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We investigate the growth of the large-scale structure in the superfluid Chaplygin gas (SCG) model. Both
linear and nonlinear growth, such as σ8 and the skewness S3, are discussed. We find the growth factor of
SCG reduces to the Einstein–de Sitter case at early times while it differs from the cosmological constant
model (ΛCDM) case in the large a limit. We also find there will be more stricture growth on large scales in
the SCG scenario than in ΛCDM and the variations of σ8 and S3 between SCG and ΛCDM cannot be
discriminated.

DOI: 10.1103/PhysRevD.89.063014 PACS numbers: 95.36.+x, 98.65.Dx, 98.80.-k

I. INTRODUCTION

Awealth of astronomical observations indicated that the
Universe is experiencing accelerated expansion. Assuming
the validity of general relativity on large scales, an
unknown energy component, the dark energy, is usually
introduced to explain the accelerated expansion. The
simplest candidate is the cosmological constant model
(ΛCDM) that is consistent with most of the current
astronomical observations but suffers from the cosmologi-
cal constant problem [1] and age problem [2]. It is thus
natural to study more complicated cases, such as models
allowing a time evolution of the dark energy component:
quintessence, phantom, k-essence, quintom, tachyon, and
other scalar fields. Recently, superfluid Chaplygin gas
(SCG), a model unified dark matter and dark energy,
was proposed [3]. SCG involves the Bose-Einstein con-
densate as dark energy possessing the equation of state
(EoS) of Chaplygin gas, and an excited state acts as dark
matter. Though the condensate behaves like Chaplygin gas
[4], the evolution of the Universe provided by SCG is
different from that in the model with Chaplygin gas as dark
energy as well as from that in the model with Chaplygin gas
unified dark matter and dark energy [3]. In Chaplygin gas
unified dark matter and dark energy, the negligible sound
speed that produces unphysical oscillations and an expo-
nential blowup in the dark matter power spectrum at present
[5]. This problem was solved for the generalized Chaplygin
gas model by decomposing the energy density into dark
matter and dark energy [6]. Recently, observational con-
straints on the generalized Chaplygin model have been
considered in [7]. SCG has been analyzed from the point of
view of state finder [8] and has been constrained by using
observational data [9].

Dark energy can affect the expansion rate causing
geometrical effects that can be revealed though distance
measurements, and can also affect structure formation that
can be quantified by the growth factor. Thus, structure
formation will be affected by the amount of dark energy
and by its dynamical evolution over cosmological history.
In this paper we study the large-scale structure growth in
the SCG scenario from the point of view of gravitational
collapse. The linear and nonlinear growth can be related to
observations and hence lead to observational constraints,
such as the skewness of the density field and the rms
fluctuations on a sphere of 8 Mpc h−1 [10]. We probe the
significance of the SCG dark energy component throughout
the epoch during which large-scale structures grow.
The rest of the paper is organized as follows. In Sec. II,

we sketch the derivation of the spherical collapse formal-
ism. In Sec. III, we review the SCG scenario. In Sec. IV, we
investigate gravitational growth and the large structure in
SCG cosmology. Conclusions and discussions are pre-
sented in Sec. IV.

II. GRAVITATIONAL COLLAPSE

To study the gravitational growth of the large-scale
structure in SCG, we first briefly describe the usual
formalism. The nonlinear equation for dust has been used
in the context of structure formation [11,12] and for the
study of the spherical and ellipsoidal collapse [13,14]. The
linearized equation was presented in [15] for dust and
relativistic matter and in [16] for a general model with
constant EoS. The spherical collapse model has been
considered in [17,18] for several dark energy scenarios
and in [19,20] for nonstandard cosmologies and general-
ized Chaplygin gas (GCG) dark energy.
We consider a homogeneous and isotropic Friedmann-

Lemaître-Robertson-Walker (FLRW) universe with scalar
factor a,
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ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1þ Kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
; (1)

where the spatial curvature constant K ¼ þ1, 0, and −1
correspond to a closed, flat, and open universe, respec-
tively. We define k2 ¼ 8πG and use the units c ¼ 1
throughout this paper.
To obtain the equation of motion for the density contrast,

δ ¼ ρ=ρ̄ − 1 with ρ̄ the mean background energy density,
we resort to the Raychaudhuri equation, which in general
takes the form

_Θþ 1

3
Θ ¼ ωμνω

μν − σμνσ
μν þ Rμνuμuν; (2)

where uμ is the fluid’s 4-velocity, Θ≡∇μuμ, σμν is the
shear tensor, and ωμν is the vorticity tensor. For a shear-free
and nonrotating fluid, σμν ¼ 0 and ωμν ¼ 0, which is the
case we are interested in here, and assuming that the
geometry of the Universe is of the FLRW form and then
Θ ¼ 3H with H the local Hubble rate, we get

_Θþ 1

3
Θ2 ¼ 3ðH2 þ _HÞ: (3)

Choosing the coordinate system such that the 4-velocity
of the fluid is uμ ¼ ð1; _a ~xþ~υÞ with ~υ the peculiar velocity,
we have

Θ≡∇μuμ ¼
1

a
∇ · ð _a ~x þ ~υÞ ¼ 3

_a
a
þ θ

a
¼ 3H̄ þ θ

a
; (4)

where θ≡∇ · ~υ and H̄ is the background Hubble rate.
∇x ¼ 1

a∇X with X the Friedman coordinate. In the FLRW
spacetime therefore, the Raychaudhuri equation can be
rewritten as

3ðH̄2 þ _̄HÞ þ H̄
θ

a
þ

_θ

a
þ 1

3

θ2

a2
¼ 3ðH2 þ _HÞ: (5)

Terms on the left hand side of Eq. (5) are composed of
background quantities, while terms on the right hand side
of Eq. (3) are composed of local perturbed quantities.
Equation (5) can be reexpressed as

H̄
θ

a
þ

_θ

a
þ 1

3

θ2

a2
¼ 3ðH2 þ _HÞ − 3ðH̄2 þ _̄HÞ

¼ −
1

2
k2½ðρ − ρ̄Þ þ 3ðP − P̄Þ�: (6)

To obtain Eq. (6), nothing but a FLRW spacetime filled
with a perfect fluid is assumed; hence it can be applied to
nonstandard cosmologies. In particular, no connection
between the energy content and the geometry has been
assumed, so we can study the evolution of the density
perturbation by means of the continuity equation and the

Friedmann equation, while not needing to use Einstein’s
equations.
In a matter-dominated universe, the continuity equation

for a nonrelativistic fluid (ρ ≫ P) is given by [21]

d
dτ

δð~x; τÞ þ∇ · ½ð1þ δð~x; τÞÞ~υð~x; τÞ� ¼ 0; (7)

where dτ ¼ 1
a dt is the conformal time. This continuity

equation can also be written as

dδ
dτ

þ ð1þ δÞθ ¼ 0: (8)

Then Eq. (6) can be rewritten as

d2δ
dτ2

þ _a
dδ
dτ

−
4

3

1

1þ δ

�
dδ
dτ

�
2

¼ −3a2ð1þ δÞ½ðH2 þ _HÞ

− ðH̄2 þ _̄HÞ�: (9)

Re-scaling the time variable, η ¼ ln a, we obtain

d2δ
dη2

þ
�
2þ

_̄H
H̄2

�
dδ
dη

−
4

3

1

1þ δ

�
dδ
dη

�
2

¼ −3ð1þ δÞ ðH
2 þ _HÞ − ðH̄2 þ _̄HÞ

H̄2
: (10)

Expand the H2 þ _H term in terms of δ and then the whole
right hand side of Eq. (10) as

3ð1þ δÞðH
2þ _HÞ− ðH̄2þ _̄HÞ

H̄2
≡ 3ð1þ δÞ

X
n¼1

cnδn: (11)

To study how a small perturbation grows with time at
different orders in perturbation theory, we expand δ as

δ ¼
X∞
i¼1

δi ¼
X∞
i¼1

DiðηÞ
i!

δi0; (12)

where δ0 is the small perturbation. According to this
equation and expanding the perturbation in Eq. (11), we
obtain the linear equation

D00
1 þ

�
2þ

_̄H
H̄2

�
D0

1 þ 3c1D1 ¼ 0; (13)

where the prime denotes a derivative with respect to the
natural logarithm of the scale factor. For ΛCDM, the linear
equation (13) reduces to

D00
1 þ

�
2 −

3

2

Ωm0

Ωm0 þΩΛ0a3

�
D0

1 −
3

2

Ωm0

Ωm0 þ ΩΛ0a3
D1 ¼ 0;

(14)
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where Ωm0 ≡ 8πGρ0=ð3H2
0Þ and ΩΛ0 ≡ Λ=ð3H2

0Þ. At early
times, a ≪ 1, the ΛCDM universe reduces to the Einstein–
de Sitter (EdS) universe (ΩΛ0 ¼ 0) with solutions

D1 ¼ C1aþ C2a−3=2; (15)

here and in the following content Ci are integral constants.
These solutions reproduce the usual linear growth D1 ∼ a
and the decaying solutions D1 ∼ a−3=2. The second order
equation is found to be

D00
2 þ

�
2þ

_̄H
H̄2

�
D0

2 −
8

3
ðD0

1Þ2 þ 3c1D2

þ 6ðc1 þ c2ÞD2
1 ¼ 0: (16)

One can go on to arbitrary order by using the solutions to
the lower order equations. For ΛCDM, the second order
equation (16) reduces to

D00
2 þ

�
2 −

3

2

Ωm0

Ωm0 þ ΩΛ0a3

�
D0

2 −
8

3
ðD0

1Þ2

−
3

2

Ωm0

Ωm0 þ ΩΛ0a3
D2 −

3Ωm0

Ωm0 þΩΛ0a3
D2

1

¼ 0: (17)

For Gaussian initial conditions, the skewness of the density
field at large scale is related to the second-order equations,
defined as

S3 ¼ 3
D2

D2
1

: (18)

For an EdS universe the skewness can be calculated
analytically: SEdS3 ¼ 34

7
.

III. SUPERFLUID CHAPLYGIN GAS MODEL
WITH FLRW SPACETIME

It was argued in [3] that SCG does not depend on details
of microscopic structure of the quantum liquid and then
capitalizes on effective macroscopic quantities. SCG
involves two independent flows: the coherent motion of
the ground state named superfluid component, and a
normal component produced by the quasiparticle gas.
The particle number current and the energy-momentum
tensor are, respectively, represented as

nμ ¼ ncVμ þ nnUμ; (19)

Tμν ¼ μncVμVν þWnUμUν − Pgμν; (20)

where μ is the chemical potential, nc and nn are the particle
density of the superfluid and of the normal component,
respectively, Vμ and Uμ are the unit 4-velocities of the
superfluid and the normal component. In general, a

cosmological model in which two perfect fluids flow with
distinct 4-velocities should give rise to anisotropic pres-
sures [22–24], and it has been shown that the universe
would acquire some anisotropic characteristics and its
geometry will deviate from the standard FLRW one if
there is a slight difference between the 4-velocities of
the dark energy and dark matter [25]. However, if the two
4-velocities are parallel, which is the case we are interested
in here, the spacetime can be homogeneous. Second, the
observational data do not forbid the anisotropic evolution at
the early stage but constraints are considerable, so in any
realistic model the effect of the anisotropy at the early stage
may disappear rapidly. The consideration of an anisotropic
behavior is useful to study all sides of the model and to get
constraints to its parameters, but this topic is beyond the
scope of this paper. The generalized pressure is assumed to
be with the form

Pðμ; β; γÞ ¼ pcðμÞ þ pnðμ; β; γÞ; (21)

where γ ¼ VμUμ is associated with the relative motion of
the components, and β is the inverse temperature with
respect to the reference frame comoving to the excitation
gas. The excited state is described by the relations

μnn ¼ γð1 − c2s ÞWn; pn ¼
c2sWn

1þ ν
; (22)

where the adiabatic speed of sound is c2s ¼ 4M2=ρ2c with
M a constant, and ν is a properly polytropic index. The
assumption of pn ∝ Tνþ1 is a generalization of the depend-
ence pn ∝ T4 followed by the relation pn ¼ c2sWn=4. The
background superfluid obeys

nc ¼
ffiffiffiffiffi
λ

M

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2c − 4M2

q
; pc ¼ −

4M2

ρc
; (23)

In a spatially flat, homogeneous, and isotropic FLRW
universe, the superfluid and the normal velocities are equal
(γ ¼ 1). Then Einstein equations take the forms

H2 ¼ 8πG
3

ρtot; (24)

ä
a
¼ −

4πG
3

ðρtot þ ptotÞ; (25)

where ρtot¼ρcþρn with ρn¼Wn−pn, and ptot ¼ pc þ pn.
The local energy-momentum conservation ∇μTμν ¼ 0 and
the particle number conservation ∇μnμν ¼ 0, respectively,
lead to

_ρtot ¼ −3Hðρtot þ ptotÞ; (26)

_ntot ¼ −3Hntot: (27)
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Taking into account Eqs. (22) and (27), we can rewrite
Eqs. (24) and (26) as the following forms:

H2 ¼ 1

3ð1þ νÞ
�
1

ρ
þ k
a3

�
νρffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

p
ρ

��
; (28)

3H

�
1þ ν −

k
a3

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − 1

p �

þ _ρ

ρ

�
1 −

k
a3

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 − 1
p −

νρ2

ðρ2 − 1Þ3=2
��

¼ 0; (29)

where ρ ¼ ρc=ð2MÞ and k ¼ n0=ð2
ffiffiffiffiffiffiffi
Mλ

p Þ. Given any value
of the parameter ν, one can have a different solution for the
fluid dynamics; see, for example, that the quasiparticle
behaves like dust (pn ¼ 0) in the limit ν → ∞, which is the
case we are interested in here. In this case, Eqs. (28) and
(29) can be solved analytically and yield to

ρc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

ða3 þ k0Þ2

s
; (30)

ρn ¼
k0
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

ða3 þ k0Þ2

s
: (31)

With these two equations, Eq. (28) turns out to be

H2 ¼ 8πG
3

�
1þ k0

a3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

ða3 þ k0Þ2

s
: (32)

Equation (25) can be rewritten as

_H ¼ −4πG
�
1þ k0

a3
−

ða3 þ k0Þ2
k2 þ ða3 þ k0Þ2

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

ða3 þ k0Þ2

s
: (33)

If we define E2 ¼ H2=H2
0 and Ωc ¼ 8πGρ c0=ð3H2

0Þ, since
Eðz ¼ 0Þ ¼ 1, there is a relation between Ω c and
k0: Ωc ¼ 1=ð1þ k0Þ.

IV. GRAVITATIONAL GROWTH AND LARGE
STRUCTURE IN SCG SCENARIO

In the following, we will discuss the gravitational growth
and constraints coming from the linear and nonlinear
aspects of structure formation in the SCG scenario, such
as S3 the skewness of the density field and σ8 the rms
fluctuations on a sphere of 8 Mpc h−1 by using the analysis
presented above.

A. Gravitational growth

Assume that the dark energy component of SCG affects
large-scale structure growth only through its effect on the
background evolution, while the fluctuations of the dark
matter component of SCG are responsible for the large-
scale structure. According to Eq. (11), we get

c1 ¼ −
4πG
3

ρ̄n
H̄2

¼ −
1

2

k0
a3 þ k0

; (34)

c2 ¼ 0: (35)

From Eqs. (32) and (33), the term appearing in front of the
δ0 in the perturbation equation (10) is found to be

2þ
_̄H
H̄2

¼ 1

2
þ 3

2

a3ða3 þ k0Þ
k2 þ ða3 þ k0Þ2

: (36)

At early times (a ≪ 1), SCG reduces to the EdS (also
ΛCDM) case with the solution given by Eq. (15). In the
large a limit, the linear equation (13) in SCG reduces to

D00
1 þ 2D0

1 −
3

2

k0
a3

D1 ¼ 0: (37)

Accordingly, the solution to this equation is

D1 ¼
c3
a
F1

�
2

3
; ξðaÞ

�
þ c4

a
F2

�
2

3
; ξðaÞ

�
; (38)

where F1 and F2 are the Bessel functions of the first and
second kinds with ξðaÞ ¼ 1

3
i

ffiffiffiffiffiffiffi
6k0

p
a−3=2, respectively.

In Figs. 1 and 2, we plot numerically the linear growth
factor D ¼ D1ðzÞ=D1ð0Þ of the perturbations for different
values of k0 (with k ¼ 0.173 obtained in [9]) and k (with
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0.16

log
10

a

lo
g

10
D

/a

k
0
=0.219

k
0
=0.287

k
0
=0.34

Ω
m

=0.31

FIG. 1 (color online). Linear growth D (normalized with the
scale factor a) forΩm0 ¼ 0.31 [26] inΛCDM and different values
of k0 with k ¼ 0.173 in SCG.
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k0 ¼ 0.287 obtained in [9]). The linear growth is normal-
ized with the scale factor, a, the growth rate in the EdS
universe (it is also equal to the growth rate in the ΛCDM
universe at early times). The differential equations are
solved numerically in the region of cosmological interest
a ¼ 0.001 to a ¼ 1. The initial condition is chosen such
that at a ¼ 0.001 the standard exponential solution,
D1 ∼ a, is reached. The form of the linear growth factor
is similar to the case of ΛCDM. The smaller the value of k0
(or k) is, the larger the deviation of the growth factor
between SCG and ΛCDM is, but the variation is observa-
tionally insignificant, being at best less than 4%. There will
be more stricture growth on the large scale in the SCG
scenario than in ΛCDM.

B. Amplitude normalization: σ8
Another important parameter related to the growth is the

σ8 parameter, which is the rms matter density contrast in a
sphere with a comoving radius of 8h−1 Mpc at present,
where h is the usual dimensionless Hubble constant in units
of 100 km s−1 Mpc−1. The rms mass fluctuation σ8 is
defined as

σ2ðR; zÞ ¼
Z

∞

0

dk
k
W2ðkRÞΔ2ðk; zÞ; (39)

where WðkRÞ is the window function defined as

WðkRÞ ¼ 3

�
sinðkRÞ
ðkRÞ3 −

cosðkRÞ
ðkRÞ2

�
r; (40)

and

Δ2ðk; zÞ ¼ 4πk3Pδðk; zÞ; (41)

where Pδðk; zÞ is the primordial matter power spectrum.
The function σ8 is related to DðzÞ as

σ8ðzÞ ¼ DðzÞσ8ð0Þ: (42)

Here the value of σ8ð0Þ is normalized to the ΛCDM
model according to σ8ð0Þ ¼ D1ð0Þ

D1;ΛCDMð0Þ σ8;ΛCDMð0Þ with
σ8;ΛCDMð0Þ ¼ 0.83 [26].
In Figs. 3 and 4, the evolution of σ8ðzÞ in the SCG

scenario is plotted numerically. We can see that the value

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

log
10
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10
D

/a

k=0.065
k=0.173
k=0.282

Ω
m

=0.31

FIG. 2 (color online). Linear growth D for Ωm0 ¼ 0.31 in
ΛCDM and different values of k with k0 ¼ 0.287 in SCG.
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FIG. 3 (color online). The evolution of σ8ðzÞ with different
values of k0 and k ¼ 0.173 in SCG, comparing with the
ΛCDM case.
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FIG. 4 (color online). The evolution of σ8ðzÞ with different
values of k and k0 ¼ 0.287 in SCG, comparing with the
ΛCDM case.
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of σ8ð0Þ is very close to 0.8 when the value of k0 (or k)
increases. We also plot σ8;ΛCDMðzÞ for comparison. The
variation between σ8ðzÞ and σ8;ΛCDMðzÞ almost cannot be
discriminated at z ∼ 1. The deviation is observationally
insignificant even at z ¼ 0, being at best less than 6%
when k0 (or k) takes values changing from the best-fit
value in the 1σ range obtained in [9]. In other words, the
value of σ8ð0Þ is compatible with that of ΛCDM, and we
cannot use σ8ðzÞ to distinguish the SCG model from the
ΛCDM model at 68.3% confidence level. We can con-
clude, however, that σ8ð0Þ in the SCG scenario is smaller
than that of the ΛCDM model at 68.3% confidence level.
Significantly smaller σ8 have been found at low redshift
by velocity fields [27] and some weak lensing studies

[28], which can be more easily accounted for by using the
SCG cosmological model.

C. The skewness S3
Now we investigate the nonlinear aspects of the large-

scale structure formation, such as the skewness of the
density field. In the large a limit, the second order equation
(16) in SCG reads

D00
2 þ 2D0

2 −
8

3
ðD0

1Þ2 −
3k0
2a3

D2 −
3k0
a3

D2
1 ¼ 0: (43)

Substituting Eq. (39), the solution to this equation is

D2 ¼
c5
a
F1

�
2

3
; ξðaÞ

�
þ c6

a
F2

�
2

3
; ξðaÞ

�
þ πk0

3a

�
F1

�
2

3
; ξðaÞ

�Z �
−

4

a4
F2

�
2

3
; ξðaÞ

��
c23F

2
1

�
−
1

3
; ξðaÞ

�

−
3c23
4

F2
1

�
2

3
; ξðaÞ

�
þ 2c3c4F1

�
−
1

3
; ξðaÞ

�
F2

�
−
1

3
; ξðaÞ

�

−
3

2
c3c4F1

�
2

3
; ξðaÞ

�
F2

�
2

3
; ξðaÞ

�
þ c24F

2
2

�
−
1

3
; ξðaÞ

�
−
3

4
c24F

2
2

�
2

3
; ξðaÞ

���
dx

− F2

�
2

3
; ξðaÞ

�Z �
−

4

a4
F1

�
2

3
; ξðaÞ

��
−
3c23
4

F2
1

�
2

3
; ξðaÞ

�

−
3

2
c3c4F1

�
2

3
; ξðaÞ

�
F2

�
2

3
; ξðaÞ

�
þ c23F

2
1

�
−
1
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From the first and the second order equations, we see that a
SCG universe behaves fundamentally differently from the
ΛCDM and GCG universes: at early times (a ≪ 1), SCG
and ΛCDM reduce to the EdS case, whereas GCG does not;
at very late times (a ≫ 1), GCG reduces to the ΛCDM
case, whereas SCG does not.
In Figs. 5 and 6, we plot the evolution of the skewness

S3 in the SCG scenario. To solve the second order
equation (43) numerically, we chose the initial condition
as S3 ¼ 34=7 at a ¼ 0.001; namely, the standard solution,
the EdS universe, is recovered at the early time. It is
obvious that the deviation of skewness S3ð0Þ between the
SCG and ΛCDM models is very small, being at best less
than 1% when k0 (or k) takes values changing from the
best-fit value in the 1σ range obtained in [9]. For a ≤ 0.1,
the evolution of S3 in the SCG and ΛCDM models is
almost the same. Current estimations for S3 agree with the
standard predictions but with large uncertainties, of order
20%–30% [29]. Thus current observations on S3 cannot be
used to distinguish different cosmological models. Future
measurement of S3, after removing biasing uncertainties,
could be used to constrain the parameters of cosmological
models [30].

−3 −2.5 −2 −1.5 −1 −0.5 0
4.852

4.854

4.856

4.858

4.86

4.862

4.864

4.866

4.868

log
10

a

S
3

Ω
m

=0.31

k
0
=0.219

k
0
=0.287

k
0
=0.34

FIG. 5 (color online). The evolution of S3ðzÞ with different
values of k0 and k ¼ 0.173 in SCG, comparing with the
ΛCDM case.
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V. SUMMARY AND CONCLUSIONS

Thegrowth of the large-scale structure in SCGcosmology
has been studied. SCG with two free parameters is a
phenomenological viable model in which the first and the
secondorder perturbation equationshavebeenobtained.The
linear growth factor, σ8, and S3 are important quantities in
studies of the large-scale structure, and all of them were
investigated here.

The form of the linear growth factor is similar to the
ΛCDM case. There is more stricture growth on large scales
in the SCGmodel than in ΛCDM. The smaller the values of
parameters are, the larger the deviation of the growth factor
between SCG and ΛCDM is, but the variation is at best less
than 4%.
The variation between σ8ðzÞ and σ8;ΛCDMðzÞ cannot be

discriminated, being at best less than 6% when parameters
of SCG take values changing from the best-fit value in the
1σ range obtained in [9]. The σ8ð0Þ in the SCG scenario is
smaller than that of the ΛCDM model, which can more
easily account for the smaller σ8 found at low redshift by
some weak lensing studies and velocity fields.
We also have found that the deviation of skewness S3

between the SCG and ΛCDM models is very small, being
at best less than 1% when the parameters change from the
best-fit value in the 1σ range obtained in [9]. Thus current
observations of S3 cannot be used to distinguish the SCG
model from ΛCDM.
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