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A logamediate inflationary model in the presence of the tachyon scalar field will be studied. Considering
slow-roll inflation, the equations of motion of the Universe and the tachyon field will be derived. In the
context of perturbation theory, some important perturbation parameters will be obtained and using
numerical calculations, the consistency of our model with observational data will be illustrated.
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I. INTRODUCTION

After encountering some serious problems, cosmologists
had to improve the standard big bang model by adding
some parts to it. The flatness and horizon problems were
the most famous of those problems and the best part which
was added to the standard model and completed it was the
inflationary scenario. Inflation is a short period at the very
early stages of the history of the Universe in which the
Universe experiences a very rapidly accelerated expansion
and the scale factor parameter aðtÞ grows by many orders of
magnitude. In terms of how the scale factor varies with
time, one can classify inflationary models to, for example, a
power law inflation aðtÞ ¼ tq, exponential inflation
aðtÞ¼ expðptÞ, and intermediate inflation aðtÞ¼ expðptqÞ.
Among different models of inflation, the one that has not
been investigated greatly is the logamediate inflation in
which for t > 1 the scale factor behaves as

aðtÞ ¼ expðAðln tÞλÞ; (1)

where A > 0 and λ > 1 are constants. One can check that
for the case λ ¼ 1 the model reduces to the power law
inflation. The logamediate inflation can be extracted from
some scalar-tensor theories which naturally give rise these
solutions [1] and also from a new class of cosmological
solutions with an indefinite expansion which results when
weak general conditions apply on the cosmological models
[2]. Although these models belong to a class of models
called nonoscillating models that cannot naturally bring
inflation to an end, different approaches such as the
curvaton scenario can be used to do this duty [3].
On the other hand, the kind of scalar field which plays

the role of the inflaton field is also important. The standard
scalar field is the most usual one, but some other fields can
also be responsible for it. Among them, the tachyon field is
of particular interest [4,5]. Its equation of state parameter
varies between 0 and −1 and thus it can be a good choice
for the inflaton field [6–12]. Also, it has been shown that

the tachyon field can play the role of dark sectors of the
Universe [13–22] and even at the same time derive inflation
and then behave as dark matter or nonrelativistic fluid [23].
Tachyonic inflation is a special case of k-inflationary
models in which the inflaton field starts its evolution from
an unstable maximum when ϕ → 0 and finally approaches
zero when ϕ → ∞.
The concept of logamediate inflation with a tachyon field

or without it has been analyzed in the literature. For
instance, in [24] the dynamics of the logamediate inflation
in the presence of a standard scalar field and its consistency
with observational results has been shown in detail. In [25],
the authors have been investigating the warm-logamediate
inflationary universe in both weak and strong dissipative
regimes and obtained the general conditions which are
necessary for the model to be realizable. Also, in [26], the
warm-logamediate inflation in the presence of the tachyon
field as the inflaton has been analyzed only in a high
dissipative regime and the results have been compared by
the observations.
In this work, we are trying to use the tachyon field as the

inflaton in the logamediate inflationary scenario. Our aim is
to obtain the influence of the tachyon field on logamediate
inflation in comparison with [24] and also to fill the gap
between the articles noted above. In the next section, we
will apply the tachyon field in a logamediate inflationary
model under slow-roll conditions. Section III deals with
perturbation theory. In this section we will calculate all the
perturbation parameters which are needed to have a
comparison with observations. The numerical comparisons
have been done in the subsection of Sec. III. Section IV
deals with how realistic our model is. At the end, there is a
conclusion section in which we will discuss our results.

II. LOGAMEDIATE INFLATIONARY MODEL

We start with the field equations in a flat Friedmann-
Robertson-Walker universe,

3H2 ¼ ρϕ (2)

and
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2 _H þ 3H2 ¼ −pϕ; (3)

in which H ¼ _a=a is the Hubble parameter, a ¼ aðtÞ is the
scale factor, and the dot means derivative with respect to the
cosmological time t. Here, we have used units such that
8πG ¼ c ¼ ℏ ¼ 1. Also, we assume the matter content of
the Universe is a scalar field, ϕðtÞ, a so-called inflaton
where ρϕ and pϕ represent its energy density and pressure,
respectively, and they satisfy the following conservation
equation:

_ρϕ þ 3Hðρϕ þ pϕÞ ¼ 0: (4)

From now on we consider the inflaton field as a tachyon
field where its energy density and pressure are given by

ρϕ ¼ VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − _ϕ2

q ; pϕ ¼ −VðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − _ϕ2

q

; (5)

where VðϕÞ is the tachyonic scalar potential. Substituting
(5) in (4), we reach to the equation of motion of the tachyon
field

ϕ̈

1 − _ϕ2
þ 3H _ϕþ V 0

V
¼ 0; (6)

where V 0 ¼ ∂VðϕÞ=∂ϕ. Also, using (2), (4), and (5), one
can obtain

_ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

− 2 _H
3H2

s

: (7)

Considering the logamediate inflationary model in which
the scale factor aðtÞ behaves as (1), one can obtain the exact
solution of (7) as

ϕðtÞ ¼
Z

ffiffiffiffiffiffiffiffi

2

3Aλ

r

ðln tÞ−λ=2ðln t − λþ 1Þ1=2dt: (8)

Also using (2), (5) and (7) the potential of the inflaton field
can be obtained as

VðtÞ ¼ 3

�

Aλ
t

�

2

ðln tÞ2ðλ−1Þ
�

1þ 2ðln tÞ−λðλ − 1 − ln tÞ
3Aλ

�1
2

(9)

Supporting a long enough period of inflation the inflaton
field must slowly rolls down its potential. In this scenario,
which is called slow-roll inflation, the energy density of the
inflaton field and its potential satisfy ρϕ ∼ V. Thus in our
model, under slow-roll conditions, i.e., _ϕ2 ≪ 1 and
ϕ̈ ≪ 3H _ϕ, Eqs. (2) and (6) reduce to

3H2 ≈ V (10)

and

V 0

V
≈ −3H _ϕ; (11)

respectively. Also, the tachyonic potential (9) becomes

VðtÞ ¼ 3

�

Aλ
t

�

2

ðln tÞ2ðλ−1Þ: (12)

There are a few dimensionless parameters in slow-roll
inflationary models called slow-roll parameters. In terms of
our model parameters they can be written as

ε ¼ − _H
H2

¼ ðln tÞ−λ
Aλ

ðln t − λþ 1Þ (13)

and

η ¼ − ϕ̈

H _ϕ
¼ 1

2H

�

− V̈
_V
þ

_H
H

þ
_V
V

�

: (14)

One can check that the slow-roll parameter ε starts to
increase at t ¼ 1, reaches a maximum at some value tε, and
then returns and approaches zero as t → ∞. If we pay
attention to those cases in which the maximum value of ε is
greater than one, we can choose ε ¼ 1 as the beginning
condition of inflation. For these cases (εmax > 1), one can
obtain a constraint for our model parameters as below

A < λ−λ−1: (15)

We can also obtain the number of e-folds between two
different values t1 and t2 > t1 for this model as

N ¼
Z

t2

t1

Hdt ¼ A½ðln t2Þλ − ðln t1Þλ�; (16)

where t1 represents the time in which inflation begins.

III. PERTURBATION

Although studying a homogeneous and isotropic uni-
verse model is sometimes very useful, we know that in a
real cosmology there are deviations from homogeneity and
isotropic assumptions. This motivates us to investigate the
perturbation theory in our model. We believe that inho-
mogeneities grow with time due to the attractive feature of
gravity and thus we can say that they were very smaller in
the past. Because of the smallness of them, we can use
linear perturbation theory. But as it appears from Einstein’s
equations and to have a more realistic investigation we need
a relativistic perturbation theory, i.e., a perturbed inflaton
field in a perturbed geometry. So we start by the most
general linearly perturbed flat Friedmann-Robertson-
Walker metric which includes both scalar and tensor
perturbations as below
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ds2 ¼ −ð1þ 2CÞdt2 þ 2aðtÞD;idxidt

þ aðtÞ2½ð1 − 2ψÞδij þ 2E;i;j þ 2hij�dxidxj; (17)

where C,D, ψ , and E are the scalar metric perturbation and
hij is the transverse-traceless tensor perturbation. A very
useful quantity in characterizing the properties of the
perturbations is the power spectrum. First of all, we
calculate the power spectrum of the curvature perturbation
PR, which appears in deriving the correlation function of
the inflaton field in the vacuum state. For the tachyon field
this parameter is defined as

PR ¼
�

H2

2π _ϕ

�

2 1

Zs
; (18)

where Zs ¼ Vð1 − _ϕ2Þ−3=2 [27]. Applying a slow-roll
approximation in (18) and using Eqs. (10) and (11), one
can obtain

PR ≈
�

H2

2π _ϕ

�

2 1

V
¼ −3H5

4π2 _V
: (19)

When someone deals with perturbation in cosmology a
few special parameters have to be identified. The first one is
the scalar spectral index ns which is related to the scalar
power spectrum via the relation ns − 1 ¼ d lnPR=d ln k,
where d ln k ¼ dN ¼ Hdt [28]. With attention to the
definition of PR in the slow-roll approximation, we reach to

ns ≈ 1þ 5 _H
H2

− V̈

H _V
¼ 1þ 2ðη − εÞ: (20)

The second interesting parameter is the running in the scalar
spectral index parameter nrun, which has been indicated by
the one-year to seven-year data sets of the Wilkinson
Microwave Anisotropy Probe (WMAP) and can be obtained
via nrun ¼ dns=d ln k. Thus, with attention to (ns) one can
reach the equation below

nrun ≈
2

H
ð_η − _εÞ: (21)

So far we have only studied the scalar perturbations. But
how about tensor contributions? In fact the primordial
gravitational waves are these tensor perturbations which
are essentially equivalent to two massless scalar fields. Thus,
the power spectrum of tensor perturbations can be written as

Pg ¼ 8

�

H
2π

�

2

: (22)

The third special parameter we deal with is the tensor to
scalar ratio r which, by definition, and using Eqs. (19) and
(22) becomes

r ¼ Pg

PR
≈ 16ε: (23)

A. Numerical discussion

Although we could not obtain a straight relation between
r and ns, we can numerically illustrate some trajectories in
the r − ns plane if we fix our model parameters, λ and A.
Since in the logamediate inflationary model we only have a
lower limit for λ, we chose the values λ ¼ 2, 10, 20, 50 to
have a general comparison with the work of Ref. [2]. In
Fig. (1), we have plotted four curves related to these values
of λ where, in each case, we have fixed the second model
parameter A arbitrarily as they satisfy the condition (15).
The solid yellow, dashed black, dashed-dotted green, and
long-dashed red curves are related to the combinations
ð2;10−1Þ, ð10; 5 × 10−12Þ, ð20; 4 × 10−28Þ, and ð50; 10−90Þ,
respectively. It appears that the main difference between
using a standard scalar field in a logamediate inflationary
model [2] and in a tachyonic field, is that in the latter, the
transition from ns < 1 to ns > 1 starts at smaller values of λ
in comparison to the former. We should mention that these
curves have been plotted for as large as possible values
of A satisfying (15) and if we choose some smaller values,
then the curves move to the left. Thus, for the cases with
ns > 1 we can find some combinations of ðλ; AÞ that in
which the curves behave as a Harrison-Zel’dovich spec-
trum, i.e., ns ¼ 1. In Fig. (2), the dashed-dotted green and
long dashed red curves are related to the combinations
ð20; 2 × 10−28Þ and ð50; 5 × 10−92Þ, respectively.
Also, in Figs. (1) and (2) the trajectories have been

compared with 68% and 95% confidence regions from
observational data, i.e., five-year (blue-contours) and
seven-year (red-contours) WMAP data sets, which have

FIG. 1 (color online). The trajectories r − ns for different
combinations of ðλ; AÞ. They have been compared with the
five-year (blue regions in background) and seven-year (red regions
in foreground) data sets ofWMAP. In each case the contours show
68% and 95% confidence regions [29]. The solid yellow, dashed
black, dashed-dotted green, and long dashed red curves are related
to the combinations ð2; 10−1Þ, ð10; 5 × 10−12Þ, ð20; 4 × 10−28Þ,
and ð50; 10−90Þ, respectively. Transition from ns < 1 to ns > 1
takes place at smaller values of λ in comparison to [2].
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been defined at k0 ¼ 0.002 Mpc−1 [29]. According to these
observational data, an upper limit for r has been found. This
upper bound from the five-year WMAP data set is r < 0.43
whereas for the seven-year data a stronger limit has been
obtained as r < 0.36. In Fig. (1), the trajectories related to
the combinations ð2;10−1Þ, ð10;5×10−12Þ, ð20; 4 × 10−28Þ,
and ð50; 10−90Þ, enter the seven-year 95% confidence
region at r≃ 0.25, 0.28, 0.39, and 0.43, respectively. On
the other hand, we can obtain the number of e-folds related
to each one of these values of r. One can do this work
numerically by first calculating when ε ¼ 1, which is the
condition of the beginning of inflation in our model, and
then replacing it in (16). The resulting equation with (23)
gives the values ofN ≃ 10175, 65, 16, and 13, respectively.
These values are proportional to the time spent by the
tachyon field in the region of the r − ns plane allowed by
the data and in each case our model is viable for larger
values of the related N.
The solid blue line in Fig. (2) indicates the case in which

we have considered the combination ð60; 3 × 10−109Þ and
that for λ > 60 it means the model tends to exit our
observational contours unless we decrease the value of A
much more.
Figure (3) shows the dependence of the running of the

scalar spectral index on the scalar spectral index parameter
to the lowest order for some combinations. Again the solid
yellow, dashed black, dashed-dotted green, and long
dashed red curves are related to the combinations

ð2;10−1Þ, ð10;5×10−12Þ, ð20;4×10−28Þ, and ð50; 10−90Þ,
respectively. These curves have been compared with the
contour plots from the seven-year WMAP data set [29] in
which the negative values have been preferred. The seven-
year data set implies that in models with only scalar
fluctuations, the marginalized value for the parameter
nrun is approximately −0.034 [29,30].
Also, it is obvious from this figure that for the combi-

nation ð2; 10−1Þ, the model does not show any running in
the scalar spectral index, at least in the lowest order.

IV. IS THE MODEL REALISTIC?

As noted in the Introduction, the tachyonic potential has
a special behavior. It starts from an unstable maximum at
ϕ → 0 and along its evolution dV

dϕ < 0 until it approaches
zero when ϕ → ∞. These are some motivations from string
theory. To see how well motivated our model potential in
(12) is, first we derive _H from (1) as

_H ¼ Aλðln tÞλ−1t−2
�

λ − 1

ln t
− 1

�

: (24)

Now, using (7) we obtain

_ϕ2 ¼ 2

3Aλ
ðln tÞ1−λ

�

1þ 1 − λ

ln t

�

: (25)

At late times, one can neglect the second term in paren-

theses above and consider _ϕ ¼
ffiffiffiffiffiffi

2
3Aλ

q

ðln tÞ1−λ2 . But, integrat-
ing does not give us a good result. Assuming

α ¼
ffiffiffiffiffiffi

2
3Aλ

q

and β ¼ 1−λ
2

one can obtain

FIG. 3 (color online). The trajectories nrun − ns for different
combinations of ðλ; AÞ. They have been compared with the five-
year WMAP data set in two cases with and without considering
tensor contributions. In each case the contours show 68% and
95% confidence regions. The solid yellow, dashed black, dashed-
dotted green, and long dashed red curves are related to the
combinations ð2; 10−1Þ, ð10; 5 × 10−12Þ, ð20; 4 × 10−28Þ, and
ð50; 10−90Þ, respectively.

FIG. 2 (color online). The trajectories r − ns for different
combinations of ðλ; AÞ. They have been compared with the
five-year (blue regions in background) and seven-year (red
regions in foreground) data sets of WMAP. In each case the
contours show 68% and 95% confidence regions [29]. The
dashed-dotted green and long dashed red curves which indicate
a nearly Harrison-Zel’dovich model are related to the combina-
tions ð20; 2 × 10−28Þ and ð50; 5 × 10−92Þ, respectively. The solid
blue line has been plotted for the combination ð60; 3 × 10−109Þ
and shows an upper bound for λ in which the model is exiting the
observational data. For larger values of λ, the model will be
consistent with the data if we decrease enough of the other model
parameter A.
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ϕ − ϕ0 ¼ α½tðln tÞβ − βtðln tÞβ−1 þ βðβ − 1Þtðln tÞβ−2
− βðβ − 1Þðβ − 2Þtðln tÞβ−3 þ � � �� (26)

and using this, we cannot get VðϕÞ, explicitly.
In another approach, assuming _ϕ2 ¼ _Φ in (25), one can

integrate and reach to the explicit function

ΦðtÞ ¼ 2

3Aλ
tðln tÞ1−λ (27)

and substituting this into (12) gives us VðΦÞ ¼ 4
3
Φ−2.

Although this form of potential is of interest, the thing
we need is the behavior of VðϕÞ and since we cannot relate
the two functions ϕðtÞ and ΦðtÞ, we cannot establish VðϕÞ
even approximately.
So, we chose the numerical approach to show how our

model is realistic. We can do this using (27), VðΦÞ ¼ 4
3
Φ−2,

and _Φ ¼ _ϕ2. Also, to do this we should fix some of our
model parameters such as A and λ. In Fig. (4) we have
shown VðϕÞ for all combinations of ðλ; AÞ which we have
used in Figs. (1) and (3), i.e., ð2; 10−1Þ, ð10; 5 × 10−12Þ,
ð20; 4 × 10−28Þ, and ð50; 10−90Þ. It is obvious from these
plots that the general conditions for the string theory
tachyon field noted above are satisfied. Indeed, we can
say that our model potential is a well-motivated tachyon
potential and the model under consideration is realistic.
Also, we can see that increasing in λ leads to more smooth
behavior of VðϕÞ.

V. CONCLUSION

In this work we studied the logamediate inflation in the
presence of the tachyon field. In the slow-roll approxima-
tion we derived the effective tachyon potential and the

FIG. 4 (color online). The trajectories VðϕÞ for different combinations of ðλ; AÞ, upper-left: ð2; 10−1Þ, upper-right: ð10; 5 × 10−12Þ,
bottom-left: ð20; 4 × 10−28Þ, and bottom-right: ð50; 10−90Þ. All necessary conditions for a tachyonic potential have been satisfied.
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slow-roll parameters. Also, the number of e-folds which
indicates how long inflation takes was obtained.
Starting with a perturbed line element we investigated

our model in the context of perturbation theory. We
calculated some important parameters such as scalar
spectral index ns, its running nrun and tensor to scalar
ratio r in our model. Then, we plotted some curves for
different combinations of our model parameters (λ, A) and
compared them with some observational data. From graph
r − ns we concluded that our model is in a good agreement
with observations for different combinations of the model

parameters such as from ð2; 10−1Þ to ð60; 3 × 10−109Þ.
Also, one can find some combinations that result in the
Harrison-Zel’dovich spectrum, i.e., ns ≃ 1, for example
ð20; 2 × 10−28Þ and ð50; 5 × 10−92Þ.
In the last section we investigated whether our model and

especially the resulting tachyonic potential is realistic or
not. We could not do this analytically but the numerical
discussion was useful. In admissible combinations of
ðλ; AÞ, which we have used in this article, we could show
that the general conditions of a tachyon potential are
satisfied in our model.
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