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We report on the first self-consistent solution of the Dyson–Schwinger equation (DSE) for the three-
gluon vertex. Based on earlier results for the propagators which match data from lattice Monte Carlo
simulations, we obtain results for the three-gluon vertex that are in very good agreement with available
lattice data likewise. Feeding these results back into the propagator DSEs leads to some changes especially
in the gluon propagator. These changes allow us to assess previously used models for the three-gluon vertex
and to systematically estimate the influence of neglected two-loop diagrams with four-gluon interactions.
In the final step, a full iterative solution to the coupled DSEs of pure Landau gauge QCD without quarks is
then obtained for the first time in an extended truncation which now dynamically includes the complete set
of three-point vertex functions.
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I. INTRODUCTION

The correlation functions of QCD are the fundamental
building blocks for hadron phenomenology [1] and strong-
interaction matter studies based on functional continuum
methods [2]. Built on a solid understanding of the pure
gauge theory’s vacuum correlations [3–7], there has recently
been considerable progress in extensions to finite temper-
ature [8–10], to including dynamical quarks [11–13], and
to finite baryon density with all three light quark flavors
included [14]. Via corresponding calculations of Polyakov-
loop potentials [15], which have recently also included
unquenching [16,17] and quark matter effects [18], they
also provide input for Polyakov-loop extended quark [19]
and quark-meson models [20].
In this paper we go back to the foundations and consider

pure Landau gauge QCD without quarks, for which the
correlation functions have been intensely studied within a
variety of approaches. These range from Monte Carlo
simulations on discrete space-time lattices to functional
continuum methods such as Dyson–Schwinger equations
(DSEs) or Functional Renormalization Group studies.
Thereby, good qualitative agreement has been achieved
since lattice sizes have become large enough to access the
deep IR, far below the scale of QCD, ΛQCD, in simulations
[21–24]. At intermediate momenta, of the order of ΛQCD,
where much of the nonperturbative dynamics relevant to
hadron physics happens, however, there are still some
quantitative discrepancies. Especially in view of applying
functional continuum methods to strong-interaction matter
at finite baryon density, where the fermion sign problem is
impeding direct lattice simulations, it is worthwhile to
resolve these discrepancies. The QCD vacuum correlations
thus serve as an important benchmark before the distinctive

feature of functional methods to be readily extensible to
finite baryon density can fully and reliably be exploited.
Moreover, a key role in hadron physics and finite density

applications is increasingly being played by three- and
higher n-point vertex functions. Even for the three-point
vertex functions, however, lattice data are rather limited; see
Refs. [25–27]. This is to some extent due to their more
complicated kinematics. Typically, lattice data have there-
fore so far only become available for very restricted
kinematical configurations. While such restricted data pro-
vide valuable constraints, functional methods can also fill
this gap and yield kinematically complete descriptions.
On the other hand, the infinite sets of functional

equations for correlation functions require truncations. In
the past this basically always meant that model input was
used for the three-point vertex functions to self-consistently
solve nonlinear functional equations for the propagators
[6,28–32]. While such two-point complete truncations are
nowadays being extended into the complex invariant
momentum plane, e.g., for direct calculations of the corre-
sponding spectral functions [33], the fully self-consistent
inclusion of dynamic three-point vertex functions has only
started very recently [7,34]. Despite constituting a major
conceptual breakthrough, the structurally simplest of all
QCD vertex functions, the ghost-gluon vertex, was thereby
shown to only have a minor quantitative influence on the
propagators [7] as predicted [4] and confirmed in Ref. [35].
In contrast, it is usually argued that the three-gluon vertex
plays a crucial role in the midmomentum regime around
ΛQCD. The limited lattice data available for this vertex [26],
however, left considerable room for speculations and models
that had to be used in the past. Recently also perturbative
calculations with a Curci–Ferrari mass term were done [36]
that describe the qualitative features of the vertex quite well.
In this paper we present the next major step, which is to
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and dynamically in a DSE solution for the pure gauge
theory, which is thus now three-point complete for the first
time. Before that, however, we first describe a stand-alone
solution to a truncated three-gluon vertex DSE based on
input propagators from Ref. [7] that are in very good
agreement with lattice data. The fact that this stand-alone
solution is then in turn consistent with the available lattice
data for the three-gluon vertex confirms the validity of our
truncation of this DSE. Feeding the lattice-consistent three-
gluon vertex back into the propagator DSEs serves to
demonstrate to what extent the previously used model
vertex [7] effectively includes contributions from the
neglected two-loop diagrams in the gluon propagator
DSE. The final step then is the fully iterated solution to
the three-point complete set of propagator and vertex
DSEs, now based on a four-gluon vertex model. While
the iteration has some effect on the three-gluon vertex, it
hardly changes the propagators anymore, which is encour-
aging evidence of convergence of this type of vertex
expansion.

II. CALCULATIONAL SCHEME

The general setup follows that of Ref. [7], where
the coupled system of ghost-gluon vertex and propagator
DSEs was solved. The Landau gauge gluon and ghost
propagators are parametrized by two invariant functions
(color indices suppressed),

DA
μνðpÞ ¼ PμνðpÞ

Zðp2Þ
p2

and DcðpÞ ¼ −
Gðp2Þ
p2

; (1)

where PμνðpÞ is the transverse projector. In the Landau
gauge, the relevant transverse part of the three-gluon vertex
can be written in terms of four independent Lorentz tensors.
Including a complete basis for this tensor structure in the
three-gluon vertex DSE, one can show, however, that
the transverse part of the tree-level structure provides the
dominant contribution to the full three-gluon vertex [37]. In
our present study, we therefore maintain only this tree-level
structure in the ansatz,

ΓA3;abc
μνρ ðp; q; kÞ
¼ igfabcDA3ðp2; q2; αÞððq − pÞρgμν þ permÞ; (2)

where α is the angle between momenta p and q. To project
the three-gluon vertex DSE onto this structure, we contract
it with three transverse projectors and a tree-level three-
gluon vertex, for which DA3 ≡ 1, as it is also done in lattice
calculations [26]. One advantage of this procedure is
that the same projection occurs in the gluon loop of the
gluon propagator DSE. Consequently, the error induced
in the gluon DSE by this restriction can be quantified
from comparing the so-projected vertex DSE results with
analogously projected lattice data.

The full three-gluon vertex DSE, whose diagrammatic
form can be found in Ref. [38] for example, is truncated by
discarding all explicit two-loop diagrams together with a
diagram that contains an irreducible ghost-gluon scattering
kernel without tree-level counterpart. The resulting trunca-
tion is shown diagrammatically in Fig. 1. It is complete at
leading order in the ultraviolet (UV). Moreover, it also
includes the IR dominant contribution given by the ghost
triangle, so that truncation errors should manifest them-
selves only in the midmomentum region. To obtain a Bose
symmetric result, the DSE is finally symmetrized by
averaging over all three possible positions of the bare
vertex in the diagrams.
For renormalization we use the MiniMOM scheme [39],

i.e., minimal subtraction of the ghost-gluon vertex (which
entails ~Z1 ¼ 1 in Landau gauge) combined with momen-
tum subtraction for the propagators. The renormalization
constant of the three-gluon vertex is then fixed by its
Slavnov–Taylor identity, Z1 ¼ Z3= ~Z3, where Z3 and ~Z3 are
the renormalization constants of gluon and ghost fields,
respectively. Z1 and Z4 factors also come with the tree-level
vertices in gluon loops. To reproduce correct anomalous
dimensions, we have to replace them by momentum
dependent factors there [29]. Our construction of Z1 for
this renormalization group improvement is described in
Ref. [7]. For Z4 we use analogously

Z4 → DA4

RGðp; q; r; sÞ ¼ Gðp̄2Þα4gZðp̄2Þβ4g ; (3)

where p̄2 ¼ ðp2 þ q2 þ r2 þ s2Þ=2. The exponents α4g and
β4g are then determined from the leading anomalous
dimension of the four-gluon vertex, γ4g ¼ 2=11, and from
the requirement that the vertex approaches a constant value
in the IR. These two conditions together yield α4g ¼ −8=9
and β4g ¼ 0.
Note that there is no freedom in the subtraction of the

three-gluon vertex DSE because this would in general
violate the Slavnov–Taylor identity and hence be incon-
sistent with the MiniMOM scheme. Its overall strength can
therefore not be adjusted manually by renormalization. In
general one observes, however, that the iteration of the
three-gluon vertex DSE with fixed propagator input,
roughly comparable to lattice data, does not converge once
three-gluon interactions of a certain strength build up.
Because of cancellations between the gluon triangle, where
these enter quadratically, and the swordfish diagrams, with

FIG. 1. Truncated three-gluon vertex DSE with (dashed) ghost
and (wiggly) gluon triangles, plus so-called swordfish diagrams
with four-point interactions. Solid black disks represent dressed
vertices. Propagators inside loops are also dressed.
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four-gluon interactions, this can at present only be avoided
by using a sufficiently strong four-gluon vertex as model
input [37]. Especially its strength in the midmomentum
regime is thereby important for the balance between gluon
triangle and swordfish diagrams. This suggests that the
neglected UV-subleading contributions and tensor struc-
tures might have a similar effect in the full DSE. It is thus in
line with our general strategy for the vertex expansion that
such higher-order effects are compensated by the model
input for the four-point interactions used to close the three-
point complete system of DSEs. The situation is analogous
to that in previous two-point complete truncations, where
models for the three-gluon vertex were also partially
constrained by the convergence of the gluon propagator
DSE solution.
We again use a tree-level ansatz for the Lorentz and color

structure of the dressed four-gluon vertex. To enhance its
low and midmomentum strength as compared to the form in
Eq. (3), we use a two-parameter ansatz for its dressing,

DA4ðp; q; r; sÞ ¼ ða tanhðb=p̄2Þ þ 1ÞDA4

RGðp; q; r; sÞ; (4)

where a determines the additional IR interaction strength
and b the momentum scale of its onset. Qualitatively, such
an enhancement is in fact in agreement with a first
exploratory study of the four-gluon vertex function [40].
As in Ref. [7], where further technical details are found,

the program DoFun [41,42] was used to derive the DSEs
and the CrasyDSE framework [43] for their solution.

III. STAND-ALONE THREE-GLUON VERTEX

With the ghost-gluon vertex and the propagators from
Ref. [7] as fixed input, which agrees with lattice data very
well, see, e.g., the dashed blue line for the gluon propagator
in Fig. 4, the calculation of the three-gluon vertex serves as
a test of its truncated DSE with simplified tensor structure
and the four-gluon vertex model (4). In Fig. 2 we compare
the resulting dressing function DA3ðp2; q2; αÞ defined
in Eq. (2) for the symmetric momentum configuration

k2 ¼ p2 ¼ q2 (left) and for two orthogonal configurations
with p · q ¼ 0, for k2 ¼ p2 (middle) and q2 ¼ p2 (right), to
the lattice data of Ref. [26]. A rather good description of the
lattice data is obtained for an IR strength parameter a ≈ 1.5
with an onset around b ≈ 2 GeV2 in the four-gluon vertex
model. Varying its strength and onset by about 30% leads to
the bands used in the figure to indicate the sensitivity to
these model parameters. The four-gluon vertex model
thus appears to compensate the midmomentum contribu-
tions from neglected diagrams in the tree-level projected
three-gluon vertex DSE quite well.
As already observed in Ref. [7], our results for the three-

gluon vertex function change sign at very low momenta.
The position of this zero crossing in our calculations for the
momentum configurations of Fig. 2 varies roughly between
80 and 100 MeV, typically with a 20% variation over the
bands. Our larger value, which is obtained for the con-
figuration in the middle, is thereby reasonably close to a
previous estimate of about 130 MeV [44]. With the
available lattice sizes, this zero crossing has not yet been
accessible by Monte Carlo simulations in four dimensions.
It has been observed, however, by simulations on larger
lattices in two [45] and three dimensions [26], where it was
confirmed by DSE studies [38,46].
For even lower momenta, our results for the three-gluon

vertex function furthermore show a logarithmic behavior
with signs of a divergence at vanishing momenta. For the
momentum configuration in the middle of Fig. 2, such a
logarithmic divergence has also been predicted in Ref. [44].
It agrees with the general arguments of Ref. [47], and it has
been seen explicitly in a recent perturbative calculation
with Curci–Ferrari mass term as well [36].
Strictly speaking, the lattice data shown here were

obtained for the pure SUð2Þ gauge theory, while our
DSE calculations refer to SUð3Þ. At the present accuracy
level, this difference is not significant, however. The
renormalized propagators of the two basically coincide
[23]. For completeness we provide corresponding DSE
results for SUð2Þ, which indeed compare equally well with
lattice data, in the Supplemental Material [48].
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FIG. 2 (color online). Three-gluon vertex dressing function with restricted kinematics (see legends) for comparison with lattice data
where different colors/symbols refer to different values of β ∈ f2.2; 2.5g and different lattice sizes 1.4 fm < L < 4.7 fm; see Ref. [26]
for details. Solid red line: stand-alone solution with a ¼ 1.5 and b ¼ 1.95 GeV2. Upper (yellow) band: variation with b down to
1.46 GeV2. Lower (green) band: strengths up to a ¼ 2. Green dashed line: solution to fully coupled system (a ¼ 1.5, b ¼ 1.94 GeV2).
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A typical example of how our results extend the lattice
data in Fig. 2, here with α ¼ 2π=3 (left), to general
kinematics is shown in Fig. 3. Analogous SUð2Þ results
and further examples are given in the Supplemental
Material [48].

IV. GLUON PROPAGATOR

As mentioned above, the way we project the three-gluon
vertex DSE onto the tree-level structure (2) leads to the
same structure that also occurs inside the gluon loop of the
gluon propagator DSE. Using in this DSE a three-gluon
vertex for which this same structure resembles lattice data
therefore practically eliminates the effects of other tensor
structures on the gluon propagator, which is shown in
Fig. 4. Solving its DSE with the three-gluon vertices shown
as the bands in Fig. 2 reduces the result of Ref. [7] (dashed
blue), i.e., the input for these vertex DSE solutions, to the

corresponding bands around the solid red line here. Since
these three-gluon vertices agree within errors with the
lattice data, the missing strength of the gluon propagator
in the midmomentum regime has to come from the
neglected two-loop diagrams, which hence deserve further
study. For first results, see Refs. [49,50]. Ghost propagator
and SUð2Þ results are given in the Supplemental
Material [48].

V. FULL THREE-POINT COMPLETE SOLUTION

We have seen that with proper input our stand-alone
three-gluon vertex DSE solution agrees well with lattice
data. Using this solution in the gluon propagator DSE
exposes missing contributions there. The resulting gluon
propagator decreases at midmomentum and no longer
agrees with lattice data. If we feed this result back into
the vertex DSE, it is thus to be expected that its agreement
with lattice data deteriorates, likewise. This is indeed the
case as seen in Fig. 2 where the dashed green lines show the
iterated and converged solution for the three-gluon vertex
from the three-point complete system of propagator and
three-point vertex DSEs. Apart from the expected devia-
tions, these fully self-consistent results are otherwise stable,
however.
In particular, it is quite reassuring for the convergence of

this kind of vertex expansion that the propagators remain
almost unaffected by these deviations in the three-gluon
vertex as can be seen, for example, in the gluon propagator
upon comparing the solid red line of Fig. 4, from the lattice
consistent vertex, with the dashed green fully iterated
result, corresponding to the fully iterated dashed green
vertex result in Fig. 2.
The ghost propagator and ghost-gluon vertex are both

affected very little by the inclusion of the three-gluon
vertex in the three-point complete iteration and are not
shown here.

FIG. 3 (color online). Three-gluon vertex dressing function for
α ¼ 2π=3.
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FIG. 5 (color online). Comparison of couplings as defined via
ghost-gluon (solid red) and three-gluon (dashed green) vertex.
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FIG. 4 (color online). Gluon dressing function from Ref. [7]
(dashed blue), with lattice data from Ref. [51], compared to
analogous calculations with the three-gluon vertices shown as the
bands around the solid red line in Fig. 2 and the same color
coding here. Iterating the full three-point complete set of DSEs
then changes the center of the band (solid red) into the dashed
green line.
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VI. RUNNING COUPLINGS

The MiniMOM coupling is defined by minimal sub-
traction of the ghost-gluon vertex, i.e., in the Landau gauge
as αMMðp2Þ ¼ αðμ2ÞZðp2ÞGðp2Þ2 [28,39]. Alternatively,
one could of course also define a running coupling from the
three-gluon vertex in a symmetric MOM scheme, for
example, see Ref. [52],

α3gðp2Þ ¼ αðμ2ÞZðp
2Þ3DA3ðp2; p2; 2π=3Þ2

Zðμ2Þ3DA3ðμ2; μ2; 2π=3Þ2 : (5)

The denominator herein, which would be unity with
subtracting at p2 ¼ μ2 in such a symmetric MOM scheme,
is used to convert our Z and DA3

from the MiniMOM
scheme to this scheme. For μ far enough in the perturbative
regime, the two couplings must agree in the UV.
A comparison is given in Fig. 5. Because of the zero
crossing in the three-gluon vertex, α3gðp2Þ has a zero at
nonvanishing momentum likewise. This is not prohibited, in
general, for a renormalization group invariant dimensionless
function of a single scale which reduces to the perturbative
running coupling in the UV, but it does certainly go against
the common notion of a running coupling.

VII. SUMMARY AND CONCLUSIONS

We have shown how a truncated DSE for the three-gluon
vertex with appropriate input and modeling of four-gluon

interactions can produce reliable results which stand the
test against current lattice data. Using these results in the
gluon propagator DSE, we could clearly identify missing
contributions in the midmomentum regime around 1 GeV
as being due to neglected two-loop diagrams therein. Our
solid results for the three-gluon vertex will help to include
these diagrams in the future. Meanwhile we have solved for
the first time a coupled system of DSEs for propagators and
vertex functions that is complete on the level of three-point
correlations with model four-point interactions. The fully
self-consistent results from this three-point complete trun-
cation show clear signs of convergence of the underlying
vertex expansion for QCD.
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