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The precise knowledge of the Standard Model (SM) Higgs boson and top-quark masses and couplings
are crucial to understand the physics beyond it. An SM-like Higgs boson having a mass in the range of
123–127 GeV squeezes the parameters for physics beyond the Standard Model. In recent the LHC era
many TeV-scale neutrino mass models have earned much attention as they pose many interesting
phenomenological aspects. We have contemplated B − L extended models which are theoretically well
motivated and phenomenologically interesting, and they successfully explain neutrino mass generation. In
this article we analyze the detailed structures of the scalar potentials for such models. We compute the
criteria which guarantee that the vacuum is bounded from below in all directions. In addition, perturbativity
(triviality) bounds are also necessitated. Incorporating all such effects, we constrain the parameters of such
models by performing their renormalization-group evolutions.
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I. INTRODUCTION

The recent announcements from both ATLAS [1] and
CMS [2] have revealed the existence of a new boson having
a mass in the range 123–127 GeV. The data so far indicates
a close resemblance to one having some of the measured
properties of the Standard Model (SM) Higgs. However, it
has yet to be confirmed whether this boson is the SM Higgs
or a beyond the Standard Model artifact. This long awaited
quest will only be examined more vigorously in the near
future with the help of more data.
If the newly discovered particle is indeed the SM Higgs

boson then its mass can carry a signature of new physics
which embeds SM at low energy. The Higgs mass can be
recast solely in terms of the Higgs quartic coupling, λh. The
stability of the electroweak (EW) vacuum demands a
positive λh. Now if the SM is the only existing theory in
nature then this condition, λh > 0,1 must be maintained at
each scale of its evolution up to the Planck scale (MPl). The
evolution of λh with the renormalization (mass) scale limits
two boundary values—one at the EW scale for which we
have λhðMPlÞ ¼ π, and one at the Planck scale for which we
have 0—from the demands of perturbativity of the coupling
(triviality) and the stability of the vacuum (vacuum stabil-
ity), respectively. It has been noted in Refs. [3–5] that the
SM electroweak vacuum is not stable up to the Planck scale
for most of the SM parameters (top-quark mass, Higgs
mass and strong coupling αs). Thus it indicates that some
new physics might be there before the SM vacuum attains

instability. Thus the physics beyond Standard Model is
expected to take care of the stability of the vacuum of the
full scalar potential along with the electroweak ones. In
brief, the present range of the SM-like Higgs mass enter-
tains the presence of new physics solely from the vacuum
stability point of view.
Apart from this, we already have hints of new physics

beyond the Standard Model from the neutrino sector. Many
experimental observations, like neutrino oscillations, con-
firm that neutrinos have tiny nonzero masses which cannot
be accommodated naturally within the SM. Thus we must
have physics beyond the Standard Model to explain this
feature. Among the neutrino mass generation procedures
the seesaw mechanism [6–15] is very popular. In usual
(natural) seesaw models light neutrino masses are ∼m2

D=M
where the Dirac-type mass mD ∼ 100 GeV and M is the
Majorana mass of a heavy fermion which gets integrated
out during the process. The mass of this heavy fermion,M,
determines the scale of the seesaw models which needs to
be very high (∼1011 GeV) to avoid any fine-tuning in mD.
As the natural scale of the seesaw is very high these models
suffer from a lack of testability. But it is also possible to
construct low-scale (∼TeV) models by either importing
some new fields [16] or incorporating higher-dimensional
operators [17–21]. These models not only generate the
correct order of neutrino masses and mixing, but are also
phenomenologically interesting as the scale of these the-
ories are well within the reach of present experiments like
the LHC. These models are extended by some extra gauge
symmetry and/or new particles. The presence of these new
fields might affect the evolution of the SM couplings—like
the gauge, Higgs quartic, and top Yukawa couplings—if
they couple to the SM particles. Hence it is necessary to
examine the status of the SM vacuum once these new
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physics models come into play. Thus by using knowledge
of the SM parameters and from the demand of vacuum
stability2 the new parameters involved in the theory might
be severely constrained. In the literature the stability of the
vacua was discussed in several scenarios considering
beyond Standard Models. These models are extended by
the extra gauge symmetry and/or the addition of new
particles. Quantum corrections of the quartic couplings
depend on the spin of the particles belonging to a particular
model. The fermion-loop contributions contain a relative
minus sign compared to the bosonic fields. Thus the
Yukawa couplings tend to spoil the stability unlike the
gauge and other scalar self-couplings. Vacuum stability in
different variants of seesaw models has been adjudged in
Refs. [22–28] which has a richer particle spectrum com-
pared to the SM. In the context of gauge extensions, the
vacuum stability for the alternative left-right symmetric
model has been discussed in Ref. [29].
In a theory involving multiple scalar fields the structure

of the potential is complicated. The vacuum stability
criteria depend on some combinations of the scalar quartic
couplings. Moreover, the perturbativity (triviality) bounds
also play crucial roles in finding a consistent parameter
space compatible with the choice of new physics scales.
Nontachyonic scalar masses are guaranteed with these
constraints. It has been noted that some of the quartic
couplings can be recast in terms of the heavy scalar masses
and thus can be constrained from a phenomenological point
of view. On the contrary, few of them do not have that much
impact on scalar masses; rather, they determine the splitting
among the narrowly spaced massive scalar modes. Our
present collider experiments are still not sensitive enough to
address these fine splittings, and thus the quartic couplings
are beyond the reach of any experimental verification. But
these couplings can be constrained through vacuum sta-
bility and perturbativity (triviality) depending on the choice
of the scale of new physics.
In this paper we concentrate on the Uð1ÞB−L extended

models which are classified into two categories: SM ⊗
Uð1ÞB−L or the left-right (LR) symmetry. We have adopted
two variants of the LR-symmetric models containing
(i) two SU(2) triplet scalars ΔLðRÞ, and (ii) two SU(2)
doublet scalars, HLðRÞ. In Sec. II we introduce the basic
structures of these models. Then we include the renorm-
alization group evolutions of all the necessary couplings
and show how the vacuum stability and perturbativity
(triviality) bounds constrain the parameter space of each
model in Sec. III. We have analyze the structure of the

potentials in detail and compute the criteria for vacuum
stability using the formalism shown in Ref. [30]. All
vacuum stability conditions corresponding to different
models are listed in Appendix B.

II. MODELS

The Standard Model symmetry group is expressed as
SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY . It has been noted in Ref. [31]
that an extra U(1) gauge symmetry along with the SM can
provide solutions to some of the unaddressed issues in the
Standard Model. These extra Abelian symmetry groups
can, in general, originate from different high-scale grand
unified theories (GUTs), like SO(10) and E(6). These larger
groups contain Uð1ÞB−L as a part of the intermediate gauge
symmetries. In nonsupersymmetric GUT models the
Uð1ÞB−L breaking scale can be lowered to a few TeV3

[32], which is consistent with unification pictures. In our
present study we concentrate on TeV-scale Uð1ÞB−L
extended models where neutrino mass generation can be
explained. However, any high-scale roots of these models
are not considered and are kept for future work.

A. Uð1ÞB−L
The gauge group under consideration is SUð3ÞC ⊗

SUð2ÞL ⊗ Uð1ÞY ⊗ Uð1ÞB−L. This minimal model con-
tains an extra complex singlet scalar field S and this extra
B − L symmetry is broken once it acquires a vacuum
expectation value (VEV) [33–35]. Thus the VEV deter-
mines the symmetry-breaking scale of this symmetry and
also the mass of the extra neutral gauge boson ZB−L. For
the purpose of our study we will focus only on the relevant
part of the Lagrangian, namely the scalar kinetic and
potential terms and the lepton Yukawa couplings. The
scalar kinetic term is

Ls ¼ ðDμΦÞ†ðDμΦÞ þ ðDμSÞ†ðDμSÞ − VðΦ; SÞ: (1)

Here the potential VðΦ; SÞ is given as

VðΦ; SÞ ¼ m2Φ†Φþ μ2jSj2 þ λ1ðΦ†ΦÞ2 þ λ2jSj4
þ λ3Φ†ΦjSj2; (2)

where Φ and S are the complex scalar doublet and singlet
fields, respectively. After gauging away the extra modes
and acquiring the VEVs these fields are redefined as

Φ≡
�

0
1ffiffi
2

p ðvþ ϕÞ
�
; S≡ 1ffiffiffi

2
p ðvB−L þ sÞ; (3)

where the EW-symmetry-breaking VEV v and the B − L-
breaking VEV vB−L are real and positive.

2In this paper we are considering stability up to the Planck
scale. We are not considering the metastability which does not
require the vacuum to be bounded from below. If the decay
lifetime of a vacuum is larger than the lifetime of the Universe
then that vacuum is metastable. But as our procedure concerns
only the boundedness of the scalar potential it fails to pin down
the existence of the metastable vacuum.

3This is also true for supersymmetric GUT models; see
Ref. [32].
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We also find the scalar mass matrix in the following
form:

M ¼
 

λ1v2
λ3vB−Lv

2

λ3vB−Lv
2

λ2v2B−L

!
¼
�
M11 M12

M21 M22

�
: (4)

After diagonalizing this mass matrix we construct two
physical scalar states: a light h and a heavy H, having
masses Mh and MH, respectively,

M2
H;h ¼

1

2

h
M11 þM22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM11 −M22Þ2 þ 4M2

12

q i
:

(5)

The scalar mixing angle α can be expressed as

tanð2αÞ ¼ 2M12

M11 −M22

¼ λ3vvB−L
λ1v2 − λ2v2B−L

: (6)

Using Eqs. (5) and (6) the quartic coupling constants λ1, λ2,
and λ3 can be recast in the following forms:

λ1 ¼
1

4v2
fðM2

H þM2
hÞ − cos 2αðM2

H −M2
hÞg;

λ2 ¼
1

4v2B−L
fðM2

H þM2
hÞ þ cos 2αðM2

H −M2
hÞg;

λ3 ¼
1

2vvB−L
fsin 2αðM2

H −M2
hÞg: (7)

It can be noted from the last equation in Eq. (7) that we
would get a duplicate set of solutions with inverted signs
for both α and λ3. Hence one choice of positive α suffices as
presented at Sec. III A.
Due to the presence of an extra Uð1ÞB−L gauge theory

the SM gauge kinetic terms are modified by

LKE
B−L ¼ − 1

4
F0μνF0

μν; (8)

where,

F0
μν ¼ ∂μB0

ν − ∂νB0
μ: (9)

The covariant derivative for SUð2ÞL ⊗ Uð1ÞY ⊗
Uð1ÞB−L sector in this model is modified as

Dμ ≡ ∂μ þ ig2TaWa
μ þ ig1YBμ þ ið~gY þ gB−LYB−LÞB0

μ:

(10)

The SM gauge bosons Bμ and W3
μ will mix with the new

gauge boson B0
μ to create two massive physical fields Z and

ZB−L and one massless photon field A. Assuming there is
no kinetic mixing at tree level, i.e., ~g ¼ 0 at the EW scale,
the physical gauge-boson masses are given as

M2
Z ¼ 1

4
ðg21 þ g22Þv2; (11)

M2
ZB−L ¼ 4g2B−Lv2B−L: (12)

Along with the Standard Model particles, three right-
handed neutrinos (νR) are introduced.

4 The relevant term of
the Lagrangian of the Yukawa interactions can be written as

−LY ¼ ylijliL ~Φ νjR þ yhijðνRÞci νjRSþ H:c:; (13)

where ~Φ ¼ iσ2Φ� with σ2 being the Pauli matrix. The
second term of the above equation is the Majorana
mass term. Note from Eq. (13) that the conservation of
B − L charge requires that the singlet scalar field, S,
must have QB−L ¼ −2. When the SM Higgs and singlet
scalar S acquire VEVs the neutrino mass matrix takes the
form

Mν ¼
�

0 mD

mT
D mR

�
; (14)

where mD ¼ yl vffiffi
2

p and mR ¼ ffiffiffi
2

p
yhvB−L. The light (mνl )

and heavy (mνh ) neutrino masses are

mνl ¼ −mT
Dm

−1
R mD; (15)

mνh ¼ mR: (16)

In this model the heavy neutrino mass mR is also
generated through the Yukawa terms unlike the gauge-
invariant Majorana mass term in type-I seesaw models. It
can be noted that with mR ∼O ðTeVÞ, yl needs to be very
small to generate light neutrino masses ∼O ðeVÞ. But yh
can be large ∼Oð1Þ as vB−L is around the TeV scale. Thus
successful light neutrino mass generation does not con-
strain yh. But as the heavy neutrino is also coupled to the
SM-like Higgs, yh affects the vacuum stability of the scalar
potential in this model and gets constrained. The gauge
coupling gB−L and the VEVof the B − L-breaking scale are
also free parameters. In the following section we show how
these parameters are constrained from the vacuum stability
of the scalar potential and also from the perturbativity
(triviality) of the couplings.

B. Left-right symmetry

The full LR-symmetric gauge group is written as
SUð3ÞC ⊗ SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L. The SUð2ÞR ⊗
Uð1ÞB−L is broken to Uð1ÞY at a scale higher than the
EW-symmetry-breaking one. Thus the hypercharge gen-
erator is a linear combination of the SUð2ÞR and Uð1ÞB−L
generators. In this model, the hypercharge, Y, can be

4One right-handed neutrino (QB−L ¼ −1) for each generation
is required for the sake of gauge anomaly cancellation.
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reconstructed from the SUð2ÞR and Uð1ÞB−L quantum
numbers as

Y ¼ T3R þ ðB − LÞ=2; (17)

with T3R being the third component of SUð2ÞR isospin.
Here we briefly present two variants of minimal left-right

symmetric models:
(i) The scalar sector consists of a bidoublet (Φ), one

left-handed triplet (ΔL), and one right-handed triplet
(ΔR) [36–39].

(ii) The scalar sector consists of a bidoublet (Φ), one
left-handed doublet (HL), and one right-handed
doublet (HR) [40–42].

1. LR model with triplet scalars

The most generic scalar potential of this model with
bidoublet and triplet scalars (Φ;ΔL;R) is given in
Appendix 2. The explicit structures of the scalars can be
presented in the following form:

Φ¼
 
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

!
; ΔL;R¼

 
δþL;R=

ffiffiffi
2

p
δþþ
L;R

δ0L;R −δþL;R=
ffiffiffi
2

p
!
:

These fields transform under SUð2ÞL ⊗ SUð2ÞR ⊗
Uð1ÞB−L gauge groups in the following manner:

Φ≡ ð2;2;0Þ; ΔR≡ ð1;3;2Þ; ΔL≡ ð3;1;2Þ: (18)

Once neutral components of these scalars acquire vacuum
expectation values, they can be written in the following
form:

hΦi ¼
�
v1 0

0 v2eiθ

�
; hΔLi ¼

�
0 0

vL 0

�
;

hΔRi ¼
�

0 0

vR 0

�
; (19)

where, for simplicity we have chosen v2 ¼ 0without loss of
generality. With these structures for the vacuum expectation
values, symmetry breaking occurs in two stages. The
symmetry group SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L breaks
down to SUð2ÞL ⊗ Uð1ÞY by vR at the high scale.
Consequently, the vacuum expectation value v1 of the
bidoublet breaks SUð2ÞL ⊗ Uð1ÞY to Uð1ÞEM. So the total
number of Goldstone bosons will be six. Now the Higgs
sector has 20 degrees of freedom (eight real fields for the
bidoublet and six each for the triplet fields). Hence, the
remaining 14 fields will be massive scalars and they are as
follows:
(1) Two doubly charged scalars ðH��

1 ; H��
2 Þ.

(2) Two singly charged scalars ðH�
1 ; H

�
2 Þ.

(3) Four neutral CP-even scalars ðH0
0; H

0
1; H

0
2; H

0
3Þ.

(4) Two neutral (CP-odd) pseudoscalars ðA0
0; A

0
1Þ.

Since we already mentioned that the scale vR is much
higher than the VEVof electroweak breaking v1, the scalar
masses can be expressed in leading-order terms5 [43,44],

M2
H0

0

≃ 2λ1v21;

M2
H0

1

≃ 1

2
λ12v2R;

M2
H0

2

≃M2
A0
1

≃M2
H�

2

≃ 2λ5v2R;

M2
H0

3

≃M2
A0
2

≃M2
H�

1

≃M2
H��

1

≃ 1

2
ðλ7 − 2λ5Þv2R;

M2
H��

2

≃ 2λ6v2R: (20)

MH0
0
is the Standard Model Higgs boson and is denoted as

Mh from here onwards. For simplicity and to reduce the
number of free parameters, we consider degenerate heavy
scalars at the vR scale, i.e., MH0

1
¼ MH0

2
¼ MH0

3
¼

MH��
2

¼ MH. It is important to note that the remaining
quartic couplings only contribute in the scalar masses
as subleading terms and they are proportional to the
v21 at the electroweak symmetry-breaking (EWSB) scale.
Hence, λ2, λ3, λ4, λ8, λ9, λ10, and λ11 induce only the
relative mass splittings among these heavy scalars which
are almost phenomenologically unaccessible at present
experiments.
The kinetic term of the scalar part can be written as

Lkin ¼ Tr½ðDμΦÞ†ðDμΦÞ� þ Tr½ðDμΔLÞ†ðDμΔLÞ�
þ Tr½ðDμΔRÞ†ðDμΔRÞ�; (21)

where,

DμΦ ¼ ∂μΦ − ig2LTaWa
LμΦþ ig2RΦTaWa

Rμ;

DμΔðL=RÞ ¼ ∂μΔðL=RÞ − igð2L=2RÞ½TaWa
ðL=RÞμ;ΔðL=RÞ�

− igB−LBμΔðL=RÞ: (22)

We choose the gauge couplings g2L and g2R for the
SUð2ÞL and SUð2ÞR gauge groups, respectively, to be same
for the sake of minimality of the model in terms of the
number of parameters. After spontaneous breaking of the
LR and EW symmetries, two chargedW�

L=R and two neutral
ZL=R gauge bosons become massive, while the photon A
remains massless,

5These leading-order terms match exactly with the masses of
the heavy scalars at the scale vR, i.e., before the EWSB. After
the EWSB, some correction terms are generated which are
proportional to v21. But as vR ≫ v1, the splitting among the
masses of these heavy scalars are negligible compared to their
relative masses. It is important to note that this “≃” will be
replaced by “¼” in Eq. (20) when these masses are given at the
vR scale.
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M2
W�

L
¼ 1

4
g22v

2
1; M2

W�
R
¼ 1

4
g22ðv21 þ 2v2RÞ;

M2
ZL;R

¼ 1

4
½ðg22v21 þ 2v2Rðg22 þ g2B−LÞÞ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fg22v21 þ 2v2Rðg22 þ g2B−LÞg2 − 4g2ðg22 þ 2g2B−LÞv21v2R

q
�: (23)

Under the gauge group SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L
quarks and leptons are doublets,

LiðL=RÞ ¼
�
νi
li

�
ðL=RÞ

; QiðL=RÞ ¼
�
ui
di

�
ðL=RÞ

: (24)

The most general lepton Yukawa Lagrangian can be written
as,

−LY ¼ ½L̄LðylΦþ ~yl ~ΦÞLR þ h:c� þ yhLL
c
R
~ΔLLL

þ yhRL̄
c
L
~ΔRLR; (25)

where, ~Φ ¼ iσ2Φ� and ~ΔL=R ¼ iσ2ΔL=R. Here we have
considered that the Yukawa matrices are diagonal.6 The
neutral fermion masses are generated once the Φ and Δ
acquire VEVs. The neutral fermion mass matrix is given as

Mν ¼
�
mII

ν mD

mT
D mR

�
; mD ¼ 1ffiffiffi

2
p ylv1;

mR ¼
ffiffiffi
2

p
yhvR; mII

ν ¼
ffiffiffi
2

p
yhvL; (26)

where, yhL ¼ yhR ¼ yh because of left-right symmetry. Thus
the light neutrino mass

mνl ¼ mII
ν −mT

Dm
−1
R mD; (27)

is generated through type-II (first term) and type-I (second
term) seesaw mechanisms.
As the VEV of the left-handed triplet scalar is con-

strained by ρ parameter of the SM it cannot be larger than
∼Oðfew GeVÞ. Thus it is indeed possible to generate light
neutrino masses ∼eV with vL ∼ eV while the neutrino
Yukawa coupling can be ∼Oð1Þ. In our further analysis we
consider vL ¼ 0, and thus the type-II seesaw mechanism is
absent here. The heavy neutrino mass mR is also generated
through the Yukawa terms and is proportional to vR. It can
be noted that withmR ∼O ðTeVÞ, the Dirac termmD needs
to be very small to generate light neutrino masses
∼O ðeVÞ. But yh can be as large as ∼Oð1Þ even when
vR is around the TeV scale. Thus successful light neutrino
mass generation is still possible while keeping yh as large as
∼Oð1Þ. But yh affects the vacuum stability of the scalar

potential in this model as the heavy neutrino is also coupled
to the SM-like Higgs. In the following section we show
how these parameters are constrained due to vacuum
stability and perturbativity (triviality).
It has been noted that the minimal left-right symmetric

model is constrained by flavor-changing neutral currents
(FCNCs) [46–49]. The model we have worked with
contains the bidoublet whose one of the VEV is zero.
Thus there is no FCNC problem in this model. There are
also constraints from neutral kaon mixing, i.e., the kaon
mass difference. Our choice of the vR scale and the
masses for the heavy neutral scalars takes care of those
bounds. As the VEVs and the Yukawa couplings in our
scenario are real there is neither a source of nor
spontaneous or explicit CP violation. But since we have
considered the Yukawa matrices to be diagonal we will
boil down to the trivial, i.e., identity Cabibbo-Kobayashi-
Maskawa and Pontecorvo-Maki-Nakagawa-Sakata matri-
ces. To fit all the masses and mixings we need to go for
the nonminimal extension of this model and that certainly
modify the set of renormalization group evolutions
(RGEs) that we have used here.

2. LR model with doublet scalars

In this case the scalar sector consists of a bidoublet (Φ),
one left-handed doublet (HL), and one right-handed dou-
blet (HR). The scalar potential is depicted in Appendix A 3.
In terms of the SUð2ÞL ⊗ SUð2ÞR ⊗ Uð1ÞB−L gauge group
these fields can be written as

Φ≡ ð2; 2; 0Þ; HL ≡ ð2; 1; 1Þ; and HR ≡ ð1; 2; 1Þ:
(28)

The structure of HL=R is written as

HL=R ¼
�
hþL=R
h0L=R

�
: (29)

The neutral components of Φ andHL=R acquire the vacuum
expectation values

hΦi ¼
�
v1 0

0 v2eiθ

�
; hHLi ¼

�
0

vL

�
;

hHRi ¼
�

0

vR

�
: (30)

6There exist two different discrete symmetries which can relate
left- and right-handed fields [45]. Yukawa matrices are diagonal
as we have considered the parity operation as defined in Ref. [43]
to relate L and R fields.
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As before, we put v2 ¼ 0. The scalar sector consists of 16
real scalar fields out of which six will be Goldstone bosons.
Finally we will have four CP-even scalars: two CP-odd
scalars and two charged scalars. Among the CP-even
scalars one is the Standard Model Higgs boson with mass
Mh and the other three are taken as degenerate heavy
scalars having mass MH. The parameters in the Higgs
potential can be recast in terms of the masses of the neutral
and charged scalars. The details about the scalar sector have
been discussed in Ref. [50]. The gauge sector is similar to
the previous case, i.e., the LR model with triplet scalars.
In the limit vR ≫ v1 and assuming all the heavy scalars

are degenerate, we have

f1 ¼ ðMH=vRÞ2 ¼ κ1 ¼ −κ2; (31)

whereas the minimization of the potential requires

v21
v2R

¼ f1 − 2β1
4λ1

:

The structure of the covariant derivative in this
model is very similar to that for the triplet scenario [see
Eq. (22)],

DμΦ ¼ ∂μ − ig2LTaWa
LμΦþ ig2RΦTaWa

Rμ;

DμHðL=RÞ ¼ ∂μHðL=RÞ − igð2L=2RÞTaWa
ðL=RÞμHðL=RÞ

− igB−LBμHðL=RÞ: (32)

Following the previous convention we also set g2L ¼ g2R ¼
g2. After spontaneous breaking of the SUð2ÞL ⊗
SUð2ÞR ⊗ Uð1ÞB−L symmetry, two charged W�

L=R and
two neutral ZL=R gauge bosons become massive, while
photon the A remains massless,

M2
W�

L
¼ 1

4
g22v

2
1; M2

W�
R
¼ 1

4
g22ðv21þv2RÞ;

M2
ZL;R

¼ 1

8
½ð2g22v21þv2Rðg22þg2B−LÞÞ

∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g42v

4
1þðg22þg2B−LÞv4R−4g22g

2
B−Lv21v2R

q
�: (33)

In the left-right symmetric model with a doublet scalar
the leptonic part of the Yukawa interaction can be
written as

−L ¼ L̄Lðy1Φþ y2 ~ΦÞLR þ H:c:; (34)

where the SUð2ÞL ⊗ SUð2ÞR quantum numbers of LL
and LR are (2,1) and (1,2), respectively. So from this
Lagrangian the Dirac mass term for the neutrinos can be
written as

mD ¼ y1v1: (35)

Here, it is not possible to write the renormalizable
Majorana mass term for the light and heavy neutrinos.
But we can add nonrenormalizable effective terms as

Leff ¼
ηL
M

LLLLHLHL þ ηR
M

LRLRHRHR; (36)

where, M is some very high scale and the η’s are
dimensionless parameters that denote the strength of these
nonrenormalizable couplings. OnceHR acquires a VEV the
right-handed neutrino mass is generated as

mR ≃ ηRv2R
M

:

Here we consider that hHLi ¼ vL ¼ 0, and thus this
effective term does not contribute to the light neutrino
mass. The neutrino mass matrix in the (νl, νh) basis reads as

Mν ¼
�

0 mD

mT
D mR

�
; (37)

and the light neutrino mass can be written as

mνl ¼ −mT
Dm

−1
R mD; (38)

which is a variant of the type-I seesaw mechanism.
In the left-right symmetric model associated with two

doublet scalars, neutrino masses cannot be generated
through a type-II seesaw mechanism due to the lack of a
left-handed triplet scalar.7 Thus the type-I seesaw mecha-
nism is the natural choice in this case. But the right-handed
neutrino masses are generated through an effective operator
suppressed by a heavy scale. This may provide a possible
explanation how the right-handed neutrinos can be lowered
to the TeV scale. Here, the correct order of light neutrino
masses are generated if the Dirac-type neutrino Yukawa
coupling needs to be very small, unless one considers the
special textures for the Dirac Yukawa couplings. Then
vacuum stability is automatically satisfied as these Dirac
Yukawa couplings are much smaller. Thus here only the
quartic couplings get constrained through the vacuum
stability and perturbativity (triviality) of the couplings.
Within a framework very similar to this it is indeed possible
to generate light neutrinomasses of the correct orderwithout
lowering the Yukawa coupling as the light neutrino masses
are independent of vR but are suppressed by some high scale
[51,52]. In that case the vacuum stability constraints cannot
be avoided and play the most crucial role in constraining the
Yukawa couplings and other parameters.

7Although, through an effective operator the Majorana mass
term for light neutrinos can be generated; see Eq. (36). But this
contribution is absent here as we have set vL ¼ 0.
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III. VACUUM STABILITY

The presence of new physics introduces exotic non-SM
particles in the theory and if they couple to the SM fields
then the RGEs of the Higgs quartic coupling (λh) will be
modified. Moreover, additional quartic interactions of extra
scalar fields should also be introduced. Extended gauge
interactions from the larger gauge groups as well as
Yukawa interactions would contribute to these evolution
equations. Now the question arises of whether or not the
vacuum is stable in the presence of the new physics. In
particular, when we have narrowed down a preferred range
of the Higgs mass between 123–127 GeV, the new physics
could be constrained by the vacuum stability criteria. To
adjudge the stability of these models we have considered
the one-loop RGEs of all the required parameters. In
passing we would like to mention that the allowed
parameter space in our analysis is the minimal set which
will be extended once one includes the higher-order
renormalization group (RG) effects. The RGEs for the
SM and each of the B − L models which are used in our
calculation are given in an Appendix. Since we are dealing
with the TeV-scale models, all the SM RGEs will be
modified once the new physics effects are switched on.
Thus from the EW scale to the TeV scale (specific values
are dictated in plots) the RGEs will be SM-like and from
the TeV scale to the Planck scale they will be the modified
ones, and during the process proper matching conditions
are incorporated at the TeV scale.

A. Uð1ÞB−L model

It is clear from the structure of the potential as shown in
Eq. (2) for the Uð1ÞB−L model, that the vacuum stability
conditions are different from those for the SM due to the
presence of an extra singlet scalar. If all the quartic
couplings are positive, the potential will be trivially
bounded from below, i.e., the vacuum is stable and these
stability conditions read simply as λ1;2;3 > 0. But it is
indeed possible to allow λ3 to be negative and still have the
vacuum be stable. Thus vacuum stability conditions beyond
the trivial ones allow for a larger parameter space and need
to be accommodated in these conditions. We find the
nontrivial vacuum stability criteria using the proposal
dictated in Ref. [30], which are shown in Appendix B 1,

4λ1λ2 − λ23 > 0; λ1 > 0; λ2 > 0. (39)

Together with these we have also incorporated perturba-
tivity constraints on quartic couplings by demanding an
upper limit, i.e., jλij < 1ði ¼ 1; 2; 3Þ.
Noting from Eqs. (5) and (6) that the physical Higgs field

is an admixture of two scalar fields ϕ and s, in our study the
scalar mixing angle α is considered to be a free parameter
instead of the quartic couplings λiði ¼ 1; 2; 3Þ. This model
consists of two different scales in the theory: the EW scale

and the B − L symmetry-breaking scale. Thus two RGEs
are invoked for the analysis. As we have two Abelian
couplings in this model, there might be mixing between
them [53,54]. To simplify the situation, and of course
without hampering any other conclusions, we impose no
mixing between the ZB−L and Z gauge bosons at the tree
level. This follows from the condition ~gðQEWÞ ¼ 0 as
already discussed above [Eq. (11)]. As a consequence
the B − L-breaking VEV vB−L relates to the new ZB−L
boson mass given in Eq. (12). For demonstration, we have
picked the perturbative value of this additional gauge
coupling at the breaking scale as, gB−L ¼ 0.1. For sim-
plicity we further assume that heavy neutrinos are degen-
erate and fixed at m1;2;3

νh ≡mνh ≃ 200 GeV, which are
within the allowed values. We have used the central value
of the light Higgs mass (Mh) at 125 GeV, the top-quark
mass at 173.2 GeV and the strong coupling constant αs at
0.1184. Thus the remaining free parameters in our study are
MH, α and vB−L. We have explored the correlated
constraints on these parameters from vacuum stability.
The set of RGEs of different couplings that we have used

in our analysis are encoded in Appendix C 2 [35]. The
parameter space consistent with vacuum stability in the
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FIG. 1 (color online). The allowed parameter space in the heavy
Higgs mass (MH) and scalar mixing angle ðαÞ plane consistent
with vacuum stability and perturbativity bounds are shown. The
gray region is the domain of allowed input parameters. The red
(dark gray), green (light gray), and black sub-parameter spaces
show the domain of MH and α for which this B − L theory is
valid up to 107, 1010 and 1019 GeV, respectively and expectedly
the region in both sides squeeze for demanding higher scale of
validity of the theory. The Majorana neutrino mass is fixed at
200 GeV and the B − L-breaking VEV (vB−L) is set at 7.5 TeV.
The Uð1ÞB−L gauge coupling is taken to be 0.1 which implies
MZB−L ¼ 1.5 TeV. The shaded region satisfies λ3 < 0 [as well as
α < 0 from Eq. (7)]. Thus the nontrivial vacuum stability
conditions are satisfied in this region. These conditions are more
stringent than the trivial one applied in the positive-α region.
Although the pattern of the allowed parameter space is very
similar for both the positive and negative α regions, the α > 0
region covers a larger parameter space.
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heavyHiggsmass (MH) and scalarmixing angle ðαÞ plane is
depicted in Fig. 1. All the couplings are perturbative
throughout their evolutions. The gray region is the domain
of allowed input parameters. The red, green, and black sub-
parameter spaces show the domain of MH and α for which
this B − L theory is valid up to 107, 1010 and 1019 GeV,
respectively. In this figure, for a particular heavy scalar mass
each part of this allowed domain is restricted at some
minimum (maximum) value of α due to the vacuum stability
(perturbativity) of the quartic couplings. The Majorana
neutrino mass is fixed at 200 GeV and the B − L-breaking
VEV (vB−L) is set at 7.5 TeV. The Uð1ÞB−L gauge coupling
is taken to be 0.1which impliesMZB−L ¼ 1.5 TeVconsistent
with present experimental bounds [55]. The yellow shaded
region contains the set of allowed parameters for λ3 < 0
[as well as α < 0 from Eq. (7)]. Though the pattern of the
allowed parameter space in the positive-λ3 region is very
similar, it is not exactly symmetric. The outer boundaries
above each color in Fig. 1 match exactly for both the
positive- and negative-α region. This is not surprising
because the outer boundary is determined by the perturba-
tivity of the couplings and thus is not affected by the

vacuum stability conditions which are different for different
signs of λ3. However, the lower boundaries are the outcome
of the need to satisfy the criteria of vacuum stability.
Allowed parameters in the yellow shaded region (which
represents λ3 < 0) in Fig. 1 are reflected by the nontrivial
vacuum stability condition in Eq. (39), which sequentially
plays a role in determining the lower boundaries in the
allowed parameters. Thus expectedly in the positive-α
region the allowed parameter space is larger than that for
negative α. Also, note that α ¼ 0 leads to the decoupling
limit when the heavy scalar will not affect the vacuum
stability. The parameter space has also shrunk as the validity
of the model must be closer to the Planck scale as can be
inferred from Fig. 1.
To study the dependence of different parameters as shown

in Fig. 1, we plot the allowed parameter space in theMH − α
plane which remains consistent with vacuum stability and
where all the couplings are perturbative up to the Planck
Scale. In Fig. 2(a) the Majorana neutrino Yukawa coupling
yh is varied while keeping vB−L and gB−L fixed. As yh

increases, the allowed parameter space is shrunk since the
Yukawa coupling affects the quartic couplings negatively in
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FIG. 2 (color online). Allowed parameter space in the MH − α plane, with α varying between ½0;−π=2�, consistent with vacuum
stability and perturbativity (triviality) bounds up to the Planck scale. (a): The Majorana neutrino Yukawa coupling yh is varied keeping
vB−L and gB−L fixed. (b): Two different sets of the B − L-breaking VEV, vB−L are chosen keeping gB−L and yh fixed. (c): In this plot
gB−L varies while vB−L and yh are kept constant. In our analysis any value of gB−L for vB−L ¼ 7.5 TeV that is greater than 0.34 is
disallowed as the coupling becomes nonperturbative before the Planck scale. Corresponding regions for positive α are not shown here, as
they remain unaffected and are the same as those given in the blue strip in Fig. 1 owing to the trivial conditions.
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their RG evolutions. Thus larger Yukawa couplings spoil the
vacuum stability. Figure 2(b) shows the dependence on the
B − L-breaking VEV for fixed gB−L and yh. vB−L deter-
mines the scale of new physics beyond the Standard Model,
i.e., from where the RGEs are being modified due to the
presence of new particles. The larger vB−L implies that new
set of RGEs come into play later. In the B − L extended
model λ3 is inversely proportional to vB−L at the EW scale
[see Eq. (7)]. Thus for the same set of values ofMH and α, λ3
is smaller for larger vB−L at 15 TeV. The RGE of λ3 is such
that for our choice of parameters it grows with the mass
scale. Thus there is a possibility of generating a large λ3 such
that vacuum stability and perturbativity conditions are not
validated at some higher scale. This plot therefore shows that
it is possible to have a larger allowed parameter space for
larger values of vB−L. Finally in Fig. 2(c), gB−L varies while
vB−L and Yν are kept constant. As the larger values of the
gauge couplings affect the RGEs of the quartic couplings
positively, the vacuum stability is improved. Thus with a
larger value of gauge coupling a larger parameter space is
allowed. But the U(1) couplings increases with the mass
scale. Hence the couplings with much larger values at the
low scale might be nonperturbative at the high scale. In
our analysis, when vB−L is at 7.5 TeV, any value of gB−L
greater than 0.34 is disallowed as the coupling becomes
nonperturbative before the Planck scale.

B. Left-right symmetry

1. LR model with triplet scalars

In this model the scalar potential for the left-right
symmetric model with a triplet scalar as shown in
Appendix A 2 contains many quartic couplings. To find
the condition of vacuum stability we have considered all
two-field, three-field and four-field directions and found
their stability criteria. Detailed field directions correspond-
ing to the potential together with calculated stability
conditions are listed in Appendix B 2. Finally, the effective
nontrivial vacuum stability conditions which are necessary
and sufficient are

λ1 > 0; λ5 > 0; λ5 þ λ6 > 0;

λ5 þ 2λ6 > 0; λ12 − 2
ffiffiffiffiffiffiffiffiffi
λ1λ5

p
< 0. (40)

Along with the above conditions, we find an additional
condition λ12 > 0 from Eq. (20).
The renormalization group evolutions that we have

considered in our analysis are depicted in Appendix C 3
[46]. In Fig. 3 we show the constraints on the universal
quartic coupling λuð≡λ2; λ3; λ4; λ8; λ9; λ10; λ11Þ for the LR
model with triplet scalars in the low-vR region. The yellow
shaded region is disallowed from low-energy data
(MWR

> 3.5 TeV) [56–59] and the green shaded region
is excluded from direct searches at the LHC
(MWR

> 2.5 TeV) [60–63]. These limits can be extracted

using Eq. (33). In our analysis we also set the Majorana
Yukawa, yh at 0.25. We note that, for any particular heavy
scalar mass (MH), the universal quartic coupling λu is
disallowed above the corresponding line shown in the
figure. For example, as seen from the plot, the maximum
allowed value of the universal quartic coupling is 0.024 if
one considers an LR-breaking scale at 10 TeV and a heavy
scalar mass at 1 TeV. The allowed maximum quartic
coupling is lowered for a heavier scalar which can be
understood from vacuum stability and perturbativity.
In Fig. 4 we check the compatibility for the stable

vacuum in the left-right symmetric breaking scale vR and
heavy scalar MH allowed region in the LR model with a
triplet scalar. Each color represents a particular set of light
Higgs masses (Mh) and top masses (Mt) in their respective
plots. In Fig. 4(a) the Higgs mass is fixed at 125 GeV and
the top-quark mass varies from 170 GeV to 175 GeV
whereas, in Fig. 4(b) the top-quark mass is fixed at
173.2 GeV and the Higgs mass varies from 122 GeV to
127 GeV. The upper-left region (shaded with light blue)
above the line MH ¼ vR is disallowed since quartic
couplings are nonperturbative in this domain. The blank
(white) strip is also ruled out as the values of the couplings
in this region are such that they become nonperturbative
before reaching the Planck scale. In the lower-right region
(shaded with light pink) the quartic coupling related to the
heavy Higgs mass becomes extremely small [≤ Oð10−7Þ].
We choose the universal quartic coupling λ2, λ3, λ4, λ8, λ9,
λ10, λ11 ¼ λu to be fixed at 0.03. This choice of λu allows
only vR ≥ 100 TeV which can be inferred from Fig. 3. The
insets in both panels show the higher vR scale where color
patches terminate, representing the very scale where in fact
the Standard Model breaks down for a particular Higgs
mass or top-quark mass at one loop.
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FIG. 3 (color online). Constraints on the universal quartic
coupling λuð≡λ2; λ3; λ4; λ8; λ9; λ10; λ11Þ for the LR model with
triplet scalars in the low-vR region. The yellow shaded region is
disallowed from low-energy data (MWR

> 3.5 TeV) and the
green shaded region is excluded from direct searches at the
LHC (MWR

> 2.5 TeV).
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2. LR model with doublet scalars

Using a similar technique as that used in the previous
section we depict all the multiple-field directions of the
potential and the corresponding stability criteria in
Appendix B 3. We find the nontrivial vacuum stability
conditions which read as

λ1 > 0; 2β1 þ f1 > 0; 2β1 − f1 > 0: (41)

We have also noted the required RGEs for our analysis in
Appendix 4 [64]. In Fig. 5 we constrain the universal
quartic coupling λuð≡λ2;−λ3Þ for the LR model with

doublet scalars in the low-vR region for different sets of
heavy scalar masses MH. Similar to the previous case, the
yellow shaded region in the plot is disallowed from low-
energy data (MWR

> 3.5 TeV) and the green shaded
region is excluded from direct searches at the
LHC (MWR

> 2.5 TeV).
As we noticed in Fig. 5, for any particular heavy scalar

mass (MH), the universal quartic coupling λu is disallowed
above the corresponding line. For example, as seen from
the plot, the maximum allowed value of the universal
quartic coupling is 0.033 if one considers an LR-breaking
scale at 10 TeVand a heavy scalar mass at 1 TeV. As before,
the allowed maximum quartic coupling is lowered for a
heavier scalar.
In Fig. 6 we check the compatibility for the stable

vacuum in the vR and heavy scalar MH allowed region in
the LR model with doublet scalars. Each color represents
a particular set of light Higgs masses (Mh) and top
masses (Mt) in their respective plots. In Fig. 6(a) the
Higgs mass is fixed at 125 GeV and the top-quark mass
varies from 170 GeV to 175 GeV whereas, in Fig. 6(b)
the top-quark mass is fixed at 173.2 GeV and the Higgs
mass varies from 122 GeV to 127 GeV. The upper-left
region (shaded with light blue) above the line MH ¼ vR
is disallowed since the quartic couplings are nonpertur-
bative at the low scale itself in this domain. The blank
(white) strip is also ruled out as the values of the
couplings in this region are such that they become
nonperturbative before reaching the Planck scale. In
the lower-right region (shaded with light pink) the quartic
coupling related to a heavy Higgs mass becomes
extremely small [≤ Oð10−7Þ]. We choose the universal
quartic coupling λ1 ¼ −λ2 ¼ λu to be fixed at 0.04. Here,
the choice of λu allows only vR ≥ 100 TeV. The insets in
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FIG. 4 (color online). Compatibility for the stable vacuum in the vR and heavy scalarMH allowed region in the LR model with a triplet
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for a particular Higgs mass or top-quark mass at one loop. As expected, from left to right the top quark mass decreases in (a), whereas the
Higgs mass increses in (b).
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both panels show the higher vR scale where color patches
terminate, representing the very scale where in fact the
Standard Model breaks down for a particular Higgs mass
or top-quark mass at one loop.

IV. CONCLUSIONS

We have noted that one needs to study the scalar
potential to understand the structure of the vacuum and
its compatibility with successful spontaneous symmetry
breaking. In addition, the perturbativity (triviality) of
the couplings also plays a crucial role. We have
analyzed the structure of the scalar potentials of B −
L extended models—namely, SM ⊗ Uð1ÞB−L and the
left-right symmetry—with different scalar representa-
tions. We have computed the criteria for the potential
to be bounded from below, i.e., the conditions for
vacuum stability. We also performed the renormalization
group evolutions of the parameters (couplings) of these
models at the one-loop level with proper matching
conditions. We have shown how the phenomenologi-
cally inaccessible couplings can be constrained for
different choices of scales of new physics. They in
turn also affect the RGEs of the other couplings. We
have noted that the new physics effects must be
switched on before the SM vacuum faces the instability.
This helps the vacuum stability of the full scalar
potential and achieves a consistent spontaneous sym-
metry breaking. We have analyzed these aspects by
varying the Higgs and top-quark mass over their
allowed ranges. In summary, it is meaningful to mention
that more precise knowledge of the SM parameters—
like the Higgs mass, the top-quark mass and the strong
coupling—will constrain the parameters (couplings,
masses, scales) of new physics and might direct us

towards the correct theory for beyond the Standard
Model physics. In principle one can study the left-right
symmetric models including the radiative correction in
the scalar potential and use the Coleman-Weinberg
mechanism, e.g., Ref. [50] has considered this scenario
and calculated the flat directions using the one-loop
effective potential. This will certainly change the corre-
lations among the parameters of the scalar potential
leading to the stable vacuum. While submitting our
paper Ref. [65] appeared, where the vacuum stability for
SM ⊗ Uð1ÞB−L was discussed. The viewpoints of our
analysis are quite different from that work.
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APPENDIX A: SCALAR POTENTIAL FOR
DIFFERENT MODELS

1. Uð1ÞB−L model

VðΦ; SÞ ¼ m2Φ†Φþ μ2∣S∣2 þ λ1ðΦ†ΦÞ2 þ λ2∣S∣4
þ λ3Φ†Φ∣S∣2: (A1)

2. LR model with triplet scalars

The most general form of the scalar potential can be
written as in Ref. [64],
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FIG. 6 (color online). Compatibility for stable vacuum in vR and heavy Higgs MH allowed region in LR model with doublet scalars.
Each color (or shade) represents a particular set of light Higgs mass (Mh) and top mass (Mt) in respective plot. In figure (a) Higgs mass is
fixed at 125 GeVand top quark mass is varying, where as, in figure (b) top quark mass is fixed at 173.2 GeVand Higgs mass is varying.
Upper-left region (shaded with light blue/gray) above the lineMH ¼ vR is disallowed since quartic couplings are non-perturbative at the
low scale itself in this domain. Lower-right region (shaded with light pink/gray) quartic coupling related with heavy Higgs mass becomes
extremely small (≤ Oð10−7Þ).We choose universal quartic coupling λu fixed at 0.04. Inset to both figures shows the higher vR scalewhere
color/shade patches terminate, representing the very scale where in fact Standard Model breaks down for a particular Higgs mass or top
quark mass at one loop. As expected, from left to right the top quark mass decreases in (a), whereas the Higgs mass increases in (b).
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VLRTðΦ;ΔL;ΔRÞ
¼ −μ21fTr½Φ†Φ�g − μ22fTr½ ~ΦΦ†� þ Tr½ ~Φ†Φ�g − μ23fTr½Δ†

LΔL� þ Tr½Δ†
RΔR�g þ λ1fðTr½Φ†Φ�Þ2g

þ λ2fðTr½ ~ΦΦ†�Þ2 þ ðTr½ ~Φ†Φ�Þ2g þ λ3fTr½ ~ΦΦ†�Tr½ ~Φ†Φ�g þ λ4fTr½Φ†Φ�ðTr½ ~ΦΦ†� þ Tr½ ~Φ†Φ�Þg
þ λ5fðTr½ΔLΔ

†
L�Þ2þðΔRΔ

†
RÞ2gþ λ6fTr½ΔLΔL�Tr½Δ†

LΔ
†
L�þTr½ΔRΔR�Tr½Δ†

RΔ
†
R�gþλ7fTr½ΔLΔ

†
L�Tr½ΔRΔ

†
R�g

þ λ8½ΔLΔ
†
L�fTr½ΔLΔ

†
L�Tr½ΔRΔ

†
R�g þ λ9fTr½Φ†Φ�ðTr½ΔLΔ

†
L�þTr½ΔRΔ

†
R�Þgþðλ10 þ iλ11ÞfTr½Φ ~Φ†�Tr½ΔRΔ

†
R�

þ Tr½Φ† ~Φ�Tr½ΔLΔ†
L�g þ ðλ10 − iλ11ÞfTr½Φ† ~Φ�Tr½ΔRΔ†

R� þ Tr½ ~Φ†Φ�Tr½ΔLΔ†
L�g þ λ12fTr½ΦΦ†ΔLΔ†

L�
þ Tr½Φ†ΦΔRΔ

†
R�g þ λ13fTr½ΦΔRΦ†Δ†

L� þ Tr½Φ†ΔLΦΔ
†
R�g þ λ14fTr½ ~ΦΔRΦ†Δ†

L� þ Tr½ ~Φ†ΔLΦΔ
†
R�g

þ λ15fTr½ΦΔR
~Φ†Δ†

L� þ Tr½Φ†ΔL
~ΦΔ†

R�g;

where all the coupling constants are real.

3. LR model with doublet scalars

The scalar potential for the LR model with doublet scalars can be written as

VLRDðΦ; HL;HRÞ ¼ 4λ1ðTr½Φ†Φ�Þ2 þ 4λ2ðTr½Φ† ~Φ� þ Tr½Φ ~Φ†�Þ2 þ 4λ3ðTr½Φ† ~Φ� − Tr½Φ ~Φ†�Þ2

þ κ1
2
ðH†

LHL þH†
RHRÞ2 þ

κ2
2
ðH†

LHL −H†
RHRÞ2 þ β1ðTr½Φ† ~Φ� þ Tr½Φ ~Φ†�ÞðH†

LHL þH†
RHRÞ

þ f1ðH†
Lð ~Φ ~Φ† − ΦΦ†ÞHL −H†

RðΦ†Φ − ~Φ† ~ΦÞHRÞ:

APPENDIX B: CALCULATION OF NONTRIVIAL
VACUUM STABILITY CONDITIONS

Herewe have gathered the structure of the scalar potential
in the two-, three-, and four-field directions. We have calcu-
lated vacuum stability conditions from these field directions
while keeping inmind that the conditions should covermost
of the parameter space spanned by the quartic couplings.

1. Uð1ÞB−L model

For the Uð1ÞB−L model the potential has a simple
structure and the stability conditions can be calculated
easily. The quartic potential has the form

λ1jΦj4 þ λ2jSj4 þ λ3jΦj2jSj2;
and we can easily write this potential as� ffiffiffiffiffi

λ1
p

jΦj2 þ λ3
2
ffiffiffiffiffi
λ1

p jSj2
�

2

þ
�
λ2 − λ23

4λ1

�
jSj4:

Clearly the above equation is positive definite if

λ1 > 0; λ2 > 0; 4λ1λ2 − λ23 > 0:

These are the nontrivial vacuum stability conditions with
λ3 < 0. The trivial boundary conditions are when all
the λ1;2;3 > 0.

2. LR model with triplet scalars

The absence of any tachyonic pseudoscalar modes
imposes the condition λ12 > 0.

a. Two-field directions and stability conditions

2FV1ðϕ0
1;ϕ

þ
1 Þ ¼ λ1ðϕ0

1
2 þ ϕþ

1
2Þ2;

2FV2ðϕ0
1; δ

0Þ ¼ λ5δ
04 þ λ1ϕ

0
1
4;

2FV3ðϕ0
1; δ

þÞ ¼ ðλ5 þ λ6Þδþ4 þ λ1ϕ
0
1
4

þ 1

2
ðλ12 þ 2λ9Þδþ2ϕ0

1
2;

2FV4ðϕ0
1; δ

þþÞ ¼ λ5δ
þþ4 þ λ1ϕ

0
1
4 þ λ12δ

þþ2ϕ0
1
2;

2FV5ðϕþ
1 ; δ

0Þ ¼ λ5δ
04 þ λ1ϕ

þ
1
4 þ λ12δ

02ϕþ
1
2;

2FV6ðϕþ
1 ; δ

þÞ ¼ ðλ5 þ λ6Þδþ4 þ λ1ϕ
þ
1
4

þ 1

2
ðλ12 þ 2λ9Þδþ2ϕþ

1
2;

2FV7ðϕþ
1 ; δ

þþÞ ¼ λ5δ
þþ4 þ λ1ϕ

0
1
4;

2FV8ðδ0; δþÞ ¼ λ5ðδ02 þ δþ2Þ2 þ λ6δ
þ4;

2FV9ðδ0; δþþÞ ¼ λ5ðδ02 þ δþþ2Þ2 þ 4λ6δ
þ2δ02;

2FV10ðδþ; δþþÞ ¼ λ5ðδþ2 þ δþþ2Þ2 þ λ6δ
þ4:

Stability conditions

2FV1 → λ1 > 0;
2FV2; 2FV4; 2FV5; 2FV7 → λ1 > 0; λ5 > 0;

2FV3; 2FV6 → λ1 > 0; λ5 þ λ6 > 0;
2FV8; 2FV9; 2FV10 → λ5 > 0; λ5 þ λ6 > 0;
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b. Three-field directions and stability conditions

3FV1ðϕ0
1;ϕ

þ
1 ; δ

0Þ ¼ λ1ðϕ0
1
2 þ ϕþ

1
2Þ2 þ λ5δ

02 þ λ12δ
02ϕ0

1
2;

3FV2ðϕ0
1;ϕ

þ
1 ; δ

þÞ ¼ λ1ðϕ0
1
2 þ ϕþ

1
2Þ2 þ ðλ5 þ λ6Þδþ4 þ 1

2
ðλ12 þ 2λ9Þðϕ0

1
2 þ ϕþ

1
2Þδþ2;

3FV3ðϕ0
1;ϕ

þ
1 ; δ

þþÞ ¼ λ1ðϕ0
1
2 þ ϕþ

1
2Þ2 þ λ5δ

þþ4 þ λ12ϕ
0
1
2δþþ2;

3FV4ðϕ0
1; δ

0; δþÞ ¼ λ1ϕ
0
1
4 þ λ5ðδ02 þ δþ2Þ2 þ λ6δ

þ4 þ 1

2
ðλ12 þ 2λ9Þϕ0

1
2δþ2;

3FV5ðϕ0
1; δ

0; δþþÞ ¼ λ5ðδ02 þ δþþ2Þ2 þ λ1ϕ
0
1
4 þ 4λ6δ0

2δþþ2 þ λ12δ
þþ2ϕ0

1
2 þ 2λ9δ

0δþþϕ0
1
2;

3FV6ðϕ0
1; δ

þ; δþþÞ ¼ λ1ϕ
0
1
4 þ λ5ðδþþ2 þ δþ2Þ2 þ λ6δ

þ4 þ 1

2
λ12ϕ

0
1
2ð2δþþ2 þ δþ2Þ þ λ9δ

þ2ϕ0
1
2;

3FV7ðϕþ
1 ; δ

0; δþÞ ¼ λ1ϕ
þ
1
4 þ λ5ðδ02 þ δþ2Þ2 þ λ6δ

þ4 þ 1

2
λ12ϕ

þ
1
2ð2δ02 þ δþ2Þ þ λ9δ

þ2ϕþ
1
2;

3FV8ðϕþ
1 ; δ

0; δþþÞ ¼ λ5ðδ02 þ δþþ2Þ2 þ λ1ϕ
þ
1
4 þ 4λ6δ0

2δþþ2 þ λ12δ
02ϕþ

1
2 þ 2λ9δ

0δþþϕþ
1
2;

3FV9ðϕþ
1 ; δ

þ; δþþÞ ¼ λ1ϕ
þ
1
4 þ λ5ðδþ2 þ δþþ2Þ2 þ λ6δ

þ4 þ 1

2
ðλ12 þ 2λ9Þϕþ

1
2δþ2;

3FV10ðδ0; δþ; δþþÞ ¼ λ5ðδ02 þ δþ2 þ δþþ2Þ2 þ λ6ðδþ2 þ 2δ0δþþÞ2:

Stability conditions

3FV1; 3FV3 → λ1 > 0; λ5 > 0;
3FV2 → λ1 > 0; λ5 þ λ6 > 0;

3FV4; 3FV6; 3FV7; 3FV9 → λ1 > 0; λ5 > 0; λ5 þ λ6 > 0;
3FV5; 3FV8 → λ1 > 0; λ5 > 0; λ5 þ 2λ6 > 0;

3FV10 → λ5 > 0; λ5 þ λ6 > 0; λ5 þ 2λ6 > 0.

c. Four-field directions and stability conditions

4FV1ðϕ0
1;ϕ

þ
1 ; δ

0; δþÞ ¼ λ5ðδ02 þ δþ2Þ2 þ λ6δ
þ4 þ λ1ðϕ0

1
2 þ ϕþ

1
2Þ2

þ 1

2
λ12ð2δ02ϕþ

1
2 þ 2

ffiffiffi
2

p
ϕ0
1ϕ

þ
1 δ

0δþ þ δþ2ðϕ0
1
2 þ ϕþ

1
2ÞÞ þ λ9δ

þ2ðϕ0
1
2 þ ϕþ

1
2Þ;

4FV2ðϕ0
1;ϕ

þ
1 ; δ

0; δþþÞ ¼ λ5ðδ02 þ δþþ2Þ2 þ 4λ6δ
02δþþ2 þ λ1ðϕ0

1
2 þ ϕþ

1
2Þ2 þ λ12ðδþþ2ϕ0

1
2 þ δ02ϕþ

1
2Þ

þ 2λ9δ
0δþþðϕ0

1
2 þ ϕþ

1
2Þ;

4FV3ðϕ0
1;ϕ

þ
1 ; δ

þ; δþþÞ ¼ λ5ðδþ2 þ δþþ2Þ2 þ λ6δ
þ4 þ λ1ðϕ0

1
2 þ ϕþ

1
2Þ2 þ 1

2
λ12ð2δþþ2ϕ0

1
2 − 2

ffiffiffi
2

p
ϕ0
1ϕ

þ
1 δ

þδþþ

þ δþ2ðϕ0
1
2 þ ϕþ

1
2ÞÞ þ λ9δ

þ2ðϕ0
1
2 þ ϕþ

1
2Þ;

4FV4ðϕ0
1; δ

0; δþ; δþþÞ ¼ λ5ðδ02 þ δþ2 þ δþþ2Þ2 þ λ6ðδþ2 þ 2δ0δþþÞ2 þ λ1ϕ
0
1
4 þ 1

2
λ12ϕ

0
1
2ð2δ02 þ δþ2Þ

þ λ9ϕ
0
1
2ðδþ2 þ 2δ0δþþÞ;

4FV5ðϕþ
1 ; δ

0; δþ; δþþÞ ¼ λ5ðδ02 þ δþ2 þ δþþ2Þ2 þ λ6ðδþ2 þ 2δ0δþþÞ2 þ λ1ϕ
þ
1
4

þ 1

2
λ12ϕ

þ
1
2ð2δ02 þ δþ2Þ þ λ9ϕ

þ
1
2ðδþ2 þ 2δ0δþþÞ:
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Stability conditions

4FV1 → λ1 > 0; λ5 > 0; λ5 þ 2λ6 > 0;
4FV2 → λ1 > 0; λ5 > 0; λ5 þ λ6 > 0;

4FV3 → λ1 > 0; λ5 > 0; λ5 þ λ6 > 0; λ12 − 2
ffiffiffiffiffiffiffiffiffiffiffi
2λ1λ5

p
< 0;

4FV4; 4FV5 → λ1 > 0; λ5 > 0; λ5 þ λ6 > 0; λ5 þ 2λ6 > 0;

3. LR model with doublet scalars

a. Two-field directions and stability conditions

2FV1ðϕ0
1;ϕ

þ
1 Þ ¼ λ1ðϕ0

1
2 þ ϕþ

1
2Þ2;

2FV2ðϕþ
1 ; h

þ
R Þ ¼ λ1ϕ

þ
1
4 þ 2β1 þ f1

2
hþR

2ϕþ
1
2;

2FV3ðϕ0
1; h

þ
R Þ ¼ λ1ϕ

0
1
4 þ 2β1 − f1

2
hþR

2ϕ0
1
2;

2FV4ðϕþ
1 ; h

0
RÞ ¼ λ1ϕ

þ
1
4 þ 2β1 − f1

2
h0R

2ϕþ
1
2;

2FV5ðϕ0
1; h

0
RÞ ¼ λ1ϕ

0
1
4 þ 2β1 þ f1

2
h0R

2ϕ0
1
2:

Stability conditions

2FV1 → λ1 > 0; 2FV2; 2FV5 → λ1 > 0; 2β1 þ f1 > 0; 2FV3; 2FV4 → λ1 > 0; 2β1 − f1 > 0;

b. Three-field directions and stability conditions

3FV1ðϕ0
1;ϕ

þ
1 ; h

0
RÞ ¼ λ1ðϕ0

1
2 þ ϕþ

1
2Þ2 þ h0R

2

�
β1ðϕ0

1
2 þ ϕþ

1
2Þ þ 1

2
f1ðϕ0

1
2 − ϕþ

1
2Þ
�
;

3FV2ðϕ0
1;ϕ

þ
1 ; h

þ
R Þ ¼ λ1ðϕ0

1
2 þ ϕþ

1
2Þ2 þ hþR

2

�
β1ðϕ0

1
2 þ ϕþ

1
2Þ þ 1

2
f1ðϕþ

1
2 − ϕ0

1
2Þ
�
;

3FV3ðϕ0
1; h

0
R; h

þ
R Þ ¼

1

2
ϕ0
1
2ðf1ðh0R2 − hþR

2Þ þ 2β1ðh0R2 þ hþR
2Þ þ 2λ1ϕ

0
1
2Þ;

3FV3ðϕþ
1 ; h

0
R; h

þ
R Þ ¼

1

2
ϕþ
1
2ðf1ðhþR 2 − h0R

2Þ þ 2β1ðh0R2 þ hþR
2Þ þ 2λ1ϕ

þ
1
2Þ:

Stability conditions

3FV1; 3FV2; 3FV3; 3FV4 → λ1 > 0; 2β1 þ f1 > 0; 2β1 − f1 > 0.

c. Four-field directions and stability conditions

4FV1ðϕ0
1;ϕ

þ
1 ; h

0
R; h

þ
R Þ ¼

1

2
ðf1ðhþR ðϕ0

1 − ϕþ
1 Þ þ h0Rðϕ0

1 þ ϕþ
1 ÞÞðh0Rðϕ0

1 − ϕþ
1 Þ − hþR ðϕ0

1 þ ϕþ
1 ÞÞ

þ 2ðϕ0
1
2 þ ϕþ

1
2Þððh0R2 þ hþR

2Þβ1 þ λ1ðϕ0
1
2 þ ϕþ

1
2ÞÞÞ:

Stability conditions

4FV1 → λ1 > 0; 2β1 þ f1 > 0; 2β1 − f1 > 0:
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APPENDIX C: RENORMALIZATION GROUP
EVOLUTION EQUATIONS

1. Standard Model RGEs

For the Standard Model we have used the renormaliza-
tion group evolution equations from Ref. [66] with match-
ing conditions for the top Yukawa and Higgs quartic
couplings at their pole masses.

2. Uð1ÞB−L model

a. Gauge RG equations

The renormalization group equations for SUð3ÞC and
SUð2ÞL gauge couplings g3 and g2 are

16π2
d
dt

g3 ¼ g33

�
−1þ 4

3
ng

�
¼ g33

16π2
½−7�;

16π2
d
dt

g2 ¼ g32

�
− 22

3
þ 4

3
ng þ

1

6

�
¼ g32

16π2

�
− 19

6

�
;

where ng is the number of generations.
The renormalization group equations for the Abelian

gauge couplings g1; gB−L and ~g are

16π2
d
dt

g1 ¼
�
41

6
g31

�
;

16π2
d
dt

gB−L ¼
�
12g3B−L þ 32

3
gB−L ~gþ

41

6
gB−L ~g2

�
;

16π2
d
dt

~g ¼
�
41

6
~gð~g2 þ 2g21Þ þ

32

3
gB−Lð~g2 þ g21Þ

þ 12g2B−L ~g
�
;

b. Fermion RG equations

The RG evolution equation for the top-quark Yukawa
coupling Yt is

16π2
d
dt

Yt ¼ Yt

�
9

2
Y2
t − 8g23 − 9

4
g22 − 17

12
g21 − 17

12
~g2

− 2

3
g2B−L − 5

3
~ggB−L

�
:

In the case of right-handed neutrinos the RGEs we are
considering degenerate the right-handed neutrino Yukawa
coupling and we are in a basis where these couplings are
diagonal; then, we have

16π2
d
dt

yhi ¼ yhi ½4ðyhi Þ2 þ 2Tr½ðyhÞ2� − 6g2B−L�:

c. Scalar RG equations

The RGEs for the scalar couplings λ1; λ2 and λ3 are

16π2
d
dt

λ1 ¼
�
24λ21 þ λ23 − 6Y4

t þ
9

8
g42 þ

3

8
g41 þ

3

4
g22g

2
1 þ

3

4
g22 ~g

2 þ 3

4
g21 ~g

2 þ 3

8
~g4 þ 12λ1Y2

t − 9λ1g22 − 3λ1g21 − 3λ1 ~g2
�
;

8π2
d
dt

λ2 ¼
�
10λ22 þ λ23 − 1

2
Tr½ðyhÞ4� þ 48g4B−L þ 4λ2Tr½ðyhÞ2� − 24λ2g2B−L

�
;

8π2
d
dt

λ3 ¼ λ3

�
6λ1 þ 4λ2 þ 2λ3 þ 3Y2

t − 3

4
ð3g22 − g21 − ~g2Þ þ 2Tr½ðyhÞ2� − 12g2B−L

�
þ 6~g2g2B−L:

3. LR model with triplet scalars

a. Gauge RG equations

16π2
d
dt

g3 ¼ g33ð−7Þ; 16π2 d
dt

g2 ¼ g32

�
− 15

6

�
; 16π2

d
dt

gB−L ¼ g3B−L
�
28

9

�
:

Note that in our case g2L ¼ g2R ¼ g2.
b. Fermion RG equations

16π2
d
dt

Yt ¼
�
8Y3

t − Yt

�
2

3
g21 − 9

2
g22 − 8g23

��
;

16π2
d
dt

YM
i ¼

�
2YM

i

�
− 3

4
g21 − 9

4
g22

�
þ 2YM

i Tr½ðYMÞ2� þ 6ðYM
i Þ3
�
:
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c. Scalar RG equations

To write down the scalar RG equations, we classified 15 scalar couplings into three categories depending on how they
coupled with scalar fields.

(i) Coefficients with Φ4

16π2
d
dt

λ1 ¼ 32λ21 þ
5

3
λ212 þ

1

2
λ213 þ 2λ214 þ 64λ22 þ 16λ1λ3 þ 16λ23 þ 48λ24 þ 6λ12λ9 þ 6λ29 þ 12λ1Y2

t − 6Y4
t

− 18λ1g22 þ 3g42;

16π2
d
dt

λ2 ¼ 6ðλ210 − λ112Þ þ 3

2
λ14λ15 þ 24λ1λ2 þ 48λ2λ3 þ 12λ24 þ 12λ2Y2

t − 18λ2g22;

16π2
d
dt

λ3 ¼ 12ðλ210 þ λ211Þ − ðλ212 − λ213Þ − 1

2
ðλ214 þ λ215Þ þ 128λ22 þ 24λ1λ3 þ 16λ23 þ 24λ24 þ 12λ3Y2

t þ 3Y4
t

− 18λ3g22 þ
3

2
g22;

16π2
d
dt

λ4 ¼ 48λ4ðλ1 þ 2λ2 þ λ3Þ þ 6λ10ð2λ9 þ λ12Þ þ
3

2
λ13ðλ14 þ λ15Þ þ 12λ4Y2

t − 18λ4g22:

(ii) Coefficients with Δ4

16π2
d
dt

λ5 ¼ 28λ25 þ 16λ6ðλ5 þ λ6Þ þ 16ðλ210 þ λ211Þ þ 2λ212 þ 3λ27 þ 4λ9ðλ9 þ λ12Þ þ 2λ5Y2
t − 16Y4

t − 12λ5g2B−L

þ 6g4B−L þ 12g2B−Lg22 − 24λ5g22 þ 9g42;

16π2
d
dt

λ6 ¼ 12λ6ðλ6 þ 2λ5 − g2B−L − 2g22Þ þ 12λ28 − λ212 þ 8Y4
t þ 8λ6Y2

t − 12g2B−Lg22 þ 3g42;

16π2
d
dt

λ7 ¼ 4λ27 þ 16λ7ð2λ5 þ λ6Þ þ 32ðλ210 − λ211Þ þ 2ðλ212 þ λ213Þ þ 4ðλ214 þ λ215Þ þ 32λ28 þ 8λ12λ9 þ λ29

þ 8λ7Y2
t − 12λ7ðg2B−L þ g22Þ þ 12g4B−L;

16π2
d
dt

λ8 ¼ λ213 þ 4λ14λ15 þ 8λ8ðλ5 þ 5λ6 þ λ7 þ Y2
t Þ − 12λ8ð2g2B−L þ g22Þ:

(iii) Coefficients with Φ2Δ2

16π2
d
dt
λ9¼ λ9ð20λ1þ8λ3þ16λ5þ8λ6þ6λ7þ4λ9þ6Y2

t þ4Tr½ðYMÞ2�−6g2B−L−21g22Þþ6g42

þ16ðλ210þλ211Þþλ12ð8λ1þλ12Þþ3λ213þ12λ214þ8λ12λ3þ48λ10λ4þλ12ð6λ5þ8λ6þ3λ7Þ;

16π2
d
dt
λ10¼ λ10ð4λ1þ4λ12þ48λ2þ16λ3þ16λ4þ16λ5þ8λ6þ6λ7þ8λ9

þ6Y2
t þ4Tr½ðYMÞ2�−6g2B−L−21g22Þ−3λ13ðλ14þλ15Þþ12λ4λ9;

16π2
d
dt
λ11¼ λ11ð4λ1þ4λ12−48λ2þ16λ3þ16λ5þ8λ6−6λ7þ8λ9þ6Y2

t þ4Tr½ðYMÞ2�−6g2B−L−21g22Þ;

16π2
d
dt
λ12¼ λ12ð4λ1þ4λ12−8λ3þ4λ5−8λ6þ8λ9þ6Y2

t 4Tr½ðYMÞ2�−6g2B−L−21g22Þ−12ðλ214− λ215Þ;

16π2
d
dt
λ13¼ λ13ð4λ1þ4λ12þ8λ3þ2λ7þ8λ8þ8λ9þ3Y2

t þTr½ðYMÞ2�
−6g2B−L−21g22Þþð8λ4þ16λ10Þðλ14þλ15Þ;

16π2
d
dt
λ14¼ λ14ð4λ1−4λ12þ2λ7þ8λ9þ6Y2

t þ4Tr½ðYMÞ2�−6g2B−L−21g22Þþ4λ13ðλ4þ2λ10Þþ8λ15ð2λ2þλ8Þ;

16π2
d
dt
λ15¼ λ15ð4λ1þ12λ12þ2λ7þ8λ9þ6Y2

t þ4Tr½ðYMÞ2�−6g2B−L−21g22Þþ4λ13ðλ4þ4λ10Þþ8λ14ð2λ2þλ8Þ:
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4. LR model with doublet scalars

a. Gauge RG equations

16π2
d
dt

g3 ¼ g33ð−7Þ; 16π2
d
dt

g2 ¼ g32

�
− 17

6

�
; 16π2

d
dt

g2B−L ¼ g3B−Lð3Þ:

Note that in our case g2L ¼ g2R ¼ g2.

b. Fermion RG equations

64π2
d
dt

Yt ¼
�
− 2

9
g2B−L − 9g22 − 32g23

�
Yt þ 7Y3

t :

c. Scalar RG equations

(i) Coefficients with Φ4

128π2
d
dt

λ1 ¼ λ1ð−72g22 þ 256ðλ1 þ λ2 − λ3Þ þ 24Y2
t Þ þ 1024ðλ21 þ λ22Þ þ 32β21 þ 8f21 þ 9g42 − 12Y − Y4

t ;

512π2
d
dt

λ2 ¼ λ2ð−288g22 þ 768λ1 þ 3072λ2 þ 1024λ3 þ 96Y2
t Þ − 8f21 þ 3g42 − 3Y4

t ;

256π2
d
dt

λ3 ¼ λ3ð−144g22 − 384λ1 − 512λ2 − 1536λ3 þ 48Y2
t Þ þ 4f21 − 3g42 − 3Y4

t :

(ii) Coefficients with H4
L=R

512π2
d
dt

κ1 ¼ κ1ð−96g2B−L − 144g22 þ 576κ1 þ 384κ2Þ þ 192κ22 þ 256β21 þ 128f21 þ 24g4B−l þ 12g2B−Lg22 þ 9g42;

512π2
d
dt

κ2 ¼ κ2ð−96g2B−L − 144g22 þ 512κ1 þ 384κ2Þ þ 128f21 þ 12g2B−Lg22 þ 9g42:

(iii) Coefficeients with Φ2H2
L=R

256π2
d
dt

β1 ¼ −4β1½−8β1 þ 6g2B−L þ 27g22 − 2ð20κ1 þ 4κ2 þ 40λ1 þ 32λ2 − 32λ3 þ 3Y2
t Þ� þ 24f21 þ 9g42;

256π2
d
dt

f1 ¼ f1ð16β1 − 6g2B−L − 27g22 þ 8ðκ1 þ κ2Þ þ 16ðλ1 − 4λ2Þ þ 64λ3 þ 6Y2
t Þ:
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