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We obtain the Lifshitz UV completion in a specific model for z ¼ 2 Lifshitz geometries. We use a
vielbein formalism which enables identification of all the sources as leading components of well-chosen
bulk fields. We show that the geometry induced from the bulk onto the boundary is a novel extension of
Newton-Cartan geometry with a specific torsion tensor. We explicitly compute all the vacuum expectation
values (VEVs) including the boundary stress-energy tensor and their Ward identities. After using local
symmetries or Ward identities the system exhibits 6+6 sources and VEVs. The Fefferman-Graham
expansion exhibits, however, an additional free function which is related to an irrelevant operator whose
source has been turned off. We show that this is related to a second UV completion.
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I. INTRODUCTION

The field of gauge/gravity duality has witnessed the rise
of a new paradigm in the form of the AdS/CMT corre-
spondence. By and large the focus of this line of research
has been on systems that are described by some strongly
coupled conformal field theory. There are however many
systems that in the neighborhood of some quantum critical
regime are well described by a scale invariant theory with
dynamical exponent z > 1. Such systems are typically
invariant under the Lifshitz symmetry group that contains
z-dependent scale transformations, space-time translations
and spatial rotations. The space-time that has these sym-
metries as its isometries is known as the Lifshitz space-time
and the goal is to develop holographic techniques for space-
times that become Lifshitz in some asymptotic region [1,2].
An important objective in this endeavour is the compu-

tation of quantities like boundary correlators in various
asymptotically Lifshitz backgrounds such as Lifshitz black
holes. This requires that we have an understanding of the
boundary geometry and that we control the solutions to the
equations of motion near the boundary [in the spirit of
Fefferman-Graham (FG) expansions] in order to apply the
usual holographic correspondence in which the boundary
values of the bulk fields act as sources in the dual field
theory partition function. So far, one has almost exclusively
studied such questions in the context of the massive vector
model [3–7] because it is simple in matter content (metric
and massive vector) and rich in solutions (all values of
z > 1 can be accounted for). However the analogue FG
expansions have proven hard to obtain and consequently

many features of Lifshitz holography have remained
elusive.
The purpose of this paper is to solve this problem in

a specific z ¼ 2 Lifshitz model, allowing us to expli-
citly address the holographic dictionary, including the
corresponding boundary geometry, the identification of
sourcesþ vacuum expectation values (VEVs) and compu-
tation of Ward identities. While being the first example that
allows such detailed analysis, it is expected that some of the
results and methods, in particular the appearance of tor-
sional Newton-Cartan (TNC) geometry on the boundary,
may serve as important input in the treatment of more
general Lifshitz models. The advantage of focusing on
z ¼ 2 is that one avoids having to derive the full space of
asymptotic solutions to the equations of motion since a
z ¼ 2 Lifshitz space-time can be uplifted to an asymptoti-
cally AdS space-time in one dimension higher [8,9]. This
observation has led one to look for Lagrangians that in four
dimensions admit z ¼ 2 Lifshitz solutions and that can be
uplifted to five dimensions where they admit asymptoti-
cally AdS solutions [10–12]. The idea is then to construct
the FG expansions of the solutions in five dimensions and
to reduce this to four dimensions. A first step in this
direction was taken in [13] where the focus was on deriving
the counterterms in four dimensions.

II. THE MODEL

More concretely we study the following model:

Sren ¼
1

2κ25

Z
M

d5xL̂ð5Þ þ
1

κ25

Z
∂M

d4x
ffiffiffiffiffiffi
−ĥ

p
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where the 5D bulk Lagrangian L̂ð5Þ reads
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−ĝ
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and where the counterterm action (we use minimal
subtraction) is

Sct ¼
1

κ25

Z
∂M

d4x

�
−
1

4
L̂ð4Þ þ

ffiffiffiffiffiffi
−ĥ

p
Â log r

�
; (3)

in which L̂ð4Þ is the 4D version of L̂ð5Þ with metric ĥâ b̂
defined via dŝ2 ¼ r−2dr2 þ ĥâ b̂dx

âdxb̂ and where Â is
an anomaly counterterm whose explicit form we do not
need. Our notation is as follows: 5D quantities and indices
are hatted while 4D quantities do not have a hat. Further,
a, b-type indices refer to the boundary space-time and
underlined indices denote tangent space.
The FG expansion of the solution to the equation of

motion near the boundary at r ¼ 0 is given by [13,14]

X̂ ¼ r−λ̂ðX̂ð0Þ þ r2X̂ð2Þ þ r4 log rX̂ð4;1Þ þ r4X̂ð4Þ þ � � �Þ;
(4)

where X̂ stands for any of the fields ĥâ b̂, ϕ̂, χ̂ and where
λ̂ ¼ 2, 0, 0, respectively. The X̂ð4Þ coefficients contain the
VEVs, i.e. symbolically

ĥð4Þâ b̂ ⊃
t̂â b̂
2
; ϕ̂ð4Þ ⊃ −

hÔϕ̂i
2

; e2ϕ̂ð0Þ χ̂ð4Þ ⊃ −
hÔχ̂i
2

:

(5)

Here, the VEVs are defined in the usual way as

ðt̂â b̂; hÔϕ̂i; hÔχ̂iÞ ¼ κ

�
2δ

δĥâ b̂ð0Þ
;

δ

δϕ̂ð0Þ
;

δ

δχ̂ð0Þ

�
Sosren; (6)

where κ≡ −κ25ð−ĥð0ÞÞ−1=2 and where Sosren is the on-
shell version of (1) and they satisfy the following Ward
identities:

t̂ââ ¼ Âð0Þ; (7)

∇̂ð0Þât̂âb̂ ¼ −hÔϕ̂i∂ b̂ϕ̂ð0Þ − hÔχ̂i∂ b̂χ̂ð0Þ; (8)

with Âð0Þ the leading term in Â. Here we will not need the
explicit form of Âð0Þ (for this see [15]).

III. REDUCTION AND SOURCES

As shown in [13] there is a subset of the full set of
solutions of the 5D theory that can be reduced to 4D
asymptotically Lifshitz geometries. This subset involves a
Scherk-Schwarz reduction in which the 5D axion has the
form χ̂ ¼ kuþ χ with χ a 4D axion and where u ∼ uþ
2πL parametrizes the reduction circle. All other fields
satisfy the ordinary Kaluza-Klein (KK) ansatz for a circle
reduction. We write the 4D Einstein frame metric in
vielbein basis as follows:

ds2 ¼ eΦ
dr2

r2
þ ð−etaetb þ δi je

i
ae

j
bÞdxadxb; (9)

where i ¼ 1; 2. Defining 5D vielbeins as follows ĥâ b̂ ¼
−êþâ ê−b̂ − êþ

b̂
ê−â þ δi jê

i
âê

j

b̂
, the KK ansatz reads

êþu ¼ −ê−u ¼ 1ffiffiffi
2

p eΦ; êiu ¼ 0; êia ¼ e−Φ=2eia; (10)

ê�a ¼ � 1ffiffiffi
2

p eΦðAa � e−3Φ=2etaÞ; (11)

where Aμ is the 4D bulk gauge field with Ar ¼ 0. For k ≠ 0
the set of 4D solutions consists of two branches: (i) those
that are asymptotically Lifshitz and (ii) those that are
asymptotically conformally AdS [16] with hyperscaling
exponent θ ¼ −1 [17,18]. From a 5D perspective the
former has the constraint ĥð0Þuu ¼ 0 and the latter has
ĥð0Þuu > 0. When we take ĥð0Þuu ¼ 0 the leading behavior
of the bulk fields reads

Aa þ e−3Φ=2eta ¼ 2r−2e−Φð0Þ=2τð0Þa þ � � � ; (12)

Aa − e−3Φ=2eta ¼ Að0Þa þ � � � ; (13)

ei ¼ r−1eΦð0Þ=2eið0Þadx
a þ � � � ; (14)

and the constraint ĥð0Þuu ¼ 0 implies

e2Φð0Þ ¼ ĥð2Þuu ¼ −
1

4
ðεabcð0Þ τð0Þa∂bτð0ÞcÞ2 þ

k2

4
e2ϕð0Þ ; (15)

where εabcð0Þ ¼ e−1ð0Þϵ
abc with ϵabc the Levi-Civita symbol and

eð0Þ ¼ detðτð0Þa; eið0ÞaÞ the boundary determinant. We have
thus identified the following sources: τð0Þa, e

i
ð0Þa, Að0Þa,

Φð0Þ, ϕð0Þ, χð0Þ.

IV. BOUNDARY GEOMETRY

For the leading components in the expansion of the
inverse vielbeins we introduce vað0Þ and eað0Þi defined via

τð0Þavað0Þ ¼ −1; τð0Þaeað0Þi ¼ 0; (16)

eið0Þav
a
ð0Þ ¼ 0; eið0Þae

a
ð0Þj ¼ δ

i
j: (17)

We then transform from frame to coordinate components
on the boundary using Xð0Þt ¼ −Xð0Þavað0Þ, Xð0Þi ¼
Xð0Þaeað0Þi and Xð0Þa ¼ Xð0Þtτð0Þa þ Xð0Þie

i
ð0Þa. In order to

understand better the metric structure of the boundary we
perform a bulk local Lorentz transformation that leaves
dr=r invariant and expand this for small r so that we can
read off the induced transformation on the boundary
vielbeins. The result is that they transform under the
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contracted Lorentz group consisting of rotations and
Galilean boosts as

δτð0Þa ¼ 0; δeið0Þa ¼ τð0ÞaΛb
ð0Þe

i
ð0Þb þ Λi

ð0Þje
j

ð0Þa; (18)

δvað0Þ ¼ Λa
ð0Þ; δeað0Þi ¼ −Λ

j

ð0Þie
a
ð0Þj; (19)

where Λa
ð0Þ ¼ Λi

ð0Þe
a
ð0Þi corresponds to local boosts and

Λð0Þi j ¼ −Λð0Þj i to local SOð2Þ rotations. The flat index

i can be raised and lowered with δi j. There are two

degenerate metrics invariant under the local tangent space
group: τð0Þaτð0Þb and Πab

ð0Þ ¼ δi jeað0Þie
b
ð0Þj. Further the boun-

dary determinant eð0Þ is an invariant as well. Hence we
cannot raise and lower indices.
Let us construct covariant derivatives DT

ð0Þa that trans-
form covariantly under (18):

DT
ð0Þaτð0Þb ¼ ∇T

ð0Þaτð0Þb ¼ 0; (20)

DT
ð0Þae

i
ð0Þb ¼ ∇T

ð0Þae
i
ð0Þb þ ω

i
ð0Þaτð0Þb þ ωð0Þaije

j

ð0Þb; (21)

DT
ð0Þav

b
ð0Þ ¼ ∇T

ð0Þav
b
ð0Þ þ ω

i
ð0Þae

b
ð0Þi; (22)

DT
ð0Þae

b
ð0Þi ¼ ∇T

ð0Þae
b
ð0Þi − ωð0Þa

j
ie

b
ð0Þj; (23)

where ∇T
ð0Þa contains some not necessarily symmetric

connection ΓTc
ð0Þab that we assume to be invariant under

local SOð2Þ rotations and τð0ÞcδΓTc
ð0Þab ¼ 0 under boosts so

that δðDT
ð0Þaτð0ÞbÞ ¼ 0. The condition ∇T

ð0Þaτð0Þb ¼ 0

restricts ΓTc
ð0Þab but this condition will hold in all our cases.

From demanding that δðDT
ð0Þae

i
ð0ÞbÞ ¼ τð0Þbωc

ð0ÞD
T
ð0Þae

i
ð0Þc þ

Λi
ð0ÞjD

T
ð0Þae

j

ð0Þb we can derive the transformation properties

of ωð0Þaik and ω
i
ð0Þa under boosts and SOð2Þ transforma-

tions. We impose the vielbein postulate DT
ð0Þae

i
ð0Þb ¼

DT
ð0Þav

b
ð0Þ ¼ DT

ð0Þae
b
ð0Þi ¼ 0 to relate the boost ω

i
ð0Þa and

SOð2Þ connection ωð0Þaik to the affine connection ΓTc
ð0Þab.

We will choose the symmetric part of ΓTc
ð0Þab to take

the same functional form as it does for Newton-Cartan
geometry [19,20]:

Γc
ð0Þab ¼ −

1

2
vcð0Þð∂aτð0Þb þ ∂bτð0ÞaÞ

þ 1

2
Πcd

ð0Þð∂aΠð0Þbd þ ∂bΠð0Þad − ∂dΠð0ÞabÞ

−
1

2
Πcd

ð0ÞðFð0Þdaτð0Þb þ Fð0Þdbτð0ÞaÞ; (24)

with Fð0Þab ¼ ∂aAð0Þb − ∂bAð0Þa and Πð0Þab ¼ δi je
i
ð0Þae

j

ð0Þb.
This choice is naturally suggested by the null reduction
[21,22] of the 5D boundary metric.
Equation (20) then implies that the torsion is

Tc
ð0Þab ¼ −

1

2
vcð0Þð∂aτð0Þb − ∂bτð0ÞaÞ: (25)

These two choices define what we mean by TNC. It has the
property that the degenerate metrics satisfy ∇T

ð0Þaτð0Þb ¼ 0

and ∇T
ð0ÞaΠ

bc
ð0Þ ¼ 0. An important special case is when τð0Þa

is hypersurface orthogonal, i.e. τð0Þ½a∂bτð0Þc� ¼ 0, that
we refer to as temporal or twistless Newton-Cartan
geometry (TTNC).

V. BOUNDARY CONDITIONS

We distinguish three types of asymptotically Lifshitz
space-times depending on the behavior of τð0Þa. When
dτð0Þ ¼ 0 the boundary geometry is ordinary Newton-
Cartan, i.e. no torsion. In this case there is an asymptotic
scale symmetry and locally τð0Þa ¼ ∂at, where t is absolute
time. We call these solutions asymptotically Lifshitz
(ALif). When τð0Þ∧dτð0Þ ¼ 0 we call, following [4], the
solutions asymptotically locally Lifshitz (AlLif). In this
case τð0Þa defines hypersurfaces of absolute simultaneity
but there is no absolute time. Finally, since the equations of
motion also admit solutions with τð0Þ∧dτð0Þ ≠ 0 we refer to
these as the Lifshitz UV (see Table I).

VI. VEVS AND WARD IDENTITIES

Computing the variation of the renormalized 4D on-shell
action, obtained from (1) by our dimensional reduction,
we find

δSosren ¼ −
2πL
κ25

Z
∂M

d3xeð0Þ

×
�
−S

t
¯
δvað0Þ
ð0Þa þ Sið0Þaδe

a
ð0ÞiþTt

ð0ÞδAð0Þt þ Ti
ð0ÞδAð0Þi

þhOχiδχð0Þ þ hOϕiδϕð0Þþ
1

2
ðStð0Þt − Sið0Þi

þAð0ÞtT
t
ð0Þ − Að0ÞiT

i
ð0Þ þ 2hOΦiÞδΦð0Þ−Að0Þ

δr
r

�
;

(26)

TABLE I. Indicated are the three different boundary conditions.
The last column indicates the type of boundary geometry.

Asymptotics τð0Þ∧dτð0Þ dτð0Þ Boundary geometry

ALif 0 0 NC
AlLif 0 ≠ 0 TTNC
Lif UV ≠ 0 ≠ 0 TNC
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where we varied with respect to the inverse vielbeins. The
term proportional to δΦð0Þ contains contributions involving
other VEVs due to the appearance of Φð0Þ in (12)–(14). By
reducing the variation of the 5D action (1) and going on shell
we obtain the following relation between 5D and 4DVEVs:

eibð0Þ t̂ab ¼ Sið0Þa þ Ai
ð0ÞS

t
ð0Þa; t̂au ¼ Stð0Þa; (27)

t̂uu ¼ −Tt
ð0Þ; hÔϕ̂i ¼ hOϕi; hÔχ̂i ¼ hOχi; (28)

together with the relations

0 ¼ Stð0Þt − Sið0Þi þ Að0ÞtT
t
ð0Þ − Að0ÞiT

i
ð0Þ þ 2hOΦi; (29)

0 ¼ Ai
ð0ÞT

t
ð0Þ þ eiað0ÞS

t
ð0Þa þ Ti

ð0Þ; (30)

0 ¼ S
i j

ð0Þ þ Ai
ð0ÞS

t j

ð0Þa − ði↔jÞ; (31)

where S
i j

ð0Þ ¼ e
ja

ð0ÞS
i
ð0Þa and S

t j

ð0Þ ¼ e
ja

ð0ÞS
t
ð0Þa.

Equations (30) and (31) are the Ward identities asso-
ciated with local boosts (under boosts the boundary gauge
field transforms as δAð0Þa ¼ −Λð0Þa as follows by relating
the four- to the five-dimensional sources) and SOð2Þ
rotations. Relation (29) is a Ward identity associated with
the local dilatation δΦð0Þ ¼ Λð0Þ. By going to five dimen-
sions this transformation can be viewed as a local dilatation
leaving the asymptotically locally AdS boundary metric
with ĥð0Þuu ¼ 0 invariant. The transformation δΦð0Þ ¼ Λð0Þ
is only a leading order symmetry of the full FG expansion,
which is enough to derive a Ward identity. By substituting
(29) in (26) the variation of the remaining sources become
unconstrained.
We derive the remaining Ward identities by reducing the

5D Penrose-Brown-Henneaux transformations [23,24] that
leave the FG expansion form invariant. This leads to three
sets of local symmetries: boundary diffeomorphisms
obtained by transforming the sources as boundary tensors,
gauge transformations

δAð0Þa ¼ ∂aΣð0Þ; δχð0Þ ¼ kΣð0Þ; (32)

and anisotropic Weyl transformations [25]

δXð0Þ ¼ λξrð0ÞXð0Þ; (33)

where Xð0Þ is any of the sources listed in the first row of
Table II and λ is the weight.
To obtain the transformation properties of the 4D

VEVs we use (27) and (28) together with the Penrose-
Brown-Henneaux transformation of t̂â b̂. The boundary
stress-energy tensor is

T b
ð0Þa ¼ Sbð0Þa þ Tb

ð0Þ
1

k
∂aχð0Þ; (34)

which is gauge invariant (see also [3,26]). The scaling
dimensions (obtained by taking ξrð0Þ constant) for the 4D
VEVs are listed in the second row of Table II.
The boundary covariant form of the Ward identities for

gauge, anisotropic Weyl and diffeomorphism invariance are
then given by

khOχi ¼ e−1ð0Þ∂aðeð0ÞTa
ð0ÞÞ; (35)

Að0Þ ¼ 2T t
ð0Þt þ 2Bð0ÞtT

t
ð0Þ þ T i

ð0Þi þ Bð0ÞiT
i
ð0Þ; (36)

∇T
ð0ÞbT

b
ð0Þa ¼ −T c

ð0Þbð−τð0Þc∇T
ð0Þav

b
ð0Þ þ eið0Þc∇T

ð0Þae
b
ð0ÞiÞ

þ 2Tb
ð0ÞacT

c
ð0Þb þ 2Tb

ð0ÞbcT
c
ð0Þa − Tt

ð0Þ∂aBð0Þt

− Ti
ð0Þ∂aBð0Þi − hOϕi∂aϕð0Þ; (37)

where ∇T
ð0Þa is defined just below (23) and where Bð0Þa ¼

Að0Þa − 1
k ∂aχð0Þ is the boundary massive vector field. Using

a TNC analogue notion of boundary conformal Killing
vectors it is possible to define boundary conserved currents
[15]. The anisotropic Weyl anomaly Að0Þ takes the form
of a Horava-Lifshitz action on TNC (as opposed to a
Lorentzian) geometry [15]. Counting all sources and VEVs
and subtracting local symmetries and Ward identities we
end up with 6þ 6 sources and VEVs.

VII. A SECOND UV COMPLETION

The 4D FG expansion contains the extra free function
vað0Þv

b
ð0Þ t̂ab which does not appear in (27). This is the VEV

of an irrelevant operator ĥð0Þuu that had to be switched off in
order to have a z ¼ 2 Lifshitz UV. Switching it on modifies
the UV but not the IR as can be seen from the solution

ds2 ¼ 1

r2
eΦ

�
−
�
1þ k2

4
g2sr2

�−1
dt2 þ dx2 þ dy2 þ dr2

�
;

e2Φ ¼ r−2
�
1þ k2

4
g2sr2

�
; A ¼

�
1þ k2

4
g2sr2

�−1
dt;

(38)

with χ and ϕ ¼ log gs constant. For small r (UV) this is a
θ ¼ −1 and z ¼ 1 hyperscaling geometry and for large r
(IR) this is our z ¼ 2 Lifshitz geometry. Expanding around

TABLE II. Scaling dimensions of the 4D sources and VEVs.

vað0Þ eað0Þi Að0Þt Að0Þi Φð0Þ ϕð0Þ χð0Þ

λ 2 1 2 1 0 0 0

Stð0Þa Sið0Þa Tt
ð0Þ Ti

ð0Þ hOΦi hOϕi hOχi
4 − λ 2 3 2 3 4 4 4
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r ¼ ∞ an irrelevant mode with fall off r−2 appears. The 5D
uplift has ĥð0Þuu > 0.

VIII. DISCUSSION

We expect the TNC boundary geometry to be universal
in Lifshitz holography for all values of z > 1 since the
argument of the contraction of the bulk local Lorentz group
works for any z > 1. Further, many other features of our
setup, such as the role of the boundary gauge field and the
benefit of using a nonradial gauge could play an important
role in the development of Lifshitz holography. Finally,
we expect these results to be relevant for a fluid/gravity
type derivation of Lifshitz hydrodynamics [27] which has
potential applications to holographic realizations of Son’s

model for the effective theory of the fractional quantum
Hall effect that relies on Newton-Cartan geometry [28].
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