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The formation of the microwave background polarization anisotropies is investigated when the
stochastic Faraday rate is stationary, random and Markovian. The scaling properties of the polarization
power spectra and of their nonlinear combinations are scrutinized as a function of the comoving frequency.
It is argued that each frequency channel of a given experiment measuring simultaneously the E-mode and
the B-mode spectra can be analyzed in this framework with the aim of testing the physical origin of the
polarization in a model-independent perspective.

DOI: 10.1103/PhysRevD.89.061301 PACS numbers: 98.70.Vc, 78.20.Ek, 95.75.Hi, 98.80.Cq

Synchrotron sources are known to emit polarized radi-
ation [1] that is stochastically rotated by the Faraday effect
[1,2]. To obtain a suitable physical description of the
frequency scaling, the corresponding polarization observ-
ables are customarily averaged over the rotation rate [2].
Unlike the case of synchrotron emission, the degree of
linear polarization of the cosmic microwave background
(CMB in what follows) stems directly from the adiabatic
initial conditions of the Einstein-Boltzmann hierarchy,
implying that the position of the first acoustic peak in
the TT correlations1 must be roughly 4=3 times larger than
the position of the first anticorrelation peak in the TE
angular power spectrum. This prediction has been obser-
vationally established by the various data releases of the
WMAP Collaboration [3] and later confirmed by indepen-
dent polarization experiments [4]. The aim of this inves-
tigation is to discuss the formation of the CMB polarization
by characterizing the Faraday rate as a stationary and
random process with approximate Markovian behaviour.
Within this novel approach, exploiting the analogies with
the stochastic rotation of the synchrotron polarization,
various scaling properties of the corresponding angular
power spectra can be derived and eventually tested if and
when multifrequency measurements of the B mode become
available.
It is relevant to remark that in the minimal concordance

scenario the B-mode polarization is strictly vanishing, since
the tensor modes are absent from the fit. The tensor-to-
scalar ratio fixes the relative amplitude of the tensor and of
the scalar power spectra, and it is introduced as a further
parameter; in this framework the B-mode polarization
does not vanish. We shall discuss primarily the minimal

concordance paradigm with no tensors and briefly com-
ment on the modifications required if a tensor background
is included.
We shall consistently work in a conformally flat space-

time whose metric tensor can be written as gμν ¼ a2ðτÞημν,
where ημν is the Minkowski metric; aðτÞ shall denote the
scale factor and τ is the conformal time coordinate. With
these necessary specifications, in the concordance para-
digm the Faraday rotation rate can be expressed as

XFðx⃗; τÞ ¼
ω̄Be

2

�
ω̄pe

ω̄

�
2

¼ e3

2π

�
ne

m2
ea2

��
B⃗ · n̂
ν̄2

�
; (1)

where ω̄ ¼ 2πν̄ is the (comoving) angular frequency, while
ω̄Be and ω̄pe denote the comoving Larmor and plasma
frequencies. The WMAP experiment observes the micro-
wave sky in five frequency channels ranging from 23 to
94 GHz. The Planck satellite explores instead the micro-
wave sky in nine frequency channels: three of them are at
low frequency (between 30 and 70 GHz), while the
remaining six are located between 100 and 857 GHz.
Let us introduce the differential optical depth,
ϵ0 ¼ ~nexeσeγaðτÞ, where σeγ denotes the electron-photon
scattering cross section and xe the ionization fraction. The
comoving and the physical electron concentrations appear-
ing in Eq. (1) and in the definition of the differential optical
depth ϵ0, respectively, are related as ne ¼ a3ðτÞxe ~ne. To
gauge the magnitude of the rate, it is useful to express XF in
units of ϵ0, i.e.

XFðx⃗; τÞ
ϵ0

¼ 35.53

�
B⃗ · n̂
nG

��
GHz
ν̄

�
2

; (2)

showing that the actual value of XF=ϵ0 is not necessarily
much smaller than 1, and it is Oð1Þ for comoving field
strengths of a few nG (i.e. 1 nG ¼ 10−9 G) and frequen-
cies Oð10Þ GHz.
The scalar modes of the geometry induced by an

inhomogeneous magnetic field are the leading source of
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1Following the established terminology, the B-mode autocor-

relations are denoted by BB. With similar logic, we shall mention
throughout the text the TT, TE and EE angular power spectra
denoting, respectively, the autocorrelations of the temperature,
the autocorrelations of the E mode, and their mutual cross
correlations.

PHYSICAL REVIEW D 89, 061301(R) (2014)

1550-7998=2014=89(6)=061301(6) 061301-1 © 2014 American Physical Society

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.89.061301
http://dx.doi.org/10.1103/PhysRevD.89.061301
http://dx.doi.org/10.1103/PhysRevD.89.061301
http://dx.doi.org/10.1103/PhysRevD.89.061301


distortion of the TT, EE and TE angular power spectra that
have been derived for the magnetized adiabatic mode and
compared with the available experimental data with the aim
of pinning down the properties of the magnetic field. In
Ref. [5] this analysis has been performed, for the first time,
using the WMAP five-year data, and later confirmed by
other analyses and different data sets (see, e.g., Ref. [6] and
references therein). The purpose here is not to predict the
Faraday effect given the current bounds on the magnetic
field: this exercise has been already explored in the past
(see, e.g., Ref. [7] and references therein), and it has its own
limitations. The idea is instead to reverse the problem and
use the heuristic power of the stochastic description to infer
the origin of the B-mode polarization even without a
detailed knowledge of the properties of the magnetic field.
The Faraday rate introduced in Eq. (1) enters directly the

evolution of the magnetized brightness perturbations (see,
e.g., Refs. [7,8] and references therein), whose explicit
form in the conformally flat case is given by

Δ0
� þ ðϵ0 þ ni∂iÞΔ� ¼ Mðx⃗; τÞ∓2iXFðx⃗; τÞΔ�; (3)

where Δ�ðx⃗; τÞ ¼ ΔQðx⃗; τÞ � iΔUðx⃗; τÞ; ΔQðx⃗; τÞ and
ΔUðx⃗; τÞ define the brightness perturbations of the corre-
sponding Stokes parameters. In Eq. (3), the prime denotes a
derivation with respect to the conformal time coordinate τ;
the source term Mðx⃗; τÞ is determined by the electron-
photon scattering cross section and by the properties of the
magnetic field. The conventional discussion assumes that
first the polarization is formed and then it is Faraday-
rotated with XF ≪ 1, as it happens if the ambient magnetic
field is not too high and the observational frequency is not
too small. The goal of the latter approach is to derive a set
of phenomenological bounds on the comoving magnetic
field n̂ · B⃗ that must be, a priori, smaller than the nG scale
to comply with the assumed smallness of the Faraday rate.
Rather than deriving a further bound of the magnetic

field intensity, the purpose here is to explore a different
approach, where the Faraday rate is described as a random,
stationary and approximately Markovian process. The
randomness implies that XFðτÞ is not a deterministic
variable but rather a stochastic process which is stationary
insofar as the autocorrelation function Γðτ1; τ2Þ ¼
hXFðτ1ÞXFðτ2Þi only depends on time differences, i.e.
Γðτ1; τ2Þ ¼ Γðjτ1 − τ2jÞ; furthermore, we shall also assume
that the process has zero mean, even if this is not strictly
necessary for the consistency of the whole approach.
If τb defines the time scale of variation of the brightness
perturbations of the polarization observables, the physical
situation investigated here corresponds to τb ≫ τc, where
τc is the correlation time scale of XF. In the simplest case of
a Gaussian-correlated process, the autocorrelation function
Γðτ1 − τ2Þ ¼ Fðτ1Þτcδðτ1 − τ2Þ. If the time scale of spatial
variation of the rate is comparable with the time scale of
spatial variation of the gravitational fluctuations, XF can be

considered only time dependent (i.e. a stochastic process).
In the opposite situation, the Faraday rate must be con-
sidered fully inhomogeneous (i.e. a stochastic field). These
two possibilities will be separately considered hereunder.
On a purely logical ground, XF can just be a random
variable characterized by a given probability distribution,
and this is somehow the most naive case that has been
already analyzed in the framework of the synchrotron
emission (see, e.g., the second paper of Ref. [2]) and that
will not be treated here.
If XFðτÞ is interpreted as a stochastic process, Eq. (3)

becomes, in Fourier space,

δ0� þ ðikμþ ϵ0Þδ� ¼ 3

4
ð1 − μ2Þϵ0SPðk⃗; τÞ∓2iXFðτÞδ�;

(4)

where SPðk⃗; τÞ ¼ ðδI2 þ δP0 þ δP2Þ, and δ�ðk⃗; τÞ denotes
the Fourier transform of Δ�ðn̂; τÞ; δP0 and δP2 are
the monopole and the quadrupole of δP, and δI2 is the
quadrupole of the brightness perturbation related to the
intensity of the radiation field. Equation (4) must be
complemented by the evolution of the brightness pertur-
bations of the intensity (i.e. δI) that can be used to solve
approximately the system in the tight-coupling limit [9].
The source term SPðk⃗; τÞ depends on the frequency of the
channel, since the magnetic field modifies the trajectories
of the electrons scattering the CMB the photons; for the
sake of simplicity, this effect (that is also frequency
dependent) shall be neglected in what follows, but it is
described in detail in the last paper of Ref. [7], and it can be
easily included.
For equal times (but for different Fourier modes), the

fluctuations of the brightness perturbations are random
with the power spectrum determined by the (nearly scale-
invariant) spectrum of Gaussian curvature perturbations
[3]. Thus, in the absence of Faraday mixing, δ� obeys then
a deterministic evolution in time, while the spatial fluctua-
tions of the polarization are randomly distributed and fixed
by the correlation properties of the adiabatic curvature
perturbations. Conversely, since XFðτÞ is now treated as a
stochastic process, Eq. (4) becomes a stochastic differential
equation [10] in time, and its formal solution is obtainable
by iteration:

δ�ðk⃗; τÞ ¼
X∞
n¼0

δðnÞ� ðk⃗; τÞ; δð0Þ� ðk⃗; τÞ ¼ δPðk⃗; τÞ: (5)

Equations (4) and (5) imply the following recurrence
relations:

δPðk⃗; τÞ ¼
3

4
ð1 − μ2Þ

Z
τ

0

e−ikμðτ−τ1ÞKðτ1ÞSPðk⃗; τ1Þ; (6)
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δðnþ1Þ
� ðk⃗; τÞ ¼ �2i

Z
τ

0

e−ikμðτ−τ1ÞKðτ1ÞXFðτ1ÞδðnÞ� ðk⃗; τ1Þ:

(7)

The differential optical depth directly enters the visibility
function, giving the probability that a photon is emitted
between τ and τ þ dτ:

Kðτ1Þ ¼ ϵ0ðτ1Þe−ϵðτ1;τÞ; ϵðτ1; τÞ ¼
Z

τ

τ1

xe ~neσeγ
aðτ0Þ
a0

:

(8)

The full solution of Eq. (4) is formally expressible as

δ�ðk⃗; τÞ ¼
3

4
ð1 − μ2Þ

×
Z

τ

0

e−ikμðτ−τ1ÞKðτ1ÞSPðk⃗; τ1ÞA�ðτ; τ1Þdτ1;

A�ðτ; τ1Þ ¼ e
∓2i

R
τ

τ1
XFðτ0Þdτ0 : (9)

The visibility function adopted for the analytic estimates
has the approximate shape of a double Gaussian whose first
peak arises around last scattering (i.e. for τ≃ τr), while the
second (smaller) peak occurs for the reionization epoch at a
typical redshift of about 11 [3,9]. The finite thickness of the
last scattering surface does not affect the ratios between
the different combinations of polarization power spectra
discussed here, so that the limit of sudden recombination
can be safely be adopted; in this limit the first and more
pronounced Gaussian profile tends to a Dirac delta
function.
The statistical properties of A� follow directly from the

correlation properties of XFðτÞ. If, for instance, XFðτÞ
obeys a stationary and Gaussian process, for any set of n
Faraday rates (characterized by different conformal times)
the correlator hXFðτ1ÞXFðτ2Þ…XFðτnÞi vanishes if n is
odd; if n is even, the same correlator equals

X
pairings

hXFðτ1ÞXFðτ2ÞihXFðτ3ÞXFðτ4Þi…hXFðτn−1ÞXFðτnÞi;

(10)

where the sum is performed over all the ðn − 1Þ! pairings.
In the Gaussian case, the evaluation of the averages can be
performed by first doing the standard moment expansion
and by the resumming the obtained result. As an example,
from the explicit expression of A�, it follows that

hA�ðτ; τrÞA�ðτ; τrÞi ¼ he�4i
R

τ

τr
XFðτ0Þdτ0 i ¼

X∞
n¼0

ð−2ωFÞn
n!

;

(11)

where ωF is given by

ωF ¼ 4

Z
τ

τr

dτ1

Z
τ

τr

dτ2hXFðτ1ÞXFðτ2Þi: (12)

It follows from Eq. (12) that even if XF ≤ 1, ωF is not
bound to be smaller than 1.
If the stationary process is only approximately

Markovian, the result of Eq. (11) still holds, but in an
approximate sense. While the standard moment expansion
can be formally adopted in specific cases (like the Gaussian
one), it cannot be used to provide successive approxima-
tions. The reason is that any finite number of terms
constitutes a bad representation of the function defined
by the whole series. This difficulty is overcome with the
use of the cumulants that are certain combinations of the
moments. Dropping the functions and keeping only their
corresponding arguments, we have that the relations
between the ordinary moments and the cumulants (denoted
by hh…ii) is h1i ¼ hh1ii, h12i ¼ hh1iihh2ii þ hh12ii,
h123i ¼ hh1iihh2iihh3ii þ hh12iihh3ii þ hh31iihh2iiþ
hh23iihh1ii þ hh123ii, and so on and so forth for the other
moments of the cluster expansion. Substituting the naive
moment expansion with the cumulant expansion, we have
that the average of Eq. (11) is given by

hA�ðτ;τrÞA�ðτ;τrÞi

¼exp

�X∞
m¼1

ð�4iÞm
m!

Z
τ

τr

dτm

��
XFðτ1ÞXFðτ2Þ…XFðτmÞ

���
:

(13)

As first suggested by Van Kampen (see Ref. [10], third and
fourth paper) in the approximately Markovian case, the
averages of certain stochastic processes will be given by
an exponential whose exponent is a series of successive
cumulants of XF. All the cumulants beyond the second are
zero in the case of an exactly Gaussian process, and
the result reported in Eq. (11) is recovered. Since each
integrand in Eq. (13) virtually vanishes unless τ1; τ2;…; τm
are close together, the only contribution to the integral
comes from a tube with a diameter of order τc along the
diagonal in the m-dimensional integration space. More
generally, the mth cumulant vanishes as soon as the
sequence of times τ1; τ2;…; τm contains a gap that is large
compared to τc. This is the reason why, in a nutshell, the
concept of cumulant is rather practical also in our case.
As an example of stationary process that is not delta

correlated, consider the case where Γðτ1 − τ2Þ ¼
hXFðτ1ÞXFðτ2Þi can take only two values, x̄2F and −x̄2F,
and let us suppose that XFðτÞ has switched an even number
of times in the interval between τ1 and τ2, so that
Γðτ1 − τ2Þ ¼ x̄2F, whereas the correlation function gives
−x̄2F if there have been an odd number of switches. If
pðn;ΔτÞ is the probability of n switches in the interval
Δτ ¼ τ1 − τ2, it follows that
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ΓðΔτÞ ¼ x̄2F
X∞

n¼0;2;4…

pðn;ΔτÞ − x̄2F
X∞

n¼1;3;5…

pðn;ΔτÞ

¼ x̄2F
X∞
n¼0

ð−1Þnpðn;ΔτÞ: (14)

As the switches are random with average rate r, the function
pðn;ΔτÞ is nothing but a Poisson distribution with a mean
number of switches n̄ ¼ rΔτ, i.e. pn ¼ n̄ne−n̄=n!. This
means that ΓðΔτÞ ¼ x̄2F exp ½−2rΔτ�. This is an example
of a dichotomicMarkov process [10] applied to the case of a
stochastic Faraday rate.
If XF is a stochastic field rather than a stochastic process,

the discussion is mathematically slightly different but
physically equivalent as far as the frequency scaling is
concerned. More specifically, the evolution equations for
δ� will now contain a convolution and can be written as

δ0� þ ðikμþ ϵ0Þδ� ¼ 3

4
ð1 − μ2Þϵ0SPðk⃗; τÞ∓ibFðν̄; τÞ

×
Z

d3pδ�ðk⃗þ p⃗; τÞniBiðp⃗; τÞ;

(15)

where we define, for convenience, bFðν̄; τÞ ¼
2e3ne=½ð2πÞ5=2m2

ea2ðτÞν̄2�. The iterative solution of
Eqs. (5) and (6)–(7) becomes, in this case,

∂τδ
ð0Þ
� þ ðikμþ ϵ0Þδð0Þ� ¼ 3

4
ð1 − μ2Þϵ0SPðk⃗; τÞ; (16)

∂τδ
ð1Þ
� þ ðikμþ ϵ0Þδð1Þ�

¼ ∓ibFðν̄; τÞ
Z

d3pδPðk⃗þ p⃗; τÞniBiðp⃗; τÞ; (17)

∂τδ
ð2Þ
� þ ðikμþ ϵ0Þδð2Þ�

¼ ∓ibFðν̄; τÞ
Z

d3p0δPðk⃗þ p⃗0; τÞniBiðp⃗; τÞnjBjðp⃗0; τÞ:

(18)

To compute the averages, we must therefore specify the
correlation properties of the Faraday rate. Even if the spatial
dependence may reside in all the terms contributing to the
Faraday rate, it is reasonable to presume that the leading
effect may come from the magnetic field whose correlation
function will then be parametrized as

hBiðq⃗; τ1ÞBjðp⃗; τ2Þi

¼ 2π2

p3
Pijðp̂ÞP̄BðpÞΓðjτ1 − τ2jÞδð3Þðq⃗þ p⃗Þ; (19)

where Γðjτ1 − τ2jÞ ¼ τcδðτ1 − τ2Þ in the delta-correlated
case. In the same approximation exploited before and using
Eq. (19), ωF becomes now

ωF ¼ 8b̄2F
3ν̄4

Z
dp
p

P̄BðpÞ
Z

τ

τr

dτ1

Z
τ

τr

dτ2
Γðjτ1 − τ2jÞ
a2ðτ1Þa2ðτ2Þ

;

(20)

where the constant b̄F ¼ bFðν̄; τÞa2ðτÞν̄2 has been intro-
duced in order to draw special attention to the frequency
scaling that is the most relevant aspect of Eq. (20), at least
in the present approach.
The dependence of the polarization observables upon ωF

can now be determined. Since Δ� transform as fluctuations
of spin weight �2, they can be expanded in terms of spin-
�2 spherical harmonics �2Ylmðn̂Þ, with coefficients
a�2;lm. The E- and B-modes are, up to a sign, the real

and the imaginary parts of a�2;lm, i.e. a
ðEÞ
lm ¼ −ða2;lm þ

a−2;lmÞ=2 and aðBÞlm ¼ iða2;lm − a−2;lmÞ=2. The real-space

fluctuations constructed from aðEÞlm and aðBÞlm have the
property of being invariant under rotations on a plane
orthogonal to n̂. They are therefore scalars and must be
expanded in terms of (ordinary) spherical harmonics:

ΔEðn̂; τÞ ¼
X
lm

N−1
l aðEÞlmYlmðn̂Þ;

ΔBðn̂; τÞ ¼
X
lm

N−1
l aðBÞlmYlmðn̂Þ; (21)

where Nl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 2Þ!=ðlþ 2Þ!p
. Within these notations,

the EE and BB angular power spectra are defined as

CðEEÞ
l ¼ 1

2lþ 1

Xl
m¼−l

haðEÞ�lm aðEÞlmi;

CðBBÞ
l ¼ 1

2lþ 1

Xl
m¼−l

haðBÞ�lm aðBÞlmi; (22)

while the cross-correlation power spectrum is constructed

from haðEÞ�lm aðBÞlm þ aðEÞlma
ðBÞ�
lm i. The repeated application of

generalized ladder operators whose action either raises or
lowers the spin weight of a given fluctuation [11] (see also
Ref. [7]) leads to a direct connection between ΔE, ΔB and
Δ�:

ΔEðn̂; τÞ ¼ −
1

2
∂2
μ

�
ð1 − μ2ÞðΔþ þ Δ−Þ

�
;

ΔBðn̂; τÞ ¼
i
2
∂2
μ

�
ð1 − μ2ÞðΔþ − Δ−Þ

�
; (23)

where ∂2
μ denotes the second derivative with respect to

μ ¼ cos ϑ. From Eqs. (21) and (23), we can finally

determine aðEÞlm and aðBÞlm within the set of conventions
followed here:
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aðEÞlm ¼ −
Nl

2ð2πÞ3=2
Z

dn̂Y�
lmðn̂Þ

×
Z

d3k∂2
μ

�
ð1 − μ2Þ

�
δþðk⃗; τÞ þ δ−ðk⃗; τÞ

�	
;

aðBÞlm ¼ iNl

2ð2πÞ3=2
Z

dn̂Y�
lmðn̂Þ

×
Z

d3k∂2
μ

�
ð1 − μ2Þ

�
δþðk⃗; τÞ − δ−ðk⃗; τÞ

�	
: (24)

Inserting Eq. (24) into Eq. (22), the angular power spectra
of the E-mode and of the B-mode polarizations can be
derived, and they are

CðEEÞ
l ðωFÞ ¼ e−ωF coshωFC̄

ðEEÞ
l ;

CðBBÞ
l ðωFÞ ¼ e−ωF sinhωFC̄

ðEEÞ
l ;

(25)

the cross-correlation power spectrum is instead vanishing

CðEBÞ
l ¼ 0. In Eq. (25), C̄ðEEÞ

l is the E-mode autocorrelation
produced by the standard adiabatic mode and in the
absence of Faraday mixing. Equation (25) shows that
the B-mode and the E-mode polarizations are both fre-
quency dependent. Despite the fact that these formulas hold
also when ωF ≥ 1, in the limit ωF ≪ 1 the standard results
are recovered, and only the B mode depends on the
frequency [7]. From Eq. (25), the following sum rules
for the angular power spectra can be easily established:

CðEEÞ
l ðωFÞ þ CðBBÞ

l ðωFÞ ¼ C̄ðEEÞ
l ; (26)

CðEEÞ
l ðωFÞ − CðBBÞ

l ðωFÞ ¼ e−2ωF C̄ðEEÞ
l : (27)

Introducing now the properly normalized angular power
spectra GElðωFÞ and GBlðωFÞ,

GElðωFÞ ¼
lðlþ 1Þ

2π
CðEEÞ
l ðωFÞ;

GBlðωFÞ ¼
lðlþ 1Þ

2π
CðBBÞ
l ðωFÞ; (28)

the following ratio of nonlinear combinations has well-
defined scaling properties with ωF:

L0ðωFÞ ¼
G2
ElðωFÞ − G2

BlðωFÞ
½GElðωFÞ þ GBlðωFÞ�2

→ e−2ωF : (29)

Equation (29) does not assume that the Faraday rate is
much smaller than 1, and it does not even assume a specific
form of the Markov process. For an exactly Gaussian
process or for a dichotomic Markov process [see, e.g.,
Eq. (14)], the explicit expressions of ωF can be rather
different, but the frequency dependence will be always the
same: since ωF is quadratic in the rates, it will always scale

as 1=ν̄4 ≃ λ4, where λ denotes the wavelength of the
channel. Since the scale factor is normalized in such a
way that a0 ¼ 1, physical and comoving frequencies
coincide today but not in the past. The combination
reported in Eq. (29) is not unique, and different expressions
can be envisaged depending on the actual features of
the measurement. Two further combinations explicitly
depending on ωF are

L1ðωFÞ ¼
GElðωFÞ − GBlðωFÞ
GElðωFÞ þ GBlðωFÞ

→ e−2ωF ;

L2ðωFÞ ¼
G2
ElðωFÞ þ G2

BlðωFÞ
G2
ElðωFÞ − G2

BlðωFÞ
→ cosh 2ωF: (30)

Since L0, L1 and L2 contain ratios of the angular power
spectra, the finite thickness of the last scattering surface is
not expected to affect these conclusions in any significant
manner.
The discussion has been conducted, so far, in the

framework of the standard concordance paradigm. If a
tensor component is added, the relations reported in
Eq. (25) are modified by the presence of C̄ðBBÞ

l , denoting
the B-mode contribution stemming from the tensor
background. This means that, overall, the B-mode
power spectrum will be given as CðBBÞ

l ðωFÞ →
e−ωF sinhωFC̄

ðEEÞ
l þ C̄ðBBÞ

l . The sum rules and the scaling
relations obtained above can be generalized to this case
by following the same logic. The important point to
bear in mind is that while the Faraday contribution does
depend on the comoving frequency, C̄ðBBÞ

l is frequency
independent.
In the concordance paradigm with no tensors, the

stochastic Faraday rotation can be tested through multi-
frequency observations once the measurements of the
B-mode polarization become available. If the E-mode
and the B-mode autocorrelations are independently mea-
sured in each frequency channel of a given experiment,
both scale-invariant and scale-dependent combinations of
the angular power spectra can be constructed frequency
byfrequency.So, for instance, thecombinationL0 þ L2 → 2
is scale invariant in the limit ωF ≪ 1. Similarly, L2=ðL0 þ
L−1
0 Þ is scale invariant in spite of the value of ωF.

Equations (29) and (30) illustrate, then, a possible redun-
dant set of physical observables that can be used to
discriminate between the frequency dependence induced
by the stochastic Faraday effect and that induced by other
concurrent forms of frequency scaling caused either by the
known or by the yet unknown foregrounds.
If the B mode is frequency independent, as expected if

and when it comes from the tensor modes of the geometry,
the internal linear combination (ILC) technique can be
applied indifferently for all the channels of the experiment
that eventually detects the B mode. In practice, the ILC
map is a weighted linear combination over the smoothed
maps obtained from each of the different frequency
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channels. If the signal is inherently frequency dependent,
as our considerations predict, the ILC cannot be blindly
applied. It is our opinion that, in these matters, the scaling
relations of Eqs. (29)–(30) (and their descendants) are
crucial if we intend to disentangle the real physical effects
from potential foregrounds.
The present investigation described the Faraday effect

of the CMB as a random, stationary and quasi-Markovian
process. The stochastic treatment of this physical

phenomenon has been explored in analogy with the case
of synchrotron polarization. The obtained results encom-
pass and complement previous analyses where the for-
mation of Faraday effect has been customarily presented
as a purely deterministic process in time. Apart from the
discussion of the frequency scaling of the polarization
observables, further applications of the approach developed
here seem both physically plausible and technically
feasible.

[1] B. J. Burn, Mon. Not. R. Astron. Soc. 133, 67 (1966);
A. G. Pacholczyk and T. L. Swihart, Astrophys. J. 150, 647
(1967); 161, 415 (1970); V. N. Sazonov, Zh. Eksp. Teor. Fiz.
56, 1065 (1969) [, Sov. Phys. JETP 29, 578 (1969)];
T. Jones and A. O’Dell, Astrophys. J. 214, 522 (1977);
215, 236 (1977).

[2] J.Simonetti, J.Cordes,andS.Sprangler,Astrophys. J.284, 126
(1984); D. Melrose and J. Macquart, Astrophys. J. 505, 921
(1998);D.Lai andW. C. G.Ho,Astrophys. J.588, 962 (2003).

[3] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175
(2003); 170,377 (2007); C. L. Bennett et al., Astrophys. J.
Suppl. Ser. 192, 17 (2011); B. Gold et al., Astrophys.
J. Suppl. Ser. 192, 15 (2011); E. Komatsu et al., Astrophys.
J. Suppl. Ser. 192, 18 (2011).

[4] M. L. Brown et al., Astrophys. J. 705, 978 (2009);
D. Araujo et al., Astrophys. J. 760, 145 (2012).

[5] M. Giovannini, Phys. Rev. D 74, 063002 (2006); 79,121302
(2009); 79,103007 (2009); Classical Quantum Gravity 27,
105011 (2010).

[6] D. G.Yamazaki,K. Ichiki,T.Kajino, andG. J.Mathews,Phys.
Rev.D81, 023008 (2010);D.Paoletti andF.Finelli, Phys.Rev.
D 83, 123533 (2011); R. R. Caldwell, L. Motta, and M.
Kamionkowski, Phys. Rev. D 84, 123525 (2011);
M.Giovannini,ClassicalQuantumGravity30, 205017(2013).

[7] M. Giovannini, Phys. Rev. D 56, 3198 (1997); 71,021301
(2005); M. Giovannini and K. E. Kunze, Phys. Rev. D 78,
023010 (2008); M. Giovannini, Phys. Rev. D 79, 103007
(2009); Classical Quantum Gravity 27, 225016 (2010).

[8] K. Enqvist, Int. J. Mod. Phys. D 07, 331 (1998);
M. GiovanniniInt. J. Mod. Phys. D 13, 391 (2004); Classical
Quantum Gravity 23, R1 (2006); J. D. Barrow, R. Maartens,
and C. G. Tsagas, Phys. Rep. 449, 131 (2007).

[9] P. J. E. Peebles and J. T. Yu, Astrophys. J. 162, 815 (1970);
R. A. Sunyaev and Y. B. Zeldovich, Astrophys. Space Sci. 7,
3 (1970); U. Seljak, Astrophys. J. 435, L87 (1994);
P. Naselsky and I. Novikov, Astrophys. J. 413, 14
(1993); B. Jones and R. Wyse, Astron. Astrophys. 149,
144 (1995); H. Jorgensen, E. Kotok, P. Naselsky, and
I. Novikov, Astron. Astrophys. 294, 639 (1995).

[10] R. Kraichnan, J. Math. Phys. (N.Y.) 2, 124 (1961);
R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); N. G. Van
Kampen, Physica (Utrecht) 74, 215 (1974); R. H. Terweil,
Physica (Utrecht) 74, 248 (1974).

[11] J. Goldberg, A. Macfarlane, E. Newman, F. Rohrlich, and
E. Sudarshan, J. Math. Phys. (N.Y.) 8, 2155 (1967);
M. Zaldarriaga and U. Seljak, Phys. Rev. D 55, 1830
(1997); D. N. Spergel and D.M. Goldberg, Phys. Rev. D
59, 103001 (1999); 59,103002 (1999).

MASSIMO GIOVANNINI PHYSICAL REVIEW D 89, 061301(R) (2014)

061301-6

RAPID COMMUNICATIONS

http://dx.doi.org/10.1086/149364
http://dx.doi.org/10.1086/149364
http://dx.doi.org/10.1086/150548
http://dx.doi.org/10.1086/155278
http://dx.doi.org/10.1086/155353
http://dx.doi.org/10.1086/162391
http://dx.doi.org/10.1086/162391
http://dx.doi.org/10.1086/306204
http://dx.doi.org/10.1086/306204
http://dx.doi.org/10.1086/374334
http://dx.doi.org/10.1086/377226
http://dx.doi.org/10.1086/377226
http://dx.doi.org/10.1086/513700
http://dx.doi.org/10.1088/0067-0049/192/2/17
http://dx.doi.org/10.1088/0067-0049/192/2/17
http://dx.doi.org/10.1088/0067-0049/192/2/15
http://dx.doi.org/10.1088/0067-0049/192/2/15
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0067-0049/192/2/18
http://dx.doi.org/10.1088/0004-637X/705/1/978
http://dx.doi.org/10.1088/0004-637X/760/2/145
http://dx.doi.org/10.1103/PhysRevD.74.063002
http://dx.doi.org/10.1103/PhysRevD.79.121302
http://dx.doi.org/10.1103/PhysRevD.79.121302
http://dx.doi.org/10.1103/PhysRevD.79.103007
http://dx.doi.org/10.1088/0264-9381/27/10/105011
http://dx.doi.org/10.1088/0264-9381/27/10/105011
http://dx.doi.org/10.1103/PhysRevD.81.023008
http://dx.doi.org/10.1103/PhysRevD.81.023008
http://dx.doi.org/10.1103/PhysRevD.83.123533
http://dx.doi.org/10.1103/PhysRevD.83.123533
http://dx.doi.org/10.1103/PhysRevD.84.123525
http://dx.doi.org/10.1088/0264-9381/30/20/205017
http://dx.doi.org/10.1103/PhysRevD.56.3198
http://dx.doi.org/10.1103/PhysRevD.71.021301
http://dx.doi.org/10.1103/PhysRevD.71.021301
http://dx.doi.org/10.1103/PhysRevD.78.023010
http://dx.doi.org/10.1103/PhysRevD.78.023010
http://dx.doi.org/10.1103/PhysRevD.79.103007
http://dx.doi.org/10.1103/PhysRevD.79.103007
http://dx.doi.org/10.1088/0264-9381/27/22/225016
http://dx.doi.org/10.1142/S0218271898000243
http://dx.doi.org/10.1142/S0218271804004530
http://dx.doi.org/10.1088/0264-9381/23/2/R01
http://dx.doi.org/10.1088/0264-9381/23/2/R01
http://dx.doi.org/10.1016/j.physrep.2007.04.006
http://dx.doi.org/10.1086/150713
http://dx.doi.org/10.1086/187601
http://dx.doi.org/10.1086/172972
http://dx.doi.org/10.1086/172972
http://dx.doi.org/10.1063/1.1724206
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1016/0031-8914(74)90121-9
http://dx.doi.org/10.1016/0031-8914(74)90123-2
http://dx.doi.org/10.1063/1.1705135
http://dx.doi.org/10.1103/PhysRevD.55.1830
http://dx.doi.org/10.1103/PhysRevD.55.1830
http://dx.doi.org/10.1103/PhysRevD.59.103001
http://dx.doi.org/10.1103/PhysRevD.59.103001
http://dx.doi.org/10.1103/PhysRevD.59.103002

