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Gravitational waves emitted by black-hole binary systems have the highest signal-to-noise ratio in LIGO
and Virgo detectors when black-hole spins are aligned with the orbital angular momentum and extremal.
For such systems, we extend the effective-one-body inspiral-merger-ringdown waveforms to generic mass
ratios and spins calibrating them to 38 numerical-relativity nonprecessing waveforms produced by the SXS
Collaboration. The numerical-relativity simulations span mass ratios from 1 to 8, spin magnitudes up to
98% of extremality, and last for 40 to 60 gravitational-wave cycles. When the total mass of the binary is
between 20 and 200M⊙, the effective-one-body nonprecessing (dominant mode) waveforms have overlap
above 99% (using the advanced-LIGO design noise spectral density) with all of the 38 nonprecessing
numerical waveforms, when maximizing only on initial phase and time. This implies a negligible loss in
event rate due to modeling. We also show that—without further calibration— the precessing effective-one-
body (dominant mode) waveforms have overlap above 97% with two very long, strongly precessing
numerical-relativity waveforms, when maximizing only on the initial phase and time.
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I. INTRODUCTION

In the next few years, second-generation ground-based
interferometers, such as advanced LIGO [1], advanced
Virgo [2], and KAGRA [3], will start to collect data with
unprecedented sensitivity, making the long-sought detec-
tion of gravitational waves (GWs) a realistic prospect.
Coalescing binaries of compact objects are among the most
promising astrophysical sources in the accessible frequency
band of such experiments. The search for GWs from these
sources exploits the matched-filtering technique, in which
the noisy output of the interferometer is correlated with a
bank of template waveforms describing all expected sig-
nals. An accurate knowledge of the gravitational radiation
is thus crucial for maximizing the chances of detection.
However, matched filtering not only requires templates that
are accurate, but their generation must also be sufficiently
cheap that they cover the entire physical parameter space.
While in principle the most precise waveforms are obtained
by solving Einstein’s equations in numerical relativity
(NR), their considerable computational cost makes it
necessary to resort to analytical models that meet both
criteria of accuracy and computational efficiency.
A unified analytical description of the entire compact

binary coalescence, from the quasicircular inspiral, through

the merger, and to the ringdown (RD) of the remnant, is
achieved by the effective-one-body (EOB) model [4]. In the
EOB approach, one replaces the real problem of two
compact objects of mass mi, spin Si (i ¼ 1; 2), and mass
ratio q orbiting each other with the effective problem of an
extreme mass-ratio binary, where the more massive object is
a deformed-Kerr black hole (BH) and the small object is
an effective spinning particle. The deformation parameter of
the Kerr metric is the symmetric mass ratio ν≡ q=ð1þ qÞ2.
The EOB model incorporates results from post-Newtonian
(PN) theory (in resummed form), BH perturbation theory,
and more recently also from the gravitational self-force
formalism. A mapping between the physical parameters
of the two problems is established by requiring that the
effective dynamics is equivalent (when PN expanded in
powers of 1=c2) to the original, PN-expanded dynamics.
Thus, solving exactly the effective problem of a spinning
particle in the deformed-Kerr geometry amounts to intro-
ducing a particular nonperturbative method for resumming
the PN-expanded equations of motion.
The accuracy of the EOB waveforms has recently been

improved by including in the EOB dynamics higher-order
(yet unknown) PN terms and calibrating them to NR
simulations, which have progressively grown in number,
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length, and accuracy. State-of-the-art calibrations of these
adjustable parameters in the nonspinning sector (including
also higher harmonics) can be found in Refs. [5–7]. An
EOB model for spinning, nonprecessing BH binaries was
calibrated to five nonspinning and only two spinning,
nonprecessing NR simulations in Ref. [6]1; it can generate
dominant (2,2) mode waveforms for any mass ratio, but
only for BH spin magnitudes up to 0.6. Moreover, the
EOB model in Ref. [6] was compared and validated against
a large set of new NR simulations of nonprecessing BHs
produced by several groups within the numerical-relativity
and analytical-relativity (NRAR) Collaboration [8].
Recently, Ref. [9] provided a general procedure to generate
EOB waveforms for spinning, precessing BH binaries
starting from a generic spinning, nonprecessing EOB
model; when using the EOB model in Ref. [6] as the
underlying nonprecessing model, the authors found re-
markable agreement with two precessing NR simulations.
Finally, the conservative dynamics of the EOB model has
also been tested and validated through the study of the
periastron advance in BH binaries [10].
In this work, we calibrate the nonprecessing sector of a

generic spinning EOB model to the (2,2) mode of a catalog
of highly accurate NR simulations produced by the SXS
Collaboration [13,14]. They include eight nonspinning and
30 spinning, nonprecessing BH binaries with spins up to 98%
of extremality, they cover mass ratios up to 8, and have orbital
eccentricities in the range of a few percent down to 10−5. The
simulations follow more orbits on average (up to 35.5),
allowing a more reliable calibration of analytical waveforms.

II. EFFECTIVE-ONE-BODY MODEL

In what follows we set G ¼ c ¼ 1. Let L̂ be the direction
perpendicular to the binary’s instantaneous orbital plane,
and let us define the dimensionless projections of the spins
along L̂ as χi ¼ ðSi · L̂Þ=m2

i . We assume m1 ≥ m2, hence
q≡m1=m2 ≥ 1. In the spinning EOB formalism of
Ref. [15], the effective HamiltonianHeff is that of a particle
of mass μ≡m1m2=ðm1 þm2Þ and effective spin S� ≡
S�ðS1; S2Þ moving in a deformed-Kerr geometry of mass
M≡m1 þm2 and spin SKerr ≡ S1 þ S2; the conservative
orbital dynamics is then derived via Hamilton’s equations
using the real EOB-resummed Hamiltonian

Hreal ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ν

�
Heff

μ
− 1

�s

−M: (1)

We use here the same EOB Hamiltonian as in Ref. [6], but
augment the deformed-Kerr metric potential Δu with 4PN
nonspinning terms to obtain [15]

ΔuðuÞ ¼ Δ̄uðuÞ
�
1þ νΔ0 þ ν log

�
1þ

X5

i¼1

Δiui
��

; (2)

where u≡ 1=r and r is the EOB radial coordinate in units
of M. Here,

Δ̄uðuÞ ¼ χ2Kerr

�
u − 1

rEOBþ

��
u − 1

rEOB−

�
; (3a)

rEOB� ¼ ½1� ð1 − χ2KerrÞ1=2�ð1 − KνÞ; (3b)

with χKerr ≡ ðSKerr · L̂Þ=M2; the coefficients Δ0;…;Δ5 are
determined by requiring that Δu agrees with the Taylor-
expanded EOB potential AðrÞ [16,17] up to 4PN order.
By construction, rEOB� reproduce the Kerr horizons when
ν ¼ 0. Similar to what was done in Ref. [6], we exploitK as
an adjustable parameter, i.e., a parameter that we calibrate to
NR waveforms. For the identification between the effective
particle’s spin S� and the spins Si we use the 3.5PN-accurate
spin mapping of Ref. [15], with all the arbitrary gauge
parameters set to zero and with the addition of a 4.5PN
spin-orbit term of the form ðdSOνSKerrÞ=r3, where dSO is an
adjustable parameter. The EOB description of conservative
spin effects is completed by adding a 3PN spin-spin term of
the form dSSνðS21 þ S22Þ=r4 to Heff=μ, where dSS is another
adjustable parameter.
The adjustable parameters are chosen to be polynomials in

νwhose coefficients are determined by minimizing the phase
and relative amplitude difference between EOB and NR
waveforms [defined as in Eqs. (29) and (30) of Ref. [6]]
via the numerical simplex method for each mass ratio.
First, we calibrate the nonspinning sector and find K¼
1.712−1.804ν−39:77ν2þ103:2ν3, where the ν-independent
term is consistent with the frequency shift of the innermost
stable circular orbit (ISCO) due to conservative self-force
effects in the small-mass-ratio limit [18]. Next, we calibrate
the spin parameters and obtain dSO ¼ −74.71 − 156.0νþ
627:5ν2 and dSS ¼ 8.127 − 154.2νþ 830.8ν2.
Dissipative effects are modeled by supplementing

Hamilton’s equations with a radiation-reaction force which
is a sum over (time derivatives of) the −2-spin-weighted
spherical modes at infinity. In our model, these modes are
written as a factorized resummation of the PN waveforms
[19,20]

hFlm ¼ hðN;εÞ
lm ŜðεÞeffTlmeiδlmðρlmÞl (4)

(see Ref. [6] for the definition of the individual factors). In
particular, here we also include comparable-mass spin-orbit
and spin-spin effects up to 2PN order, using the most recent
PN-waveform calculations in Ref. [21]. We use the ρlm
factorization in Eq. (4) for all modes except those with
l ≤ 4 and odd m, which instead follow the prescription of
Ref. [6] [see the discussion above Eq. (A8a) therein].

1The EOB models of Refs. [5,6,11] have been implemented in
the LIGO Algorithm Library under the names EOBNRV1,
EOBNRV2, and SEOBNRV1, respectively, and have been used
in GW searches [12].
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In addition, we also include all the known spin effects from
the test-particle limit given in Ref. [20], by replacing
the Kerr spin parameter a=M with χKerr; this helps the
modeling of unequal-mass, spinning systems. As such, the
mode amplitudes contain no adjustable parameters. In fact,
the improved knowledge of the nonspinning sector (i.e.,
the addition of 4PN terms in Δu) allowed us to remove the
nonspinning adjustable parameter ρð4Þ22 which had been
introduced in Ref. [6], thus simplifying the nonspinning
model. The resulting residuals on the amplitude of the (2,2)
mode are within a few percent at merger for χ1;2 ∼ 1 even
without adding nonquasicircular (NQC) corrections.
However, we need to introduce an adjustable parameter
in the spin terms of the phase δ22 to enhance the EOB GW
frequency close to merger with respect to its leading-order
value (twice the orbital frequency Ω), which tends to
underestimate the NR value for ∂tϕ22 when spins are close
to 1. For χ1;2 ¼ 0.98, we find that the ISCO is crossed only
10M before the light ring crossing, thus greatly reducing
the region in which the nonquasicircular corrections
(see below) can be effective. Explicitly, if χ ≥ 0, we add
the 3PN term 540νχðMΩÞ2 to δ22, where χ ≡ χSþ
χA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
=ð1 − 2νÞ, with χS;A ≡ ðχ1 � χ2Þ=2.

NQC effects that become important near the merger are
included in hF22 through a factor N22 [see Eq. (18) of
Ref. [6]]. The NQC coefficients are fixed by requiring that
the EOB (2,2) mode agrees with the NR input values for
jh22j, ∂tjh22j, ∂2

t jh22j, ∂tϕ22, and ∂2
tϕ22 evaluated at the

peak of jh22j. Using the 38 NR nonprecessing waveforms in
the SXS catalog and Teukolsky waveforms computed in the
small-mass-ratio limit [22], we updated the fitting formulas
for the NR input values given in Table IV of Ref. [6]. We
use these to iteratively compute the NQC coefficients as
described in Sec. IIB of Ref. [6]. While previous non-
spinning EOB models [11] were calibrated without enforc-
ing any time delay between the peak in the (2,2) amplitude
and in the orbital frequency, here, as in Refs. [5,6], we
require a lag Δt22peak which varies with the physical param-
eters of the binary. The idea of introducing Δt22peak into the
spinning model was inspired by studies in the small-mass-
ratio limit, where such time delay was first seen with EOB
trajectories sourcing Teukolsky waveforms [23] and accu-
rately quantified in Ref. [22]. Finally, the inspiral-plunge
waveform is simply defined as hinsp−plunge22 ≡ N22hF22, and
hinsp−plungelm ≡ hFlm when ðl; mÞ ≠ ð2; 2Þ.
As usual, the EOB merger-RD waveform is built as a

linear combination of quasi-normal-modes (QNMs) of the
remnant BH [4]

hmerger−RD
lm ðtÞ ¼

XN−1

n¼0

Almne
−iσlmnðt−tlmmatchÞ; (5)

where N is the number of overtones, tlmmatch is the time when
jhinsp−plungelm j peaks, Almn is the complex amplitude of the
nth overtone of the ðl; mÞ mode, and σlmn ¼ ωlmn −
i=τlmn is its complex frequency having positive (real)

frequency ωlmn and decay time τlmn. The frequencies
σlmn depend on the mass Mf and spin af of the final Kerr
BH, and are tabulated in Ref. [24]. To predict Mf we use
the phenomenological formula proposed by Ref. [25], but
we replace its equal-mass limit [Eq. (11) therein] with the
highly accurate fit given in Eq. (9) of Ref. [14]. To compute
af, we start from the formula of Ref. [26] (which also
predicts the direction of the final spin for precessing
binaries), and use the simulations in the SXS catalog to
refit its nonprecessing limit; the main change we introduce
is four new fitting coefficients designed to improve the
equal-mass, high-spin corner of the parameter space, where
the prediction of Ref. [26] has residuals exceeding 5%. We
improve the stability of the ringdown modeling across the
entire parameter space by (i) assuming a monotonic
behavior of af with decreasing ν for extremal spins, and
(ii) replacing some of the higher physical overtones with
pseudo-QNMs that depend on the merger frequency, on
σ220 and on ν, and moderate the rise of the ringdown GW
frequency [5,6].
Finally, the complete inspiral-merger-ringdown wave-

form is built as the smooth matching of hinsp−plungelm to
hmerger−RD
lm at tlmmatch, over an interval Δtlmmatch, following the

hybrid matching procedure of Ref. [5] to fix the coefficients
Almn in Eq. (5).

III. RESULTS AND DISCUSSION

The SXS catalog includes eight nonspinning BH binaries
with q ¼ 1, 1.5, 2, 3, 4, 5, 6, 8, and 30 spinning,
nonprecessing BH binaries with q ¼ 1 and χ1 ¼ χ2 ¼
0.98, 0.97, �0.95, �0.9, 0.85, �0.8, �0.6, �0.44,
�0.2; q ¼ 1; 1.5; 3; 5; 8, χ1 ¼ �0.5; and χ2 ¼ 0; q ¼ 1.5
and χ1 ¼ −χ2 ¼ �0.5; q ¼ 2, χ1 ¼ 0.6, and χ2 ¼ 0; q ¼ 3
and χ1 ¼ χ2 ¼ �0.5. We find that to accurately match all
38 nonprecessing waveforms, it is sufficient to calibrate the
EOB model to a much smaller subset of them. However,
since our goal is an accurate model for the entire parameter
space, most of which is not covered by the NR wave-
forms, we prefer to exploit all available nondegenerate
NR information in the calibration. In Fig. 1 we compare
the EOB waveforms to all the 38 nonprecessing NR
waveforms by computing their unfaithfulness

F̄≡ 1 −max
t0;ϕ0

hhEOB22 ; hNR22 i
jjhEOB22 jjjjhNR22 jj

; (6)

where t0 and ϕ0 are the initial time and phase,
jjhjj≡ ffiffiffiffiffiffiffiffiffiffiffiffihh; hip

, and the inner product between two wave-
forms is defined as hh1; h2i≡ 4Re

R
∞
fmin

~h1ðfÞ ~h�2ðfÞ=
SnðfÞdf, where SnðfÞ is the zero-detuned, high-power
noise spectral density of advanced LIGO [1] and fmin is the
starting frequency of the NR waveform (after junk radiation
has settled). The normalized inner product of two wave-
forms is their overlap. We do not hybridize the NR
waveforms at low frequency (f < fmin) with any analytic
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approximant but instead taper the EOB waveforms. When
M ≲ 100M⊙ the NR waveforms do not cover the entire
frequency bandwidth of the detector, but we expect that the
unfaithfulness F̄ would not change much when longer NR
waveforms will be employed because the EOB calibration
has been shown to be quite stable with respect to the
number of GW cycles used for the calibration [27]. The
unfaithfulness is always below 1% for total masses from 20
to 200M⊙, implying a negligible loss in event rate due to
the modeling error alone.
To estimate the NR error for each binary configuration,

we choose the NR simulation with the largest number of
cycles, with the highest resolution, and extrapolated to
infinity with extrapolation order N ¼ 3 as the fiducial
waveform. We then compute the model’s unfaithfulness
against NR waveforms (i) with a different extrapolation
order but the same resolution and (ii) with a different
resolution but the same extrapolation order, and obtain a
conservative error bound on F̄ from the difference between
the fiducial and the most discrepant waveform. For the
binary with q ¼ 1 and χ1 ¼ χ2 ¼ 0.98, which we take as a
representative case for the rest of the catalog, the errors on
F̄ are within 0.005%.
Figure 2 shows the agreement between EOB and NR

waveforms for the nearly extremal BH binary with q ¼ 1
and χ1 ¼ χ2 ¼ 0.98, when aligning them at their amplitude
peak; the phase difference is always within 0.6 rad. The
coordinate invariant relation ÊðĴÞ between the specific
energy Ê and the total angular momentum Ĵ is a useful
tool for evaluating analytical descriptions of the binary
dynamics [28]. In Fig. 3, for the cases with q ¼ 1 and
χ1 ¼ χ2 ¼ −0.95; 0.98, we compare ÊðĴÞ from NR (using
Cauchy-characteristics-extracted waveforms), the conser-
vative uncalibrated EOB model, and the EOB model
calibrated in this paper. The numerical errors of ÊðĴÞ
increase from 10−5 at low frequency to 10−4 at high
frequency. We find that when the spins are close to
extremal, there is a difference of 10−3 between NR and
analytical (EOB or even PN) ÊðĴÞ at low frequency that is
not explained by numerical errors. By contrast the

difference is within numerical errors when the spin mag-
nitudes are less than ∼0.6. We plan to further investigate
those results in the future. The cusps in the conservative
EOB curves indicate the presence of an ISCO; this point
lies 60M (10M) in time before merger for spin −0.95
(0.98). The calibrated EOB curves instead extend up to the
light ring, which is very close to the merger. The good
agreement between EOB and NR results validates the
calibration procedure in yielding an accurate description
of the binary evolution up to merger. The improved model
for the nonprecessing limit developed here (as compared to
Ref. [6]) is also the foundation for precessing binaries, via
the procedure of transforming from the precessing frame to
an inertial frame described in Ref. [9]. Without further
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FIG. 1 (color online). Unfaithfulness of (2,2) EOB waveforms
for all the 38 nonprecessing BH binaries in the SXS catalog. Only
a few selected cases are labeled in the legend.
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FIG. 2 (color online). NR and EOB (2,2) waveforms of the BH
binary with q ¼ 1 and χ1 ¼ χ2 ¼ 0.98. The two waveforms are
aligned at their amplitude peak (marked by a vertical dashed line).
R is the distance to the source and r� is the tortoise coordinate.
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model and the calibrated EOB model of this paper.
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calibration, we tested our model against the two long
precessing waveforms that were used in Ref. [9], one with
q ¼ 3 and initial spins (both of magnitude 0.5) respectively
in the orbital plane and antialigned with L̂, and the other
with q ¼ 5 and initial spins (of magnitude 0.5 and 0,
respectively) in the orbital plane, and found that F̄ < 3%
for both cases. We show EOB and NR precessing wave-
forms of the q ¼ 5 case in Fig. 4.

IV. CONCLUSIONS

Using 38 NR (2,2) mode waveforms for spinning,
nonprecessing BH binaries produced by the SXS
Collaboration, we have calibrated the nonprecessing sector
of the EOB model of Refs. [9,15], which is valid for any
mass ratio and spin. Throughout the entire parameter space
covered by the NR simulations, the EOB model of this
paper achieves an unfaithfulness within 1%, implying a
negligible loss in event rate due to the modeling error alone.
By extending the EOB model to nearly extremal spins, we
have increased the distance reach of advanced detectors.
Furthermore, the EOB model can be used to generate
precessing waveforms using the prescriptions in Ref. [9].
The EOB model developed here will be implemented in the

LIGO Algorithm Library, so that it can be employed by
advanced LIGO and Virgo to detect gravitational waves
from spinning binary BHs and to extract physical infor-
mation once the waves are observed. EOB models are
computationally expensive to generate (although far faster
than doing NR simulations) and work is under way to speed
them up. Future work will continue to improve the EOB
radiation-reaction sector and the calibration of the EOB
conservative dynamics, extend the modeling to higher-
order modes, investigate the performance of the model
against the precessing configurations in the SXS catalog,
and check its stability against much longer NR simulations,
thus extending the studies recently carried out in Ref. [27]
for nonspinning BHs.
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