model
so one has to take this into account in the in-in integrals
[53]. Second, on superhorizon scales, R

:
is not negligible,

so, in contrast to Maldacena’s analysis [23], one cannot

neglect the contribution of R
:

in field redefini-
tion, Eq. (A6).
Putting all the contributions together, and skipping the

details, we obtain the following result for the correlation
function between one scalar and two gravitons in the
Fourier space:

hRk1
γs2k2

γs3k3
i ¼ ð2πÞ3δ3

�X
ki

�
PRk1ðteÞ
k32k

3
3

ϵðteÞH2δs2s3

�
− csk31

2
þ cs

2
k1ðk22 þ k23Þ þ

24csk1
K3

k22k
2
3

�
k2 þ k3 − k2k3

K

�

− 8k22k
2
3

K
− 3k22k

2
3

csk1K
ðk2 − k3Þ2

�
1

csk1
þ 1

K

�
þ 9

K2
k22k

2
3ðk2 þ k3Þ − 12cs

K2
k1k22k

2
3

�
: (A7)

Here, K ≡ csk1 þ k2 þ k3, s2 and s3 are the graviton
polarizations, and te represents the time of the end of
the nonattractor phase. To simplify the analysis, we have
assumed that cs and H are nearly constant during inflation.
The above formula has the interesting property that the

momentum associated with the scalar perturbations, k1,
always comes with a factor of cs. Physically, this make
sense because for the scalar perturbations the moment of
“sound horizon” is determined by csk1 ¼ aH while for the
tensor perturbations with momenta k2 and k3, it is the usual
horizon crossing, k2;3 ¼ aH, that matters.
In the squeezed limit in which k1 ≪ k1 ≃ k3, we get

hRk1
γs2k2

γs3k3
i ¼ ð2πÞ3δ3

�X
ki

�
PRk1ðteÞ

2k32
ϵðteÞH2δs2s3 :

(A8)

Curiously, there are two leading terms proportional
to 1=c2s (in the limit of small cs), which canceled
each other, so Eq. (A8) represents the effects of the
remaining subleading term that is independent of the 1=cs
factor.
Comparing with the definition of fRh

NL, given in Eq. (7),
and summing over the two polarizations s1 and s2, we
obtain

12

5
fRh
NL ¼ 2ϵðteÞ: (A9)

Noting that 2ϵðteÞ ¼ −nT , our result for fRh
NL in non-

attractor models coincides with the result obtained in
Maldacena’s analysis for attractor models, given
by Eq. (23).
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