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According to a generalization of black hole thermodynamics to a cosmological framework, it is possible
to define a temperature for the cosmological horizon. The hypothesis of thermal equilibrium between the
dark energy and the horizon has been considered by many authors. We find the restrictions imposed by this
hypothesis on the energy transfer rate (Qi) between the cosmological fluids, assuming that the temperature
of the horizon has the form T ¼ b=2πR, where R is the radius of the horizon. We more specifically consider
two types of dark energy: Chaplygin gas (CG) and dark energy with a constant equation of state parameter
(wDE). In each case, we show that for a given radius R, there is a unique term Qde that is consistent with
thermal equilibrium. We also consider the situation where, in addition to dark energy, other fluids (cold
matter, radiation) are in thermal equilibrium with the horizon. We find that the interaction terms required
for this will generally violate energy conservation (

P
iQi ¼ 0).
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I. INTRODUCTION

In the late 1990s, observations of supernovae [1–3] have
suggested that the Universe is undergoing a state of
accelerated expansion. Since then, additional evidence
leading to the same conclusion have been found [4–12].
In the context of general relativity (GR), the equation of state
(EOS) parameter of a fluid, defined as the ratio of its pressure
over its energy density (w≡ p=ρ), must be smaller than
−1=3 in order to be able to drive the accelerated expansion of
the Universe. Since normal matter satisfies the strong energy
condition (w ≥ 0), this condition is not fulfilled. Hence, two
main approaches have been proposed to explain the accel-
eration: one of them consists to replace the GR by a modified
gravity theory (see e.g. Refs. [13–15]) and the other, to
keep GR while introducing a new cosmic fluid, known as
dark energy (see Ref. [16] and references therein), endowed
with a sufficiently large and negative EOS parameter
(wde < −1=3). Alternatively, it has also been proposed that
the (apparent) acceleration could be only an artifact caused
by the spatial inhomogeneity of the Universe (see e.g.
Refs. [17,18]).
The ΛCDM model is the simplest cosmological model

which provides a reasonably good fit to the observational
data. In this model, the two main components of the
Universe are currently a form of dark energy provided
by a cosmological constant (Λ) and a pressureless fluid
known as cold dark matter (CDM). In addition to these two
fluids, the Universe is also composed of ordinary matter
(radiation, baryons). However, despite the excellent agree-
ment with the observational data, the ΛCDM model is
facing two theoretical difficulties. The most serious one
concerns the value of the dark energy density and is known
as the “cosmological constant problem” [19]. Indeed, there
is a discrepancy of ∼123 orders of magnitude between the
value expected from theoretical computations and the value

inferred from observations (ρdeobs=ρdeth ∼ 10−123). The other
one, dubbed the “coincidence problem” [20], relies on the
observation that the values of the matter energy density
and of the dark energy density are currently of the same
order of magnitude. Unlike to the previous problem, this is
not incompatible with the theory. However, since the matter
energy density is diluted proportionally to the volume of
the Universe as it is expanding (ρm ∝ a−3) while the dark
energy density remains constant (ρde ¼ const), the period
of time during which ρm=ρde ¼ Oð1Þ corresponds to a very
narrow window in the Universe history. To currently lie in
this window, a fine tuning of the initial conditions of the
model is needed. However, it is worth mentioning that
about a decade before the discovery of the accelerated
expansion of the Universe, anthropic arguments were
already addressing both problems [19,21].
A possible way to circumvent these problems, without the

recourse to anthropic arguments, would be to allow the dark
energy density to vary in time (ρde ≠ const). It would then be
possible for the dark energy density to decrease from an
initial large value, consistent with the theoretical computa-
tion, to a smaller one, consistent with the current value
inferred from the observations. Moreover, that could also
extend duration of the period during which ρm=ρde ¼ Oð1Þ.
A variable dark energy density could be obtained or by
considering an EOS parameter wde different from −1, either
by allowing an energy transfer between the dark energy and
another fluid (or by considering these two ways together).
Several forms of dark energy models have been proposed,
including quintessence [22], phantom fields [23], tachyon
fields [24], Chaplygin gas [25], agegraphic dark energy [26]
and holographic dark energy [27], to name few.
To study the thermodynamical implications of these

models, the determination of the dark energy temperature
is a question that must inevitably be addressed. A hypothesis
often used [28,29] is that the dark energy temperature is
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proportional to that of the cosmological horizon (Tde ∝ Th).
Indeed, according to a generalization of black-hole thermo-
dynamics to a cosmological framework, it is possible to
define a temperature for the horizon which is related to its
surface gravity (see Sec. III A for more details). A stronger
hypothesis [30–42], albeit more motivated, consists in
considering that the dark energy fluid and the horizon are
in thermal equilibrium (Tde ¼ Th). An argument presented
in Ref. [30] and reused in Refs. [31–38] states that if this
were not the case, then the “energy would spontaneously
flow between the horizon and the fluid (or vice versa),
something at variance with the FRW geometry.” Following
this argument, some authors [35–38] have even extended this
hypothesis to the other fluids, assuming that the thermal
equilibrium between the horizon and a given fluid must hold
at least for late time.
Although this assumption may be questionable (especially

in regard to its extension to other fluids), the objective of
this paper is not to directly discuss of its validity. Instead, we
will demonstrate that in order to maintain thermal equilib-
rium between a given fluid and the horizon, a specific energy
transfer rate is required, which constitutes a restrictive
condition for its application.

II. DYNAMICS

A. Interacting fluids

In a Friedmann-Robertson-Walker (FRW) spacetime, the
continuity equations for a model allowing interactions
between the different cosmic fluids (dark energy, dark
matter, baryonic matter and radiation) are given by

_ρi þ 3Hð1þ wiÞρi ¼ Qi: (1)

If we treat the curvature as fictitious fluid, this equation can
also be used to describe the evolution of its energy density
ρk ≡ −3k=8πGa2.1 Since the Hubble term is defined as
H ¼ _a=a, where a is the scale factor, in absence of
interaction (Qi ¼ 0), the solution to this equation is

ρi ¼ ρi0a
−3ð1þwiÞ: (2)

Here, we have set a0 ¼ 1 (in this paper, the subscript 0
refers to the current value of a variable). The Friedmann
equations can be written as

H2 ¼ M−2
p

3

X
i

ρi; (3)

_H ¼ −
M−2

p

2

X
i

ð1þ wiÞρi; (4)

where Mp ¼ ð8πGÞ−1=2 is the reduced Planck mass
(throughout this paper, we will use a unit system where
ℏ ¼ kB ¼ c ¼ 1). The lhs of Eq. (1) has the same form as
in the noninteracting case, where H ≡ _a=a (a is the scale
factor) stands for the Hubble term, ρi, for the energy density
of a given fluid and wi ≡ pi=ρi (pi is the pressure), for the
equation of state (EOS) parameter of this fluid. The values
of these parameters are the usual ones for radiation
(wr ¼ 1=3), for curvature (wk ¼ −1=3) and, in absence
of interaction (see Sec. III B 3), for dark and baryonic
matter (wdm ¼ wb ¼ 0). For dark energy, wde is not
necessarily fixed to −1 as in the ΛCDM model and could
even be variable. The rhs of the equation represents the
possible interactions between the fluids. A positive value
(Qi > 0) represents a gain of energy for the fluid, and
negative value (Qi < 0), a loss. The ensemble of these
terms is subject to the energy conservation conditionP

iQi ¼ 0. It is to be noticed that the interaction is allowed
only between the real fluids. For the curvature, the
interaction term Qk must be zero, otherwise it would imply
that the curvature parameter k is variable, which would be
inconsistent with the FRW metric.

B. Types of dark energy

The exact nature of dark energy is not known and several
models have been proposed. In Sec. III B, we will obtain an
expression for the form of the interaction term which is
required to have a thermal equilibrium between a generic
type of dark energy and the cosmological horizon. To
provide a specific example, we will consider the case of the
Chaplygin gas (CG)2 which was the first form of dark
energy for which the hypothesis of the thermal equilibrium
with the horizon was considered [30]. AChaplygin gas [25]
is a fluid for which its pressure and energy density are
related through

pcg ¼ −
ρ2cg∞
ρcg

; (5)

where the constant ρcg∞ is the late-time value of ρcg. In
absence of interaction (Qcg ¼ 0), the solution to the
continuity equation is

ρcg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2cg∞ þ ðρ2cg0 − ρ2cg∞Þa−6

q
; (6)

1The curvature parameter k, whose dimensions are ðlengthÞ−2,
is negative for an open universe and positive for a closed one.

2We had previously also considered the example of holo-
graphic dark energy (HDE), but the hypothesis of thermal
equilibrium with the cosmological horizon is actually not con-
sistent for this form of dark energy. The entropy of the HDE is
related to the Bekenstein-Hawking entropy associated with
the horizon through Shde ¼ S3=4BH ∝ R3=2 [43,44], where R is the
horizon radius. We also know that in a volume V ∼ R3, the
thermal entropy of an effective quantum field theory is given by
Shde ∝ R3T3

hde [43]. Thus, the temperature of the HDE should
scale as Thde ∝ R−1=2 which is not consistent with the hypothesis
of thermal equilibrium since Thde ≠ Th ∝ R−1 (see Eq. (16).
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Equivalently, we can write

wcg ¼ −
�
ρcg∞
ρcg

�
2

¼ −
1

1þ ðρ2cg0=ρ2cg∞ − 1Þa−6 : (7)

At early times (a ≪ 1), the CG behaves like cold matter
(wcg ≈ 0) and at late times (a ≫ 1) like a cosmological
constant (wcg ≈ −1) providing a unified form of dark matter
and dark energy.
Since Eq. (7) is a function of the scale factor, as a

complement to CG, we will consider a second type of
dark energy for which the EOS parameter has a fixed
value (wDE).

III. THERMODYNAMICS

A. Cosmological horizon temperature

Since the seminal works of Hawking [45] and
Bekenstein [46] in the seventies, the thermodynamical
properties of black holes have been widely studied. One
of the most well known feature is that, as consequence of
the existence of an event horizon, the stationary (or
quasistationary) black holes behave like black bodies
emitting thermal radiation with a temperature proportional
to the value of the surface gravity evaluated on the horizon,

Th ¼
κ

2π
: (8)

A first extension of black hole thermodynamics to a
cosmological framework was done by Gibbons and
Hawking in Ref. [47] by considering de Sitter space. In
this case, the surface gravity on the event horizon is given
by the inverse of the horizon radius (RE ¼ a

R tend
t

dt
a ),

3

κ ¼ 1=RE ¼ ffiffiffiffiffiffiffiffiffi
3=Λ

p
, thus the temperature is given by

Th ¼
1

2πRE
: (9)

Unlike to de Sitter space, the event horizon is not always
well defined for FRW spacetime. However, it has been
argued [48,49] that it is actually the apparent horizon

(RA ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 − 1

3
M−2

p ρk

q
), and not the event horizon, that

is responsible for Hawking radiation (in the case of de Sitter
space, the two horizons coincide). It worth mentioning that
for de Sitter space, the event horizon radius has a constant
value, while for a FRW spacetime, the value of the apparent
horizon radius varies. To compute the surface gravity, this
could be problematic. Indeed, this quantity is usually
defined in terms of Killing horizons, which work well in

stationary (or quasistationary) situations. For the dynamical
situations where no such horizons exist, several definitions
have been proposed (see [50,51] for a review). If we
consider a generic spherically symmetric spacetime, the
line element is given by

ds2 ¼ habdxadxb þ ~r2dΩ2; (10)

where x0 ¼ t, x1 ¼ r, ~r ¼ aðtÞr and dΩ2 ¼ dθ2þ
sin2θdϕ2. For the FRW spacetime, the 2-dimensional
metric hab is given by diagð−1; a2=ð1 − kr2ÞÞ. A frequently
used definition of the surface gravity has been proposed by
Hayward in Ref. [52]:

κ ¼ 1

2
∇ ·∇~r ¼ 1

2
ffiffiffiffiffiffi
−h

p ∂að
ffiffiffiffiffiffi
−h

p
hab∂b ~rÞ: (11)

Here, the divergence and gradient refer to the two-
dimensional space normal to the spheres of symmetry.
An evaluation of this expression at ~r ¼ RA gives
κ ¼ ð1 − ϵÞ=RA, where ϵ≡ _RA=ð2HRAÞ. Thus the horizon
temperature is given by

Th ¼
1 − ϵ

2πRA
: (12)

An alternative definition [29] for the dynamical surface
gravity is

κ ¼ −
1

2
∂ ~rχ ¼ ~r

R2
A
; (13)

where χ ≡ hab∂a ~r∂b ~r.
4 At ~r ¼ RA, the surface gravity is

then given by κ ¼ 1=RA, and the horizon temperature by

Th ¼
1

2πRA
: (14)

Among the papers where a thermal equilibrium between the
horizon and the dark energy is considered, both Eq. (12)
[37–40] and Eq. (14) [32–35,41] are commonly used as a
definitions of the horizon temperature. Although it has been
argued [53] that the ϵ term can be neglected in certain
situations, these two expressions are generally different and
one can wonder whether one definition is better motivated
than the other. In favor of Eq. (14), it was shown in Ref. [54],
using the tunneling approach, that an observer inside the
apparent horizon of a FRW universe will see a thermal
spectrum with a temperature given by Th ¼ 1=ð2πRAÞ,
without the extra ϵ term. It is also interesting to notice that
using this expression for the temperature, it is possible to

3The upper integration limit is given by tend ¼ ∞ in an
eternally expanding model and by the time of the big crunch
in a recollapsing model. This expression may also be computed as
RE ¼ a

R
aend
a

da
H2a, where aend ¼ aðtendÞ.

4It is to be noticed that the radius of the apparent horizon, RA,
is defined as the value of ~r for which the scalar χ vanishes (which
implies that the vector∇~r is null on the apparent horizon surface).
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recover the second Friedmann equation [Eq. (4)] from the
first law of thermodynamics [53]. Some authors still consider
the event horizon as the relevant one and use Eq. (9) to define
the horizon temperature [30,31,36] (see however Ref. [42]
where Eq. (13) is evaluated at ~r ¼ RE, which leads to
Th ¼ RE=ð2πR2

AÞ). In Refs. [29,34,41], the horizon temper-
ature is assumed to be proportional to its de Sitter value, i.e.

Th ¼
b

2πRH
; (15)

where b is a constant parameter and RH the Hubble radius
(RH ¼ 1=jHj). It would be interesting to consider all these
different definitions, but for the sake of conciseness we will
restrict our attention (while keeping in mind that there is no
clear consensus on how the horizon temperature should be
defined and which horizon should be considered) to the case
where the temperature has the dependence on the horizon
radius given by

Th ¼
b

2πR
: (16)

Here R could stand for, with b ¼ 1, the event horizon radius
[Eq. (9)] and the apparent horizon radius [Eq. (14)], as well
for the Hubble radius [Eq. (15)].

B. Conditions for thermal equilibrium

To find the form of the energy transfer rateQi required to
maintain thermal equilibrium between a fluid, whose the
continuity equation is given by Eq. (1), and the cosmo-
logical horizon, we will first derive an equation for the
temperature evolution for this fluid. Our derivation is
similar to that presented in Ref. [55]. The starting point
is the Gibbs equation, TidSi ¼ dEi þ pidV. For simplicity

we will consider a comoving volume of unit coordinate
volume and hence a physical volume of V ¼ a3. Since the
energy of the fluid is given by Ei ¼ ρiV, we can rearrange
the Gibbs equation as

dSi ¼
ρi þ pi

Ti
dV þ V

Ti
dρi: (17)

From this expression for the entropy, we can show that the
integrability condition,

� ∂
∂V

�∂Si
∂Ti

�
Ni;V

�
Ni;Ti

¼
� ∂
∂Ti

�∂Si
∂V

�
Ni;Ti

�
Ni;V

; (18)

implies that

Ti

�∂pi

∂Ti

�
Ni;V

¼ ðρi þ piÞ þ V

�∂ρi
∂V

�
Ni;Ti

: (19)

Except for the cases where the derivatives vanish or are ill
defined (e.g. for the DE in ΛCDM model), this equation is
equivalent to

Ti

�∂pi

∂ρi
�

Ni;V
¼ ðρi þ piÞ

�∂Ti

∂ρi
�

Ni;V
− V

�∂Ti

∂V
�

Ni;ρi

:

(20)

Since we can express the temperature as a function of the
volume and the energy density (Ti ¼ Tiðρi; VÞ), its time
derivative may be expressed as _Ti ¼ ð∂Ti=∂ρiÞ _ρiþ
ð∂Ti=∂VÞ _V. The time derivative of the physical volume
V ¼ a3 is _V ¼ 3HV; then using also Eq. (1) to replace _ρi,
we get

_Ti ¼ −3H
�
ðρi þ piÞ

�∂Ti

∂ρi
�

Ni;V
− V

�∂Ti

∂V
�

Ni;ρi

�
þQi

�∂Ti

∂ρi
�

Ni;V
: (21)

The expression in the square brackets is identical to the rhs
of Eq. (20); hence, we can write the temperature evolution
equation as

_Ti

Ti
¼ −3H

�∂pi

∂ρi
�

Ni;V
þQi

Ti

�∂Ti

∂ρi
�

Ni;V
: (22)

Now to find the form of the energy transfer rate required to
have thermal equilibrium ( ~Qi) between the cosmic fluid
and the cosmological horizon (Ti ¼ Th ≡ T), we must
simply solve the preceding equation for Qi and replace the
temperature by the expression given by Eq. (16),

~Qi ¼
b
2π

�∂ρi
∂T

�
Ni;V

�
3HRp0

i − _R
R2

�
; (23)

where p0
i ≡ ð∂pi=∂ρiÞNi;V . In the peculiar case where the

energy density of the fluid depends only on the temper-
ature, we can replace the first partial derivative in Eq. (23)
by a total derivative and write dρi=dT ¼ _ρi= _T. This leads,
after some simple manipulations, to

~Qi ¼ _ρi

�
1 − 3p0

iH
R
_R

�
: (24)

Using the continuity equation [Eq. (1)] to replace ~Qi, we
obtain the following differential equation,
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_ρi
ρi

¼ −
�
1þ wi

p0
i

�
_R
R
; (25)

which relates the evolution of the energy density to that of
the horizon radius. In the following sections, we will
evaluate ~Qi for the two different types of dark energy
(CG and wDE), as well for relativistic and nonrelativistic
matter. The energy density of the relativistic matter depend
only on the temperature. We will also assume that is the
case for the Chaplygin gas and the wDE. The only fluid for
which we will not use Eqs. (24) and (25) is the non-
relativistic matter.

1. Chaplygin gas

For the Chaplygin gas, the EOS parameter is given by
wcg ¼ −ρ2cg∞=ρ

2
cg and the derivative of the pressure by

p0
cg ¼ −wcg. Inserting these expressions in Eqs. (25)

and (24), we find that the energy density is given by

ρcg ¼ ρcg∞

�
1

1þ ðρ2cg∞=ρ2cg0 − 1ÞðR0=RÞ2
�1

2

(26)

and the interaction term by

~Qcg ¼
�
3ð1þ wcgÞHRþ ð1þ w−1

cg Þ _R
R

�
ρcg: (27)

The expression that we got for the energy density is
different from that obtained in absence of interaction
(Eq. (7), but still consistent with an unified form of dark
energy and dark matter. Indeed, at late times (when R is
large), the value of the energy density approaches ρcg∞ , and
thus the Chaplygin gas behaves like a cosmological
constant (wcg → −1, ~Qcg → 0) and could drive the accel-
erated expansion of the Universe. For ρcg∞ > ρcg0, the value
of the energy density is increasing in time (as R is
increasing) and ρcg∞ represents the maximum value that
can be reached. In this case, the Chaplygin gas cannot play
the role of dark matter (wcg ≈ 0) since wcg ≤ −1 for all
time. However, for ρcg∞ < ρcg0, the energy density
decreases in time and ρcg∞ represents the minimum value
that can be reached, which means that wcg ≥ −1 for all
time. Actually, for radii smaller than RðtminÞ≡
R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðρcg∞=ρcg0Þ2

q
, the energy density becomes imagi-

nary. Hence, we must conclude that a thermal equilibrium
between the CG and the cosmological horizon is impos-
sible at early time (t < tmin). At Rmin, the value of the EOS
parameter is wcg ¼ 0. Hence, providing that thermal
equilibrium is established after tmin, the solution that we
found is consistent with an unified form of dark energy and
dark matter and the thermal equilibrium hypothesis.

2. Dark energy with a constant EOS parameter

For a form of dark energy with a constant EOS
parameter, p0

wde ¼ wwde. The expressions for the energy
density and the interaction term follow directly from
Eqs. (25) and (24)

ρwde ¼ ρde0

�
R
R0

�
−1þwwde

wwde ; (28)

~Qwde ¼
�
3ð1þ wwdeÞHR − ð1þ w−1

wdeÞ _R
R

�
ρwde: (29)

This expression is valid for any constant EOS parameter
except wwde ¼ −1. We recover the dark energy of the
ΛCDM model for this value (ρwde ¼ const and Qwde ¼ 0),
but we cannot conclude that thermal equilibrium with the
horizon is possible for this type of dark energy since, as was
pointed after Eq. (19) our derivation is not valid for a fluid
whose energy density and pressure are intrinsically con-
stant (in this case, we can even ask whether a temperature
can be meaningfully defined).

3. Other fluids

As mentioned above, some authors [35–41] considered
the possibility that, in addition to dark energy, other fluids
could also be in thermal equilibrium with the horizon. We
will now consider the implications of this hypothesis. For
an ultra-relativistic fluid (photons, neutrinos) the energy
density and the pressure are given by

ρr ¼ 4σT4
r ; (30)

pr ¼
ρr
3
; (31)

where σ is the Stefan-Boltzmann constant. From Eq. (23),
the interaction term needed to maintain thermal equilibrium
follows immediately:

~Qr ¼
�
4HR − 4 _R

R

�
ρr: (32)

We note that by replacing the variables associated with dark
energy in Eq. (29) by those associated with radiation, we
get the same expression. This is not surprising since to
obtain Eq. (29), we considered a fluid with a constant EOS
parameter and whose energy density depends only on the
temperature, as is the case for radiation (ρr ¼ 4σT4

r ,
wr ¼ 1=3). More generally, all the results of Sec. III B 2
hold for any fluid fulfilling these two conditions, which
excludes however nonrelativistic matter. In particular,
Eq. (28) becomes for radiation

ρr ¼ ρr0

�
R
R0

�
−4
: (33)
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For a nonrelativistic fluid, such as dark matter or
baryonic matter, the energy density and the pressure are
given by

ρm ¼ nmmþ 3

2
nmTm; (34)

pm ¼ nmTm; (35)

where nm ≡ Nm=V is the particle number density. Here we
consider a single particle species of mass m, but the
generalization to many species is straightforward.
Inserting Eqs. (34) and (35) into Eq. (23) leads to

~Qm ¼
�
3wmHR − 3

2
wm

_R

R

�
ρm; (36)

where the EOS parameter is given by

wm ≡ pm

ρm
¼ Tm

mþ 3
2
Tm

: (37)

Assuming that the rest-energy of the fluid is much larger
than its kinetic energy (m ≫ Tm), the EOS parameter may
be approximated by wm ≈ Tm=m. Since wm ≪ 1, cold
matter is usually considered to be pressureless (wm ¼ 0).
However, we cannot use this approximation here since that
would imply, according to Eq. (36), that ~Qm ¼ 0. Using
Eq. (16), the EOS parameter may be written more con-
veniently as a function of the horizon radius

wm ¼ wm0

R0

R
; (38)

where wm0
≡ b=ð2πmR0Þ. Inserting the interaction term

~Qm into the continuity equation (1) and solving it yields

ρm ¼ ρm0
a−3 exp

�
3

2
wm0

�
R0 − R

R

��
: (39)

Now we must check whether the interaction terms found
are consistent with the energy conservation conditionP

Qi ¼
P

~Qieq þ
P

Qineq ¼ 0. The summation indices
ieq and ineq refer respectively to the fluids that are in
thermal equilibrium with the horizon, and to those that are
not. In the case where at least one of the interacting fluid is
not in equilibrium, we can set

P
Qineq ¼ −

P
~Qieq in order

to fulfill the energy conservation condition. However, when
all the interacting fluids are assumed to be in thermal
equilibrium we must have

P
~Qieq ¼ 0, from which we get

the following expression for the Hubble rate

H ¼
� P

βieqρieq
3
Pð1þ wieq − δmieqÞρieq

�
_R
R
; (40)

where βi ¼ −ð1þ wcgÞ−1, ð1þ wwdeÞ−1, 4 and 3
2
wm

respectively for CG, wDE, radiation and cold matter.
The value of δmi is 1 when i ¼ m and 0 otherwise. The
energy density of the fluids in thermal equilibrium
[Eqs. (26), (28), (33) and (39)] depends only on the horizon
radius R and on the scale factor a (for cold matter); hence,
Eq. (40) can be integrated (at least numerically) in order to
find the relationship between these two variables. However,
the function RðaÞ thus obtained does not necessarily
coincide with one of the three radii ðRH; RA; REÞ consid-
ered in Sec. III A.
To illustrate the previous statement, we will consider the

case where wDE and radiation are in thermal equilibrium
and are the only two interacting fluids. This example is
among the simpler to consider because Eq. (40), which
becomes

H ¼
�
4ρr þ ð1þ w−1

wdeÞρwde
4ρr þ 3ð1þ wwdeÞρwde

�
_R
R
; (41)

can be integrated analytically. Inserting the expressions
found for ρr and ρwde (Eqs. (28) and (33)) gives

H ¼
�
4rr0 þ ð1þ w−1

wdeÞ ~R3−w−1
wde

4rr0 þ 3ð1þ wwdeÞ ~R3−w−1
wde

� _~R
~R
: (42)

Here, we have introduced the dimensionless radius ~R ¼
R=R0 and the radiation to dark energy density ratio at t0
(rr0 ≡ ρr0=ρwde0). Integration of Eq. (42) yields

a ¼
�

4rr0 þ 3ð1þ wwdeÞ
4rr0 þ 3ð1þ wwdeÞ ~R3−w−1

wde

�1
3
~R: (43)

By differentiating this equation, we find that the scale factor
reaches a maximum value amax at

~Ramax
¼

�
−
4rr0wwde

1þ wwde

� 1

3−w−1
wde : (44)

Consistently, the expression for the Hubble rate given by
Eq. (41) is zero at ~R ¼ ~Ramax

. The expression for the Hubble
rate given by the first Friedmann equation [Eq. (3)] must
also be zero at this point. This condition reduces by one the
number of free parameters in the model. For instance, we
can express the value of the energy density of the spatial
curvature as

ρk0 ¼ −
X

i≠kρia
2j

~R¼ ~Ramax

; (45)

where the energy density of the noninteracting fluids
(i ≠ wde, r) is given by Eq. (2). Not surprisingly for a
cosmic scenario involving recollapse, we find that the
spatial curvature is positive (ρk0 < 0). The value of the
remaining parameters can be chosen freely (provided that
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P
i≠kρi0 þ ρk0 ≥ 0, in order to have H0 ∈ R) and leads to a

self-consistent cosmology where the radiation and wDE
and are in thermal equilibrium with a cosmological horizon
whose radius is implicitly defined in Eq. (43). Now, we

want to verify whether this radius coincides either with the
Hubble radius, the apparent radius or the event horizon
radius. By solving the equation ~R ¼ ~RHð ~RÞ ¼ 1=jHð ~RÞj
for the constant ρr0 , we get

ρr0 ¼ −
h P
i≠r;wde

ρi0að ~RÞ−3ð1þwiÞ þ ρwde0
~R−ð1þw−1

wdeÞ − 3M2
p
~R−2 i

~R4: (46)

Solving ~R ¼ ~RAð ~RÞ for ρr0 leads to the same expression,
except that now, the spatial curvature is excluded from the
summation (i ≠ k, r, wde). In both cases, we obtain an
expression for the constant ρr0 which is actually a function
of ~R. This inconsistency shows that ~R ≠ ~RH and ~R ≠ ~RA.
For the event horizon radius, we cannot directly compare
~RE to ~R by reason of the integral involved in the definition

of this radius. However, we can compare its time derivative,
which is

_~RE ¼
_RE

RE0

¼ H ~RE − R−1
E0
; (47)

to the expression for _~R obtained from Eq. (42). Solving
_~R ¼ _~RE for RE0

and replacing ~RE by ~R yields

RE0
¼

� ffiffiffi
3

p
Mp

1 − 2wwde − 3w2
wde

�"
4r0wwde

~Rw−1
wde−4 þ ð1þ wwdeÞ ~R−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i≠r;wdeρi0að ~RÞ−3ð1þwiÞ þ ρr0
~R−4 þ ρwde0

~R−ð1þw−1
wdeÞ

q
#

(48)

Once again, we obtain an inconsistent equation where a
constant is equal to a function of ~R, showing that ~R ≠ ~RE.
Here we have shown that none of the three radius definitions
considered in Sec. III A could lead to thermal equilibrium
between the cosmological horizon, radiation and wDE if
the other fluids are not interacting. More generally, when a
different combination of fluids is considered, we should
proceed similarly to this example and verify whether the
radius obtained from Eq. (40) is meaningful or not.

IV. SUMMARY

When the thermodynamical properties of dark energy are
studied, the hypothesis of (late time) thermal equilibrium
between the cosmological horizon and the dark energy
fluid is frequently assumed [30–42] and, in some cases,
even extended to other cosmological fluids [35–41]. The aim
of this paper was to find the restriction imposed by this
hypothesis on the energy transfer rate (Qi) between the fluids.
A first difficulty occurs in defining the temperature of the

horizon. In a dynamical spacetime, such as the FRW
spacetime, there is no consensus for which horizon (if
any) should emit Hawking radiation and, for a given
choice, what should be the temperature associated with
this radiation. In order to recover different expressions used
in the literature, we have considered a temperature of the
form Th ¼ b=2πR, where R could stand for the Hubble
radius (RH) [29,34,41], for the apparent radius (RA)
[32–35,41] or for the event horizon radius ðREÞ [30,31,36].
A second difficulty is the unknown nature of dark

energy. We considered a generic fluid to find the interaction
term required to maintain thermal equilibrium [Eq. (23)],

but to go further in our analysis, we specialized to two
specific types of dark energy, namely Chaplygin gas (CG)
and dark energy with a constant EOS parameter (wDE). In
both cases, we assumed that the energy density depends
only on the temperature. This leads to interaction terms
given by Eq. (27) for CG and Eq. (29) for wDE. These
results illustrate that if we assume thermal equilibrium
between the dark energy and a horizon of radius R, we
cannot choose the interaction term Qi freely (if an other
type of dark energy is considered, its interaction term can
be derived from Eq. (23), just as we did for CG and wDE).
Conversely, if we impose a specific choice for the inter-
action term, the radius R will be determined by inverting
these equations, which will not necessarily correspond to a
physically meaningful horizon.
Finally, we found the interaction terms for which radiation

[Eq. (32)] and cold matter [Eq. (36)] are in thermal
equilibrium with the horizon. Since the ensemble of the
interaction terms must satisfy

P
iQi ¼ 0, it is nontrivial to

propose a cosmological model for which all the interacting
fluids are in thermal equilibrium with the horizon. Indeed, in
this case, the horizon radius will be determined by Eq. (40)
and will not necessarily be physically meaningful. With this
regard, thehypothesiswhere thedarkenergyis theonly fluid in
thermal equilibrium with the horizon is better motivated.
Moreover, since the baryons and the photons densities are
tightly bound by the big bang nucleosynthesis (BBN) con-
straints and by the CMB constraints, an interaction between
dark energy and dark matter is more likely to be consistent
with the observational data. In this case, the interaction terms
will be given by Qde ¼ ~Qde and Qdm ¼ − ~Qde, where ~Qde is
given by Eq. (27) for CG, by Eq. (29) for wDE or by an
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analogous expression derived fromEq. (23) if an other type of

dark energy is considered.
Toconclude,wecan remindto thereader that it ispossible to

obtain dynamical dark energy without the recourse of an
interactionwith an other fluid if its EOS parameter is different
from -1. In particular, certain noninteractingmodels involve a
variableEOSparameterwdeðtÞ (see [10,56–60]andreferences
therein). In this case, the temperature evolution equation
[Eq. (22)] becomes _Tde=Tde ¼ −3Hðwde þ ρde∂wde=∂ρdeÞ.
As a future perspective, it would be interesting to find under

which conditions a thermal equilibrium with the horizon
(Tde ¼ Th) is possible for these kind of models.
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