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Optical rigidity in the Advanced LIGO gravitational-wave detector, operated on the dark port regime, is
unstable. We show that the same interferometer with excluded symmetric mechanical mode but with
unbalanced arms allows us to get stable optical spring for the antisymmetric mechanical mode. The arm
detuning necessary to get stability is shown to be a small one—it corresponds to small power in the signal
port. We show that stable optical spring may be also obtained in the Michelson-Sagnac interferometer with
both power and signal recycling mirrors and unbalanced arms.
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I. INTRODUCTION

Ground-based gravitational wave antennas form a world-
wide net of large-scale detectors like LIGO [1,2], VIRGO
[3], and GEO [4]. The extremely high sensitivity of these
detectors is limited by noises of different nature. In the
low-frequency range (around 10 Hz) the gravity-gradient
(Newtonian) noise prevails, below ~50 Hz—seismic ones,
at middle frequencies (~50—200 Hz) thermal noises
dominate, and in the high-frequency range (over 200 Hz)
photon shot noise makes the main contribution. The next
generation of gravitational wave antennas (Advanced LIGO
or aLIGO [2], Advanced VIRGO [5]) and also third-
generation detectors (such as the Einstein Telescope [6,7],
GEO-HF [8], and KAGRA [9]) promise by compensation
and suppression of thermal and other noises to achieve
sensitivity of standard quantum limit (SQL) [10-13] for
continuous eigen measurement defined only by quantum
noise. SQL is the optimal combination of two noises of
quantum nature: fluctuations of light pressure caused by
random photon number falling onto the mirror’s surface and
photon counting noise.

A possible way to overcome the SQL is the usage of
optical rigidity (optical spring effect) [13-16]. Recall
that optical rigidity appears in a detuned Fabry-Perot
interferometer—the circulating power and consequently
the radiation pressure became dependent on the distance
between the mirrors. It has been shown [17-24] that
gravitational wave detectors using optical springs exhibit
sensitivity below the SQL.

In the case of a single pump an interferometer utilizing
optical rigidity has two subsystems: a mechanical one and
an optical one. Interaction between them gives birth to two
eigenmodes, each of which is characterized by its own
resonance frequency and damping. For a description of
evolution one can make transfer from the conventional
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coordinates to eigen ones and consider the evolution of the
system as evolution of these (normal) oscillators [25].

The dynamics of a complex system such as the aLIGO
detector can be considered on the basis of a simpler and
better studied system—the Fabry-Pero resonator. Such
equivalence is termed the “scaling law” [26]. The Fabry-
Pero resonator with only one optical spring is always
unstable because a single pump introduces either positive
spring with negative damping or negative spring with
positive damping [14-17]. The obvious way to avoid
instabilities is by implementation of feedback [20].
Another way is utilization of additional pump [27,28],
which has been investigated in detail and proven exper-
imentally with a mirror of gram scale [29].

DC readout, planned in aLIGO, means the introduction
of small detuning of arm length. Recall that the Michelson
interferometer with balanced Fabry-Perot (FP) cavities in
arms with power and signal recycling mirrors (aLIGO
configuration, see Fig. 1) operating in the dark port regime
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FIG. 1 (color online). Scheme of Advanced LIGO detector.
PRM (SRM) are power (signal) recycling mirrors.
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possesses symmetric and antisymmetric modes, laser pump
symmetric mode, and no mean intensity appears in the
signal (dark) port through the signal recycling mirror
(SRM). In the case of slightly detuned arms, small mean
intensity appears in the signal port. This intensity is used as
a very stable local oscillator.

The natural question is what arbitrary (not small)
detuning in the arms may give stability. This question
became interesting especially after the paper of Tarabrin
et al. [30] demonstrated the possibility of stable optical
spring in the Michelson-Sagnac interferometer with mov-
able membrane [31-33]. The analyzed interferometer
with the signal recycling mirror (SRM) but without the
power recycling (PRM) was pumped through the power
port [30]—a similar configuration is shown in Fig. 2 (but
with PRM). However, stability of the optical spring was
shown for relatively large detuning, which means relatively
large power in the signal port, which is not convenient in
experiment. Operation far from the dark port regime
additionally creates the problem of laser noises leaking
into the signal port, which makes it difficult to apply these
results to the GW detector.

The aim of this paper is to analyze and to demonstrate
stable optical rigidity in aLIGO (or Michelson-Sagnac
interferometer with PRM and SRM) a) pumped throwgh
PRM, b) with arm detuning as small as possible (hence,
small output power throwgh SRM). This result may be
applied not only to large-scale gravitational-wave detectors
[34] but also to other optomechanical systems like micro-
membranes inside optical cavities [35] (see Fig. 2), microt-
oroids [36], optomechanical crystals [37], pulse-pumped
optomechanical cavities [38]. In spite of the fact that
optical rigidity, introduced into micromechanical oscilla-
tors, is relatively small as compared with the intrinsic one
[31], it may be used for control and manipulation of its
dynamics.

FIG. 2 (color online). Michelson-Sagnac interferometer with
power and signal recycling mirrors (PRM and SRM). Middle
mirror with amplitude reflectivity R, may move as a free mass.
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II. DESCRIPTION OF MODEL

We consider a gravitational-wave antenna alLIGO shown
in Fig. 1, amplitude transmittances of SRM and PRM
are T, and T,, correspondingly. Antenna consists of a
Michelson interferometer with additional mirrors forming
Fabry-Perot (FP) cavities with mean distance L between
mirrors in arms which is much larger than distances ¢
between beam splitter and SRM or PRM. Input mirrors
have amplitude transmittance 7 and masses m, end mirrors
have the same masses m and are completely reflective.
Input and end mirrors in arms may move as free masses. We
assume that all mirrors are lossless. The interferometer is
pumped by laser through PRM.

Recall the dynamics of the pure balanced interferometer
(i.e., identical FP cavities in arms tuned in resonance with
pumped laser) can be split into two modes: namely
symmetric and antisymmetric ones. Each mode is charac-
terized by optical detuning J,, (6,) and decay rate y,, (y,)
dependent on displacement and transparency of PRM for
symmetric mode (SRM for antisymmetric one correspond-
ingly). Here and below we denote detuning as the differ-
ence between laser frequency @, and eigenfrequencies w,,
of symmetric and antisymmetric modes:

o, = @y — W,,, 0y = Wy — Wy. (1)
(In aLIGO PRM detuning 8, is assumed to be zero,
however, below we reserve possibility to vary it.) The
optical fields in the modes represent difference (e_) and
sum (e, ) of the fields in arms, respectively, and carry
information about difference (z_) and sum (z,) between
lengths of arm cavities,

+
ei:“¢;ﬂ @
Z, £ 2,
it = T , Zen =Xen — Yens (3)

(see notations in Fig, 1). In turn, light pressure force may
be devided into two part: fluctuational one responsible for
fluctuational back action and regular part creating optical
spring [39]. Below we analyze the simplified case when
sum mechanical displacement is fixed (for example, by
feedback):

" )

When FP cavities in arms are detuned by £0 symmetric
and antisymmetric modes became coupled with each other.
In this case detunings §,,, d, (1) and decay rates y,,, y, refer
to partial modes. As a result, the system is described by
linear set of equations for Fourier components of fields
e (Q), el (—Q) and displacement z_(Q):
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(Y — 06, — iQ)e, (Q) — ide_(Q) — %E_Z_(Q)

- 7\/551% @ (5a)
iBe, (Q) + (7, — i, — iQ)e_(Q) %EJFZ_(Q)

_ \/77\%(9) ’ (5b)

(7w + i, — iQ)el (-Q) + idel (-Q) + %Eiz_(Q)

VTwdb (=)
By (5¢)

. ik
isel, (~Q) + (7, + i6, — iQ)e! (-Q) + ~E1z(Q)

+
g, (—Q
NG
h{Ere_(Q) + Efe, (Q) + E el (-Q) + E_e! (-Q)}
+uQ%z_(Q) =0, (5e)
L m
kE—O =—, =—, E_E E .
¢ ) T c H 2 5 +
i0 )
fsm, I, =hwy|E,|*. (51)

Here 7 is Plank constant, k is wave vector corresponding to
laser wave frequency @y, ¢ is speed of light. £, are mean
complex amplitudes of symmetric and antisymmetric
modes (excited by pump laser), I, is power circulating
in symmetric mode. The right parts (g, 4(€2). g;’d(—Q)) in
set describe vacuum fields incoming into interferometer
through PRM and SRM. Details of notations and derivation
are presented in Appendix A.

In spite of the fact that set (5) is not convenient for
analysis of sensitivity (because we have to recalculate fields
e, into output field in the signal port), however, it is
convenient for optical rigidity analysis.

Following oscillations theory advises we rewrite (5)
introducing normal coordinates b (Q), b’ (—Q) for e.m.
fields and new (complex) eigenvalues A :

(i =2,)b, () —iz_[—x] =0 (6)
(=iQ = 2_)b_(Q) — iz_[1 + x&] = 0, (6b)
(—iQ = 2)bL(=Q) +iz_[&F =x*]=0 (60

(—iQ = 20)bE (-Q) — iz_[1 + %] =0,  (6d)
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b (Q)[E" —x] +b_(Q)[1 +&]

d
b (-Q 446 (-Q)[ + 8¢t Q2
LR ] O r o] @
d Jy
(6e)
hL?
b, (Q) = | [——[e4(Q) — xe_(Q)], (6f)
ol
nL?
b(Q) = [ fxe, (@) +e (@) (69)
ol |
Here we introduce the following notations:
Ay =—(Ty £T_V1+A?) J, =M @)
+ = + - ’ + = L,Lt ’
Yw — léw + (}/s - 153) 2
r,= 5 , d=1+4x=, (8)
io A i0
x= = , A=—. (9
Ly +4- 1414 A2 I

In set (6) we omit fluctuational fields in right parts as we
are interested in the dynamic behavior of system, i.e., in
eigenvalues of the determinant.

After substitution (—iQ — 1) characteristic equation of
set (6) may be written in form:

2 +Zl[1 +a(A+7,)] | D[l + (A +7,)]

= = - —— =0, (10)
(A+7:)°+6 (A+7)" + 3,
where we introduce the following notations:
Tws = =Ny, Oy = SAy, (11a)
27, 5,0 3
7, =220 3
d| 6,N¢p
2J 6,0 3
2= +W2 w, azfl, (IIC)
|d]| 5, Ny
¢ =(14E&%)(1 + x¢E)d", (11d)
w=(&—x)(E—x)d". (11e)

The form of equation (10) is the same as for double pumped
optical spring [27,28]: two fractions (~Z; and ~Z,) are
similar to two optical springs created in two optical modes
pumped separately. This analogy has physical sense—for
imbalanced interferometer one pump excites two normal
modes. This analogy became more obvious when relaxa-
tion rates of symmetric and antisymmetric modes are equal
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(y,, = 75)- In this case the values » and £ are pure real and
a; = a, = 0. Then characteristic equation takes the fol-
lowing form:

1, 1,

A2+ — + -
(A+7)2+86  (A+7.)>+6

=0 (12

Note that practically the same set as (5) is valid for
Michelson-Sagnac interferometer shown in Fig. 2—see
details in Appendix B. In particular, the equation (10) is
valid after following substitutions:

5 > R%éz, J, = R§J+, u—m, (13)
where R, is amplitude reflectivity of middle mirror, m is
its mass.

III. ANALYSIS

Eq. (10) may be written in form convenient for further
approximation

Dg())DgO) + D(l) =0, (14)
DY = (G472 + ) + T+ m(+7)). (15
DY = [(4+7,)* + 82, (16)

DY =[A+7,)2+ 8,1+ ;(A+7,). (A7)

Underline that Eq. (14) is still exact characteristic
equation. Mathematically its left part is a polynomial of
6-th degree relatively variable A. Its solution provides set
of eigenvalues A, its imaginary parts describe eigenfre-
quencies whereas real parts—relaxation rates (positive one
corresponds to instability). It is not difficult task for
numerical solution of (14) using contemporary mathemati-
cal packets. However, analysis based on numeric calcu-
lations is not simple because there is set of 6 parameters
(Yy.50 Ovw.5» 0, 1) which may be varied.

In theoretical analysis below we make following
assumptions:

(1) Interferometer is pumped through PRM.

(ii)) Arm detuning is small: 6 < 6,,,.

(iii) Initial relaxation rates are small: y,, ; < 6, ;.

Then Eq. (14) may be solved by iteration method consid-

ering term D(O)Dg()) as main term (in zero approximation

roots are /1 ) whereas account of term D) of first order of

smallness gives next iteration /I,(( ). We can do that because

coefficients &, x ~ o (51,9), hence, y ~ 5% (I'le) and the
“additional” pump Z, ~ % (11c). It means that Z, is much
smaller than the “main” pump Z; and we may apply
iteration method.

Zero order iteration.—The solution of equation DEO) =0
is following:
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A0 =y +is;, A=y +ids (18)
7,(1—p)— (1= p*)p, 72+ 5:
71 2p ) 1 > (1-p),
775(1+P)_(1_]92>/}1 73—’_52
=- Oy = 1
4T,(1 + a7, a, (7 + 5
p=y[1-HUEan) - @) g
[ys + 5s] 4(1 + alys)

Note that in the case of zero arm detuning (6 = 0) these
roots was found earlier [18,21,22] (for example, the case of
p = 0 corresponds to double resonance regime) and for-
mulas above may be considered as generalization for
small 0. 0

Solution of equation D’ = 0 gives obvious roots:

A = =7, £ i3, (20)

So in zero-order approx1mat10n we have roots /1,({ ,
among them the roots /112 correspond to instability
(y1 > 0). Now the zero-order part of the determinant
may be written as

D p©

LDy =[(A=71)* +8[(A—73)* + &3]

X [(A+7,)2 + &) 1)

First order of iteration.—Our aim is to choose such
parameters that make stable the next iteration root /11 5 1.€.,

Ry <o. (22)
We divide (14) by (2 —73)? + &3] [taking into account (21)]

and put 4 = /1( 15 1n D). So we get the next iteration of the
following characteristic equation:
(=7 +D)((A+7,)* +8)-b=0. (23

D
(A—73)* +8,- /10)'

S
Il

(24)

8]

We may keep in mind that b is a constant of the first order of
smallness. _ _
Below we put 6, = —9;. It is this choice of §,, that
provides stability with minimal arm detuning 8. This choice
has physical sense corresponding to the scheme of laser
cooling (see, for example [40,41]). Indeed, let the FP
cavity, which one mirror is a mechanical oscillator with
frequency w,,, is pumped by laser with frequency less than
cavity frequency by w,, detuned from resonance. In this
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case positive damping will be created for movement of
mechanical oscillator (optical rigidity is negligibly small).

One may write down the solution of (23) in analytical
form:

i 712 .
ﬂ—%iz\/é%—[%} /b =8 + 7%

(25)

Analysis shows that Ib <« Mb. Then at condition
Nb = &1l + 7l (26)

the second term in (25) is practically imaginary and its real
part is small enough. Then the condition stability may be
approximately formulated as

1-—

orj, > 7 —2 27)

5o ’
Tw 71 2P

This condition gives an estimation for the minimal value
of arm detuning:

ol <G

4v2p

(28)

The formula (28) is confirmed by numerical calculations
presented in the following section.

Important that in order to fulfill condition (28) one has to
provide relatively small arm detuning 6 ~7,. Here we
made an assumption that y,, ; depend weakly on a value of
6. So we put y, =7, correspondingly when doing
numerical estimations, because otherwise (28) turns into
a nontrivial equation for ¢ (we did this approximation only
estimating value of o, other numerical calculations
stay exact).

IV. NUMERICAL ESTIMATIONS

Numerical estimations can serve as an examination
of our theory. We can solve (14) numerically substituting
realistic parameters. We chose the parameters for alLIGO
interferometer presented in Table I [42]. We consider two
cases—when 7, #7, and when y,, =7,. In the Table
values in brackets mean the second case. Our analysis

TABLE I. Parameters for aLIGO
Detuning of symmetric mode (5,,) —23.0 Hz
Detuning of antisymmetric mode (&) 42.4 Hz

Decay rate of symmetric mode (y,,)
Decay rate of antisymmetric mode (y,)

1.5 Hz (3.0 Hz)
0.3 Hz (3.0 Hz)

Test mass (m) 40 kg
Arm length (L) 4 km
Circulating power (/) 24 kW

Arm detuning (5) 1.51 Hz (4.6 Hz)

=P ()
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FIG. 3 (color online). Absolute value of susceptibility y of
aLIGO interferometer with excluded symmetric mechanical mode.
Red continuous curve: 7,, = 7,. Blue dashed curve: 7,, # ¥,.

also gives an estimation for output power [, = 0.03W (as
we know in alLIGO reference design output power should
be about 0.1W). It is a good result because we don’t want to
obtain big laser power on a photodetector. Importantly that
here we chose operating frequency about 30 Hz. This value
differs from alLIGO one—100 Hz. We made it because in
our case the power-recycling mirror is detuned from
resonance. From this fact it follows that the circulating
power (~24 kW) is less than in aLIGO (~800 kW).
Susceptibility curves for these parameters are represented
in Fig. 3. The numerical solution of (14) gives us a set of
eigenvalues with negative real parts, which means stability.
It is important that the numerical eigenvalues are in good
agreement with analytical estimates. In addition we
checked our analysis numerically by the Routh-Hurwitz
stability criterion. It showed stability for parameters pre-
dicted by our theory.

We also did the same analysis for the Michelson-Sagnac
interferometer. For such systems we chose the realistic
parameters presented in Table II [30,31]. However, we
consider membrane as a free mass not taking into account
its intrinsic rigidity. The numerical solution gives us a set of
eigenvalues with negative real parts again. Plots of sus-
ceptibilities are represented in Fig. 4.

Our analysis shows that we can control the shape of the
susceptibility curve (increase one peak and decrease
another one) just detuning o,, by small value A from the

TABLE II. Parameters for Michelson-Sagnac interferometer.
Detuning of symmetric mode (J,,) —77.2 kHz
Detuning of antisymmetric mode (J;) 141.0 kHz

Decay rate of symmetric mode (y,,)
Decay rate of antisymmetric mode (y,)

5 kHz (10 kHz)
1 kHz (10 kHz)

Test mass (m) 10710 kg
Arm length (L) 8.7 cm
Circulating power (1) 318 mW

Arm detuning () 5 kHz (15 kHz)
Membrane reflectivity (R?) 0.17
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FIG. 4 (color online). Absolute value of susceptibility y of

Michelson-Sagnac  interferometer. Red continuous curve:
7w = Vs Blue dashed curve: 7,, # 7,.
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FIG. 5 (color online). Absolute value of susceptibility y of
aL.IGO with §,, = —6; + A. Red thick curve: A = 0. Blue dashed
curve: A = 0.5 Hz. Brown thin curve: A = —0.5 Hz

optimal one: SW = —0; + A. In Fig. 5 we plot such curves
for parameters represented in Table. I.

V. CONCLUSION

We have shown that arm detuning 6 in the aLIGO
interferometer provides the possibility to make a stable
optical spring for the antisymmetric mechanical mode. It
is important that the stable optical spring may be created
with small arm detuning comparable with the optical
bandwidths: 0 =y,,7,. However, this regime requires
relatively large PR and SR detunings which restrict
power circulating in the arms of the interferometer.
These results may be easily applied to the Michelson-
Sagnac interferometer with membrane inside to create
stable optical spring.

We restrict ourselves by analysis of only the antisym-
metric mechanical mode in the detuned alLIGO interfer-
ometer. In further research we plan to answer the following
question: is it possible to make both the symmetric and
antisymmetric mechanical modes stable?
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APPENDIX A: NOTATIONS AND DERIVATION
OF INITIAL EQUATIONS

Here we explain notations and derive a set of equations (5),
describing the alLIGO scheme represented in Fig. 1.

The electrical field E of the optical wave is presented in a
standard way,

2zh .
E =\ /ﬂe"“’o’(A +ap) + H.c.
Sc
o , d
apg = / \/ Ea(“’)e—’(m_w(’)t—w’
0 @ 2

where A is the mean amplitude, @, is the mean frequency
(mean power P of traveling wave is P = hwy|A|?), the
a(w) operators describe quantum fluctuations, and their
commutators are

(A

[a(w),a’(0')] = 276(w — ). (A2)
Usually the fluctuation part is written in form
0 o, dQ
ag 2/ a(Q)e ¥ —, (A3)
o 27

where Q = @ — w, (see details in [43]). We assume that
input wave is in coherent state. In this case we have the
following averages:
(a(Q)a"(Q)) =226(Q-Q), (a’(Q)a(Q))=0. (A4)

In our notations we use big letters for mean (classical)
part of field and small letters for small additions including
quantum fluctuating component.

1. The beamsplitter

For incident and reflected fields on beam splitter we
assume following formulas

by ==t ay ==t (A5a)
a, +a a, —a
a, = ——"—=, a, = ———— A5b

2. Mean fields

For reflected fields of east and north cavities we can
write:
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B, =R,A,, B, =R,A,, (A6)

The both east and north arms are assumed to be slightly
detuned by o6 from resonance to opposite sides. We
introduce following notations and calculate generalized
reflectivities R,, R, in long way approximation:

O, = e7i0", 0, = e, 8= wy— s, (A7)
T2 L
Yr = a7’ T= P
+is —is
R, zh: R: R, zh. (A8)
Using (AS5) we get
A, =—(A, +A,)/V2,  B,=TR.A, (A9a)
A, =—(A,—A)/V2,  B,=TR,A, (A9b)
B,=—(B,+B,)/V2=A,R. +AR_,  (A%)
B,=—(B,-B,)/V2=A,R_+AR,,  (A9d)
where we introduced R, = %

. :7?;5—;;2, S aio

Now we may consider the SR (south) and PR (west)
cavities which are described by equations (keep in mind
that there is no pumping into the south arm, but keeping
A, yet):

B,=-R,A,+iT,0,B,, (Alla)
A, =-R,0}B, +iT,0,A,, (Al1b)
B, = iT,0,B, — RA,, (Allc)

A, = —-ROB, +iT,0,A,, (Al1d)
0,,, = e, (Alle)

Using (A9) one may write set of linear equations (A11b),
(A11d) for A and A,, which may be solved for nonzero A ;:

A,(1+R,OIR,) +AR,OIR_ =iT,0,A,, (Al2)

AROR_+A,(1 +ROR,)=iT,0,A,. (Al3)
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Solving this set and simplifying the solution one gets

AN T rre ™ (1T + 8%)

v r,r, + &

iAgy/ }/s/}/TeiaxziéyTRWGEV (A14)
(Fsrw + 52)(1 - Rw®gv) ’

iAg\/1s/vre™ (ro T + 8)
L, +&
iAp yw/yTeiHWZi57/TRS®%

- (Fsrw+52)<1_Rs®A2‘) ’ (AIS)

A, =

where we introduced the following notations:

7+ + y—Rs,w@%,w

[_R_ & (A16)

Fs,w =Vsw — l5s,w =

o J/T(l - R_%.w)

= I 7 Rew) Al7
|1 - Rs,w®%,w|2 ( )

S = _ |:7+ + }’_:| RS.W[®§,W - ®§,2w]
o 2 |1 - Rs,w®%,w|2 ’
®s,w‘1 - Rs,w®%w| _
1 - Rx,we)%,w

®?~w - Rs
1 - Rs,w®%,w.

e =

(A18)

Now we can calculate fields before input mirrors in arms
using (A14), (A15) and (A11):

_ i 7w/yTApeiaW (}/+ - lé) (Fs =+ 15)
V2(T,T, + &%)

_ i\/ }/x/}/TAdeia‘?<y+ - 15) (Fw + l5)
V2(T,T,, + &)

A, =

. (A19)

_ i yw/yTApeiaw (y-‘r + lé) (Fs - lé‘)
V2([,T, + )
iYs/rrAqe'™ (v, + i8)(T,, — ib)
+ .
V2(T,T, + &%)

A, =

(A20)

And finally we calculate mean fields circulating in arms:

A _ ot (A21)

Een = Ten ens e.n X
’ T T y4Fio
E.=(E,£E,)/V2 (A22)
w A iawr‘s K A ia 19
E, - Yw/TApe V1 /TAge' i (A23)

(FSFW + 52) (FSFW + 52) ’
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£ _ Yo/ TA ™5 n \/yS/TAdei““FW‘
o mn+e) (L0, 48

(A24)

3. Small fields

Below we consider small (and fluctuative) part of a field
in frequency domain. The logic of derivation is the same,
but in this situation fluctuative part contains information on
spectral frequency Q.

a. East and north arms

We use long-wavelength approximation for the arm
cavity. In particular, we assume that the field reflected
from the arm contains information on difference coordi-
nates z, , of the arm. So we assume that b, , and a, , may
be expressed by formulas:

be,n = ae'.ane,n - Ee,n—u—e,nZikZe.n’ (A25a)
—l]—e n .
Con = ae.n—l]—e.n - Ee,n ~—7‘—~2lkze.n7 (A25b)
: ; :
i(0+ Q (-6
Re:yT+l,( + ) n:7T+l.( ) (A25¢)
rr—i(6+ Q) rr —i(Q—0)
T - Wiz __ Wt apsg)
C -6+ Q) "oy —i(Q-9)’
Zne = Xne = Ynee- (A25¢)
b. Beamsplitter
Now we may calculate using (A9)
a, +a a, —a
a, = ————, a, = ————, A26a
7 7 ( )
b=l R Lam, 17 (A26b)
s \/§ wES— sEN+ s
b, + b
b, = ——= * O a,R, +aR_+2,, (A26¢)
V2
where we introduced following notations:
Z;=T_W_+T,W, (A27)
Z,=T,W_+T_W,, (A28)
W_ =I[E, .z, + E_z_]2ik, (A29)
W, =[E;z_ + E_z ]i2k, (A30)
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—l]—e + —I]—n _ i\/ YT/T(]/T - lQ)

T, = . (A31
* 2 (yr — iQ)? + & (A3h)
T,-T i\/77/Ti6
=l To__Wrr/dd g
2 (}/T_IQ) +5
Z.Exz E,£E
—e—tn g —Ze—Tn A33
it 2 + \/5 ( )

c. Inside fields in arms

Fields e, , inside arms may be calculated using (A9)
and (A25b). We may pass trough sum and different fields
ey = % Instead of {a,,a,} we may inroduce the new
basis for fluctuation amplitudes:

(A34)

gp = €'“ay,, ga = €'%ay.

The fluctuational amplitudes {g,. g,} are independent from
each other as well as {a,, a p}, 1.e., their cross correlators
are equal to zero and own correlators are the same as for
initial basis (see (A2))

[94(Q). g)(Q)] = 278(Q - Q). (A35)

[9,(Q). gp(Q)] = 275(Q — Q). (A36)

After simple but bulky calculations we obtain expressions
for e:

o — [Ty = iQ]\/7w9p + i6\/759a
- \/E[(Fs - iQ) (Fw - iQ) + 62}
W_[[, —iQ] + W, ib

+ 2¢[(Ty —iQ)(T,, — iQ) + %]’ (A37a)
VTl —iQ)(T, — iQ) + &
W[, —iQ] + W_ié o,

27[(T, — iQ)(T,, —iQ) + &%

We can rewrite formulas (A37) in form:

(A37a) x (T, — iQ) + (A37b) x (—is) =

N N ik(Eizy +E_z_)
VT T ’
(A38)

(T, —iQ)e, —ife_ =

(A37b) x (T, — iQ) + (A37a) x (=id) =

s k(E . z_ +E_
—ide, + (I'y —iQ)e_ = \/f/;gd +l (.2 :— Z+>.

(A39)
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Equations (A38) and (A39) (and their complex conjuga-
tion) form first four equations of set (5) if we exclude
symmetric mode (putting z, = 0).

d. Ponderomotive forces and equations of motion

We can express forces acting on end mirror in each arm
in next way:

F,, = 2hk(E; 0, + E,pein), (A40)
F,+F F,—F
F+E%, F_= 62 B (A41)

After that we can write equations of motion for symmetric
and antisymmetric modes in frequency domain:

hk[E\e_(Q) + E e, (Q) + {h.c.}_] +uQ?z_(Q) =0,
(A42)

hk[E% e, (Q) + Efe_(Q) + {h.c.}_] + u@?z,(Q) = 0.
(A43)

Equation (A42) forms last equation of set (5).

APPENDIX B: COMPARISON OF MICHELSON
AND MICHELSON-SAGNAC
INTERFEROMETERS

Here we prove the formulas (13). We consider simplified
Michelson interferometer in Fig. 6, show that it is similar to
aLLIGO interferometer and it is described by set similar
to (5). Then we consider Michelson-Sagnac interferometers
and compare it with Michelson interferometer.

1. Michelson interferometer

Let us consider the Michelson interferometer without FP
cavities in the arms but with power and signal recycling
mirrors as shown in Fig. 6. It can be easily generalized in
the case of aLIGO by redefining decay rates and detunings
in this system.

The mirrors in the east and north arms may move as free
masses, whereas the power and signal recycling mirrors in
the west and south arms (with amplitude transmittances
are T, T, correspondingly) are assumed to be unmovable.
The interferometer is pumped through the west port. For
simplicity we assume that mean distance £ between beam
splitter and recycling mirrors in west and south arms is
much smaller than mean distance L between beam splitter
and end mirrors in north and east arms: £ < L.

In the case of complete balance optical paths in north and
east arms are tuned so that whole output power returns
through the power recycling mirror in the west arm and no
average power goes through the signal recycling mirror in
the south port. In this case one can analyze symmetric and
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FIG. 6 (color online). Michelson interferometer with power and
signal recycling mirrors.

antisymmetric modes separately, in particular, symmetric
mode interact with symmetric mechanical mode (x, + x,,)
and antisymmetric one—with (x, —x,). We analyze the
nonbalanced case when such separation is impossible.

Below for complex amplitudes of fields we use notations
in Fig. 6 denoting by capital letters mean amplitudes and by
small letters—small time-dependent additions.

It is easy to obtain equations for mean amplitudes A,, at
the power recycling mirror and A; at the signal recycling
one:

Ay(1=r,R)—Ar,R_=ie™/’T A, (Bla)
-A,rR_+A (1 =rR,) = ie®/’T A, (B1b)
R, = cos ér, R_ = isindr, (Blc)
=2L/c, Fps = Ry, g€, (B1d)

Here R, are amplitude reflectivities of the power and
signal mirrors, respectively, 7 is the round trip of light
between the beam splitters and end mirrors, & is the
detuning introduced by displacements of the north and
east mirrors (in opposite directions), ¢ ,, is the round trip
phase advance of the wave traveling between the beam
splitter and the power (,,) and signal ( ;) recycling mirrors,
A, is the mean amplitude of the pump laser, and for
generality we add the term ~A,; describing the possible
pump through the south port.

In the same way, one can obtain the equations for small
amplitudes in the west and south arms in the frequency
domain:

a,[l —r,R, e —a,r,R_e™¥

= iT,e'"/%a, + r,ikX,, (B2a)
—a,ryR_e* + a1l — r,R, e*]
= iT,e"a, + r,ikX,. (B2b)
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Here Q is the spectral frequency, and due to strong
unequality £ < L we assume that phases ¢, ; do not
depend on Q. a,,, a, describe the zero-point fluctuations of
the input field, k is the wave vector, and values X,
describe the influence of displacements x, and x,,:

Xy =x, £ x,, (B3a)
X, =—e?(A,R, +AR_)x,
— (A R+ AR )x_, (B3b)
Xs = _eigr/z(AwR— + A.¥R+)x+
— e 2(A R, + AR )x_). (B3c¢)
In the long-wave approximation
Qr <« 1, Tk, T,,<1, (B4)

we have R, =1, R_ = idr and may simplify set (B2) as
follows,

a,|l’, —iQ] — a,ié = g,, (B5a)
—a,,ié + a Iy — iQ] = g, (B5b)
where
iT\a, — r,ikX, iTsa, — ryikX,
w=—"_—""—"": 9G=———_"""
Tr, Trg
X, =—-Ax, —Ax_, X, =—-A,x_—Ax,. (B6)

One can write down the following approximate formulas
for I',, and T';:

1- Rw_‘ve"‘/’wxf .
Fw.s = TR—e"/’“‘ =Vws — léw,s’ (B7)
1-R, cos sin
fug = s O s (g

T

In the case of zero detuning 6 = 0, the set (BS) trans-
forms into equations of decoupled oscillators, whereas
nonzero ¢ introduces coupling.

Importantly, the set (B5) may be recalculated to equa-
tions for e, — —(a, + a,,)/+/2, which are equivalent (with
slightly different notations) to the first four equations in set
(5). Here we have to introduce symmetric and antisym-
metric modes with sign “minus” because the fields a, , are
defined near the beam splitter, whereas fields e,, are
defined near the end mirrors of the Fabry-Pero resonators.

Now we can write down equations for ponderomotive
forces acting on the end mirrors of the interferometer. They
can be expressed by the following formula:

PHYSICAL REVIEW D 89, 062005 (2014)

F, = 2hk(A%a, + A,a), (B9)
F, = 2hk(A%a, + A,a}). (B10)

For the beam splitter we can use following relations
[similar to (A9,A26)]:

A MetA L AA g
e \/i ’ n \/§ '
a, +a dy—d
4, = — w s, a, = — w il B12
¥ 7 (B12)
And we can write
F,-F i
F o= % = hk(ALa, + Ata, + A,al + Aal).

(B13)

The equation of motion for the antisymmetric mode can be
expressed in the next form:

hk(ALa, + Ata, + A, al + Asal) + uQ2z_(Q) = 0.
(B14)

This equation is equivalent to (A42) with corresponding
substitutions mentioned above.

2. Michelson-Sagnac interferometer

Let us now consider the Michelson-Sagnac interferom-
eter with power and signal recycling mirrors as presented in
a Fig. 2. Similarly, one can obtain a set of equations for
small amplitudes in the long-wave approximation,

[, —iQla, — ida, = g, (B15a)
—id*a,, + [y — iQa, = g, (B15b)
where
1-r,(iT.+R.R,) 1-F,
r, — Vw/(l- ;. H R, Z): _ ’:w’ (B16)
r,@ (iT, +R,) T
#=r,(R,+iT,), R, =cosér -1, (B17)
1—r(—=iT,+R,R) 1-F
Fs: rs/( l'z+ + Z)z _ :‘s, (B18)
rT (—lTZ + Rz) T
?s = rx(Rz - iTz), (B19)
OR iT,, WIkX,,
d=—"7%—, gW:l/al’L’ (B20)
iT, +R, 7r, (R, +iT.)
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_iTyaq + ryikX,

= B21
s T/rs(Rz - iTz) ( )

In (B20), (B21) values X, describe the influence of
displacement x of the membrane,

X, = 2A,R x. (B22a)
X, =2A,R x. (B22b)
2(L+1)

We introduced 77 = ===, Here L is the distance between
the beam splitter and east (or north) mirror, / is the distance
between the east (or north) mirror and the membrane,
R, is the amplitude reflectivity of the membrane, and
T. = +/1 —R? is the amplitude transparency.

Formally, y,.y, are complex values; however, their
imaginary parts are much smaller than the real ones due
to the condition 67" < 1. In the long-wave approximations,
we may put R, = 1.

Now we have to write equations for the ponderomotive
forces acting on the membrane,

F, = hk(Aia, + A,a, — Ata, — A,a)),  (B23)

F, = hk(B:b, + B,b} — Bib, — B,b)). (B24)

Using the following expressions in the long-wavelength
approximation.

b, = a,[iT. + R.] + A,R.i2kx, (B25)
by = a,[—iT, + R,] + AR 2ikx, (B26)
B, =A,[iT. + R (B27)
B, = A,[-iT, + R]]. (B28)

and relations for the beam splitter similar to (A9, A26),

A, + A, A, — A,
A, =00 p = s B29a
NG NG ( )

a, +a a, —a
a, = ——+—=, a, = ————, B29b
NG Ve (B29b)

B B B, —B
B,=-2vtl g PP (pge

V2 V2
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by +b b, — b
TS =S B29d

we can rewrite equations (B23) and (B24) in the following
form:

b, =

F, = hk(A%a, + A, al + Ata, + Aal), (B30)
F), = hk(B:.b, + B, b} + B:b, + B,b},)
= hk(A:/a‘ [_lTZ + RZ]Z + Awai [ZTZ + RZ]Z
+ Ara,[iT. + R)> + Agal,[—-iT, + R.]?).  (B31)

And the total force acting on the membrane can be
expressed by

F=F,+F,
= 2hkR, (A% a,[—iT, + R, + A, al[iT, + R,]

+ Ata,[iT, + R.] + Agal[=iT. + R.)). (B32)
Now we can write down the equation of motion for the
membrane:
F + mQ*x(Q) = 0. (B33)
So we may state that formulas (B15) for the Michelson-
Sagnac interferometer (MSI) are equivalent to formulas
(B5) for the antisymmetric mode of the Michelson inter-
ferometer (DMMI):
(i) Formulas for MSI transform for DMMI in
limit R, — 1.
(i) Formulas for DMMI transform into formulas for
MSI with the following substitutions in definitions
of y,., and effective detuning d,

Fys = Ts(R, —iT.), R.—1, (B34
5—>d=ad R (B35)
—d= = —
o YT LR,

(iii) Formulas for DMMI transform into formulas for
MSI with substitutions in definitions of right parts
g5 according to (B20), (B21), and (B3).
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