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We subject the steady solutions of a spherically symmetric accretion flow to a time-dependent radial
perturbation. The equation of the perturbation includes nonlinearity up to any arbitrary order and bears a
form that is very similar to the metric equation of an analogue acoustic black hole. Casting the perturbation
as a standing wave on subsonic solutions, and maintaining nonlinearity in it up to the second order, we get
the time dependence of the perturbation in the form of a Liénard system. A dynamical systems analysis of
the Liénard system reveals a saddle point in real time, with the implication that instabilities will develop
in the accreting system when the perturbation is extended into the nonlinear regime. The instability of
initial subsonic states also adversely affects the temporal evolution of the flow toward a final and stable
transonic state.
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I. INTRODUCTION

The classical model of steady spherically symmetric
accretion [1] is a mathematical problem of conservative and
compressible hydrodynamics. This model has acquired a
paradigmatic status in studies on astrophysical accretion,
which, as a fluid flow, falls under the general class of
nonlinear dynamics. The mathematical description of such
fluid systems involves a momentum balance equation (with
gravity as an external force in accretion), the continuity
equation, and a polytropic equation of state [2]. Set in full
detail, the condition of momentum conservation in a fluid
is a balance of dynamic effects, nonlinear effects, and the
effects of the pressure in a continuum system [3]. Some
early studies on astrophysical accretion considered only the
interplay between dynamics and nonlinearity (see [1] and
references therein), but in present studies, it is customary to
ignore the dynamics and instead consider the effects of
pressure, in what becomes a stationary flow. In either case,
however, nonlinearity endures.
From the plethora of mathematical solutions of the

stationary spherically symmetric compressible fluid flow,
the ones of physical relevance are identified to be locally
subsonic very far away from the accretor. Within the class
of inflows obeying this outer boundary condition, there is
an infinitude of globally subsonic solutions, along which a
fluid element may reach the accretor with a low subsonic
velocity. For the same outer boundary condition, a single
critical solution stands out in a class by itself and allows
matter to reach the accretor with a high supersonic velocity,
crossing the sonic horizon along the way. This is the unique

transonic Bondi [1] accretion solution. The exact fashion in
which accreting matter reaches the accretor is related to
the inner boundary condition of the inflow problem. If the
accretor is a black hole, the infall process must be transonic
[4,5]. This is because a black hole has an event horizon
instead of a physical surface, and thus precludes all
possibility of a pressure buildup at small radii, which
could otherwise have dominated over the free-fall con-
ditions close to the accretor. The situation is not so clearly
understood if the accretor has a hard surface like a neutron
star or a white dwarf. For such an accretor, it is supposed
that the accumulated matter will build up pressure near the
surface and cause the supersonic flow to be shocked down
to subsonic levels, although for a neutron star, all accreted
matter might be “vacuum cleaned” away efficiently, mak-
ing it easier for the flow to remain supersonic [6]. Evidently
then, the question of the inner boundary condition and an
inflow trajectory in relation to it, is by no means a trivial
one. Nevertheless, working with the stationary problem
itself, Bondi [1] invoked the physical criteria of the
maximization of the accretion rate and the minimization
of the total energy of the flow, to propose that the transonic
solution would be the one selected by a fluid element to
reach the accretor from a distant outer boundary. Bondi [1],
however, left a definitive conclusion regarding the realiz-
ability of the transonic solution to its stability.
The trouble with the transonic solution in the stationary

regime is that its realizability is extremely vulnerable to
even an infinitesimal deviation from the precisely needed
boundary condition to generate the solution [7]. This
difficulty may be overcome by considering the temporal
evolution of global solutions toward the transonic state [7,8],
but there is no analytical formulation to solve the nonlinear
partial differential equations governing the temporal
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evolution of the flow. So, much of all time-dependent
studies in spherically symmetric accretion is perturbative
and linearized in character, although some nonperturbative
studies are also known [7,8]. The commonly accepted view
to have emerged from the linearized approach is that
perturbations on the flow do not produce any linear mode
with an amplitude that gets amplified in time [9] and that the
perturbative method does not indicate the primacy of any
particular class of solutions [10]. This is as far as could be
said,working in the linear regime, but ourgeneral experience
of any nonlinear system is that an understanding gained
about it under linearized conditions can scarcely be imposed
on circumstances dominatedby nonlinearity. In thisworkwe
attempt to bridge the gap.
First we adopt a time-dependent radial perturbation

scheme implemented originally by Petterson et al. [6] and
retain all orders of nonlinearity in the resulting equation of
the perturbation. A most striking feature of this equation is
that even on accommodating nonlinearity in full order, it
conforms to the structure of the metric equation of a scalar
field in Lorentzian geometry (Sec. III). This fluid analogue
(an “acoustic black hole”), emulating many features of a
general relativistic black hole, is a matter of continuing
interest in fluid mechanics from diverse points of view
[8,11–30]. Then we apply our nonlinear equation of the
perturbation to study the stability of globally subsonic
stationary solutions under large-amplitude time-dependent
perturbations. Our motivation to do so lies in certain
dynamic features of the flow. For the nonperturbative time
evolution of the accreting system, the initial condition of the
evolution is a globally subsonic state, with gravity sub-
sequently driving the system to a transonic state, sweeping
through an infinitude of intermediate subsonic states. So, to
ensure an unhindered temporal convergence to a stable
transonic trajectory, the stability of the subsonic states is
crucial. In a numerical study, an instability in the subsonic
stateswas observed by Stellingwerf andBuff [31], whowere
consequently of the view that the subsonic flows would
quickly change into the transonic flow. Our nonlinear
perturbative analysis does agree with the fact that there is
an instability in the subsonic states, but short of an exact
nonperturbative analysis of all the nonlinear flow equations
concerned (for which there exists no analytical prescription
yet), it would be hasty to claim that the transonic state is
indeed the final stable attractor state for the unstable
subsonic states. The feasible analytical alternative, therefore,
is to study the behavior of the system under progressively
higher orders (nonlinear orders) of time dependence in the
perturbative approach.We truncate all orders of nonlinearity
beyond the second order in our equation of the perturbation.
Following this, we integrate out the spatial dependence
of the perturbation with the help of well-defined boundary
conditions on globally subsonic flows [6,32]. After this, we
extract the time-dependent part of the perturbation and note
with intrigue that it has the mathematical form of a Liénard

system [33,34] (Sec. IV). On applying the standard analyti-
cal tools of dynamical systems to study the equilibrium
features of this Liénard system, we discover the existence of
a saddle point in real time, whose implication is that the
stationary background solutions will be unstable, if the
perturbation is extended into the nonlinear regime (Sec. V).
We also provide independent numerical support in favor of
our analytical findings on the dynamics (Secs. V and VI).

II. THE MATHEMATICAL CONDITIONS OF
SPHERICALLY SYMMETRIC ACCRETION

The mathematical problem that was set up by Bondi [1]
himself and that is now taken up as a starting model in
accretion-related texts [2,35] involves two coupled fields,
the local flow velocity, v, and the local density, ρ, of the
compressible accreting fluid. These two coupled fields are
governed by the continuity equation,

∂ρ
∂t þ

1

r2
∂
∂r ðρvr

2Þ ¼ 0; (1)

and the inviscid Euler equation,

∂v
∂t þ v

∂v
∂r þ

1

ρ

∂P
∂r þ Φ0ðrÞ ¼ 0; (2)

tailored as they are, according to the requirements of
spherical symmetry. In the latter equation, the local
pressure, P, is expressed in terms of ρ, by invoking a
general polytropic prescription, P ¼ kργ , in which γ, the
polytropic exponent, varies over the range (limited by
isothermal and adiabatic conditions), 1 ≤ γ ≤ cP=cV, with
cP and cV being the two coefficients of specific heat
capacity of a gas [36]. The polytropic prescription is suited
well for the study of open systems like astrophysical flows.
Making use of both P and ρ, we scale the bulk flow
velocity, v, in terms of a natural hydrodynamic scale of
speed, cs, which is the local speed of sound. This speed
can be noted from c2s ¼ ∂P=∂ρ ¼ γkργ−1. The non-self-
gravitating bulk flow is driven by the external gravity of a
central accretor, whose potential is ΦðrÞ. In Eq. (2) the
driving force arising due to this potential is implied by its
spatial derivative (represented by the prime). In the case of
stellar accretion, the flow is driven by the Newtonian
potential, ΦðrÞ ¼ −GM=r. In studies of accretion onto a
nonrotating black hole, it is often expedient to dispense
with the rigor of general relativity, and instead use a
pseudo-Newtonian potential [37,38] to mimic the general
relativistic effects of Schwarzschild space-time geometry
in a Newtonian construct of space and time (see [39] and
references therein). The choice of a pseudo-Newtonian
potential, however, does not affect overmuch the general
arguments regarding the stability of the flow.
With the functions, P and ΦðrÞ, specified thus, Eqs. (1)

and (2) give a complete description of the hydrodynamic
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flow in terms of the two fields, vðr; tÞ and ρðr; tÞ. The
steady solutions of the flow are obtained from these
dynamic variables by making explicit time dependence
disappear, i.e., ∂v=∂t ¼ ∂ρ=∂t ¼ 0. The resulting differ-
ential equations, with full spatial derivatives only, can then
be easily integrated to get the stationary global solutions of
the flow [1,2]. A noticeable feature of these stationary
solutions is that they are invariant under the transformation
v⟶ −v, i.e., the mathematical problems of inflows
(v < 0) and outflows (v > 0) are identical in the steady
state [40]. This invariance has adverse implications for
critical flows in accretion processes. Critical solutions pass
through saddle points in the stationary phase portrait of the
flow [7,8], but generating a stationary solution through a
saddle point will be impossible by any physical means,
because it calls for an infinite precision in the required outer
boundary condition [7]. Nevertheless, criticality is not a
matter of doubt in accretion processes [1,5,10]. The key to
resolving this paradox lies in considering explicit time
dependence in the flow, because of which, as we note from
Eqs. (1) and (2), the invariance under the transformation,
v⟶ −v, breaks down. Obviously then, a choice of
inflows ðv < 0Þ or outflows ðv > 0Þ has to be made at
the very beginning (at t ¼ 0), and solutions generated
thereafter will be free of all the difficulties associated with
the presence of a saddle point in the stationary flow.
On imposing various boundary conditions on the steady

integral solutions, multiple classes of flow result [2]. Of
these, the one that attracts attention in accretion studies
obeys the boundary conditions, v⟶ 0 as r⟶∞ (the
outer boundary condition) and v > cs for small values of r.
It is quite obvious that this solution is transonic in nature,
with its bulk flow velocity overcoming the local speed of
sound at a particular point in space, rc, the critical radius of
the flow [2,7,35]. For a flow driven simply by the Newtonian
potential, there is only one such critical radius. With the
choice of a pseudo-Newtonian potential, multiple values of
rc could result, but practically speaking there would be only
one physically relevant critical point, through which an
integral solution could pass and attain the transonic state
[41]. It was argued by Bondi [1] that among all the feasible
stationary solutions by which a fluid element may reach
the accretor, after having started under highly subsonic
conditions on very large length scales, the actual trajectory
chosen will be the one that is transonic in nature—the
Bondi [1] solution. This thought was guided by the criteria
that with no restrictive inner boundary condition, the
accretion rate will be as high as possible and the corre-
sponding energy configuration of the flow shall be the
lowest one [10]. In the stationary regime, the transonic
solution does conform to these requirements. Under the
approximation of a “pressureless” motion of a fluid in a
gravitational field [42], qualified support for transonicity
also came later from a nonperturbative dynamic perspec-
tive [7,8]. No definitive conclusion about transonicity

can be drawn on the basis of a linearized perturbative
analysis [10].
So far as generating the transonic flow is concerned,

the nonperturbative dynamic evolution of global vðr; tÞ and
ρðr; tÞ profiles is very crucial indeed. Certainly, all the
feasible stationary inflow solutions obey the outer boun-
dary conditions that are on large spatial scales, vðrÞ⟶ 0
and ρðrÞ⟶ ρ∞, where ρ∞ is the constant “ambient” value
of the density field very far away from the accretor [2]. It is
the way in which the two fields evolve close to the accretor
that determines if the transonic state would be achieved or
not. The dynamic process should be conceived of ideally as
one in which both the velocity and density fields, vðr; tÞ
and ρðr; tÞ, are uniform initially for all values of r, in the
absence of any driving force. Then with the introduction of
a gravitational field (made effective at t ¼ 0), the hydro-
dynamic fields, v and ρ, start evolving in time. If the
temporal growth of v outpaces the temporal growth of ρ (to
which cs is connected) at small values of r, then the final
stationary infall process will be transonic. Otherwise, the
final stationary infall process will be globally subsonic,
with vðrÞ⟶ 0 as r⟶ 0 [6]. Simple as this physical
description may sound, it poses a formidable mathematical
challenge, because the nonperturbative evolution of the
velocity and density fields in spherically symmetric accre-
tion entails working with a coupled set of nonlinear partial
differential equations, as implied by Eqs. (1) and (2). And
where nonlinear equations are involved, we have to tread
with caution, especially since no analytical solution
of the dynamic problem exists for spherically symmetric
accretion.

III. NONLINEARITY IN THE
PERTURBATIVE ANALYSIS

Equations (1) and (2) are integrated in their stationary
limits, and the resulting velocity and density fields have
only spatial profiles, v≡ v0ðrÞ and ρ≡ ρ0ðrÞ. A standard
practice in perturbative analysis [6] is to apply small time-
dependent, radial perturbations on the stationary profiles,
v0ðrÞ and ρ0ðrÞ, and then linearize the perturbed quantities.
This, however, does not offer much insight into the time-
dependent evolutionary aspects of the hydrodynamic flow.
So the next logical step is to incorporate nonlinearity in
the perturbative method. With the inclusion of nonlinearity
in progressively higher orders, the perturbative analysis
incrementally approaches the actual time-dependent evo-
lution of global solutions that starts with a given stationary
profile at t ¼ 0 (to make physical sense, this initial profile
is very much subsonic at all spatial points).
The prescription for the time-dependent radial perturbation

is vðr; tÞ ¼ v0ðrÞ þ v0ðr; tÞ and ρðr; tÞ ¼ ρ0ðrÞ þ ρ0ðr; tÞ,
in which the primed quantities indicate a perturbation
about a stationary background. We define a new variable,
fðr; tÞ ¼ ρvr2, following a similar mathematical procedure
employed by Petterson et al. [6] and Theuns and David [32].
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This variable emerges as a constant of the motion from the
stationary limit of Eq. (1). This constant, f0, can be identified
with thematter flow rate,within a geometrical factor of4π [2],
and in terms of v0 and ρ0, it is given as f0 ¼ ρ0v0r2. On
applying the perturbation scheme forv andρ, the perturbation
in f, without losing anything of nonlinearity, is derived as

f0

f0
¼ ρ0

ρ0
þ v0

v0
þ ρ0

ρ0

v0

v0
: (3)

The foregoing relation connects the perturbed quantities, v0,
ρ0, andf0, to one another. To get a relation between onlyρ0 and
f0, we have to go back to Eq. (1) and apply the perturbation
scheme on it. This will result in

∂ρ0
∂t ¼ − 1

r2
∂f0
∂r : (4)

To obtain a similar relationship solely between v0 and f0,
we combine the conditions given in Eqs. (3) and (4), to get

∂v0
∂t ¼ v

f

�∂f0
∂t þ v

∂f0
∂r

�
: (5)

In Eqs. (3), (4), and (5), all orders of nonlinearity have been
maintained. Adhering to the same principle, applying the
perturbation scheme in Eq. (2), and taking its second-order
partial time derivative, will yield

∂2v0

∂t2 þ ∂
∂r

�
v
∂v0
∂t þ c2s

ρ

∂ρ0
∂t

�
¼ 0: (6)

In deriving this expression, all terms involving only the
stationary flow have vanished due to taking a partial time
derivative. This is slightly different from the practice of
extracting the stationary part of Eq. (2) and making it
disappear by setting its value as zero. Now making use of
Eqs. (4) and (5) and the second partial time derivative of
Eq. (5), we obtain a fully nonlinear equation of the pertur-
bation from Eq. (6), in a symmetric form as

∂
∂t

�
htt

∂f0
∂t

�
þ ∂
∂t

�
htr

∂f0
∂r

�
þ ∂
∂r

�
hrt

∂f0
∂t

�

þ ∂
∂r

�
hrr

∂f0
∂r

�
¼ 0; (7)

in which

htt ¼ v
f
; htr ¼ hrt ¼ v2

f
; hrr ¼ v

f
ðv2− c2s Þ: (8)

Going by the symmetry of Eq. (7), it can be recast in a
compact form as

∂μðhμν∂νf0Þ ¼ 0; (9)

with the Greek indices running from 0 to 1, under the
equivalence that 0 stands for t and 1 stands for r.
Equation (9), or equivalently, Eq. (7), is a nonlinear equation
containing arbitrary orders of nonlinearity in theperturbative
expansion. All of the nonlinearity is carried in the metric
elements,hμν, involving the exact fieldvariables,v,cs, andf,
as opposed to containing only their stationary background
counterparts [15,17]. This is going into the realm of non-
linearity, becausevandcs dependonf,whilef is related tof0
as f ¼ f0 þ f0. If we were to have worked with a linearized
equation, then hμν, containing only the zeroth-order terms,
can be read from the matrix,

hμν ¼ v0
f0

�
1 v0
v0 v20 − c2s0

�
; (10)

in which cs0ðrÞ is the stationary value of the local speed of
sound. An implication of the foregoing matrix is that under
steady conditions, an acoustic disturbance in the fluid
propagates with the speed, cs0.
Now, in Lorentzian geometry the d’Alembertian of a

scalar field in curved space is expressed in terms of the
metric, gμν, as

Δϕ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi−gp

gμν∂νϕÞ; (11)

with gμν being the inverse of the matrix implied by gμν
[15,28]. We look for an equivalence between hμν andffiffiffiffiffiffi−gp

gμν by comparing Eqs. (9) and (11) with each other,
and we see that Eq. (9) gives an expression of f0 that is of
the type shown by Eq. (11). In the linear order, the metrical
part of Eq. (9), as Eq. (10) shows it, may then be extracted,
and its inverse will indicate the existence of an acoustic
horizon, when v20 ¼ c2s0. In the case of a radially inflowing
astrophysical fluid, this horizon is due to an acoustic black
hole. The radius of the horizon is the critical radius of the
flow, rc. It cannot be breached by an acoustic disturbance
(carrying any information) propagating against the bulk
outflow, after having originated in the supercritical region,
where v20 > c2s0 and r < rc. We can thus say that the flow of
information across the acoustic horizon is unidirectional.
We can also arrive at this very conclusion by considering
spherically symmetric accretion as an irrotational, inviscid,
and barotropic fluid flow (a potential flow), whose velocity
is the gradient of a scalar potential. Then we may impose a
perturbation on this scalar potential [15,16,28], but we
stress that in contrast to this approach of exploiting the
conservative nature of the flow to craft a scalar potential
and then perturbing it, the derivation of Eq. (9) makes use
of the continuity condition. Our claim is that the latter
method is more robust because the continuity condition is
based on matter conservation, which is a firmer conserva-
tion principle than that of energy conservation (especially
where open astrophysical flows are concerned), on which
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the conventional scalar-potential approach is founded.
Regardless of the approach chosen, however, what we
realize is that the physics of supersonic acoustic flows
closely corresponds to many features of black hole physics.
All infalling matter crosses the event horizon of a black
hole maximally, i.e., at the greatest possible speed. By
analogy the same thing may be said of matter crossing the
sonic horizon in spherically symmetric inflows. We recall
that a long-standing conjecture about spherically symmet-
ric accretion onto a point sink is that the transonic solution
crosses the sonic horizon at the greatest possible rate [1,10].
That a perturbative treatment may hint at this conjecture is
noteworthy, because conventional wisdom has it that
perturbative techniques are inadequate on this point [10].
The perspective of an analogue horizon is valid only as

far as the linear ordering goes. When nonlinearity is to be
accounted for, then instead of Eq. (10), it is Eq. (8) that
defines the elements, hμν, depending on the order of
nonlinearity that we wish to retain (in principle we could
go up to any arbitrary order). The first serious consequence
of including nonlinearity is that the notion of static and
zero-order hμν, as stated in Eq. (10), will have to be
abandoned. This view conforms to a numerical study of
Mach and Malec [27], who, for spherically symmetric
accretion, showed that if the perturbations were to become
strong, then acoustic horizons would suffer a shift about
their static position, and the analogy between an acoustic
horizon and the event horizon of a black hole would appear
limited. In short, we lose the argument in favor of the static
transonic condition (a steady inflow solution crossing the
sonic horizon). For all that, a most remarkable fact that
has emerged in consequence of including nonlinearity in
the perturbative analysis, is that notwithstanding the order
of nonlinearity that we may adopt, the symmetric form of
the metric equation will remain unchanged, as shown very
clearly by Eq. (9). Precedence of the survival of this
symmetry under nonlinear conditions can be found in
the fluid problems of the hydraulic jump [24] and spheri-
cally symmetric outflows of nuclear matter [30].

IV. STANDING WAVES ON GLOBALLY
SUBSONIC STEADY INFLOWS

All physically relevant inflow solutions obey the outer
boundary condition, vðrÞ⟶ 0 as r⟶∞. In addition, if
the solution is globally subsonic, then the inner boundary
condition is vðrÞ⟶ 0 as r⟶ 0. From the point of view of a
gravity-driven evolution of an inflow solution to a transonic
state, the subsonic flows have great importance, because the
initial state of an evolution, as well as the intermediate
states in the march toward transonicity, should realistically
be subsonic. So the stability of globally subsonic solutions
must have a significant bearing on how a transonic solution
will develop eventually. Imposing an Eulerian perturbation
on subsonic inflows, their stability was studied by Petterson
et al. [6], and the amplitude of the perturbation in this case

maintained a constant profile in time; i.e., it was marginally
stable. In this respect we may say that the solutions do not
exhibit any obvious instability. However, it is never prudent
to extend this argument too far, especially when we
consider nonlinearity in the perturbative effects, as it rightly
ought to be done in a fluid flow problem.
Equation (7) gives a nonlinear equation of the perturba-

tion, accommodating nonlinearity up to any desired order.
It is important to realize here that the derivation of Eq. (7) is
pertinent to any kind of stationary background solution
(transonic or subsonic), with the only restriction being that
the perturbation is radial. Thereafter its uses may vary, and
herewe apply this equation to study the stability of stationary
subsonic flows in a nonlinear regime. Following the math-
ematical procedure of Petterson et al. [6], we design the
perturbation to behave like a standing wave about a globally
subsonic stationary solution, obeying the boundary con-
dition that the spatial part of the perturbation vanishes at two
radial points in the spherical geometry, one at a great
distance from the accretor (the outer boundary), and the
other very close to it (the inner boundary). We confine our
mathematical treatment involving nonlinearity to the sec-
ond order only (the lowest order of nonlinearity). Even
simplified so, the entire procedurewill still bear many of the
complications associated with a nonlinear problem. The
restriction of not going beyond the second order of non-
linearity implies that all hμν in Eq. (8) will contain primed
quantities in their first power only. Taken together with
Eq. (7), this will preserve all terms that are nonlinear in the
second order. So, carrying out the necessary expansion of
v ¼ v0 þ v0, ρ ¼ ρ0 þ ρ0 and f ¼ f0 þ f0 in Eq. (8), up to
the first order only, and defining a new set of metric
elements, qμν ¼ f0hμν, we obtain

∂μðqμν∂νf0Þ ¼ 0; (12)

in which μ and ν are to be read just as in Eq. (9). In the
preceding expression, the elements, qμν, carry all the three
perturbed quantities, ρ0, v0, and f0. The next process to
perform is to substitute both ρ0 and v0 in terms of f0, since
Eq. (12) is over f0 only. To make this substitution possible,
first we have to make use of Eq. (3) to represent v0 in terms
of ρ0 and f0 in all qμν. While doing so, we ignore the product
term of ρ0 and v0 in Eq. (3), because including it will raise
Eq. (12) to the third order of nonlinearity. Once v0 has been
substituted in this manner, we have to write ρ0 in terms of f0.
This can be done by invoking the linear relationship
suggested by Eq. (4), with the reasoning that if ρ0 and f0
are both multiplicatively separable functions of space and
time, with an exponential time part (all of which are
standard mathematical prescriptions in any analysis that
requires working with standing waves), then

ρ0

ρ0
¼ σðrÞ f

0

f0
; (13)

IMPLICATIONS OF NONLINEARITY FOR SPHERICALLY … PHYSICAL REVIEW D 89, 063004 (2014)

063004-5



with σ being a function of r only (which lends a crucial
advantage in simplifying much of the calculations to
follow). The exact functional form of σðrÞ is determined
from the way the spatial part of f0 is prescribed, but on
general physical grounds it stands to reason that when ρ0, v0,
and f0 are all real fluctuations, σ should likewise be real.1

Following all of these algebraic details, the elements, qμν, in
Eq. (12) can finally be expressed entirely in terms of f0 as

qtt ¼ v0

�
1þ ϵξtt

f0

f0

�
;

qtr ¼ v20

�
1þ ϵξtr

f0

f0

�
;

qrt ¼ v20

�
1þ ϵξrt

f0

f0

�
;

qrr ¼ v0ðv20 − c2s0Þ þ ϵv30ξ
rr f

0

f0
; (14)

in all of which ϵ has been introduced as a nonlinear “switch”
parameter to keep track of all the nonlinear terms. When
ϵ ¼ 0, only linearity remains, and in this limit we converge
to the familiar result indicated by Eq. (10). In the opposite
extreme, when ϵ ¼ 1, in addition to the linear effects, the
lowest order of nonlinearity (the second order) becomes
activated in Eq. (12), and the linearized stationary con-
ditions of an acoustic horizon get disturbed due to the
nonlinear ϵ-dependent terms. This feature was pointed out
numerically by Mach and Malec [27]. Equation (14) also
contains the factors, ξμν, all of which are to be read as

ξtt ¼ −σ; ξtr ¼ ξrt ¼ 1 − 2σ;

ξrr ¼ 2 − σ

�
3þ ðγ − 2Þ c

2
s0

v20

�
:

(15)

Taking Eqs. (12), (14), and (15) together, we finally obtain a
nonlinear equation of the perturbation, completed up to the
second order, without the loss of any relevant term.
To render Eq. (12), along with all qμν and ξμν, into a

workable form, it will first have to be written explicitly,
and then divided throughout by v0. While doing so, the
symmetry afforded by ξtr ¼ ξrt is also to be exploited. The
desirable form of the equation of the perturbation should be
such that its leading term would be a second-order partial
time derivative of f0, with unity as its coefficient. To arrive
at this form, an intermediate step will involve a division by
1þ ϵξttðf0=f0Þ, which, binomially, is the equivalent of a
multiplication by 1 − ϵξttðf0=f0Þ, with a truncation applied
thereafter. This is dictated by the simple principle that to

keep only the second-order nonlinear terms, it will suffice
to retain just those terms that carry ϵ in its first power. The
result of this entire exercise is

∂2f0

∂t2 þ 2
∂
∂r

�
v0

∂f0
∂t

�
þ 1

v0

∂
∂r

�
v0ðv20 − c2s0Þ

∂f0
∂r

�

þ ϵ

f0

�
ξtt
�∂f0
∂t

�
2

þ ∂
∂r

�
ξrtv0

∂f02
∂t

�
− v0

2

∂ξrt
∂r

∂f02
∂t

þ 1

2v0

∂
∂r

�
ξrrv30

∂f02
∂r

�
− 2ξttf0

∂
∂r

�
v0

∂f0
∂t

�

− ξttf0

v0

∂
∂r

�
v0ðv20 − c2s0Þ

∂f0
∂r

��
¼ 0; (16)

in which, if we set ϵ ¼ 0, then what remains is the linear
equation discussed in detail by Petterson et al. [6] and
Theuns and David [32]. We apply a solution, f0ðr; tÞ ¼
RðrÞϕðtÞ, in Eq. (16), with R being a real function [43].
After this, we multiply the resulting expression throughout
by v0R and perform some algebraic simplifications by
partial integrations to finally get

ϕ
::
v0R2þϕ

: d
dr

ðv0RÞ2þϕ

�
d
dr

�
v0
2
ðv20−c2s0Þ

dR2

dr

�

−v0ðv20−c2s0Þ
�
dR
dr

�
2
�
þ ϵ

f0

�
ϕ
: 2
ξttv0R3

þϕ
:
ϕ

�
d
dr

ðξrtv20R3Þþξrt
v20
3

dR3

dr
−ξttR

d
dr

ðv0RÞ2
�

þϕ2

�
v0ðv20−c2s0Þ

dR
dr

d
dr

ðξttR2Þ−ξrrv30R

�
dR
dr

�
2

− d
dr

�
ξtt

v0
3
ðv20−c2s0Þ

dR3

dr

�
þ d
dr

�
ξrr

v30
3

dR3

dr

���
¼0;

(17)

in which the overdots indicate full derivatives in time. Quite
evidently, Eq. (17) is a second-order nonlinear differential
equation in both space and time. We integrate all spatial
dependence out of Eq. (17), and then study the nonlinear
features of the time-dependent part. The integration over
the spatial part will necessitate invoking two boundary
conditions, one at a small value of r (close to the accretor),
and the other when r⟶∞ (very far from the accretor). At
both of these boundary points, the perturbation will have a
vanishing amplitude in time. It was reasoned by Petterson
et al. [6] that globally subsonic inflow solutions offer
conditions for the fulfillment of the two required boundary
conditions and simultaneously maintain a continuity of the
background solution in the interim region. The boundary
conditions will ensure that all the “surface” terms of the
integrals in Eq. (17) will vanish (which explains the tedious
mathematical exercise to extract several such “surface”

1Treating the perturbation as a high-frequency traveling wave,
it was shown by Petterson et al. [6] that σðrÞ ¼ v0ðv0 � cs0Þ−1,
when the spatial part of f0 was cast as a power series in the
Wentzel-Kramers-Brillouin approximation.
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terms). So after carrying out the required integration on
Eq. (17), over the entire region trapped between the two
specified boundaries, all that will remain is the purely time-
dependent part, having the form

ϕ
::
þ ϵðAϕþ Bϕ

:
Þϕ
:
þ Cϕþ ϵDϕ2 ¼ 0; (18)

in which the constants, A, B, C, and D, are to be read as

A¼ 1

f0

�Z
v0R2dr

�−1Z �
ξrt

v20
3

dR3

dr
− ξttR

d
dr

ðv0RÞ2
�
dr;

B¼ 1

f0

�Z
v0R2dr

�−1Z
ξttv0R3dr;

C¼−
�Z

v0R2dr

�−1Z
v0ðv20− c2s0Þ

�
dR
dr

�
2

dr;

D¼ 1

f0

�Z
v0R2dr

�−1

×
Z �

v0ðv20− c2s0Þ
dR
dr

d
dr

ðξttR2Þ− ξrrv30R

�
dR
dr

�
2
�
dr;

(19)

respectively. The form in which Eq. (18) has been
abstracted is that of a general Liénard system [33,34].
All the terms of Eq. (18), which carry the parameter, ϵ, have
arisen in consequence of nonlinearity. When we set ϵ ¼ 0,
we readily regain the linear results presented by Petterson
et al. [6]. To go beyond linearity, and to appreciate the
role of nonlinearity in the perturbation, we now have
to understand the Liénard system that Eq. (18) has brought
forth.

V. EQUILIBRIUM CONDITIONS IN THE LIÉNARD
SYSTEM AND THEIR IMPLICATIONS

The general mathematical form of a Liénard system is
that of a nonlinear oscillator equation, going as [33,34]

ϕ
::
þ ϵHðϕ;ϕ

:
Þϕ
:
þ V 0ðϕÞ ¼ 0; (20)

in which H is a nonlinear damping coefficient (retaining
the parameter, ϵ, alongside H, attests to its nonlinearity),
and V is the “potential” of the system (with the prime on
it indicating its derivative with respect to ϕ). Looking at
Eq. (18), we realize that Hðϕ;ϕ

:
Þ ¼ Aϕþ Bϕ

:
and

VðϕÞ ¼ Cðϕ2=2Þ þ ϵDðϕ3=3Þ, with the constant coeffi-
cients, A, B, C, and D having to be read from Eqs. (19).
To investigate the properties of the equilibrium points
resulting from Eq. (20), we need to decompose this
second-order differential equation into a coupled first-order
dynamical system. To that end, on introducing a new
variable, ψ , Eq. (20) can be recast as [34]

ϕ
:
¼ ψ ;

ψ
: ¼ −ϵðAϕþ BψÞψ − ðCϕþ ϵDϕ2Þ: (21)

Equilibrium conditions are established with ϕ
:
¼ ψ

: ¼ 0.
For the dynamical system indicated by Eqs. (21), this will
immediately lead to two equilibrium points on the ϕ-ψ
phase plane. This is how it should be, because, having
accommodated nonlinearity (by turning on the nonlinearity
“switch,” i.e., setting ϵ ¼ 1) up to the second order only,
Eqs. (21) will be quadratic in both ϕ and ψ , yielding two
equilibrium solutions. Labeling these equilibrium points
with a ⋆ superscript, we see that ðφ⋆;ψ⋆Þ ¼ ð0; 0Þ in one
case, whereas in the other case, ðϕ⋆;ψ⋆Þ ¼ ð−C=ðϵDÞ; 0Þ.
So, one of the equilibrium points is located at the origin of
the ϕ-ψ phase plane, while the location of the other will
depend on both the sign and the magnitude of C=D. In
effect, both the equilibrium points lie on the line ψ ¼ 0 and
correspond to the turning points of VðϕÞ. Higher orders of
nonlinearity will simply proliferate equilibrium points on
the line, ψ ¼ 0.
Having identified the position of the two equilibriums

points, we now have to examine their stability. So we
subject both equilibrium points to small perturbations,
and then carry out a linear stability analysis. The perturba-
tion schemes on both ϕ and ψ are ϕ ¼ ϕ⋆ þ δϕ and
ψ ¼ ψ⋆ þ δψ , respectively. Applying these schemes on
Eqs. (21), and then linearizing in δϕ and δψ , will lead to
the coupled linear dynamical system,

d
dt
ðδϕÞ ¼ δψ ;

d
dt
ðδψÞ ¼ −V 00ðϕ⋆Þδϕ − ϵHðϕ⋆;ψ⋆Þδψ ; (22)

in which V 00ðϕ⋆Þ ¼ C þ ϵ2Dϕ⋆. Using solutions of the type
δϕ ∼ expðωtÞ and δψ ∼ expðωtÞ in Eqs. (22), the eigen-
values of the Jacobian matrix of the dynamical system
follow as

ω ¼ −ϵH
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2
H2

4
− V 00ðφ⋆Þ

r
; (23)

with H≡Hðφ⋆;ψ⋆Þ having to be evaluated at the equi-
librium points. Once the eigenvalues have been determined,
it is now a simple task to classify the stability of an
equilibrium point by putting its coordinates in Eq. (23). The
equilibrium point at the origin has the coordinates ð0; 0Þ.
Using these coordinates in Eq. (23), the two roots of the
eigenvalues are obtained as ω ¼ �i

ffiffiffi
C

p
. If C > 0, then the

eigenvalues will be purely imaginary quantities, and con-
sequently, the equilibrium point at the origin of the ϕ-ψ
plane will be a center-type point [34]. And indeed, when
the stationary spherically symmetric inflow solution, about
which the perturbation is constrained to behave like a
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standing wave, is globally subsonic, then C > 0, because in
this situation, v20 < c2s0 [6]. Viewed in the ϕ-ψ phase plane,
the stationary solutions about this center-type fixed point at
the origin, ð0; 0Þ, will look like closed elliptical trajectories.
This is identical to the phase portrait of a simple harmonic
oscillator with conserved total energy, and more to the
point, these solutions correspond entirely to the solutions
with unchanging amplitudes obtained by Petterson et al. [6]
in their linear stability analysis of standing waves on
subsonic flows. Thus, in a linear framework, a marginal
sense of stability is insinuated by the center-type equilibrium
point at the origin of the phase plane, because solutions in its
neighborhood are purely oscillatory in time, with no change
in their amplitudes. While this conclusion was drawn by
Petterson et al. [6] in their linearized analysis of the standing
wave, it could be arrived at equally correctly by setting ϵ ¼ 0
(the linear condition) in Eq. (23). An illustration of this
special case is provided in Fig. 1, which traces three phase
solutions of the Liénard system. One of the solutions in this
plot, obtained for ϵ ¼ 0 and corresponding physically to the
linear solution, is the closed elliptical trajectory about the
center-type fixed point at ð0; 0Þ.
From dynamical systems theory, center-type points are

known to be “borderline” cases [33,34]. In such situations,
the linearized treatment will show marginally stable behav-
ior, but robust stability or an instability may emerge
immediately on accounting for nonlinearity [33,34]. This
can be explained by a simple but generic argument. Close
to the coordinate ð0; 0Þ, Eqs. (21) can be approximated in
the linear form as ϕ

:
¼ ψ and ψ

: ≃−Cϕ, which, of course,
gives a center-type point, just like a simple harmonic
oscillator. Going further and accounting for the higher-
order nonlinear terms, Eqs. (21) can be viewed as a coupled
dynamical system in the form ϕ

:
¼ F ðϕ;ψÞ and

ψ
: ¼ Gðϕ;ψÞ. Such a system is said to be “reversible” if
F ðϕ;−ψÞ ¼ −F ðϕ;ψÞ and Gðϕ;−ψÞ ¼ Gðϕ;ψÞ, i.e. if F
(or ϕ

:
) is an odd function of ψ , and G (or ψ

:
) is an even

function of ψ [33]. Center-type points are robust under this
reversibility requirement. Now, a look at Eqs. (21) immedi-
ately reveals that ψ

:
is not an even function of ψ . Therefore,

the center-type point obtained due to a linearized analysis
of Eqs. (21) is a fragile one. Ample evidence of this feature
can be found in the behavior of the spiraling solution
(corresponding to the nonlinear case) in Fig. 1.
The center-type point at the origin of the phase plane

has confirmed the known linear results. However, all
of that is the most that a simple linear stability analysis
can bring forth. Accounting for nonlinearity, to its lowest
order, another equilibrium point is obtained, in addition to
the center-type equilibrium point obtained by Petterson
et al. [6]. This second equilibrium point is an outcome of
the quadratic order of nonlinearity in the standing wave,
and its coordinates in the phase plane are ð−C=ðϵDÞ; 0Þ.
Using these coordinates in Eq. (23), the eigenvalues
become

ω ¼ AC
2D

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
AC
2D

�
2

þ C

s
: (24)

Noting as before that C > 0 and that A, C, and D are all
real quantities, the inescapable conclusion is that the
eigenvalues, ω, are real quantities, with opposite signs. In
other words, the second equilibrium point is a saddle
point [34]. The position of this equilibrium point is at the

-1 -0.5 0  0.5 1  1.5 2
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φ
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-0.5
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 0.5

1

FIG. 1. With a numerical integration of Eq. (20) under chosen
initial conditions, three separate phase solutions are plotted in the
ϕ-ψ phase plane. The closed elliptical solution corresponds to the
case of ϵ ¼ 0, with C ¼ 1. This is the phase solution representing
the linear perturbation on standing waves, with a center-type
fixed point at the origin, (0, 0). The initial ðϕ;ψÞ coordinates for
tracing this trajectory in the phase plane are (0.95, 0). Retaining
the same values of C and the initial condition, the spiraling
solution within the elliptical envelope is obtained for ϵ ¼ 1,
A ¼ B ¼ 0.03, and D ¼ −1. This solution depicts the phase-
plane behavior of the second-order nonlinear perturbation. With
C ¼ 1 and D ¼ −1, the coordinate of the second fixed point (a
saddle point) is set at (1, 0). As long as the nonlinear perturbation
starts with a value of ϕ < 1 (in this case its initial value is 0.95), it
will always remain close to the linear regime and stability can be
maintained. This stability is evident from the way the phase
solution of the nonlinear perturbation spirals toward the center-
type fixed point (which acts like an attractor). A generalization
of this argument is that stability shall be achieved if ϕ < jC=Dj,
and the values of A and B (whatever they may be) will simply
determine the rate at which the nonlinear perturbation shall
converge toward (0, 0). A strong growth of the nonlinear
perturbation shall occur, once its initial value exceeds the critical
value of ϕ ¼ jC=Dj. This critical condition is indicated by the
vertical line, ϕ ¼ 1, near the middle of the plot. To the left of
this line is the zone of stability, and to its right is the zone of
instability. Depending on the sign of C=D, the zone of instability
will swivel either to the left or to the right of the ellipse. Setting
the initial condition of the perturbation slightly to the right of
ϕ ¼ 1, at (1.05, 0), the growth of the perturbation is plainly
visible, with an open trajectory diverging outward. For this
diverging solution the values of ϵ, A, B, C, and D are the same
as they are for the spiraling solution to the left of ϕ ¼ 1.
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coordinate ð−C=D; 0Þ in the ϕ-ψ phase portrait. The
absolute value of the abscissa of this coordinate, jC=Dj,
represents a critical threshold for the initial amplitude of
the perturbation. If this amplitude is less than jC=Dj, then
the perturbation will hover close to the linearized states
about the center-type point, and stability shall prevail. The
spiraling solution in Fig. 1 gives a clear demonstration
of this fact. If, however, the amplitude of the perturbation
exceeds the critical value, i.e., if jϕj > jC=Dj, then we
enter the nonlinear regime, and in time the perturbation
will undergo a divergence in one of its modes (for which
ω has a positive root). This state of affairs has been
depicted in the right side of the plot in Fig. 1, showing a
continuously diverging phase solution. Given that the
eigenvalues, ω, have been yielded on using solutions of
the type expðωtÞ, the e-folding time scale of this growing
mode of the perturbation is ω−1, with ω having to be read
from Eq. (24).
So, in the nonlinear regime, the simple fact that emerges

is that stationary subsonic global background solutions will
become unstable under the influence of the perturbation. In
the vicinity of a saddle point, if the initial amplitude of the
perturbation is greater than jC=Dj, then the solutions will
continue to diverge, and higher orders of nonlinearity
(starting with the third order in this case) will not smother
this effect [33,34]. Since a saddle point cannot be elimi-
nated by the inclusion of higher orders of nonlinearity [34],
the best that we may hope for is that the instability may
grow in time till it reaches a saturation level imposed by the
higher nonlinear orders (but the instability will never be
decayed down). This type of instability has a precedence in
the laboratory fluid problem of the hydraulic jump [22,24].
While the discussion so far holds forth on the perturbative
perspective, its crux lies in the far-reaching implications
of the saddle point for the nonperturbative evolutionary
dynamics. There exists no analytical prescription for a full-
blown time evolution of nonlinear fluid equations. The next
best thing in that case is to get as close to the true dynamics
as possible, by the inclusion of progressively higher orders
of nonlinearity in the perturbative treatment. It is evident
that there can be no transonic solution without gravity
driving the infall process. So, from a dynamic point of view,
gravity starts the evolution toward the transonic state from
an initial (and arguably nearly uniform) subsonic state, far
away from the critical conditions for transonicity. If,
however, in the real-time dynamics, the subsonic states
are to encounter an instability that is attendant on a saddle
point, then that should have adverse consequences for
attaining a stable and stationary transonic end (the Bondi
[1] solution) through the dynamics.

VI. DYNAMIC EVOLUTION AND INSTABILITY

A numerical exercise bears out the contention about
how adversely the saddle point affects the dynamics. The
log-log graph shown in Fig. 2 has been obtained by

numerically integrating Eqs. (1) and (2) by the finite-
differencing technique. The integration has been performed
under the flat initial conditions, v ¼ 0 and ρ ¼
10−21 kgm−3 at t ¼ 0, for all values of r. Insofar as the
purpose of the numerical study is to know the effects of
nonlinearity in the dynamic evolution (not merely the
perturbation), this initial condition is the most appropriate
one. To appreciate this fact, we recall that the perturbation
scheme on the velocity field is vðr; tÞ ¼ v0ðrÞ þ v0ðr; tÞ.
Now, linearity holds under the requirement, jv0=v0j ≪ 1.
Once the initial velocity field is prescribed to be zero
everywhere, i.e., vðr; 0Þ ¼ 0, then from a perturbative
perspective, this null initial condition can also be viewed
as a global background state, v0ðrÞ ¼ 0. Thereafter, any
arbitrarily small perturbation, v0, on this zero initial state,
will be of a fully nonlinear order, i.e., vðr; tÞ ¼ v0ðr; tÞ. The
growth of such a small time-dependent perturbation will
become the actual dynamics of the global solutions, and
this dynamics will be completely nonlinear.
In the numerics, the spherically symmetric flow is made

to be driven by the Newtonian gravity of a star of mass,
M⊙. The polytropic index of the accreting gas is given as
n ¼ 1.51, and the “ambient” conditions of the accreting gas
are given by csð∞Þ ¼ 10 km s−1 and ρ∞ ¼ 10−21 kgm−3.
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FIG. 2. The time-dependent velocity field of a spherically
symmetric accretion system is scaled as the Mach number, M,
and its time evolution is followed at 0.9rc (the upper full line) and
1.1rc (the lower full line). In the early stages of the evolution,
both lines indicate a power-law dynamics, jMj ∼ t. The lower full
line, pertaining to the dynamics in the subcritical region outside
the sonic radius, overshoots the expected steady subsonic limit
of the Bondi [1] solution and indicates the attainment of highly
supersonic speeds, a fact that is clear from the way the solution
crosses the sonic barrier at jMj ¼ 1 (marked by the horizontal line
in the plot). The lowermost dotted line is due to a toy function,
used to test the correct exponent of the power law in the early
stages of the evolution of jMj. On later time scales the two full
lines fall short of this power-law growth and converge toward an
unexpectedly large limiting value of jMj ∼ 10.
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In terms of all these fixed parameters of the flow, the sonic
radius is scaled as rc ¼ ðn − 1.5ÞGM⊙=2nc2s ð∞Þ [2,35].
The velocity field is scaled as the Mach number, M, which
is effectively the bulk velocity measured locally in terms of
the speed of sound. In accretion flows, the bulk velocity is
conventionally assigned a negative sign [2], and so we
present the absolute value of the Mach number, jMj, in
Fig. 2. The time evolution of jMj is observed at 0.9rc
(inside the sonic radius) and 1.1rc (outside the sonic
radius). The two full lines in Fig. 2 suggest a linear growth
on early time scales for the Mach number, i.e., jMj ∼ t, a
feature that prevails over 4 orders of magnitude. On later
time scales, both lines show a convergence of the velocity
field toward a limiting value (M ∼ 10), but this value is far
greater than what is expected from the stationary Bondi [1]
profile of the velocity field (which, in the neighborhood
of the sonic radius, is M≃ 1). This feature is particularly
curious for the lower full line (plotted for r > rc), which
shows an attainment of supersonic velocity, when even for
the transonic solution, the steady velocity field outside the
sonic radius has to be subsonic. This aspect of the dynamics
is connected to the instability that arises due to the saddle
point in the Liénard system, and near the steady sonic
radius, also shows that nonlinearly strong signals may
overshoot the constraints imposed by the acoustic horizon
[27]. The ultimate convergence toward an unexpectedly
large limiting value (M ∼ 10) occurs because of the
saturating effect of the orders of nonlinearity higher than
the second. Studies of the hydraulic jump phenomenon
have reported similar saturation of a nonlinearly growing
instability in the vicinity of the critical point of the
flow [22,24].
The purport of Fig. 2 can be compared with the

convergence exhibited by the time-evolving velocity field
in a “pressureless” fluid approximation [42] toward the
free-fall limiting velocity of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM⊙=r

p
, with r ¼ 51r⊙

[8]. This convergence is shown graphically in Fig. 3,
and should be seen alongside Fig. 2 for contrast. The
numerical convergence of the velocity, demonstrated by
finite-differencing integration, is also in full agreement
with the analytical treatment of the time evolution of the
pressureless flow, carried out by the method of character-
istics [7,8]. Equation (2), rendered simple by setting P ¼ 0,
under the requirement of a pressureless field driven by
Newtonian gravity, appears as

∂v
∂t þ v

∂v
∂r þ

GM
r2

¼ 0; (25)

and can be solved by the method of characteristics [44].
The characteristic solutions are obtained from

dt
1
¼ dr

v
¼ dv

−GM=r2
: (26)

First, solving the dv=dr equation will give

v2

2
−GM

r
¼ c2

2
; (27)

in which c is an integration constant, coming from the
spatial part of the characteristic equation. We use this result
to solve the dr=dt equation in Eq. (26), to get

2vr
crs

− ln r − ln

�
v
c
þ 1

�
2 − 2ct

rs
¼ ~c; (28)

with ~c being another integration constant, and rs being a
length scale in the system, defined as rs ¼ 2GM=c2. The
general solution of Eq. (26) is given by the condition,
Fð~cÞ ¼ c2=2, with F being an arbitrary function, whose
form is to be determined from the initial condition. So,
making use of Eqs. (27) and (28), we first write the general
solution as

v2

2
−GM

r
¼ F

�
2vr
crs

− ln r − ln

�
v
c
þ 1

�
2 − 2ct

rs

�
; (29)

to determine whose particular form, we then use the initial
condition, v ¼ 0 at t ¼ 0 for all r. This gives us

v2

2
−GM

r
¼ −GM

r

�
v
c
þ 1

�−2
exp

�
2vr
crs

− 2ct
rs

�
; (30)

from which we see that for t⟶∞, the right hand side
of Eq. (30) vanishes, and its left hand side implies a
convergence of the velocity field toward its stationary free-
fall limit, i.e., v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2GM=r
p

. Corresponding to the given
initial condition, this is evidently the final stationary
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FIG. 3. Under pressureless conditions in the inflow (v < 0),
imposed on Eq. (2), the slope of this logarithmic plot shows that
in the early stages of the evolution, −v varies linearly with t.
Deviation from linear growth sets in later. The horizontal line at
the top shows the free-fall value of the velocity field,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2GM⊙=51r⊙
p

, at a fixed radius of 51r⊙. There is a convergence
in the dynamics toward this limiting value, and this may be seen
in contrast to the overshoot of the expected limit shown in Fig. 2.
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solution associated with the lowest possible total energy,
and the temporal evolution selects this solution. To envis-
age the evolution, the pressureless system, with a uniform
velocity of v ¼ 0 everywhere, suddenly has a gravity
mechanism activated in its midst at t ¼ 0. This induces
a potential, −GM=r, at all points in space. The system
then starts evolving to restore itself to another stationary
state, with the velocity increasing according to Eq. (30),
so that for t⟶∞, the total energy at all points,
ðv2=2Þ − ðGM=rÞ ¼ 0, remains the same as what it was
at t ¼ 0. This selection mechanism is compatible with the
Bondi [1] criterion of a particular solution being chosen by
the virtue of possessing the minimum energy.
So how is the expected convergence achieved in the

pressureless fluid approximation, while there seems to be
an overshoot of the Bondi [1] limit by a very wide margin,
when we accommodate the pressure effects in the momen-
tum balance condition of the flow? Understanding of this
question requires returning to the seminal work of Bondi
[1], in which he referred to some earlier works that had
adopted the pressureless prescription, and had studied only
the dynamical effects. Bondi [1] himself adopted the
opposite extreme of negligible dynamical effects but full
pressure effects, as described by stationary flow equations.
The difficulty arises when the dynamically evolving veloc-
ity field is nonlinearly coupled to the dynamically evolving
density field, through the pressure effects and the continuity
equation, as can be seen in Eqs. (1) and (2). We contend
that the instability shown by the Liénard system is con-
nected to this nonlinear coupling of the two dynamic fields.
More to the point, there will be no such Liénard system
under the pressureless condition. Not to mention also that
the stationary problem is not equipped to capture this
nonlinear instability, and time-dependent linearization
around stationary states is nearly as inadequate. Another
interesting point in the complete dynamic-plus-pressure
scenario is that the overshooting of the steady subsonic limit
by the lower full line in Fig. 2 becomes more pronounced as
the polytropic index, n, gets closer to the adiabatic limit of
n ¼ 1.5 (or equivalently, γ ¼ 5=3). Evidently, near this limit,
the density field, ρ, fortified by a high power law, due to
the polytropic prescription, P ¼ kργ , robustly affects the
dynamics of themomentum balance condition. So, coupling
with the density field does serve to destabilize the velocity
field, as it evolves dynamically.
A final important point bears discussion. The two

coupled fields, vðr; tÞ and ρðr; tÞ, are described by
Eqs. (1) and (2), which are both first-order differential
equations. This two-variable mathematical problem was
reduced to a one-variable problem by introducing a new
variable, f ¼ ρvr2. The entire perturbative study and all
consequent analytical results involve this new variable only,
with the perturbed quantity on its stationary background
being f0ðr; tÞ. The price of this one-variable convenience is
a second-order differential equation, as can be seen from

Eq. (7). While the analytical treatment in this work is based
on the variable, fðr; tÞ, the numerics, however, has fol-
lowed the growth of the perturbation by means of the field,
vðr; tÞ (scaled as the Mach number, as Fig. 2 indicates). In
spite of this apparent difference, there is actually no
contradiction between the analytical methods and the
numerics, because from Eq. (3) it is clear that jv0=v0j ∼
jf0=f0j to a linear order. A precise analysis, of the kind
leading to Eq. (13), yields jv0=v0j ¼ ð1 − σÞjf0=f0j. This
linear scaling between f0 and v0 suggests that the unstable
growth behavior of the one will be faithfully captured by
the other. We have chosen the variable, v (scaled by the
speed of sound), to numerically track the growth of the
perturbation, because in accretion fluid mechanics, flow
solutions are categorized in terms of how the bulk flow
velocity measures up to the local speed of sound (e.g.,
transonic, subsonic, globally supersonic, etc.).

VII. CONCLUDING REMARKS

It will be well in order now to make some general
remarks about our work, to put it in perspective. First,
accretion being a fluid problem is very much within the
realm of nonlinear dynamics. Our work addresses the
nonlinear aspects of the dynamics of an accretion process,
by having recourse to the usual analytical tools of nonlinear
dynamics. One salient outcome of the nonlinear approach is
obtaining an acoustic metric, in spite of accommodating
nonlinearity completely. This marks a significant departure
from the linear treatment (small perturbation) of the prob-
lem. Another new result of this work is the discovery of a
Liénard system (a nonlinear oscillator) in a very common
and basic model of accretion. A noteworthy aspect of all
these new results is that they have been extracted from a
system that has been known to the astrophysical community
for more than 60 years—a conservative, non-self-gravitat-
ing, compressible fluid inflow, driven by Newtonian-like
external gravitational fields, with coupled density and
velocity fields. It is a very simple system in essence, and
yet it continues to offer novel insights.
Going by the form of the Liénard system derived here, it

is easy to see that the number of equilibrium points will
depend on the order of nonlinearity that we may wish to
retain in the equation of the perturbation. In practice,
however, the analytical task becomes formidable with
the inclusion of every higher order of nonlinearity.
Going up to the second order, an instability in real time
appears undeniable, but then we must realize that this
conclusion has been made regarding a purely inviscid and
conservative flow. Real fluids have viscosity as another
important physical factor to influence their dynamics. In
fact, fluid flows are usually affected by both nonlinearity
and viscosity, occasionally as competing effects, and
apropos of this point, we note that for a linearized radial
perturbation in spherically symmetric inflows, viscosity
helps in decaying the amplitude of the standing waves
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on globally subsonic solutions [45]. So the instability that
arises because of nonlinearity can very well be tempered by
viscosity in the flow [31]. Closely related to viscous
dissipation, the stability of spherically symmetric accretion
is expected to be affected by turbulence as well [46].
Asuitablemechanism that favors stabilitymaybe found in

accretion onto black holes, where the coupling of the flow
with the geometry of space-time acts in the manner of a
dissipating effect. General relativistic effects have been
known to enhance the stability of the flow [25]. And the
stability of fluids may also be studied by constraining a
perturbation to behave like a traveling wave [6,24,25,30].
At times, we encounter the surprising situation of a
fluid flow being stable under one type of perturbation, but

unstable under the effect of another [24]. Formally involving
nonlinearity, all these features merit a close examination.
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