
Cosmological magnetogenesis from extra-dimensional
Gauss-Bonnet gravity

Kumar Atmjeet,* Isha Pahwa,† and T. R. Seshadri‡

Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India

Kandaswamy Subramanian§

IUCAA, Post Bag 4, Ganeshkhind, Pune 411007, India
(Received 31 December 2013; published 3 March 2014)

Generation of primordial magnetic fields during inflation typically requires the breaking of conformal
invariance of the electromagnetic action. In this paper this has been achieved naturally in a higher-
dimensional cosmological model with a Gauss-Bonnet term in the action. The evolution of the scale factor
of the extra dimension (whose dynamics is influenced by the Gauss-Bonnet term) acts as the cause for the
breaking of conformal invariance. Different cases have been investigated, each of which is characterized by
the number of higher dimensions, the value of the Gauss-Bonnet parameter, and the cosmological constant.
Many of the scenarios considered are highly constrained by the requirements that the cosmic evolution is
stable, that the normal dimensions expand, and that there is no backreaction due to growing electric fields.
However, there do exist scenarios which satisfy the above requirements and are well suited for
magnetogenesis. In particular, a scenario where the number of extra dimensions D ¼ 4 and the
cosmological constant is nonzero turns out to be best suited for generating primordial magnetic fields.
It is shown that for these values of parameters, a scale-invariant magnetic field of the order of 10−10–10−9 G
can be produced. Even in these most favorable scenarios, the higher-dimensional space expands during
inflation at the same rate as the normal dimension. Hence, if a mechanism could freeze the evolution of
the higher dimension, this seems to be a viable mechanism to produce acceptable primordial magnetic
fields.
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I. INTRODUCTION

Observations indicate the existence of coherent magnetic
fields over all scales ranging from stars to galaxies and
clusters of galaxies [1,2]. However, we still do not have a
fully satisfactory theory that explains their origin. There is
evidence for coherent magnetic fields of the order of a few
μG even in galaxies at z ∼ 1 − 2 [3–5]. In fact, there have
also been indications of a lower bound, B ≥ 3 × 10−16 G,
on Mpc scales, for intergalactic magnetic fields [6,7].
These γ-ray observations indicate that there could be an
all pervasive intergalactic magnetic field filling space
almost completely. Such a volume filling magnetic fields
could most easily be explained, if they have a primordial
origin. There is, however, as yet no compelling mechanism
which produces a coherent magnetic field of the required
strength over such large scales. The existence of large scale
magnetic fields indicates that their origin could be in the
early universe [3,8–11]. As inflation becomes the natural
choice to produce coherence on large scales, it is natural to
explore the mechanism of magnetogenesis in the context of

the early universe in an inflationary scenario [12,13].
Inflation itself could have been produced by different
processes. The most common mechanism to produce an
inflationary phase in the early universe involves a scalar
field in a given potential. Different forms of the potential
give different mechanism to produce inflation. Another
scenario in which one could have an inflationary expansion
of the universe is when the space time has dimensions
more than 1þ 3. Such models have been explored in the
literature [14–17].
In 1þ 3 dimensions, the electromagnetic field action is

conformally invariant [18]. The electric and the magnetic
field in such a universe decay as 1=a2. Thus in any standard
cosmological model with inflation these fields will be
washed out much before the end of inflation. In order to
have magnetic fields of sufficient strength at the end of
inflation, conformal invariance of electromagnetic field
action has to be broken. During inflation, the standard
picture is that the universe behaves almost like vacuum,
with the charge density being reduced to negligible values
due to inflation. It is this near vacuum condition, that allows
the generation of electromagnetic waves during inflation.
When the universe reheats, charge particles are reproduced,
which can then carry currents. The presence of charges now
shorts out the electric field and freezes the magnetic field.
Quantitatively, due to finite conductivity, there is indeed a
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damping of the time variation of the vector potential (or
electric field), and as the vector potential becomes time
independent, the magnetic field becomes frozen-in [12,19].
However, the survival of a significant magnetic field requires
that it should decay at a slower rate with cosmological
expansion than 1=a2 (typically as 1=aϵ, where ϵ ≪ 2).1

Attempts have been made to achieve this and generate a
magnetic field during inflationary period through models
based on breaking of conformal invariance of electro-
magnetic action [12,13,19,23–40]. The idea of higher-
dimensional inflation is particularly attractive in the context
of the generation of primordial magnetic fields. This
approach could give a natural way to break conformal
invariance that in turn can lead to the generation of magnetic
fields. The models of magnetogenesis based on scalar field
inflation have the additional problem of backreaction. The
backreaction, if present, tends to halt inflation much before
the required e-fold expansion has taken place to solve the
horizon problem in standard cosmology. This actually has
given motivation to look beyond the scalar field model of
inflation such as higher-dimensional cosmology. Our model
is based on the approach where the dynamical evolution of
scale factor for extra dimensions breaks the conformal
invariance of 1þ 3 dimensional electromagnetic field
action. The coupling to a dynamical scale factor of extra
dimension could be a more natural mechanism to break
conformal invariance as compared to models based on scalar
field inflation which employ an arbitrary coupling function
to implement this [24,27,29,30].
The plan of the paper is as follows. In the next section

we have discussed the electromagnetic action in higher-
dimensional models, where we have taken normal as well as
higher-dimensional subspaces to be homogeneous, isotropic
and flat. Section III focuses on the Gauss-Bonnet gravity and
its effect on the dynamics of the universe, which is given
by the solutions of the Einstein’s equations. In Sec. IV, we
have derived the reduced 1þ 3 dimensional electromagnetic
action and shown that conformal invariance of the electro-
magnetic action is naturally broken by the dynamical scale
factor of higher dimension. The effect of higher dimensions
is embedded into the evolution equations for vector poten-
tial. We have also derived the expressions of the power
spectrum for magnetic and electric fields in this model.
In Sec. V we have obtained the numerical solution for the
evolution of scale factors on the basis of which we can
assume exponential behaviors of the scale factors. This helps
us to find an analytical solution for the vector potential and
hence easier to compute the power spectrum of electric and
magnetic fields in Sec. VI. In this section we discuss the

behavior of the power spectrum based on the results for
different number of extra dimensions and model parameters.
We have estimated the strength of magnetic field in Sec. VII
for the various cases discussed in the preceding section.
Finally we have summarized the results and possibilities in
Sec. VII.
We have used few notations and conventions in this

work. We have worked in natural units (i.e. h ¼ G ¼
c ¼ 1). We shall chose metric signature to be (−;þ;þ;þ;
þ…:). The Greek alphabets can take values from 0 to
n − 1, where n is the number of spatial dimensions
involved in the theory. Lowercase Latin indices runs from
1 to 3 while the uppercase Latin indices takes values from
4 to 3þD, where D is the number of extra dimensions
in our model.

II. ELECTROMAGNETIC ACTION IN
HIGHER-DIMENSIONAL MODELS

The action for the electromagnetic field in 1þ 3 dimen-
sions in a general space-time is given by,

SEM ¼ −
Z

1

16π
d4x

ffiffiffiffiffiffi−gp
FμνFμν; (1)

where Fμν is the electromagnetic field tensor given in terms
of the derivatives of vector potential Aμ, as Fμν ¼ ∂μAν−∂νAμ. The determinant of the metric tensor gμν is denoted
by g. A homogeneous and isotropic universe can be
described by the line element,

ds2 ¼ aðηÞ2ð−dη2 þ ηijdxidxjÞ: (2)

where aðηÞ is the scale factor and η is the conformal time.
Here ηij is the spatial part of Minkowski metric tensor given
as, ημν ¼ diagð−1; 1; 1; 1;…:Þ. Since the electromagnetic
action is conformally invariant, it can be shown that
magnetic field in such a universe decays as B ∝ 1=a2.
Hence if magnetic fields were to be generated in, say, an
inflationary process, they would decay away very rapidly.
If we require that there should be significant magnetic field
at the end of inflation, the conformal invariance of
electromagnetic action has to be broken. Only in that case
one has the possibility of the dilution of magnetic field with
expansion to be slower than 1=a2. Put alternatively, this
could lead to the amplification of a2B. Many different
mechanisms to break conformal invariance for magneto-
genesis have been investigated in literature [12,13,19,23,
25–29,31–40]. One of the mechanisms used is to make
the coefficient of FμνFμν a time dependent function instead
of it being a constant as in the standard electrodynamics.
In the following section, we have explored the possibility of
extra dimensional models with Gauss-Bonnet term pro-
vided such a function for breaking of conformal invariance
in the reduced four dimensional action. We consider a

1The decay of the magnetic field can made to slow down in the
case of certain open models for the universe [20,21]. In these
models the effect is purely due to geometric reasons. These are
however, open models of the universe and hence require K ¼ −1.
We will not be considering such models in this paper (see also
recent criticism of such models in [22])
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higher-dimensional space-time which has D extra spatial
dimensions in addition to the normal 1þ 3 dimensions.
We further assume that the spatial part of normal as well
as extra dimensional subspace is homogeneous, isotropic
and flat. The line-element for such a universe can be
given by,

ds2 ¼ ~gμνdxμdxν

¼ −dt2 þ a2ðtÞηijdxidxj þ b2ðtÞηIJdxIdxJ (3)

where ~gμν is the metric tensor for higher-dimensional space-
time. The functions aðtÞ and bðtÞ are the scale factors of
normal and extra dimensions, respectively. The action for
the electromagnetic field in higher-dimensional theory is
taken to be,

S ¼ −1
16π

Z
d4þDx

ffiffiffiffiffiffi−~g
p

~Fμν
~Fμν (4)

Here ~g is the determinant of the higher-dimensional metric
tensor ~gμν, and ~Fμν ¼ ∂μ

~Aν − ∂ν
~Aμ is similarly the higher-

dimensional electromagnetic field tensor in terms of the
higher-dimensional vector field ~Aμ. As we will see later,
conformal invariance for 1þ 3 dimensional electromag-
netic action is broken by the presence of the dynamical
scale factor (bðtÞ) of higher dimensions in this scenario
[24,27,29,30].

III. GAUSS-BONNET GRAVITY

Higher-dimensional gravity is a natural generalization of
1þ 3 dimensional gravity. The literature is abundant with
higher-dimensional models like string theory [41], Brane-
World, etc. [42–46] to name a few. In this paper we study
in particular, Gauss-Bonnet gravity in higher-dimensional
scenario [47–49]. The standard invariant Einstein-Hilbert
action leads to equations of motion for the geometry
(Einstein’s equations) which are second order in the com-
ponents of the metric tensor. Since the dynamics of the
universe today is well explained within the context of
1þ 3 dimensional Einstein-Hilbert action, the effect of
considering a higher-dimensional action should be such that
we recover the standard 1þ 3 dimensional Einstein equa-
tions today, at least in a low energy approximation. A natural
generalization to a higher-dimensional action will involve
the Gauss-Bonnet term. In 1þ 3 dimensions, for space
without boundary (as in case of cosmology) the Gauss-
Bonnet term becomes the total divergence. Thus, it does not

contribute to the equations of motions in 1þ 3 dimensions.
This term, however, gives a nonzero contribution in higher
dimensions, and hence it is interesting to look for its effect
in higher-dimensional cosmology. This term becomes very
small today as it varies as square of the curvature.
We consider, the dynamics of the universe governed by

the action of the form [50,51],

S ¼
Z

d4þDx
ffiffiffiffiffiffi−~g

p �
Lmatter þ ~LEM −MDþ2

2
ð ~Rþ χ ~GÞ

�

(5)

where ~R is the ‘1þ 3þD’ dimensional Ricci scalar and
χ is the Gauss-Bonnet parameter. M is the higher-
dimensional Planck mass which is related to 1þ 3 dimen-
sional Planck mass as M2

pl ¼ bDMDþ2. We may define a
parameter θ as θ ¼ χM2 which sets the scale of the theory.
The Gauss-Bonnet term ~G is given by

~G ¼ ~R2 − 4 ~Rμν
~Rμν þ ~Rμνλσ

~Rμνλσ; (6)

and ~LEM is the Lagrangian density of the electromagnetic
field given by ~LEM ¼ − 1

16π
~Fμν

~Fμν in the higher dimensions.
The electromagnetic filed is assumed to be a test field

and hence does not contribute to the evolution of the
background. The source term that affects the evolution of
geometry is the energy-momentum tensor arising from
Lmatter of the form

Tμ
ν ¼ ð−ρ; P1; P1; P1; P2; P2;…Þ;

where ρ is the energy density. P1 and P2 are the isotropic
pressure in normal and extra dimensions, respectively.
We adopt P1 ¼ w1ρ, P2 ¼ w2ρ, where w1 and w2 are
the equation of state parameters for the constituent present
in normal and extra dimensions, respectively.
The continuity equation in higher dimensions (Tμν

;ν ¼ 0)
implies

ρðtÞ ¼ ρ0ma
ð3ð1þw1ÞÞ
0 bðDð1þw2ÞÞ

0

aðtÞð3ð1þw1ÞÞbðtÞðDð1þw2ÞÞ : (7)

The Einstein tensor Gν
μ for the line element given in Eq. (3)

is derived for this action, assuming that the electromagnetic
field is a test field. The corresponding nonzero spatial
components within a three-space and within extra-spatial
dimensions are equal [52],

− ρ

MDþ2
¼ −3 a

: 2

a2
− 3D

a
:

a
b
:

b
−DðD − 1Þ

2

b
: 2

b2
þ 12Dχ

a
: 3b

:

a3b
þ 18DðD − 1Þχ a

: 2b
: 2

a2b2

þ 6DðD − 1ÞðD − 2Þχ a
:
b
: 3

ab3
þDðD − 1ÞðD − 2ÞðD − 3Þ

2
χ
b
: 4

b4
(8)
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P1

MDþ2
¼ −2 ä

a
−D

b̈
b
− 2D

a
:

a
b
:

b
− a

: 2

a2
−DðD − 1Þ

2

b
: 2

b2
þ 8Dχ

ä a
:
b
:

a2b
þ 4DðD − 1Þχ b

: 2ä
b2a

þ 4Dχ
a
: 2b̈
a2b

þ 2DðD − 1ÞðD − 2Þχ b
: 2b̈
b3

þ 6DðD − 1Þχ a
: 2b

: 2

a2b2
þ 4DðD − 1ÞðD − 2Þχ b

: 3a
:

b3a

þDðD − 1ÞðD − 2ÞðD − 3Þχ b
: 4

2b4
þ 8DðD − 1Þχ b̈ b

:
a
:

b2a
∀i (9)

P2

MDþ2
¼ −ðD − 1Þ b

::

b
− 3

ä
a
− 3ðD − 1Þ a

:

a
b
:

b
− ðD − 1Þ

�
D
2
− 1

�
b
: 2

b2
− 3

a
: 2

a2
þ 24ðD − 1Þχ ä a

:
b
:

a2b
þ 6ðD − 2ÞðD − 1Þχ b

: 2ä
b2a

þ 12ðD − 1Þχ a
: 2b̈
a2b

þ 2ðD − 1ÞðD − 2ÞðD − 3Þχ b
:
2b̈
b3

þ 6ðD − 1ÞðD − 2ÞðD − 3Þχ b
:
3a
:

b3a

þ ðD − 4ÞðD − 1ÞðD − 2ÞðD − 3Þχ b
: 4

2b4
þ 12χ

a
: 2ä
a3

þ 18ðD − 1ÞðD − 2Þχ a
: 2b

: 2

a2b2

þ 12ðD − 2ÞðD − 1Þχ b̈ b
:
a
:

b2a
þ 12ðD − 1Þχ a

: 3b
:

a3b
∀I: (10)

Augmented by the equation of state, the solution of these
equations gives the evolution of aðtÞ and bðtÞ.

IV. MAGNETOGENESIS IN GAUSS-BONNET
GRAVITY

We consider the Universe to be described by the metric
given in Eq. (3). By performing dimensional reduction
we get a 1þ 3-dimensional effective electromagnetic
action as

Sem ¼
Z

d4x
ffiffiffiffiffiffi−gp

LEM

�
b
b0

�
D
; (11)

where LEM ¼ bD0 ΩD
~LEM. ΩD is the coordinate volume of

extra dimensions, which is assumed to be finite and g is the
determinant of 1þ 3-dimensional metric tensor gμν. LEM is
the equivalent 1þ 3-dimensional Lagrangian density for
1þ 3-dimensional vector potential Aμ (for μ ¼ 0 to 3)
defined by

LEM ¼ −1
16π

FμνFμν (12)

The reduced 1þ 3-dimensional electromagnetic action
corresponds to a 1þ 3-dimensional vector potential
given by

Ai ¼ ðΩDbD0 Þ1=2 ~Ai: (13)

We have considered a simple case where the nature of Aμ is
assumed to be such that it depends on only 1þ 3-
dimensional coordinates. This ensures that the derivatives
of Aμ with respect to extra-dimensional coordinates vanish.
Further we assume that components of Aμ for μ ≥ 4 are

zero. The choice of field configuration (i.e. the field is
completely confined to external space) allows one to do
such reduction and the reduced field is identified as the
1þ 3-dimensional vector potential in our case. Another
approach followed in [53] leads to terms containing scalar
fields as well. This differs from an approach of considering
five dimensional field with electromagnetic components
confined in 1þ 3 dimensions [54]. The action for electro-
magnetic field given by Eq. (11) is no more conformally
invariant. The presence of dynamical extra-dimensional
scale factor of higher dimension breaks the conformal
invariance of the 1þ 3 -dimensional electromagnetic
action. Maxwell’s equations for electromagnetic fields is
obtained by varying the action with respect to the reduced
four dimensional vector potential.

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi−gp �
b
b0

�
D
Fμν

�
¼ 0 (14)

We work in the radiation gauge i.e. A0 ¼ 0, ∂iAi ¼ 0.
Maxwell’s equation, Eq. (14) then takes the form,

Ai

::
þ
�
a
:

a
þD

b
:

b

�
Ai

: − ∂j∂j

a2
Ai ¼ 0 (15)

where dot is the derivative with respect to time, t. It is
convenient to work in terms of conformal time co-ordinate
η, defined as,

η ¼
Z

dt
aðtÞ (16)

Re-expressing Eq. (16) in terms of η, we get

ATMJEET et al. PHYSICAL REVIEW D 89, 063002 (2014)

063002-4



Ai
00ðη; xÞ þD

b0

b
Ai

0ðη; xÞ − ∂j∂jAiðη; xÞ ¼ 0 (17)

where prime is the derivative with respect to η. It can be
seen that the presence of a dynamical extra-dimensional
scale factor breaks the conformal invariance of electro-
magnetic action in 1þ 3 dimensions and may work to
amplify the field. It is this feature of the extra dimension
which we exploit here for our purpose.

A. Evolution of Normal Modes

It will be useful to describe the evolution of vector
potentials in terms of their Fourier modes,given by

Alðx; tÞ ¼
ffiffiffiffiffiffi
4π

p Z
d3k
ð2πÞ3

X2
λ¼1

ϵλlðkÞ½bλðkÞAðk; ηÞeikx

þ b†λðkÞA�ðk; ηÞe−ikx�; (18)

where, k represents the wave number of momentum
modes of vector potential. The polarization vectors ϵλi
are defined as

ϵμ0 ¼
�
1

a
; 0

�
ϵμλ ¼

�
0;
~ϵiλ
a

�
; ϵμ3 ¼

�
0;
1

a
ki

k

�
;

(19)

and λ, corresponds to two orthonormal transverse polar-
izations [19,40]. The 3-vectors ~ϵiλ are unit vectors orthogo-
nal to k and to each other. The conjugate momentum
Πiðη; xÞ for the vector potential is given by,

Πiðη; xÞ ¼ δS
δAi

0 ¼
�
b
b0

�
D
a2ðηÞgijA0

jðη; xÞ: (20)

Here bλðkÞ and b†λðkÞ are the annihilation and creation
operators (not to be confused with the scale factor bðtÞ),
which satisfy the relations,

½bλðkÞ; b†λ0 ðkÞ� ¼ δλ;λ0δ
3ðk − k0Þ;

½bλðkÞ; bλ0 ðkÞ� ¼ ½b†λðkÞ; b†λ0 ðkÞ� ¼ 0
(21)

The form of the polarization vector ensures that the
coulomb gauge conditions as well as the quantization
conditions are satisfied. i.e.

½Alðt; xÞ;Πjðt; yÞ� ¼ i
Z

d3k
ð2πÞ3 e

ikðx−yÞ
�
δjl − δlm

kjkm

k2

�

(22)

The Fourier co-efficients, Āðk; ηÞ ¼ aAðk; ηÞ satisfy the
equation

Ā00ðk; ηÞ þD
b0

b
Ā0ðk; ηÞ þ k2Āðk; ηÞ ¼ 0: (23)

Defining a new variable Aðk; ηÞ by Aðk; ηÞ ¼ ðb=b0ÞD=2

Āðk; ηÞ and expressing the differential equation in terms of
the new variable, we get

A00ðk; ηÞ þ
�
k2 −D

2

b00

b
−D

2

�
D
2
− 1

�
b02

b2

�
Aðk; ηÞ ¼ 0:

(24)

This can be expressed in a compact form as

A00ðk; ηÞ þ ½k2 − VðηÞ�Aðk; ηÞ ¼ 0; (25)

where,

VðηÞ ¼ D
2

b00

b
þD

2

�
D
2
− 1

�
b02

b2
: (26)

B. Power Spectrum

The 1þ 3-dimensional Energy-Momentum Tensor for
electromagnetic field described by the action in Eq. (11) is
given by,

TEM
μν ¼ −2ffiffiffiffiffiffi−gp

�
b
b0

�
D ∂ð ffiffiffiffiffiffi−gp

LEMÞ
∂gμν (27)

Expressing LEM in terms of electromagnetic field tensor
Fμν and metric tensor gμν, Eq. (27) takes the form,

TEM
μν ¼ 1

4π

�
b
b0

�
D
�
gδγFμγFνδ − 1

4
gμνFαβFαβ

�
(28)

The electric field component(T0ðEÞ
0 ) and magnetic field

component (T0ðBÞ
0 ) of the Energy-Momentum tensor is

obtained as,

T0ðBÞ
0 ¼ − 1

16π

�
b
b0

�
D
gijgmlFimFjl;

T0ðEÞ
0 ¼ − 1

8π

�
b
b0

�
D gij

a2
Ai

0Aj
0

(29)

Vacuum expectation value of energy density for magnetic
field (ρB) contribution is given by,

ρB ¼ h0j − T0B
0 j0i

¼ 1

16π

�
b
b0

�
D
h0jð∂iAm − ∂mAiÞð∂jAl − ∂lAjÞgijgmlj0i:

(30)

Using the Fourier transformation defined in the previous
section, Eq. (30) is rewritten as
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ρB ¼ 1

16π

�
b
b0

�
D
4π

Z
d3k
ð2πÞ3 g

ijgml
X2
λ¼1

ðϵλmðkÞki − ϵλiðkÞkmÞðϵλlðkÞkj − ϵλjðkÞklÞjAðk; ηÞj2

¼ 1

2

�
b
b0

�
D
Z

d3k
ð2πÞ3

k2

a2

�X2
λ¼1

ϵlλðkÞϵλlðkÞ −
klkj
k2

X2
λ¼1

ϵjλðkÞϵλlðkÞ
�
jAðk; ηÞj2

¼ 1

2π2

�
b
b0

�
D
Z

dk
k4

a2
jAðk; ηÞj2: (31)

Here we have used the relations [19,40],

h0jbλðkÞb†λ0 ðk0Þj0i ¼ ð2πÞ3δ3ðk − k0Þδλλ0 ;
h0jbλðkÞbλ0 ðk0Þj0i ¼ h0jb†λðkÞb†λ0 ðk0Þj0i ¼ 0 (32)

X2
λ¼1

ϵiλðkÞϵλjðkÞ ¼ δij − δjl
kikl

k2
: (33)

In terms of redefined variable Aðk; ηÞ, we have

ρB ¼ 1

2π2

Z �
k
a

�
4

jAðk; ηÞj2dk: (34)

Hence, the power spectrum corresponding to magnetic field
ð dρB
d×lnkÞ is be given by

dρB
dlnk

¼ 1

ð2πÞ2 k
�
k
a

�
4

jAðk; ηÞj2: (35)

Similarly for the electric field, the power spectrum ð dρE
d×lnkÞ

can be expressed as

dρE
dlnk

¼ bD

2π2
k3

a4

����
�
Aðk; ηÞ
bD=2

�0����
2

: (36)

Here, ρE is the vacuum energy density contribution of
electric field. The expressions for power spectrum of
magnetic and electric fields have forms similar to that
obtained in references [19,40]. In Eqs. (35) and (36), the
factor bD=2 appears in the same way as the time-dependent
coupling function fðϕÞ in these references. The coupling
function fðϕÞ is being used to break the conformal
invariance of electromagnetic action in these references,
whereas the scale factor for extra dimensions bðtÞ does the
job in our model. In this sense, the mechanism of breaking
conformal invariance emerges more naturally in our case.
In order to make numerical estimates of the power-
spectrum, we need to consider specific models for the
evolution of the scale factors.

V. NUMERICAL SOLUTIONS FOR
SCALE FACTORS

The evolution of the two scale factors is governed by
the Einstein’s Eqs. (8)–(10). These solutions have been

discussed in detail in the reference [52] whose results we
adopt here for further calculations. As has been discussed in
[52], there exist both stable and unstable solutions for the
scale factors. Since the unstable solutions are not of
physical interest in the context of our work, we concentrate
only to the stable solutions here. These equations are solved
forD number of extra dimensions and the redefined Gauss-
Bonnet parameter θ. Further, as pointed out in reference
[52], unless we have some very special situations, the
energy density in the Universe decreases rapidly with time.
Hence, we begin by considering the vacuum case when
Ti
k ¼ 0. The initial condition for b

:
=b is also a parameter in

the theory whereas the initial condition for a
:
=a can be

calculated in terms of b
:
=b from Eq. (8). The solutions

found in [52] suggest that we can choose the form for aðtÞ
and bðtÞ asymptotically to be

aðtÞ ∝ eαt; bðtÞ ∝ eβt: (37)

The values of these exponents α and β are given in Table I
for different number of extra dimensions, D ≥ 2. It is to be
noted that the sign of these exponents α and β determines
whether inflation or contraction obtains in the respective
dimensions.
There are some key features of the solutions from Table I

which are worth highlighting. As we mentioned above, all
the solutions show asymptotically exponential behavior for
the scale factors of normal as well as extra dimensions. The
evolution of scale factors aðtÞ and bðtÞ are opposite in
nature, which means if one scale factor inflates the other
contracts or vice versa. The exponents α and β depend on θ
(Gauss-Bonnet parameter) but their ratios are found to be
independent of θ, for any given D and sign of α. For the
magnetic and electric field power spectrum calculations, as
we will see in the next section, it is the ratio of the
exponents which matters. This implies that the choice of
Gauss-Bonnet parameter only affects the evolution of scale
factors but not the nature of magnetic field power spectrum.
The details of these solutions will be used later to calculate
the magnetic field spectrum and strength. We will see in the
next section that an inflationary solution for normal
dimensions and contraction for extra dimensions does
not lead scale-invariant spectrum for magnetic field. We
have also therefore investigated solutions including a
cosmological constant type term (λ̄). This works as a

ATMJEET et al. PHYSICAL REVIEW D 89, 063002 (2014)

063002-6



parameter in our theory. We know that in 1þ 3 dimensions,
the general principles of formulating the Einstein’s equa-
tions accommodates the possibility of a cosmological
constant. The same is true in higher dimensions too.
This could be the case for a geometric origin of cosmo-
logical constant. Here too, as in 1þ 3 dimensions, it could
instead also arise due to the potential of a scalar field. In this
case, we first get vacuum type solutions, where the normal
space inflates and the extra-dimensional space simultane-
ously contracts (or vice versa). In addition, we also get a
new type of stable solution, whereby both the normal as
well as extra dimension are inflating. The situation in which
both the dimensions are inflating or deflating simultane-
ously, andD ¼ 4, turns out to be very interesting as it gives
scale-invariant spectrum for magnetic field (described in
the next section). A list of all the asymptotic solutions for
D ¼ 4, θ ¼ 0.1 is given in Table II.

VI. ANALYTICAL SOLUTION FOR
ELECTROMAGNETIC FIELD
AND POWER SPECTRUM

It is clear from the work of [52] that within a few
e-foldings, a and b enter an asymptotic regime, where they
become exponential functions of time. The exponents
themselves are given in Tables I and II. In such a case,
one can obtain analytical solutions for the Aðk; ηÞ. It is
convenient to express the evolution of the scale factors in
terms of the conformal time (η) defined in equation (16). In
terms of conformal time, the evolution of the scale factors,
given in Eq. (37), becomes

aðηÞ ¼ a0

���� ηη0
����
−1
; bðηÞ ¼ b0

���� ηη0
����
−β=α

; (38)

By substituting this in equation (25), the function VðηÞ
takes the form

VðηÞ ¼ ξðξ − 1Þ
η2

(39)

where,

ξ ¼ D
2

�−β
α

�
(40)

Substituting Eq. (39) in Eq. (24) we get,

A00ðk; ηÞ þ
�
k2 − ξðξ − 1Þ

η2

�
Aðk; ηÞ ¼ 0 (41)

whose solution can be obtained in terms of Hankel
functions.

Aðk; ηÞ ¼ ð−kηÞ1=2½C1ðkÞJξ−1=2ð−kηÞ
þ C2ðkÞJ−ξþ1=2ð−kηÞ� (42)

where C1ðkÞ and C2ðkÞ are scale-dependent coefficients
to be fixed by the initial conditions. The length scales
involved here are Hubble radius defined as dH ¼ 1=H and
the physical length scale (a=k) associated with each mode.
Since the evolution equation for the electromagnetic field

TABLE I. Asymptotic solutions for different number of extra dimensions.

Stable Solutions Unstable Solutions
D θ ¼ χM2 α β ξ ¼ − D

2
β
α nB ¼ 4þ 2n α β ξ ¼ − D

2
β
α nB ¼ 4þ 2n

2 −1.0 0.750 −0.541 0.722 4.556 −0.750 0.541 0.722 4.556
−0.5 1.060 −0.766 0.722 4.556 −1.060 0.766 0.722 4.556

3 −1.0 0.809 −0.309 0.573 4.854 −0.809 0.309 0.573 4.854
−0.309 0.809 3.927 −1.854 0.309 −0.809 3.927 −1.854

−0.5 1.144 −0.437 0.573 4.854 −1.144 0.437 0.573 4.854
−0.437 1.144 3.927 −1.854 0.437 −1.144 3.927 −1.854

−0.1 2.558 −0.977 0.573 4.854 −2.558 0.977 0.573 4.854
−0.977 2.558 3.927 −1.854 0.977 −2.558 3.927 −1.854

4 −1.0 0.846 −0.218 0.516 4.968 −0.846 0.218 0.516 4.968
−0.390 0.525 2.691 0.617 0.390 −0.525 2.691 0.617

−0.5 1.197 −0.309 0.516 4.968 −1.197 0.309 0.516 4.968
−0.552 0.742 2.691 0.617 0.552 −0.742 2.691 0.617

−0.1 2.677 −0.691 0.516 4.968 −2.677 0.691 0.516 4.968
−1.234 1.661 2.691 0.617 1.234 −1.661 2.691 0.617

10 −1.0 0.918 −0.080 0.436 4.872 −0.918 0.080 0.436 4.872
−0.588 0.218 1.855 2.288 0.588 −0.218 1.855 2.288

−0.5 1.298 −0.113 0.436 4.872 −1.298 0.113 0.436 4.872
−0.832 0.308 1.855 2.288 0.832 −0.308 1.855 2.228

−0.1 2.903 −0.253 0.436 4.872 −2.903 0.253 0.436 4.872
−1.860 0.690 1.855 2.288 1.860 −0.690 1.855 2.288
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is a linear equation all modes will evolve independently.
Hence, there will be different set of initial conditions for
different modes. Comparing the two length scales (i.e. a=k
and dH), the modes will be said to be within the Hubble
radius if k=aH > 1 and outside the Hubble radius if
k=aH < 1. At horizon crossing, k=aH ¼ 1. For exponen-
tial inflation η ¼ −1=aH. This implies k=aH ≈ −kη and
at horizon crossing, −kη ¼ 1. A given mode is therefore
within the Hubble radius for −kη > 1 and outside the
Hubble radius when −kη < 1. Substituting the solution
for the redefined variable A in Eq. (24)), we deduce the
form of power spectrum at super-horizon scales (−kη ≪ 1)
as [19,40],

dρB
d × lnk

¼ FðnÞ
2π2

H4

�
k
aH

�
4þ2n

≈
FðnÞ
2π2

H4ð−kηÞ4þ2n:

(43)

Here,

FðnÞ ¼ π

22nþ1Γ2ðnþ 1
2
Þcos2ðπnÞ : (44)

We have n ¼ ξ if ξ ≤ 1=2 and n ¼ 1 − ξ if ξ ≥ 1=2.
Similarly, the power spectrum for the electric field is
given by

dρE
dlnk

¼ GðmÞ
2π2

H4

�
k
aH

�
4þ2m

≈
GðmÞ
2π2

H4ð−kηÞ4þ2m;

(45)

where

GðmÞ ¼ π

22mþ1Γ2ðmþ 1
2
Þcos2ðπmÞ : (46)

Herem ¼ 1þ ξ if ξ ≤ −1=2 andm ¼ −ξ if ξ ≥ −1=2. The
Hubble parameter remains almost constant during inflation.
Hence the scale dependence of power spectrum comes only
from the other factor containing kη. It is evident that a
scale-invariant spectrum for magnetic field doesn’t imply
scale invariance of electric field power spectrum as n ≠ m.
A scale-invariant power spectrum for magnetic field can be
obtained for n ¼ −2, which corresponds to two different
values of ξ, namely ξ ¼ −2 or ξ ¼ 3. We define the spectral
index of the magnetic field as nB ¼ 4þ 2n. For the case
ξ ¼ 3, the electric field spectrum grows rapidly with time
and hence may lead to a strong backreaction [19,40].
Hence, ξ ¼ 3 may not be a viable scenario. However, for
ξ ¼ −2 we do not have this problem of growing electric
field while at the same time yielding a scale-invariant
magnetic power spectrum. Hence the latter case is a better
acceptable scenario for magnetic field generation. We have
summarized in Tables I and II, the values of ξ and the
magnetic spectral index nB ¼ 4þ 2n for different solutions
obtained in Sec. V
For ξ > 0 it is clear from Eq. (40) that we require the

scale factors of the normal and extra dimensions to have
opposite behavior. In particular for the normal dimensional
space to expand the higher-dimensional space needs to
contract. From the point of view of the evolution of
universe, this is the qualitative situation we need. The case

TABLE II. Asymptotic solutions for D ¼ 4, θ ¼ 0.1 with inclusion of the parameter λ̄.

Stable Solutions Unstable Solutions
λ̄ α β ξ ¼ − D

2
β
α nB ¼ 4þ 2n α β ξ ¼ − D

2
β
α nB ¼ 4þ 2n

0.000 0.846 −0.218 0.516 4.968 −0.846 0.218 0.515 4.968
−0.390 0.525 2.691 0.617 0.390 −0.525 2.691 0.617

0.001 −0.390 −0.524 2.690 0.625 0.390 0.524 2.690 0.625
0.846 −0.218 0.515 4.969 −0.846 0.218 0.510 4.969

−0.018 0.000 0.000 4.000 0.018 0.000 0.000 4.000
0.007 0.007 −2.000 0.000 −0.007 −0.007 −2.000 0.000

0.050 0.827 −0.216 0.532 4.935 −0.827 0.216 0.532 4.935
−0.384 0.505 2.630 0.740 0.384 −0.505 2.630 0.740
0.048 0.048 −2.000 0 −0.048 −0.048 −2.000 0.000

0.100 0.804 −0.214 0.532 4.935 −0.804 0.214 0.522 4.955
−0.376 0.480 2.553 0.893 0.376 −0.480 2.553 0.893
0.066 0.066 −2.00 0.000 −0.066 −0.066 −2.00 0.000

0.19 0.750 −0.210 0.560 4.880 −0.750 0.210 0.565 4.880
0.088 0.088 −2.00 0.000 −0.088 −0.088 −2.000 0.000
0.402 −0.246 1.223 3.552 −0.402 0.246 1.223 3.552

0.25 0.686 −0.206 0.600 4.799 −0.686 0.206 0.600 4.799
0.100 0.100 −2.000 0.000 −0.100 −0.100 −2.000 0.000
0.526 −0.208 0.791 4.418 −0.526 0.206 0.790 4.418

0.6 0.142 0.142 −2.000 0.000 −0.142 −0.142 −2.000 0.000
1.0 0.173 0.173 −2.000 0.000 −0.173 −0.173 −2.000 0.000
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of ξ ¼ 3 falls in this category. Similarly in order to have
ξ < 0 both the dimensions should have identical behavior.
This is the case for ξ ¼ −2. In this situation we need to have
either both normal and higher-dimensional space to expand
or for both to contract. The situation in which normal space
contracts is not acceptable. The other situation in which
normal dimensions expand has a problem that the higher-
dimensional space too expands. However, it may be
possible to construct a mechanism which can freeze the
expansion of the higher-dimensional space at a suitable
scale (or even make it recollapse), to avoid conflicts with
observations.
We examine the behavior of magnetic field spectrum for

the solutions obtained in Tables I and II. To begin with one
needs to restrict oneself to stable solutions. In Table I, for
D ¼ 3we have stable solutions for both nB > 0 and nB < 0
(nB ¼ 0 refers to a scale-invariant case). For the cases
where nB ¼ 4.854 we have expanding normal dimensional
space with contacting higher-dimensional space (for exam-
ple, θ ¼ 0.1, α ¼ 0.809, β ¼ −0.309). Although the fea-
ture of expansion is acceptable, the value of nB indicates
that the spectrum of magnetic field produced will be
strongly blue. One can have a vastly growing magnetic
field spectrum for nB ¼ −1.854. This, however, can cause
severe backreaction problem. Also in this case the normal
dimensional space contracts while the higher-dimensional
space expands (for example, θ ¼ 0.1, α ¼ −0.309,
β ¼ 0.809), Even if we construct a mechanism to halt
the expansion of higher dimensions, the fact that normal
dimensions are contacting makes it an unacceptable sce-
nario. For D ¼ 2, independent of the value of θ, we get
nB ¼ 4.556. This is again a highly blue spectrum. For cases
D ¼ 4 and D ¼ 10 we have nB > 0, independent of which
of the dimensions are expanding and which are contacting.
In general, the cases where normal dimensions expand
while higher dimensions contract the values nB are very
different from nB ¼ 0 as compared to the reverse cases
where normal dimensions contract and higher dimensions
expand. There are however some interesting features in
Table II which is specifically for the case ofD ¼ 4 and with
a cosmological constant parameter (λ̄). We again focus only
on the stable solutions, where also the normal dimensions
are expanding. There are then two types of solutions. The
first kind is very similar to the vacuum case, and obtained
for a small enough λ̄. Here, we again get a blue spectrum
[for example, λ̄ ¼ 0.001; α ¼ 0.846, β ¼ −0.218, nB ¼
4.969 & λ̄ ¼ 0.25; α ¼ 0.686, β ¼ −0.206, nB ¼ 4.799].
More interestingly, for λ̄ ≠ 0 we do have cases where
nB ¼ 0 (i.e. the perfect scale-invariant case). We also note
that such cases have stable solutions with both the normal
as well as higher dimensions expand simultaneously and at
the same rate ( for e.g., λ̄ ¼ 0.001; α ¼ 0.007, β ¼ 0.007,
λ̄ ¼ 0.050; α ¼ 0.048, β ¼ 0.048). There exist such sol-
ution for all nonzero λ̄. In fact, for these solutions with
α ¼ β, ψ ¼ −D=2 and nB ¼ 0 exactly forD ¼ 4. Since the

values of exponents are dependent upon λ̄, the parameter
can be tuned to get admissible values of these exponents.
However, in this case the mechanism(s) to freeze the
expansion of higher-dimensional space is needed.
Alternatively, one needs a model where an effective λ̄
can be turned off to join onto a vacuum type solution,
with expanding normal dimension and contracting extra
dimensions. These models would have to perhaps
invoke a higher-dimensional scalar field with a potential.
Discussions about the details of such a mechanism is
beyond the scope of this paper.

VII. MAGNETIC FIELD STRENGTH

From Eq. (43), for a perfect scale-invariant spectrum for
a magnetic field, we have, (nB ¼ 0)

dρB
dlnk

¼ Fðn ¼ −2Þ
2π2

H4 ¼ 9

4π2
H4

f: (47)

where, Hf is the value of Hubble parameter which remains
constant during inflation. Having identified the parameters
for obtaining both a scale-invariant magnetic field spectrum
and at the same time, which does not lead to a growing
electric filed power spectrum, we now estimate the strength
of the magnetic field. In our case the role of extra
dimensions is present only before the end of inflation,
because the extra dimensions are assumed to be frozen
afterwards. Thus in the post inflationary era, the energy
density in the magnetic field evolves as,

ρBð0Þ ¼ ρBðfÞ
�
af
a0

�
4

; (48)

where ρBð0Þ & ρBðfÞ are the magnetic field energy
densities and a0 & af are the values of scale factor at
present epoch and at the end of inflation respectively.
The ratio of the present value of scale factor to that at the
end of inflation depends upon the history of universe. We
assume that the universe entered into reheating phase
almost instantly after the end of inflation. The entropy
of the universe is constant through its evolutions i.e.
ga3T3 ≈ const, where g represents the relativistic degrees
of freedom at a particular epoch while T is the temperature
of the fluid at that epoch. Using the entropy conservation
we get

af
a0

≈
g1=30

g1=12f

T0

H1=2
f M1=2

pl

�
8π3

90

�
1=4

: (49)

Here, gf and g0 are the relativistic degrees of freedom at the
end of inflation and current epoch respectively. Taking
gf ∼ 100, Eq. (49), gives a0=af ∼ 5 × 1031ðHf=MplÞ1=2.
For a viable cosmology bðtÞ should saturate at an admis-
sible value. The possible mechanism which may help in this
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is beyond the scope of this paper and needs to be explored
further. For the extra dimensions frozen at the scale of
higher-dimensional Planck mass, we can write M ∼Mpl.
Therefore we assume Hf ¼ κMpl, where κ sets the scale of
inflation. Depending on the numerical value of κ, it is
possible to generate magnetic fields which can have a
strength today of the order of a nano gauss. From Table II
depending on the value of the parameters, magnetic fields
of different strengths can be generated. By changing the
value of λ̄ we can have different values of α (which is in
turn related to κ as the scale of inflation) for scale-invariant
magnetic fields (nB ¼ 0). From Table II, for λ̄ ¼ 0.001, the
value of κ is of the order of 10−3. For this value of κ we
can generate magnetic fields which at present are of order
10−9 G. We note that this value is obtained for the scale-
invariant spectrum and so it would be relevant on all scales
which leave the Hubble radius during inflation. For
cosmological magnetic field, typically we are interested
in Mpc scales.2

VIII. CONCLUSIONS

In this paper, an attempt has been made to investigate the
possibility of generating primordial cosmic magnetic fields
in certain cosmological models motivated by higher
dimensions. The approach in this paper is to include the
Gauss-Bonnet term in the action. The evolution of the scale
factors of the normal as well as the extra dimensions is
governed by the Gauss-Bonnet term and the number of
extra dimensions. We found that conformal invariance of
the electromagnetic action is naturally broken by an

evolving scale factor of the extra dimensions. Within a
few e-foldings the scale factors in both normal dimension
and the extra dimension assume an exponential form
which makes it easier to obtain analytical solutions for
the vector potential. A scale-invariant magnetic field
spectrum requires 4þ 2n ¼ 0, which corresponds to
ξ ¼ 3 or ξ ¼ −2.
The power spectrum corresponding to ξ ¼ 3 has the

problem of vastly growing electric fields. As shown in
Tables I and II. We do not have stable solutions which can
give a nearly scale-invariant spectrum without including
parameter λ̄. The cases for which lower nB values are
obtained are not admissible as it requires deflationary
solutions for normal dimensions. The power spectrum
corresponding to ξ ¼ −2 does not suffer from the problem
of growing electric fields. This case is, however, only
possible when normal as well as extra dimensions are both
growing or contracting simultaneously. By including the
parameter λ̄, we have obtained such solutions for D ¼ 4 in
Table II. A perfect scale-invariant spectrum for the mag-
netic field is naturally obtained as nB ¼ 0. The parameters λ̄
and χ can be tuned to obtain a significant amount of
magnetic field. A suitable mechanism to freeze the expand-
ing extra dimensions is needed and we hope to explore such
possibilities further.
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