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Targeted searches of continuous waves from spinning neutron stars normally assume that the frequency
of the gravitational wave signal is at a given known ratio with respect to the rotational frequency of the
source, e.g., twice for an asymmetric neutron star rotating around a principal axis of inertia. In fact this
assumption may well be invalid if, for instance, the gravitational wave signal is due to a solid core rotating
at a slightly different rate with respect to the star crust. In this paper we present a method for narrow-band
searches of continuous gravitational wave signals from known pulsars in the data of interferometric
detectors. This method assumes source position is known to high accuracy, while a small frequency and
spin-down range around the electromagnetic-inferred values is explored. Barycentric and spin-down
corrections are done with an efficient time-domain procedure. Sensitivity and computational efficiency
estimates are given and results of tests done using simulated data are also discussed.
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I. INTRODUCTION

Continuous gravitational wave signals (CWs) emitted by
an asymmetric rotating neutron star are among the sources
currently searched in the data of interferometric gravitational
wave detectors. Various mechanisms have been proposed
that could allow for a time varying mass quadrupole in these
stars, thus producing CWs. Typically, CW searches are
divided in targeted, when the source position and phase
parameters are known with high accuracy, like in the case of
known pulsars, and blind in which those parameters are
unknown and a wide portion of the parameter space is
explored. In fact, also intermediate cases can be considered
(see e.g., [1] for a review of recent results). While targeted
searches can be done using coherent methods, based on
matched filtering or its variations, blind searches are usually
performed with hierarchical approaches which strongly
reduce the needed computing power at the cost of a relatively
small sensitivity loss.
Targeted searches typically rely on accurate measures of

pulsar parameters, among which the rotational frequency
and its time variation (spin-down), that come from electro-
magnetic observations, like those done by radio-telescopes.
This means that a strict correlation between the gravita-
tional wave frequency and the measured star rotational
frequency is assumed. In the classical case of a non-
axisymmetric neutron star rotating around one of its
principal axes of inertia the gravitational frequency would
be exactly twice the rotation frequency of the star. In fact,
that such strict correlation holds for observation times of
months to years is questionable and various mechanisms
could break this assumption.

In this paper we present a coherent search method that
relaxes this assumption allowing for a small mismatch, a
fraction of Hertz wide, between the gravitational frequency
and two times the rotational frequency (and similarly for
the spin-down parameters). For this reason such kind of
search is called narrow-band. Until now narrow-band
searches have not received much attention, one notable
exception being the Crab pulsar search done over LIGO S5
data [2]. The analysis method we will discuss is based on a
computationally efficient way to perform barycentric
(Doppler and relativistic effects) and spin-down correc-
tions, first devised in [3], followed by a re-sampling of the
data, and on matched filtering in the space of signal Fourier
components. Such techniques have been already employed
for targeted searches [4], [5] but their extension and
application to narrow-band searches is presented here for
the first time. Conceptually, the same method we use for
Doppler correction has been described in [6] where,
however, it is implemented in a different way and is used
in the context of a different analysis procedure. Another
similar method for barycentric corrections, but using data at
full bandwidth, has been presented in [7].
The plan of the paper is the following. In Sec. II we

remind the main characteristics of CW. The next three
sections of the paper are devoted to describe the main
steps of the analysis pipeline used for the targeted search of
CW from known neutron stars, of which the narrow-band
search method is an extension. In Sec. III an efficient
procedure to make barycentric and spin-down correction is
described in detail. In Sec. IV the five-vectors method,
based on matched filtering in the space of signal Fourier
components, is briefly reviewed. In Sec. V the way of
assessing detection significance is discussed. Following
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sections are dedicated to present the narrow-band search
pipeline. In Sec. VI we explain the motivations for
narrow-band searches. In Sec. VII we describe in detail
the narrow-band search method. In Sec. VIII the narrow-
band search sensitivity is computed. In Sec. IX the
validation tests done using simulated data are discussed.
Finally, conclusions and future prospects are presented
in Sec. X.

II. CONTINUOUS GRAVITATIONAL WAVE
SIGNALS FROM SPINNING NEUTRON STARS

The expected quadrupolar gravitational-wave signal at
the detector from a nonaxisymmetric neutron star steadily
spinning about one of its principal axis is at twice the
rotation frequency frot, with a strain of [8]

hðtÞ ¼ H0ðHþAþ þH×A×Þe|ðω0ðtÞtþΦ0Þ; (1)

where taking the real part is understood. The signal

frequency and phase at time t0 are, respectively, f0 ¼
ω0ðt0Þ
2π ¼ 2frotðt0Þ and Φ0. The two complex amplitudes Hþ

and H× are given, respectively, by

Hþ ¼ cos 2ψ − |η sin 2ψffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p (2)

H× ¼ sin 2ψ þ |η cos 2ψffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p ; (3)

in which η is the ratio of the polarization ellipse semiminor
to semimajor axis and the polarization angle ψ defines the
direction of the major axis with respect to the celestial
parallel of the source (measured counterclockwise). The
parameter η varies in the range ½−1; 1�, where η ¼ 0 for a
linearly polarized wave and η ¼ �1 for a circularly
polarized wave (η ¼ 1 if the circular rotation is counter-
clockwise). The functions Aþ and A× describe the detector
response as a function of time and are given by

Aþ ¼ a0 þ a1c cosΩ⊕tþ a1s sinΩ⊕t

þ a2c cos 2Ω⊕tþ a2s sin 2Ω⊕t (4)

A× ¼ b1c cosΩ⊕tþ b1s sinΩ⊕t

þ b2c cos 2Ω⊕tþ b2s sin 2Ω⊕t; (5)

where Ω⊕ is the Earth sidereal angular frequency and with
the coefficients depending on the source position and
detector position and orientation on the Earth [8]. As
discussed in [4] the strain described by Eq. (1) is equivalent
to the standard expression (see e.g., [9]),

hðtÞ ¼ 1

2
Fþðt;ψÞh0ð1þ cos 2ιÞ cosΦðtÞ

þ F×ðt;ψÞh0 cos ι sinΦðtÞ; (6)

depending on the “classical” beam-pattern functions
Fþ; F×, on the amplitude

h0 ¼
4π2G
c4

Izzεf20
d

; (7)

in which Izz is the star moment of inertia with respect to the

principal axis aligned with the rotation axis and ϵ ¼ Ixx−Iyy
Izz

is the equatorial ellipticity expressed in terms of principal
moments of inertia, and on the angle ι between the star
rotation axis and the line of sight, given the following
relations:

H0 ¼ h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6cos2ιþ cos4ι

4

r
(8)

η ¼ −
2 cos ι

1þ cos2ι
: (9)

In fact, in Eq. (1) the signal angular frequency ω0ðtÞ is a
function of time, and then the signal phase,

ΦðtÞ ¼
Z

t

t0

ω0ðt0Þdt0; (10)

is not that of a simple monochromatic signal and depends
on both the intrinsic rotational frequency and frequency
derivatives of the pulsar and on Doppler and propagation
effects. These effects include relativistic modulations
caused by the Earth’s orbital and rotational motion [10]
and the presence of massive bodies in the solar system close
to the line of sight to the pulsar. As a consequence the
power of a monochromatic gravitational-wave signal would
be spread across a range of frequencies, thereby reducing
the signal detectability. Hence, these effects must be
removed, as described in Sec. III, before computing a
detection statistic.
Equating the gravitational-wave luminosity,

_Egw ¼ 32π6

5

G
c5

f60I
2
zzϵ

2; (11)

to the kinetic energy lost as the pulsar spins-down
( _E ¼ 4π2Izzfrotj _frotj, where _frot is the star’s rotational
frequency derivative) gives us the so-called “spin-down
limit” on gravitational-wave strain,
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hsd0 ¼
�
5

2

GIzz _frot
c3d2frot

�1=2

¼ 8.06 × 10−19
I1=238

dkpc

ffiffiffiffiffiffiffiffiffiffi
j _frotj
frot

s
; (12)

where I38 is the star’s moment of inertia in the units of
1038 kg m2, and dkpc is the distance to the pulsar in
kiloparsecs. The spin-down limit on the signal amplitude
corresponds [via Eq. (7)] to an upper limit on the star’s
fiducial ellipticity

εsd ¼ 0.237

�
hsd0

10−24

�
f−2rotI−138 dkpc: (13)

This quantity, for a given neutron star equation of state, can
be put in relation to the physical ellipticity of the star
surface [11]. On the other hand, the l ¼ m ¼ 2 mass
quadrupole moment Q22 is related to the gravitational-
wave amplitude through (see e.g., [12])

Q22 ¼
ffiffiffiffiffiffi
15

8π

r
Izzε ¼ h0

�
c4d

16π2Gf2rot

� ffiffiffiffiffiffi
15

8π

r
: (14)

This value can be constrained independently of any
assumptions about the star’s equation of state and its
moment of inertia.
Setting a gravitational-wave upper limit below the spin-

down limit is an important achievement as it allows us to
constrain the fraction of spin-down energy due to the
emission of gravitational waves, which gives insight into
the spin-down energy budget.

III. BARYCENTRIC AND SPIN-DOWN
CORRECTIONS

As anticipated in previous section, the signal frequency
at the detector is modified by various effects, the most
important of which is the Doppler effect. The received
frequency fðtÞ is related to the emitted frequency f0ðtÞ by
the well-known relation (valid in the nonrelativistic
approximation)

fðtÞ ¼ 1

2π

dΦðtÞ
dt

¼ f0ðtÞ
�
1þ ~v · n̂

c

�
; (15)

where ~v ¼ ~vrev þ ~vrot is the detector velocity with respect
to the Solar system barycenter (SSB), sum of the Earth
revolution velocity around the Sun, ~vrev, and of the Earth
rotation velocity, ~vrot, while n̂ is the versor identifying the
source position and c is the light velocity. From Eq. (15) we
see that the frequency variation due to the Doppler effect
depends on the frequency itself. This means that, in
principle, if the signal frequency is not accurately known
in advance and a range of frequencies must be explored, for

each given search frequency we have a different correction
to compute in order to remove the Doppler effect.
In practice it is much more efficient to compute the

Doppler correction in the time domain. Let us assume that
the emitted signal is monochromatic with frequency f0, that
is we neglect spin-down for the moment. By integrating
Eq. (15), and using Eq. (10), we have

ΦðtÞ ¼ 2π

Z
t

t0

f0

�
1þ

~vðt0Þ · n̂
c

�
dt0

¼ Φ0 þ 2πf0

�
tþ

~rðtÞ · n̂
c

�
; (16)

where ~r is identifies the detector position with respect to the

SSB and the initial signal phase isΦ0 ¼ −2πf0ðt0 þ
~rðt0Þ·n̂
c Þ.

From the previous equation we immediately see that if we
introduce a new time variable

τ1 ¼ tþ
~rðtÞ · n̂
c

¼ tþ ΔR (17)

the signal phase, expressed in terms of τ1, is that of a
monochromatic signal:

Φðτ1Þ ¼ Φ0 þ 2πf0τ1: (18)

The correction term ΔR is the well-known Romer delay,
which amounts up to about 1,000 seconds over one year,
corresponding to the time taken by a signal traveling at the
speed of light to cover the distance between the detector
and the barycenter of the solar system. The key point that
makes the use of a rescaled time preferable for Doppler
correction in narrow-band searches is that Eq. (17) does not
depend on the frequency. This means that one single
correction holds for every frequency. In fact there are other
smaller relativistic effects that must be taken into account
when making barycentric corrections. One is the Einstein
delay, ΔE, which takes into account the time delay of
special relativity due to the Earth motion and the gravita-
tional redshift at the Earth geocenter due to all the solar
system bodies (except the Earth). The Einstein delay is
given by

ΔE ≃ 1

c2

Z
t

t0

�
U⊕ þ v2⊕

2

�
dt0; (19)

whereU⊕ is the gravitational potential at the geocenter, due
to all solar system bodies, except the Earth, and v⊕ is the
velocity of the geocenter with respect to the SSB. This
integral cannot be computed analytically. In practice we use
an approximate series expansion where only the main
contributions are considered [13]. The Einstein delay
amounts to about 2 milliseconds at most. Another effect
is the Shapiro delay ΔS, which takes into account the
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deflection of a signal passing near a massive body. The
main contribution in the solar system comes from the Sun
for which we have

ΔS ¼ −
2GM⊙
c3

log ð1þ cos θÞ; (20)

with θ being the angle between the Sun-source direction
and the Sun-detector direction, M⊙ the mass of the Sun,
and G the gravitational constant. In fact this effect can be
shown to be negligible for CW searches, unless the source
line of sight passes very near the Sun limb, in which case a
delay up to about 120 μs can be accumulated. Overall, we
can make the full barycentric corrections by introducing the
rescaled time,

τ1 ¼ tþ ΔR þ ΔE − ΔS: (21)

This transformation corresponds to referring the data
collected at the detector site at the SSB, which can be
considered an inertial reference frame to a very good
approximation.
We can take into account the spin-down in a similar way.

The frequency evolution due to spin-down can be written as

fðtÞ ¼ f0 þ _f0ðt − t0Þ þ
1

2
f̈0ðt − t0Þ2; (22)

where higher-order terms have been neglected. The corre-
sponding phase evolution is given by

ΦsdðtÞ ¼ 2π

Z
t

t0

fðt0Þdt0 ¼ Φsd;0

þ 2π

�
f0ðt − t0Þ þ

1

2
_f0ðt − t0Þ2 þ

1

6
f̈0ðt − t0Þ3

�
:

(23)

By rescaling time according to

τ2 ¼ tþ
_f0
2f0

ðt − t0Þ2 þ
f̈0
6f0

ðt − t0Þ3 (24)

again the signal phase becomes that of a monochromatic
signal which means that the spin-down shift has been
removed. Note that in practice the spin-down correction is
applied after barycentric corrections, then the time t that
appears in Eq. (24) is in fact the rescaled time τ1 of Eq. (21).

IV. MATCHED FILTER IN THE SPACEOF SIGNAL
FOURIER COMPONENTS

Let us indicate the data at hand by

xðtÞ ¼ nðtÞ þ hðtÞ; (25)

where nðtÞ is the noise and hðtÞ is a gravitational-wave
signal. On this data the barycentric and spin-down correc-
tions are applied as described in previous section. As a
consequence, the signal is now monochromatic apart from
an amplitude and phase sidereal modulation and is given by

hðtÞ ¼ H0ðHþAþ þH×A×Þe|ω0tþΦ0 ; (26)

that is, it can be seen as the product of a fast periodic term,
with frequency f0 ¼ ω0

2π and a slow term given by a linear
combination of sines and cosines with argument Ω⊕ and
2Ω⊕, see Eqs. (4), (5). Then, the signal is completely
described by its Fourier components at the five angular
frequencies ω0;ω0 �Ω⊕;ω0 � 2Ω⊕. This set of five com-
plex numbers constitutes the signal five-vector. Given a
generic time series gðtÞ, the corresponding five-vector is

G ¼
Z
T
gðtÞe−|ðω0−kΩ⊕Þtdt; (27)

where k ¼ ½−2;−1;…; 2� and T is the observation time. In
the following we indicate with X the data five-vector and
with Aþ, A× the signal plus and cross five-vectors,
obtained by applying the definition of Eq. (27) to
Eqs. (4), (5). These two last quantities depend only on
known parameters and form the signal templates.
The data five-vector is

X ¼ H0e|Φ0ðHþAþ þH×A×Þ þ N; (28)

where N is the five-vector of noise alone. Once the five-
vectors of data and of signal templates have been com-
puted, the two complex quantities

Ĥþ=× ¼ X ·Aþ=×

jAþ=×j2 (29)

are built, see [4], [8] for more details. They correspond to
compute two matched filters between the data and the
signal templates. Assuming the noise is Gaussian with
mean value zero, it can be shown that these two quantities
are estimators of the signal plus and cross amplitudes
H0e|Φ0Hþ; H0e|Φ0H×. The estimators of Eq. (29) are used
to build the detection statistic

S ¼ jAþj4jĤþj2 þ jA×j4jĤ×j2. (30)

V. ASSESSMENT OF DETECTION SIGNIFICANCE

According to the frequentist paradigm, we can use the
value of the detection statistic actually obtained in a given
analysis, S�, to establish if our result is compatible with
pure noise or not. This is done by computing the p value,
that is the probability that a value of the detection statistic
equal or larger than S� is obtained analyzing noise- only
data,
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p� ¼ PðS ≥ S�jh ¼ 0Þ; (31)

and comparing it to a chosen threshold pthr. In targeted
searches of CW a typical choice for the threshold is pthr ¼
0.01 or less. If p� > pthr we conclude our data are fully
compatible with noise, otherwise we have a potentially
interesting candidate, deserving a deeper study. Given the
nature of CW signals, making a deeper study basically
means analyzing longer and longer stretches of data,
belonging to the same or to another detector, and comput-
ing the corresponding p values. In case a real signal is
present into the data we expect to find a smaller and smaller
p value until the detection can be claimed with high
statistical confidence. At this point, signal unknown
parameters, H0, η, ψ , Φ0 can be estimated using proper
combinations of the real and imaginary parts of the two
complex amplitude estimators of Eq. (29), as described
in [8].
In order to compute the p value, defined by Eq. (31), we

need to know the probability distribution of the detection
statistic for noise only. The theoretical distribution can be
analytically derived under the assumption that the noise is
Gaussian, with mean value zero and variance σ2. From the
definition of five-vector, Eq. (27), it follows that each
component of the noise five-vector is also distributed
according to a Gaussian with mean value zero and variance
σ2X ¼ σ2 · T. It is easy to see that also the two complex
amplitude estimators of Eq. (29) have a Gaussian distri-
bution with zero mean value and variance

σ2þ=× ¼ σ2X
jAþ=×j2 : (32)

The probability density function of the square modulus of
the estimators is then exponential and given by

fðxÞ ¼ jAþ=×j2
σ2X

e
−jAþ=× j2

σ2
X

x
; x ¼ jĤþ=×j2: (33)

From here we can derive the probability density for the
detection statistic:

fðSÞ ¼ e
− S
σ2
X
jA× j2 − e

− S
σ2
X
jAþj2

σ2XðjA×j2 − jAþj2Þ : (34)

In Fig. (1) the detection statistic noise probability density
given by Eq. (34) is shown and compared to the result of a
Monte Carlo simulation. The probability of finding a value
of the detection statistic above a given value S�, that is the
p value, is

PðS > S�Þ ¼ jA×j2e−
S�

σ2
X
jA× j2 − jAþj2e−

S�
σ2
X
jAþj2

jA×j2 − jAþj2 (35)

and is plotted in Fig. (2) under the same assumptions of
Fig. (1). In practice, real data can show departure from
Gaussianity. The noise probability distribution can then be
built from the data itself considering a range of off-source
frequencies near but different from the one where the signal
is supposed to be.

VI. MOTIVATIONS FOR NARROW-BAND
SEARCHES

Given the uncertainties on gravitational wave emission
mechanisms and also the lack of a full detailed picture of
the electromagnetic emission geometry, it is not obvious at
all that the gravitational-wave emission takes place at
exactly twice the star measured pulse rate, or that such
relation holds for observation times of months to years. For
instance, if a neutron star is made of a crust and a core
rotating at a slightly different rate, and if the gravitational-
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FIG. 1 (color online). Noise probability density of the detection
statistic computed assuming noise is Gaussian with mean value
zero and variance σ2 ¼ 1 and taking a total observation time
T ¼ 107 seconds. The continuous line is obtained using the
analytic formula given by Eq. (34), the histogram is the result of a
simulation.
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FIG. 2. Probability of having a value of the detection statistic
larger than a value in the abscissa in case of noise only. It has been
computed using the analytic formula of Eq. (35), with the same
choices of Fig. (1).
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wave emission is dominated by an asymmetry in the core
then a search targeted at 2frot would assume a wrong signal
frequency. Following the discussion in [2] we describe such
situation by allowing the signal frequency to vary in the
range

fðtÞ ∈ ½f0ðtÞð1 − δÞ; f0ðtÞð1þ δÞ�; (36)

where f0ðtÞ is the signal frequency we would have if the
gravitational-wave and electromagnetic signals were
locked (as anticipated f0ðtÞ ¼ 2frotðtÞ in the case of a
nonaxisymmetric neutron star rotating around one of its
principal axis of inertia) and δ is a small positive shift. The
width of this range is Δf ¼ 2f0δ. If the star two spinning
components are linked by some torque which tends to
enforce corotation on a timescale τc, then δ ∼ τc=τsd, where
τsd ∼ f0=j _f0j is the characteristic spin-down time. A
relation of the form of Eq. (36) also holds in the case
the gravitational radiation is produced by free precession of
a nearly bi-axial star [14], in which case δ is of the order of
ðIzz − IxxÞ=Ixx. In general, a value of δ of the order of, say,
10−4 corresponds to τc ∼ 10−4τsd which, depending on the
specific targeted pulsar can be of several months or years.
This would be comparable or larger than the longest
timescale observed in pulsar glitch recovery where a
recoupling between the two component might occur. In
terms of free precession, δ ∼ 10−4 is on the high end of the
range of deformations that neutron stars could be able to
sustain [12],[15]. Concerning the spin-down range, at least
in the case of the two-component model the existence of a
torque that tends to enforce corotation implies that the spin-
down shift, _f − _f0, is not independent on the frequency
shift: if f > f0 then j _fj > j _f0j and viceversa so that the
frequency difference tends to decrease in time. As shown in
Sec. VII, the method we use to correct spin-down naturally
goes in this direction and for each first-order spin-down
value _f we explore a range Δ _f ¼ 2j _f0δj around it.
Similarly, for the second-order spin-down we would
explore a range Δf̈ ¼ 2jf̈0δj around each allowed value,
even if in practice we will see that typically this is not
needed.

VII. SEARCH METHOD DESCRIPTION

In a narrow-band search the source position is assumed
to be known, while a range of values for the frequency Δf
and the spin-down terms Δ _f;Δf̈;…. is explored. The
corresponding number of points in the source parameter
space is then given by the product between the number of
frequency bins nfreq and the number of spin-down bins

nsd ¼
Q

in
ðiÞ
sd , where n

ðiÞ
sd is the number of spin-down values

of order ith and only terms for which nðiÞsd ≥ 1 are
considered. The width of the frequency bin is δf ¼ 1

T then
the number of frequency bins to be considered is

nfreq ¼
�
Δf
δf

�
¼ ½Δf · T� ≈ 6.3 · 105

�
Δf

0.02Hz

��
T
1yr

�
;

(37)

where ½·� stands for the nearest integer. The bin width for
spin-down of order ith is computed by imposing that an
uncorrected amount of one bin produces a frequency
variation over the observation time T at most equal to
half a frequency bin,

δfðiÞ · Ti

i!
¼ δf

2
; (38)

hence, for the first and second spin-down order we find

δ _f ¼ δfð1Þ ¼ 1

2T2
(39)

δf̈ ¼ δfð2Þ ¼ 1

T3
: (40)

Consequently, the number of bins for first-order spin-down is

nð1Þsd ¼ ½2Δ _f · T2�

≈ 400

�
_f0

10−10Hz=s

��
δ0
10−3

��
T
1yr

�
2

; (41)

while for second-order spin-down we have

nð2Þsd ¼ ½Δf̈ · T3�

≈ 0.6

�
f̈0

10−20Hz=s2

��
δ0

10−3

��
T
1yr

�
3

: (42)

For observation times of the order of the year and range of
spin-down values typical of narrow-band searches, the cor-
responding number of bins is bigger than one only for the first

order term, thennsd ¼ nð1Þsd . In fact, the twopreviousequations
would be exact if the explored rangeof spin-downvalueswere
independent of the frequency. As a matter of fact, as we will
see below, this is only approximately the case with the
procedure we use to correct spin-down, for which the natural

variable to consider is, rather than the spin-down, the ratio
_f
2f.

In principle, according to Eq. (15) for each frequency bin
a barycentric correction should be applied. This is what has
been done, e.g., in [2]. This “brute force” approach
becomes computationally heavier and heavier as the
number of frequency bins increases. By using the time-
domain procedure described in Sec. III, which as we have
seen is independent on the frequency, barycentric correc-
tions must be computed just once and hold for the whole
frequency band. On the other hand, spin-down corrections
are done using Eq. (24), which explicitly depends on the

ratio
_f
f. In fact we consider the quantity λ ¼ _f

2f as the
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independent variable, so that a grid is built on ðf; λÞ rather
than on ðf; _fÞ. In terms of λ the time transformation that
allows us to correct the spin-down, given by Eq. (24), can
be written as

τ2 ¼ tþ λðt − t0Þ2: (43)

The range of values for λ is taken with width

Δλ ¼ Δ _f
2fmin

; (44)

where fmin ¼ f0ð1 − jδjÞ is the minimum analyzed fre-

quency, and is centered around λ0 ¼ _f0
2f0

:

λ ∈
�
λmin ¼ λ0 −

Δλ
2
; λmax ¼ λ0 þ

Δλ
2

�
: (45)

The corresponding actual search band for each value of _f,
which varies in the range between _f0

fmin
f0

and _f0
fmax
f0
, being

fmax ¼ f0ð1þ jδjÞ, is then delimited by _fmin ¼ 2fλmin and
_fmax ¼ 2fλmax with width equal to 2fðλmin − λmaxÞ. This is
equal to Δ _f at f ¼ fmin and increases for increasing value
of f. This is due to the conservative choice done in Eq. (44),
where the minimum frequency fmin has been taken at the
denominator in such a way to maximize the range for λ.
This means that the area of the explored parameter space is
slightly larger than that we would have if the spin-down
range was independent of the frequency. In Fig. (3) the
portion of the f − _f plane covered in a narrow-band search
with f0 ¼ 60 Hz, _f0 ¼ −10−10 Hz=s and δ ¼ 10−3 is
shown. Each point has been obtained choosing 10000
random values of the frequency between fmin and fmax and
of λ according to Eq. (45) and computing the corresponding
_f values.
The interval in λ is divided in a number of bins which

width is, conservatively, taken as

δλ ¼ δ _f
2fmax

: (46)

The number of λ values to be taken into account is then

nλ ¼
�
Δλ
δλ

�
¼
�
nð1Þsd

1þ jδj
1 − jδj

�
; (47)

where nð1Þsd is the “canonical” number of spin-down values
of the first order, given by Eq. (41). For jδj ≪ 1 (or,
equivalently, fmax

fmin
≈ 1) which is typical of a standard narrow-

band search, we have nλ ≃ nð1Þsd . In fact, we must stress that
the time-domain correction method described in this
section can be applied whatever range of frequencies is
analyzed. In particular, it can be used also for the so-called
“directed” searches of neutron stars which position is
known but which frequency, and spin-down, are completely
unknown because no electromagnetic pulsation is observed
(see e.g., [16]). For such kind of analysis the number of
different values of λ to be considered will be larger than the
“canonical” number of spin-down values, as fmax

fmin
≫ 1.

Once barycentric corrections have been done and, for
each value of λ, also the spin-down has been corrected, the
detection statistic, see Eq. (30), is computed for each
frequency in the considered range Δf. Then we end with
nfreq · nλ values of the detection statistic. The maximum of
this set of numbers, let us call it Smax, corresponds to the
most significant candidate of the analysis (also called the
“loudest event”) and is used to compute the corresponding
p value. If it results to be compatible with noise, then an
upper limit is established.
In fact, exploring a large number of points in the source

parameter space has an impact on the statistical significance
of the analysis results, because the probability that noise
alone produces a value of the detection statistic larger than
the value actually found in the analysis is clearly larger than
in the case of search in a single point of the parameter space.
This is the well-known “look-elsewhere effect” (or “trial
factor”) (see e.g., [17]). In practice, we want to assess the
statistical significance of a given analysis result by using the
same procedure described in Sec. V, that is by considering
the single-trial noise probability density of Eq. (34). This can
be done provided we use a suitable threshold for discrimi-
nating between “interesting” and “noninteresting” candi-
dates, different from that we would use for a targeted search
and determined in the following way. Let us indicate with
pthr the overall significance threshold for a narrow-band
search, e.g., pthr ¼ 0.01. Let us indicate with p0 the
corresponding significance level computed over the sin-
gle-trial noise distribution and assume that the searches in
each point of the parameter space are independent. The
probability pabove that at least one of the results is significant,
i.e., that it gives a value of the detection statistic above Sp0

, is
equal to 1 minus the probability that none of them are
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FIG. 3 (color online). Portion of the f − _f plane covered in a
narrow-band search with f0 ¼ 60 Hz, _f0 ¼ −10−10 Hz=s and
δ ¼ 10−3.
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significant. Since it is assumed that they are independent, the
probability that all of them are not significant is the product
of the probabilities that each of them are not significant, that
is ð1 − p0ÞN , whereN ¼ nfreq · nλ is the number of points in
the parameter space. Then, we have pabove ¼ 1 − ð1 − p0ÞN ,
By imposing pabove ¼ pthr and solving for p0 we obtain

p0 ¼ 1 − ð1 − pthrÞ1
N: (48)

For pthr ≪ 1 and N large, like in our case, we have

p0 ≃ pthr

N
: (49)

Extending Eq. (31) we indicate with

ploudest ¼ PðS > Smaxjh ¼ 0Þ (50)

the p value corresponding to the loudest candidate of
the analysis. A potentially interesting candidate is such that
ploudest < p0.

VIII. SEARCH SENSITIVITY

The search sensitivity for CW signals is defined as the
minimum strain amplitude, hmin, detectable with a given
detection probability pdet and at a fixed p value pthr. To
compute the theoretical sensitivity we need first to know
the probability density distribution of the detection statistic
in case a signal of amplitude H0 is present into the noise.
This can be done straightforwardly starting from the
distribution of the real and imaginary part of the amplitude
estimators Ĥþ; Ĥ× given by Eq. (29). The resulting
distribution for the square modulus of the estimators,
which reduces to Eq. (33) if H0 ¼ 0, is given by

fðx;H0Þ ¼
k
2
e−

1
2
ðkxþβÞI0ð

ffiffiffiffiffiffiffiffi
kβx

p
Þ; (51)

where, as in Eq. (33), x ¼ jĤþ=×j2 while k ¼ 2
jAþ=×j2

σ2X
, β ¼

2
H2

0
je|Φ0Hþ=×Aþ=×j2

σ2X
and I0 is the modified Bessel function of

the first kind of order zero. Equation (51), which is derived
in the Appendix, describes, apart from the factor k, a χ2

distribution with two degrees of freedom. From this
equation it is immediate to write down the probability
distribution for the variables yþ ¼ jAþj4jĤþj2 and
y× ¼ jA×j4jĤ×j2:

fðyþÞ ¼
e−ð

yþ
μþþ

βþ
2
Þ

μþ
I0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yþ

βþ
μþ

s !

μþ ¼ σ2XjAþj2

βþ ¼ 2
H2

0je|Φ0HþAþj2
σ2X

(52)

fðy×Þ ¼
e−ð

y×
μ×
þβ×

2
Þ

μ×
I0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y×

β×
μ×

s !

μ× ¼ σ2XjA×j2

β× ¼ 2
H2

0je|Φ0H×A×j2
σ2X

: (53)

Now, the distribution of the detection statistic S ¼ yþ þ y×
is given by the convolution of the two distributions fðyþÞ
and fðy×Þ:

fðSÞ ¼ e− βþþβ×
2

μþμ×
e−

S
μþ

Z
S

0

e−ð
1
μ×
− 1
μþÞy×I0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðS − y×Þ

βþ
μþ

s !

× I0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y×

β×
μ×

s !
dy×: (54)

In Fig. (4) the probability distribution of Eq. (54) is
plotted considering, as an example, a signal of amplitude
H0 ¼ 0.038 summed to Gaussian noise with σ ¼ 1 over
107 seconds. The integral of Eq. (54) can be evaluated
numerically for given signal parameters. Alternatively, to
take into account a possible departure of the noise from
Gaussianity, the probability distribution of S in presence of
a signal can be built through a Monte Carlo simulation in
which several signals are generated in software and
summed to the data and the resulting value of the detection
statistic computed. Whatever approach is used, once this
distribution is known the sensitivity is estimated in two
steps: from the noise-only distribution of the detection
statistic we first compute the value Sthr corresponding to the
chosen p value, pthr; then we determine the signal
amplitude hmin such that PðS > SthrjhminÞ ¼ pdet. We
can express the sensitivity explicitly showing the
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FIG. 4 (color online). Probability distribution of the detection
statistic considering a signal of amplitudeH0 ¼ 0.038 summed to
Gaussian noise with σ ¼ 1 over 107 seconds. The continuous line
is the result of the numerical integration of Eq. (54), while the
histogram has been obtained with a Monte Carlo simulation.
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dependency on the detector noise spectrum at the signal
frequency, Sn, and the observation time T,

hmin ¼ C

ffiffiffiffiffi
Sn
T

r
; (55)

where the coefficient, C depends on the number of points
in the parameter space, N, and on the chosen values of
pthr and pdet. The coefficient C is plotted in Fig. (5) as a
function of N for pthr ¼ 0.01 and pdet ¼ 0.95. From the
figure we see that for the considered range of values of N
the sensitivity of the narrow-band search is weekly depen-
dent on N and is ∼2 − 3 times worse than the sensitivity of
a targeted search, which is characterized by C ≈ 11, the
exact value depending on the specific analysis method.
This is expected as a consequence of the volume of the
explored parameter space, as discussed in Sec. VII.
Two obvious targets for a narrow-band search would be

the Crab (J0534+2200) and Vela (J0835-4510) pulsars. For
these two pulsars the spin-down limit [see Eqs. (12), (13)]
has been beaten setting experimental upper limits in
targeted searches with data of Virgo and LIGO detectors
[18], [4], [5] that allow, in the latest analyses, to constrain
the fraction of rotational energy lost through the emission
of gravitational waves to, respectively, about 1% and 10%.
As we have seen, the sensitivity of a narrow-band search is
a factor of 2–3 worse (depending on the extension of the
explored parameter space) with respect to that of a targeted
one. It is, however, interesting to see if for those specific
sources the estimated sensitivity is still below the spin-
down limit considering the most recent detector data. This
would be a strong argument in favor of actually making
such analysis. Let us consider Virgo VSR4 data, which are
known to have a good low frequency sensitivity. Let us
assume to make a search over a frequency band of Δf ¼
0.02 Hz around the central gravitational wave frequency

(which is 59.46 Hz for Crab and 22.38 Hz for Vela). Using
the relations given in Sec. VII we find for the Crab (and
Vela) pulsars that δ ¼ 1.68 · 10−4 (δ ¼ 4.47 · 10−4), a
number of frequency bins of 1.6 · 105 ð1.6 · 105Þ, a width
for the first-order spin-down range Δ _f¼2.49·10−13Hz=s×
ð2.81·10−14Hz=sÞ, corresponding to 33 (3) first-order spin-
down bins, while no further values of the second order spin-
down must be considered. Overall, the total number of
points in the parameter space is 5.28 · 106 ð4.80 · 105Þ. By
considering a typical Virgo VSR4 sensitivity curve and the
run duration (T ≈ 90 days) we find a sensitivity at 1% p
value and 95% detection probability of hmin ≈ 7 · 10−25 for
Crab and hmin ≈ 3 · 10−24 for Vela. The latter estimation is
comparable to the Vela spin-down limit, while for Crab the
value is about a factor of 2 below it, and then we can expect
to improve with respect to results of the analysis of previous
LIGO S5 data [2]. These estimations clearly indicates the
relevance of this analysis on VSR4 data. An even better
sensitivity would be achieved for Crab by including in the
analysis also LIGO S6 data, while no improvement is
expected in the case of Vela due to the S6 poor sensitivity at
the corresponding frequency.

IX. METHOD VALIDATION

We have tested the analysis method through software
injections into simulated Gaussian data. The barycentric
and spin-down correction routines has been already veri-
fied, using both software and hardware injections, when
used for targeted searches [4]. For narrow-band searches
the main goal of the test has been to check if the method is
able to recover the frequency and spin-down of injected
signals when a search over a range of parameters is done
and the loudest event is selected. To do this for a given
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parameter space, with the choice pthr ¼ 0.01 and pdet ¼ 0.95. An
uncertainty of ∼5% is associated to the values, due to the finite
size of the simulation.
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frequency and spin-down error as a function of the output signal-
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each value of the signal-to-noise ratio 30 signals with a given
frequency and spin-down, with random position and polarization
parameters, and lasting for 107 seconds, have been generated and
added to Gaussian noise. Then, a search has been done over 104

frequency bins and 61 values of λ and the frequency and spin-
down values corresponding to the loudest event have been
selected and compared to the injected values.
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signal amplitude, frequency and spin-down, several signals
have been generated (assuming, for computational reasons,
that the Doppler effect correction has been already applied),
corresponding to sources with random position and polari-
zation parameters, and added to Gaussian noise. Then, the
data have been analyzed and the frequency and spin-down
of the loudest event have been estimated and compared to
the injected values. This procedure has been repeated for
various signal-to-noise ratios. The searched frequency band
in the test was of 1 mHz corresponding to 104 frequency
bin, while the number of bins in the parameter λ was 61. In
Fig. (6) we report the mean and standard deviation of the
error in frequency and spin-down estimation, expressed in
number of bins, as a function of the output signal-to-noise
ratio. Four different values of signal-to-noise ratio have
been considered: a small value of 6, a moderate value of 10,
a large value of 30, while the last value basically corre-
sponds to the situation in which only the signal is present in
the data. In this last case we see from the plot that frequency
and spin-down are always perfectly recovered. For smaller
and smaller values of the signal-to-noise ratio the errors
increase as expected, but the distribution of results is still
nearly centered at the correct parameter values.

X. CONCLUSIONS

In this paper we have described a coherent analysis
method to perform narrow-band searches of continuous
gravitational wave signals from known pulsars. Such kind
of search allows us to take into account a possible small
mismatch between the gravitational-wave signal frequency
and two times the pulsar electromagnetic pulse rate. This
difference could be due to various mechanisms and it is
therefore important to have in place an analysis procedure
robust against deviations from the standard assumptions of
CW targeted searches, in which a strict correlations
between the gravitational-wave signal frequency and the
star rotation rate is assumed.
The use of an efficient time domain procedure to make

barycentric corrections allows a large computational gain
with respect to the standard brute force approaches, like
that used in [2]. Roughly speaking, given a search over nfreq
frequency bins the use of the time domain barycentric
correction, that holds for all the frequencies, gives a
computational gain of a factor nfreq. On the other hand,
as discussed in Sec. VII, for each considered spin-down
value the detection statistic is computed for all the
frequency bins. While the computation of a single value
of the detection statistic takes a negligible time, its
computation nfreq times for each spin-down value becomes
computationally relevant and partially reduces the gain due
to the time domain barycentric corrections. Note that, on
the contrary, if a brute force method is used the computing
time is largely dominated by the barycentric corrections. By
making tests using three months of simulated data sets, we
have measured that in a search over nfreq ≈ 5 · 105

frequency bins and of the order of 30 spin-down values
the computational gain with respect to the brute force
approach is of the order of 104.
We have estimated the expected sensitivity for a narrow-

band search, 0.02 Hz wide, around Crab and Vela pulsars
using a typical Virgo VSR4 noise curve obtaining values
which are comparable to the spin-down limit for Vela and
about two times below for Crab. Interestingly, the value for
the Crab is also about a factor of two below with respect to
past published upper limits [2] while the portion of the
explored parameter space is a factor 1.7 larger. This
estimations suggest that a narrow-band search of Virgo
VSR4 data around Crab and Vela pulsars is worthwhile and
will be accomplished in the near future.
Moreover, several pulsars are expected to be potentially

interesting for advanced gravitational-wave detectors,
which will start taking data in 2015–2016 and will be
natural targets for a narrow-band search. For instance, when
advanced detectors will reach their final configuration [19]
we can estimate a narrow-band search sensitivity for Crab
and Vela of, respectively, hmin ≈ 5 · 10−26 and hmin≈
2 · 10−25. These values are comparable, or even a bit below,
the expected signal amplitude emitted by a maximally
strained neutron star with standard equation of state.
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APPENDIX: PROBABILITY DISTRIBUTION OF
THE SIGNAL AMPLITUDE ESTIMATORS

Let us consider one of the amplitude estimators, e.g.,
Ĥþ ¼ H0e|Φ0Hþ, when the data is just Gaussian noise with
zero mean and variance σ2. Its real and imaginary parts, that
we call ĤR and ĤI , respectively, are distributed according

to a normal distribution with zero mean and variance σ2þ
2
,

where σ2þ is given by Eq. (32). Let us define two new

variables, βR ¼ ĤR

σþ=
ffiffi
2

p and βI ¼ ĤI

σþ=
ffiffi
2

p , which are then

distributed according to a normal distribution with zero
mean and variance one. Then it follows that the sum of their
squares follows, in case of noise only, a χ2 distribution with
two degrees of freedom, i.e., an exponential. If a signal is
present into the data the distribution of β ¼ β21 þ β22 is a
noncentral χ2 with two degrees of freedom,

pðβ; λÞ ¼ e−ðβþλ
2
ÞI0ð

ffiffiffiffiffi
βλ

p
Þ; (A1)

with noncentrality parameter

λ ¼ ðE½β1�Þ2 þ ðE½β2�Þ2: (A2)

A straightforward calculation shows that
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λ ¼ 2H2
0je|Φ0HþAþj2

σ2X
: (A3)

Hence, the distribution of jĤþj2 ¼ β
σ2þ
2
is

pðjĤþj2; λÞ ¼
1

σ2þ
e
−1
2
ð2jĤþj2

σ2þ
þλÞ

I0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
jĤþj2
σ2þ

λ

s !
; (A4)

which, by introducing the factor k ¼ 2
jAþ=×j2

σ2X
, becomes

pðjĤþj2; λÞ ¼
k
2
e−

1
2
ðkjĤþj2þλÞI0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjĤþj2λ

q �
; (A5)

that is, Eq. (51). An equivalent expression can be obviously
derived for Ĥ×.
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