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We present results of a three-loop hard-thermal-loop perturbation theory calculation of the
thermodynamical potential of a finite temperature and baryon chemical potential system of quarks and
gluons. We compare the resulting pressure and diagonal quark susceptibilities with available lattice data.
We find reasonable agreement between our analytic results and lattice data at both zero and finite chemical

potential.
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I. INTRODUCTION

A comprehensive understanding of the quantum chromo-
dynamics (QCD) equation of state is of crucial importance
for a better understanding of the matter created in ultra-
relativistic heavy-ion collisions [1], as well as the candi-
dates for dark matter in cosmology [2]. The calculation of
QCD thermodynamics utilizing weakly coupled quantum
field theory has a long history [3-5]. The perturbative
pressure is known up to order ¢°logg,, where g, is the
strong-coupling constant [5]. Unfortunately, a straightfor-
ward application of perturbation theory is of limited use
since the weak-coupling expansion does not converge unless
the temperature is extraordinarily high. Comparing the
magnitude of low-order contributions to the QCD free
energy with three quark flavors (N; = 3), one finds that
the g3 contribution is smaller than the g? contribution only
for g, < 0.9 or a, < 0.07, which corresponds to a temper-
ature of T ~10° GeV ~5 x 10°T,, with T, ~ 175 MeV
being the QCD pseudocritical temperature.

The poor convergence of the weak-coupling expansion
of thermodynamic functions stems from the fact that at high
temperatures the classical solution is not well described by
massless degrees of freedom, and is instead better described
by massive quasiparticles with nontrivial dispersion rela-
tions and interactions. One way to deal with the problem is
to use an effective field theory framework in which one
treats hard modes using standard four-dimensional QCD
and soft modes using a dimensionally reduced three-
dimensional SU(3) plus adjoint Higgs model [5-7], but
treating the soft sector nonperturbatively by not expanding
the soft contributions in powers of the coupling constant
[5,8]. The technique of treating the soft sector nonpertur-
batively is ubiquitous and there exist several ways of
systematically reorganizing the perturbative series at finite
temperature which rely on improved treatment of the soft
sector (see e.g. [9,10]). Such treatments are based on a
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quasiparticle picture in which one performs a loop expan-
sion around an ideal gas of massive quasiparticles, rather
than an ideal gas of massless particles.

In this paper we present results for the finite-temperature
and density next-to-next-to-leading-order (NNLO) QCD
pressure and diagonal quark susceptibilities obtained using
the hard-thermal-loop perturbation theory (HTLpt) reor-
ganization [11-14] of finite-temperature/density QCD. This
work extends previous NNLO work at zero chemical
potential [14] and previous leading-order (LO) [15-17]
and next-to-leading-order (NLO) work at finite chemical
potential [18] to NNLO. For our results we present (i) com-
parisons of the pressure scaled by the ideal pressure to
available lattice data at zero and finite chemical potential and
(i1) comparisons of the extracted second- and fourth-order
diagonal quark number susceptibilities to available lattice
data. We present the explicit analytic expression for the
NNLO HTLpt thermodynamic potential in the Appendix.

II. HTLPT FORMAL SETUP

The Minkowski space Lagrangian density for an SU(N )
Yang-Mills theory with N, massless fermions is

1 -
Locp = =5 Tr[Gu G| + ipy" Dy + Ly
+ Ly + ALqep, 1)

where the field strength is G* =0"AY — 0" A* —ig [A*,AY]
and the covariant derivative is D¥ = 9" — ig,A¥. ALgcp
contains the counterterms necessary to cancel ultraviolet
divergences in perturbative calculations. The ghost term
Ly, depends on the gauge-fixing term L. In this paper we
work in the general covariant gauge where Ly =
—& 1 Tr [(0,A%)?] with £ being the gauge-fixing parameter.

As mentioned previously, HTLpt is a reorganization of
the perturbation series for thermal QCD. The Lagrangian
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density is written as L= (Locp + Lurw)ly 5, T
ALy, where ALy, contains the additional counterterms
necessary to cancel the ultraviolet divergences introduced
by HTLpt. HTLpt is gauge invariant order-by-order in the
dressed-loop expansion, and consequently, the results
obtained are independent of the gauge-fixing parameter
&. In Ref. [12], the gauge-fixing parameter independence in
general Coulomb and covariant gauges was explicitly
demonstrated. We use MS dimensional regularization with
a renormalization scale A introduced to regularize infrared
and ultraviolet divergences. The HTL improvement term is

. P - v\
HTL__E( — 8)mp Tr Gua WyGﬂ

o]y
+ (1 = 8)imgyy" <y ."D>v/, (2)
y

where y* = (1,§) is a lightlike four-vector and (...),
represents an average over the directions specified by
the three-dimensional unit vector §. The parameters mp,
and m, can be identified with the Debye screening mass
and the fermion thermal mass in the weak-coupling limit;
however, in HTLpt they are treated as free parameters to be
fixed at the end of the calculation. The parameter o is the
formal expansion parameter: HTLpt is defined as an
expansion in powers of ¢ around § = 0, followed by taking
0 — 1. This expansion systematically generates dressed
propagators and vertices with expansions to order &%, &',
and &% corresponding to LO, NLO, and NNLO,
respectively.

Through inclusion of the HTL improvement term (2),
HTLpt systematically shifts the perturbative expansion
from being around an ideal gas of massless particles,
which is the physical picture of the naive weak-coupling
expansion, to being around a gas of massive quasiparticles.
Since the loop expansion is an expansion around the
classical extremum of the action, this shift incorporates
the classical physics of the high-temperature quark gluon
plasma, i.e. Debye screening and Landau damping, from
the outset and loop corrections correspond to true quantum
and thermal corrections to the classical high temperature
limit. In addition, new vertices which account for in-
medium HTL interactions are self-consistently generated
in the HTLpt framework.

There is no general proof that the HTLpt expansion is
renormalizable and, as a result, the general structure of the
ultraviolet divergences is unknown. However, in practice it
has been explicitly demonstrated in Refs. [12—14] that it is
possible to renormalize the HTLpt thermodynamic poten-
tial using only a vacuum counterterm, a Debye mass
counterterm, a fermion mass counterterm, and a coupling
constant counterterm. Through O(8%) the HTLpt counter-
terms necessary to renormalize the thermodynamic poten-
tial are
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where ¢y = N, dy = N2 — 1, and sp = N;/2.

In practice, in addition to the & expansion, it is also
necessary to make a Taylor expansion in the mass param-
eters scaled by the temperature, mp/T and m,/T, in order
to obtain analytically tractable sum-integrals. Otherwise,
one would have to resort to numerical evaluation and
regularization of difficult multidimensional sum-integrals.
An added benefit of this procedure is that the final result
obtained at NNLO is completely analytic. In order to
truncate the series in mp/T and m,/T one treats these
quantities as being O(g,) at leading order, keeping all terms
that naively contribute to the thermodynamic potential
through O(g3). In practice, such a truncated expansion
works well [17,19] and the radius of convergence of the
scaled mass expansion seems to be quite large, giving us
confidence in this approximate treatment of the necessary
sum-integrals.

III. RESULTS

We present the full analytic expression for the NNLO
HTLpt result in Eq. (A1) in the Appendix. In this section
we collect plots of the results and compare them to lattice
data. For all results we use the Braaten-Nieto mass
prescription for the gluon Debye mass specified in
Eq. (A2) and choose m,, = 0 since this is the self-consistent
solution to the quark gap equation at NNLO (see Ref. [14]
for a discussion of gluon and quark mass prescriptions
within NNLO HTLpt). For the strong-coupling constant a,
we use one-loop running [20] with Ayjg = 176 MeV,
which for N, = 3 gives a,(1.5 GeV) = 0.326 [21] which
is the self-consistent running obtained in NNLO HTLpt.
We use separate renormalization scales, A, and A,, for
pure-glue and fermionic graphs, respectively. We take the
central values of these renormalization scales to be A, =
27T and A, = 27+/T* + p?/7* in all figures. This choice
of scales guarantees that the quark susceptibility vanishes
in the limit Ny — 0. In all figures, the black line indicates
the result obtained using these central values. The variation
when changing these scales by a factor of 2 around the
central values is indicated by a shaded band.

In Figs. 1 and 2, we show the normalized pressure for
N, =3and Ny =2 + 1 as a function of 7, for uz = 0 and
up =400 MeV, respectively [22]. The result shown in
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FIG. 1 (color online). Comparison of the yz = 0 NNLO HTLpt
result for the scaled pressure for Ny =2 + 1 with lattice data
from Bazavov et al. [23] and Borsanyi et al. [24].
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FIG. 2 (color online). Comparison of the up = 400 MeV
NNLO HTLpt result for the scaled pressure for Ny = 2 + 1 with
lattice data from Borsanyi et al. [25].

Fig. 1 has been published previously (see Ref. [14]);
however, we present it here for completeness and com-
parison with the finite density case. Figure 2 is our first new
result. As can be seen from Figs. 1 and 2, the central (black)
line agrees quite well with both the up =0 and uz =
400 MeV lattice data with no parameters being fit. The
deviations below 7'~ 200 MeV are due to the fact that our
calculation does not include hadronic degrees of freedom
which dominate at low temperatures (see e.g. fits in [26]) or
nonperturbative effects [27].

In Fig. 3, we present the difference of the pressure at
finite chemical potential and zero chemical potential,
AP =P(T,ug) — P(T,up =0), as a function of the
temperature for ypz = 300 MeV and pup = 400 MeV. The
solid lines are the NNLO HTLpt result and the dashed lines
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FIG. 3 (color online). Comparison of the Stefan-Boltzmann
limit (dashed lines) and NNLO HTLpt (solid lines) results for the
scaled pressure difference AP = P(T, ug) — P(T, ug = 0) with
Ny =2+1 lattice data from Borsanyi et al. [25].

are the result obtained in the Stefan-Boltzmann limit. We
note that in Fig. 3 the lattice data from the Wuppertal-
Budapest (WB) are computed up to O(u%), whereas the
HTLpt result includes all orders in . As can be seen from
Fig. 3, the NNLO HTLpt result is quite close to the result
obtained in the Stefan-Boltzmann limit. The NNLO HTLpt
result, however, is in better agreement with the available
lattice data. Note that the small correction in going from the
Stefan-Boltzmann limit to NNLO HTLpt indicates that the
fermionic sector is, to a good approximation, weakly
coupled for T 2 2T,.

As a more sensitive measure of the dependence of the
pressure on the chemical potential, one can calculate the
diagonal quark number susceptibilities (QNS). The diago-
nal nth order QNS is

_oP

= n ’
a'ui wi=0

1(T) )

where P is the pressure of system, 7 is the temperature, and
u; is a chemical potential associated with conserved charge
i € {B,Q,S} corresponding to baryon number, electric
charge, and strangeness, respectively [28]. We begin by
noting that since the NNLO HTLpt result (Al) was
obtained assuming equal chemical potentials for N, mass-
less quark flavors (¢ = pg/3 and uy = pg = 0), derivatives
of the result with respect to u are related to the diagonal
baryon number susceptibility.

In Figs. 4 and 5, we compare the second- and fourth-
order susceptibilities predicted by NNLO HTLpt with
available lattice data. In Fig. 4, the data labeled WB,
BNL-BI(B), BNL-BI(u,s), TIFR, and MILC come from
Refs. [29-33], respectively. In Fig. 5, the data labeled BNL-
BI and WB come from Refs. [30] and [34], respectively. We
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FIG. 4 (color online). Comparison of the NNLO HTLpt result
for the scaled second-order susceptibility with lattice data.

have indicated the action used in each case in the legend,
and sets without a value of N, specified are continuum-
extrapolated results. We note that for y, the largest N,
results are in quite good agreement with the continuum-
extrapolated results. Additionally, we note that the HTLpt
bands shown are predominantly due to the variation of the
central scales to one half of their central values.

For the second-order susceptibility, we compare with
lattice results for both single flavor (u,s) and baryon
number susceptibilities (B). For the fourth-order suscep-
tibility, we show only lattice results for the fourth-
order baryon number susceptibility. It is expected that
the second-order single flavor and baryon number
susceptibilities differ only at the percent level because of
small off-diagonal contributions; however, the fourth-order
single flavor and baryon number susceptibilities are

—— NNLO HTIpt
0.7 r A WB(B), stout 1
[ ] BNL-BI(B), N, =8(HISQ)
0.6 1 i i i 1 i i 1 i i 1 i i 1 i
200 400 600 800 1000
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FIG. 5 (color online). Comparison of the NNLO HTLpt result
for the scaled fourth-order susceptibility with lattice data.
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expected to differ by approximately 20% near the phase
transition [35].

As can be seen from Fig. 4, the agreement between
NNLO HTLpt and lattice data for the second-order baryon-
number susceptibility is quite reasonable at high temper-
atures. In addition, we note that in the case of the
second-order susceptibility, the LO [15-17] and NLO
[18] HTLpt predictions are close to the NNLO result
shown in Fig. 4, indicating that this quantity converges
nicely in HTLpt. The fourth-order susceptibility, however,
shows a significant change in going from LO to NLO
to NNLO (see Fig. 2 of Ref. [18] for the LO and NLO
results). This is due to the fact that the fourth-order
susceptibility is very sensitive to overcounting which
occurs in low-order HTLpt. At NNLO this overcounting
is fixed through order ¢} if the result is perturbatively
expanded. As can be seen from Fig. 5, the NNLO HTLpt
result seems to be in reasonable agreement with the lattice
measurements of y%.

IV. CONCLUSIONS

In this paper we presented results for the NNLO HTLpt
QCD pressure with an arbitrary number of colors and quark
flavors. The final result is completely analytic and when its
predictions are compared with available lattice data, one
finds reasonable agreement for the pressure and second-
and fourth-order diagonal susceptibilities down to temper-
atures on the order of T ~ 2T .. The analytic result obtained
is gauge invariant and, besides the choice of the renorm-
alization scales A, and A,, does not contain any free fit
parameters. Details concerning the calculation of the
NNLO results listed in Eqs. (A1) and (A2) are presented
elsewhere [36]. In closing, we note that the application of
hard thermal loops in the heavy ion phenomenology is
ubiquitous, and the fact that HTLpt is able to reproduce the
finite temperature and chemical potential thermodynamic
functions with reasonable accuracy offers some hope that
the application of this method to the computation of other
processes or quantities is warranted.
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APPENDIX: NNLO HTLPT THERMODYNAMIC
POTENTIAL

In this appendix we present the NNLO HTLpt thermo-
dynamic potential
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The last term above is the scaled pure-glue pressure, QM - which can be found in Ref. [13]. For the gluon Debye mass we
use the Braaten-Nieto prescription [4,13,14] extended to finite chemical potential

, 2q A,
i, _&{c €A <5+22}/E—|—22 In —-) Fosp(1 4 12p2) + A%

3z 127 12 L (94 13222) + 22(1 + 128y
A 7 s [A\ 3 :
#2004 132) In N+ G0 120 (12 G N<z>) RG] W)

In Egs. (A1) and (A2) Q) = —d,a*T*/45, z = 1/2 — i, inp = mp/2aT, j = p/2aT, A,, = A, /22T, and

R(n,z) = (—n2) + (1) (=n,2%), W@ =V(2) +¥(z"), {(xny)=0L(x,y). (A3)

Above, ( is the Riemann zeta function, ¥ is the digamma function, and » is a non-negative integer. With the standard
normalization, we have ¢4 = N, dy = N2 — 1, sy = N¢/2, dp = NNy, and syr = (N2 — 1)N;/4N...
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