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In a recent series of papers, we have shown that theories with scalar fields coupled to gravity
(e.g., the standard model) can be lifted to a Weyl-invariant equivalent theory in which it is possible to
unambiguously trace the classical cosmological evolution through the transition from big crunch to big
bang. The key was identifying a sufficient number of finite, Weyl-invariant conserved quantities to
uniquely match the fundamental cosmological degrees of freedom across the transition. In doing so we had
to account for the well-known fact that many Weyl-invariant quantities diverge at the crunch and bang.
Recently, some authors rediscovered a few of these divergences and concluded based on their existence
alone that the theories cannot be geodesically complete. In this paper, we show that this conclusion is
invalid. Using conserved quantities we explicitly construct the complete set of geodesics and show that they
pass continuously through the big crunch-big bang transition.
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In the standardbig bang inflationarymodel [1], the cosmic
singularity problem is left unresolved and the cosmology is
geodesically incomplete. Consequently, the origin of space
and time and the peculiar, exponentially fine-tuned initial
conditions required to begin inflation [2,3] are not explained.
In a recent series of papers [4–11], we have shown how to
construct the complete set of homogeneous classical cos-
mological solutionsof the standardmodel coupled togravity,
in which the cosmic singularity is replaced by a bounce: the
smooth transition from contraction and big crunch to big
bang and expansion. These are generic geodesically com-
plete solutions that can, for example, naturally incorporate
the cyclic theory of the Universe [12,13] in which it
is proposed that large-scale smoothness, flatness and
nearly scale-invariant perturbations are generated during
the periods of slow contraction preceding each big bang.
The key to our construction of classical geodesically

complete solutions was to “lift” the action (e.g., the
standard model coupled to Einstein gravity) to a Weyl-
invariant equivalent theory. We then identified a number of
Weyl-invariant finite quantities [7] that are conserved near
cosmological singularities for symmetry reasons. Our
proposal was to match these quantities across the singu-
larities which separate the patches of spacetime describing
the big crunch-big bang transition. We showed there were
sufficiently many such conserved quantities to ensure a
unique match for all cosmological fields. In doing so, we
necessarily had to pay attention to the well-known fact
[14–17] that many Weyl-invariant quantities diverge at the
bounce, such as the Weyl curvature, Cμ

νλδ. Recently,
Carrasco et al. [18] and Kallosh and Linde [19] rediscov-
ered some of these divergences and, without paying
attention to our discussion of conserved Weyl-invariant
finite quantities, claimed the divergences necessarily spoil

the geodesic completeness of our proposed big crunch-big
bang transition. In this paper, we demonstrate that this
naive claim is incorrect.
To be sure, what is presented here is a straightforward

elaboration of what was already proven in our earlier
papers [4–11]. Once we identified a sufficient number of
conserved finite Weyl-invariant quantities to determine a
unique continuation of all the fundamental cosmological
fields (e.g., scalar fields and metric) across all patches of
field space, it should be obvious that the spacetime is
geodesically complete because the geodesics of particles in
the theory are all expressed in terms of these cosmological
fields, as detailed below. It remains true that there exist
infinitely many Weyl-invariant quantities that diverge at the
crunch or bang, but these are irrelevant to the geodesic
completeness. In fact, even for these quantities, the field
continuation proposed in our papers uniquely determines
their evolution before and after they go singular.
To illustrate the point, we focus on the vicinity of the big

crunch or big bang where it suffices to consider a simplified
standard model with a Higgs-like scalar field conformally
coupled to gravity plus radiation. Following the procedure
in [4–11], the “lifted” action of the standard model is
achieved by adding an extra scalar field ϕ and imposing
Weyl symmetry so the number of gauge invariant physical
degrees of freedom remain the same. What is achieved
in this way is the inclusion of all patches of the fields that
leads to a geodesically complete cosmology as explained in
more detail in [10,11]. The leading contributions near the
big crunch-big bang transition are [7]:
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where h2 ≡H†H for Higgs doublet H. The complete
description also includes a term describing the radiation
(see below). All other contributions to the action, including
matter fields, as well as density perturbations become
negligible in this limit, and the cosmic evolution becomes
smoothly ultralocal, meaning that spatial gradients become
dynamically negligible [20]. The fact that the space-
time may be treated as spatially homogeneous near the
singularity also allows us to find all of its geodesics.
The action is invariant under the local gauge transforma-

tions gμν→Ω−2ðxμÞgμν, ϕ→ΩðxμÞϕ and h→ΩðxμÞh.
Although the lift introduces a second scalar field ϕ
with wrong-sign kinetic energy, it is obviously a gauge-
artifact since fixing a Weyl gauge in which ϕE ≡
ð ffiffiffi

6
p

=κÞ cosh κσ= ffiffiffi
6

p
and hE ≡ ð ffiffiffi

6
p

=κÞ sinh κσ= ffiffiffi
6

p
, where

(κ2 ≡ 8πG, withGNewton’s constant) converts the action to
Einstein gravity plus canonical scalar field σ with no ghost
degrees of freedom in the incoming and outgoing cosmo-
logical states. Using the Bianchi I, VIII or IX metrics
including anisotropy, the line element near the big crunch
and bang is [7]

ds2 ¼ a2ðτÞ½−dτ2 þ e−
ffiffiffiffiffiffi
8=3

p
κα1dσ23

þ e
ffiffiffiffiffiffi
2=3

p
κα1ðe
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2
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κα2dσ21 þ e−

ffiffi
2

p
κα2dσ22Þ�; (2)

where τ is the conformal time and α1;2ðτÞ parametrize
the anisotropy. The dσ1;2;3 generically include information
about the spatial curvature; however, since the spatial
curvature is negligible near a big crunch or big bang,
dσ1;2;3 reduce locally to dx1;2;3, respectively, resulting in
the Kasner-type metric.
Another useful gauge choice, dubbed γ-gauge fixes

gγ ¼ −1 or equivalently the scale factor aγ ¼ 1, in which
case the action is
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where eðτÞ is the lapse function and the radiation density is
ρr=a4ðτÞ where ρr is constant.
In this gauge, it is straightforward to find the complete

set of solutions that continuously track the evolution of ϕγ ,
hγ and α1;2 through a big crunch, a brief interlude of
antigravity, and then a big bang. Expressing the solution in
terms of Einstein gauge fields (indicated by the subscript E)
we obtain:

a2EðτÞ ¼ 2jτjjpþ ρrτj; (4)
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(6)

where τ is conformal time in units where κ ¼ ffiffiffi
6

p
and T1;2;3

are integration constants. Note that the solution for a2h2 ¼
a2Eh

2
E given above is Weyl invariant. The crunch occurs

at τc ¼ −p=ρr and the bang at τ ¼ 0 with the period
of antigravity in between. The constants p1;2;3 are the
finite conserved values of the canonical momenta of the

fields at the crunch or bang: π3 ¼ a2Eh
:

E → p3, π1;2 ¼
a2Eα

:
1;2 → p1;2, and p≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
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2 þ p2
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p
. A jp3j which is

larger than
ffiffiffiffiffi
15

p ðp2
1 þ p2

2Þ1=2 ensures the avoidance of the
mixmaster behavior [21,22] even when spatial curvature is
present [6]. In Ref. [7], we describe a total of 15 conserved
Noether charges that are finite at the crunch and the bang
and whose conservation across the singularities is sufficient
to uniquely determine the solutions given above.
We now consider the geodesics of massive particles in

the standard model in this geometry. The Weyl-invariant
action for a particle moving in a gravitational background
can be expressed as

Sparticle ¼ −
Z

dλmðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−x: μx: νgμνðxÞ

q
; (7)

where xμðλÞ is a function of the affine parameter λ. Note
that mðxÞ is generally x-dependent in theories like the
standard model when the Higgs field contributes to the
mass of particles: mðxÞ ¼ gphðxÞ, where gp is a dimen-
sionless coupling of the particle field to the Higgs field.
From this action, an explicit expression for all geodesics in
an anisotropic Kasner universe can be derived, exploiting
the spatial homogeneity of the metric [5,10]:

xiðτÞ ¼ qi þ
Z

τ
dτ0

gij3 ðτ0Þkjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gkl3 ðτ0Þkkkl þm2ðτ0Þa2ðτ0Þ

q ; (8)

where ki are the spatial components of the conserved
particle momentum, qi is the initial position, and g

ij
3 ðα1ðτÞ;

α2ðτÞÞ is the inverse of the Kasner space-space metric
appearing inside the square brackets in Eq. (2).
With this expression, Eq. (8), and noting that the integral

converges for all physical parameters of the fields that
determine the spacetime (p1;2;3; T1;2;3; gp; ρr) and all
parameters of the geodesics (k1;2;3; q1;2;3), we are effec-
tively done with the proof of geodesic completeness. We
stress that our complete solutions for α1;2 and the
gauge invariant combination aðτÞmðτÞ ¼ gpaEðτÞhEðτÞ ¼
gphγðτÞ are continuous and sufficiently well behaved at the
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crunch and bang; this insures that the geodesics constructed
from them are also continuous. The fact that the Weyl
curvature and the Weyl-invariant quantities discussed in
Refs. [18,19] diverge does not affect this conclusion one
iota. This is clearly exemplified in Fig. 1 where we have
chosen a typical geodesic and computed the behavior of the
geodesic component x3ðτÞ and the proper speed. Both are
continuous throughout the big crunch-big bang transition
and the proper speed is bounded by the speed of light, all
despite the fact that the Weyl curvature and other quantities
diverge and the Weyl-invariant metric is singular. Even
though we do not expect to find a coordinate system to
remove all curvature singularities, these are not sufficiently
severe in our case to prevent the geodesics from completing
their cosmic journeys.
We emphasize that this paper pertains to all the solutions

of the field equations in the vicinity of the singularities and
all the geodesics in those geometries, as obtained using our
proposal [23]. This includes both massive and massless
particles [23]. (In our general geodesic expression Eq. (8)
that is expressed in terms of momenta, all that is needed to
cover the case of lightlike geodesics is to set the mass or
Higgs coupling gp to zero. As is well known, this can also
be obtained from the particle action in Eq. (7) by first
defining the canonical momenta and keeping the momenta
fixed while taking the zero mass limit; or, equivalently,

rewriting the action Eq. (7) in the first order formalism and
then taking the limit.)
Our central point is that the continuation of the geometry

beyond the singularity is established because we have
shown in our case that all geodesics go through the relevant
singularities. Classically, this geodesic completeness is not
affected by the divergent curvatures that we [24] and others
have identified [23]. In fact, the completion of the geometry
is not supposed to eliminate the curvature singularities.
Rather, it is supposed to show that, despite the curvature
singularities, physical information can and does journey
from cycle to cycle through the cosmological singularities
[23]. Hence, we can claim the geodesic completeness for all
homogeneous cosmological field configurations of the
standard model coupled to gravity. Further details and a
more thorough discussion of geodesics, geodesic deviation
and geodesic completeness in Weyl-invariant theories are
given in Ref. [25].
Of course, our purely classical analysis does not include

strong quantum gravity effects near the singularities
because the technology does not yet exist to do those
computations [23]. Nevertheless, finding classical geodes-
ical completeness and the complete set of classical sol-
utions is very useful. Having the guidance and physical
insight of classical analysis is often a reasonable starting
point in understanding quantum theoretic descriptions of
physical phenomena, especially when there are indications
of new physics, as presented here. For example, suppose
one wished to pursue physics near the singularity in the
framework of string theory. Our solutions provide the
starting point because they provide geodesically complete
cyclic background geometries (metric and dilaton) consis-
tent with perturbative world sheet conformal symmetry as
required by the quantization of the string moving in
backgrounds. Our classical calculations suggest exciting
new phenomena to be explored. Based on historical
precedents, it is reasonable to suppose that some or all
qualitative features will survive quantum (string)
corrections.
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FIG. 1 (color online). A typical massive particle geodesic,
showing the continuous passage through the big crunch and big
bang singularities. In this example, the coordinate velocity v3 ¼
x
: 3 goes to zero at the crunch and infinity at the bang. The proper
speed of the particle with respect to particles comoving with the

xi coordinates, vproper ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3ijx

: ix
: j

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3ijx

: ix
: j þm2a2

q
, never

exceeds unity and touches zero at the crunch and unity at the
bang. Likewise, the coordinate x3 is finite and continuous
throughout. The numerical values of the parameters used to
generate this plot are p1 ¼ −1=4, p2 ¼ 0, p3 ¼ 1, T1 ¼ 1,
T2 ¼ 1, T3 ¼ 1, k1 ¼ 0, k2 ¼ 0, k3 ¼ 1, gp ¼ 1, ρr ¼ 0.4.
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