
Hadron masses and baryonic scales in G2-QCD at finite density

Björn H. Wellegehausen*

Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany and
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany

Axel Maas† and Andreas Wipf‡

Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany

Lorenz von Smekal§

Institut für Theoretische Physik, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany and
Theoriezentrum, Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany

(Received 13 January 2014; published 18 March 2014)

The QCD phase diagram at densities relevant to neutron stars remains elusive, mainly due to the
fermion-sign problem. At the same time, a plethora of possible phases has been predicted in models.
Meanwhile G2-QCD, for which the SUð3Þ gauge group of QCD is replaced by the exceptional Lie
group G2, does not have a sign problem and can be simulated at such densities using standard lattice
techniques. It thus provides benchmarks to models and functional continuum methods, and it serves to
unravel the nature of possible phases of strongly interacting matter at high densities. Instrumental in
understanding these phases is that G2-QCD has fermionic baryons, and that it can therefore sustain a
baryonic Fermi surface. Because the baryon spectrum of G2-QCD also contains bosonic diquark and
probably other more exotic states, it is important to understand this spectrum before one can
disentangle the corresponding contributions to the baryon density. Here we present a first systematic
classification of this spectrum. The qualitative features of this spectrum are reflected in our simulation
results at different quark masses although our lattices are still rather coarse. This allows us to relate
the mass hierarchy, ranging from scalar would-be-Goldstone bosons and intermediate vector bosons to
the G2 nucleons and deltas, to individual structures observed in the total baryon density at finite
chemical potential.
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I. INTRODUCTION

Understanding neutron stars requires understanding the
equilibriumproperties of nuclear andhadronicmatter [1,2] at
low temperature and high density. This is essential in every
stage, starting from neutron star formation and cooling to
neutron star mergers, and hence ultimately to understanding
the synthesis of the heavy elements. A serious technical
obstacle in this process is the infamous fermion-sign prob-
lem, which prevents efficient numerical simulations of
the underlying theory of nuclei and hadrons, QCD [3–5].
Although substantial progress has been achieved with
models and functional continuum methods [1,6–8], input
from lattice simulations remains indispensable.
There have been several approaches to circumventing the

sign problem, e.g. analytic continuations from imaginary
[9–11] or isospin [12,13] chemical potential, which fail,
however, when phase transitions are encountered. Another
possibility is to combine strong-coupling and hopping

expansion techniques to derive an effective theory for
heavy quarks [14,15] whose range of applicability must
then be assessed. Further alternatives might be provided by
stochastic approaches [16], but it is as yet unclear whether
they will eventually solve the problem in QCD.
A complementary strategy is to use QCD-like theories

without a sign problem. This strategy serves two aims. One
is to provide numerical benchmarks for model building
[1,6] and continuum methods [7,8], for continuations from
imaginary or isospin chemical potential, and equally so for
the effective lattice theories for heavy quarks. The other is
to gain insight into the genuine properties of gauge theories
other than QCD at finite densities, and to exploit analogies
with other physical systems such as ultracold fermionic
quantum gases. Such QCD-like theories include two-color
QCD [17–23] and adjoint QCD [17,24–26]. However,
neither of these directly compare well with QCD. Two-
color QCD with fundamental quarks does not have fer-
mionic baryons [17,18], while adjoint QCD is known to
behave rather differently from QCD already in the
quenched case [27].
We have recently added another such replacement

theory, G2-QCD [28,29], and shown that it is possible to
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simulate this theory at finite density and temperature. This
permitted a first view of the full phase diagram of G2-QCD.
We will discuss the properties of this theory in detail in
Sec. II. Here, it suffices to state that it can be simulated
without the fermion-sign problem at finite density, it does
have fermionic baryons, and its properties in the quenched
case are very similar to QCD as well. This last observation
especially has quite interesting implications for the role of
the center symmetry in QCD. A brief review and guide to
the literature is given in [30].
In order to better understand the physical picture behind

the phase diagram of this theory, however, one needs to
understand its hadronic spectrum. In [29] we studied a few
low-lying states to give a rough estimate of the scales
involved in the simulations. To firmly identify the proper-
ties of various finite density phases, we need a much clearer
picture of the hadron masses and the corresponding
hierarchy of mass scales. These can be deduced from
the spectrum of hadronic states in the vacuum. To deter-
mine this spectrum from lattice Monte Carlo simulations is
the main purpose of the present article. We discuss the
theoretical foundations of (lattice) spectroscopy for G2-
QCD in Sec. III. While the lattice determination of the
spectrum is in principle straightforward, it is a rather
challenging task when it comes to the details, which we
describe in Sec. IV. The results for spectra obtained with
two different quark masses are presented in Sec. V.
To show that this information is indeed relevant for

understanding the phase diagram we relate these results, in
an explorative way, to the dependence of the quark density
on their chemical potential in Sec. VI. We thereby observe
various structures which seem to reflect the hierarchy of
scales in the spectrum given by the baryon masses per
quark number. Especially, we find an onset at half the
would-be-Goldstone mass, a stepwise increase in density at
half the intermediate vector boson mass, and a rapid further
growth setting in at around one third of the nucleons’ mass
which is characteristic of their fermionic nature and which
might be a manifestation of G2 nuclear matter. The results
indeed suggest that the theory has a rich phase structure,
and that baryon-dominated regions of the phase diagram
exist before the density is eventually dominated by quarks
and lattice artifacts at large chemical potentials. This is of
significant importance, as it might indeed point towards the
presence of a baryonic Fermi surface, making G2-QCD a
viable model to understand generic features of the finite
density phases of the strong interaction.
Our results are summarized once more, together with

our conclusions, in Sec. VII. Note that some preliminary
material was already presented in [30].

II. GENERAL PROPERTIES OF G2-QCD

The action of Nf flavor QCD with arbitrary gauge group
G in Minkowski spacetime is given by

S ¼
Z

d4x

�
−
1

2
trFμνFμν

þ
XNf

n¼1

Ψ̄nðiγμð∂μ − gAμÞ −mÞΨn

�
; (1)

with Aμ an element of the corresponding gauge algebra g.
For QCD, the gauge group is SUð3Þ, but here we will
use instead the exceptional Lie group G2. For the sake of
completeness, we will briefly review the construction
of the gauge group G2 in Sec. II A, reviewing parts of
Ref. [28], before we turn towards the quark sector. The
most important ingredient is the Dirac operator, to be
discussed in Sec. II B, and the realization of chiral
symmetry discussed in Sec. II C. Because G2 is a real
group, chiral symmetry breaking and the concept of baryon
number require special attention, as described in Sec. II D.

A. Construction of the gauge group G2

G2 is the smallest of the five exceptional simple Lie
groups and it is also the smallest simple and simply
connected Lie group which has a trivial center. As
SUð3Þ, the gauge group of the strong interactions, it has
rank 2. The fundamental representations are seven dimen-
sional and 14 dimensional, the latter coinciding with the
adjoint representation. The elements of G2 can be viewed as
elements of SOð7Þ subject to seven independent cubic
constraints for the seven-dimensional matrices representing
the Lie algebra of SOð7Þ [28,31],

Tabc ¼ Tdefgdagebgfc; (2)

where T is a totally antisymmetric tensor. Its explicit
form is basis dependent and examples can be found in
[28,31]. There are thus Nc ¼ 7 quark colors and 14
gluons in G2.
The constraints (2) reduce the number of generators from

21 for SOð7Þ to 14 for the group G2. In addition, G2 is
connected to SUð3Þ through the embedding of SUð3Þ as a
subgroup of G2 according to [32,33],

G2=SUð3Þ ∼ SOð7Þ=SOð6Þ ∼ S6: (3)

This means that every element U of G2 can be written as

U ¼ S · V with S ∈ G2=SUð3Þ and V ∈ SUð3Þ:
(4)

In the pure G2 gauge theory [34–36] this decomposition is
in fact being used to speed up the numerical simulations.
Since G2 is a subgroup of SOð7Þ, all representations are
real and one can always choose a real basis for the Lie
algebra. A possible real representation for the 14 generators
is given explicitly in Refs. [37,38].
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B. The spectrum of the Dirac operator

For lattice Monte Carlo methods to be applicable, the
determinant of the Euclidean Dirac operator has to be
non-negative. The continuum Dirac operator is given by

D½A;m; μ� ¼ γE
μð∂μ − gAμÞ −mþ γE0μ; (5)

where the Euclidean gamma matrices are Hermitian and A
is an antisymmetric color matrix. As in QCD the Dirac
operator satisfies

DðμÞ†γ5 ¼ γ5Dð−μ�Þ (6)

and the fermion determinant is real at imaginary chemical
potential. In addition, however, the G2 Dirac operator has
an antiunitary symmetry; it also satisfies the relation

DðμÞ�T ¼ TDðμ�Þ with T ¼ Cγ5;

T�T ¼ −1; T† ¼ T−1; (7)

where C is the charge conjugation matrix. If such a unitary
operator T exists then the eigenvalues of the Dirac operator
come in complex conjugate pairs and all real eigenvalues
are doubly degenerate [17,18], analogous to the Kramers
degeneracy of time-reversal invariant spin Hamiltonians.
Therefore

detD½A;m; μ� ≥ 0 for μ ∈ R: (8)

Thispropertyof the fermiondeterminantmakesMarkovchain
Monte Carlo techniques applicable even at finite densities,
because the path integral measure DAμ detD½A;m; μ�e−SB
then essentially provides a probability distribution.

C. Chiral symmetry

In [17], the chiral symmetry of different gauge groups
has been investigated. Here we review the details for G2,
see also [28]. Under charge conjugation the matter part of
the Lagrange density transforms, up to boundary terms, as

L½ΨC; A;m� ¼ L½Ψ;−AT;m�; (9)

with Ψ ¼ ðΨ1;…;ΨNf
Þ. Therefore, the charge conjugated

spinor ΨC fulfills the same equations of motion as Ψ if the
gauge field obeys the condition

AT
μ ¼ −Aμ ¼ −Aa

μTa: (10)

Since every representation of G2 is real, the generators Ta
of the algebra g2 can be chosen as antisymmetric real-
valued 7 × 7 matrices, and hence Eq. (10) holds.
It is then possible to write the matter part of the action (2)

as a sum over 2Nf Majorana spinors λn,

L½Ψ; A� ¼ Ψ̄ðiγμð∂μ − gAμÞ −mÞΨ
¼ λ̄ðiγμð∂μ − gAμÞ −mÞλ; (11)

with λ ¼ ðχ; ηÞ ¼ ðλ1;…; λ2Nf
Þ. Here λ obeys the Majorana

condition λC ¼ Cλ̄T ¼ λ, λ̄C ¼ −λTC−1 ¼ λ̄, and it is
related to the Dirac spinor as

Ψ ¼ χ þ iη; Ψ̄ ¼ χ̄ − iη̄;

ΨC ¼ χ − iη; Ψ̄C ¼ χ̄ þ iη̄: (12)

Therefore, it follows that G2-QCD possesses an extended
flavor symmetry as compared to SUð3Þ-QCD.
The action is invariant under the SOð2NfÞV vector

transformations

λ ↦ eβ⊗ 1λ (13)

with a real and antisymmetric β ∈ soð2NfÞ, and under the
axial transformations

λ ↦ eiα⊗ γ5λ (14)

with a real symmetric matrix α. These do not form a group,
but the transformations with diagonal α form the group
Uð1Þ2Nf and those with α ∝ 1 among them generate the
axial Uð1Þ. Due to the Majorana constraint left- and right-
handed spinors cannot be rotated independently. The
general transformation is a composition of an axial and
a vector transformation,

λ ↦ eβ⊗ 1eiα⊗ γ5λ≡ Vðα; βÞγ
V ¼ Uðα; βÞ⊗PL þ U�ðα; βÞ⊗ PR;

(15)

with an Uð2NfÞ-matrix Uðα; βÞ ¼ eβeiα, in agreement with
the results in [28]. Following the same arguments as in
QCD it is expected that the axialUð1Þ is broken by the axial
anomaly such that only anextendedSUð2NfÞ × Zð2ÞB chiral
symmetry remains.

D. Chiral symmetry breaking and baryon number

In the presence of a nonvanishing Dirac mass term
(or a nonvanishing chiral condensate) the theory is no
longer invariant under the axial transformations. Therefore
the nonanomalous chiral symmetry is expected to be
broken explicitly (or spontaneously) to its maximal vector
subgroup,

SUð2NfÞ ⊗ Zð2ÞB ↦
m

SOð2NfÞV ⊗ Zð2ÞB; (16)

leading to Nfð2Nf þ 1Þ − 1 (would-be) Goldstone bosons.
The (baryon) chemical potential for a Dirac fermion

enters the partition function as an off-diagonal term in
Majorana flavor space,
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L ¼ Ψ̄ðiD −mþ iγ0μÞΨ

¼
�
χ̄
η̄

��
iD −m iγ0μ
−iγ0μ iD −m

��
χ
η

�
: (17)

With chemical potential but vanishing Dirac mass the
remaining chiral symmetry is thus the same as in QCD,

SUð2NfÞ ⊗ Zð2ÞB ↦
μ

SUðNfÞA ⊗ SUðNfÞV ⊗ Uð1ÞB=ZðNfÞ: (18)

For m ≠ 0 the remaining chiral symmetry is further broken
as

SUðNfÞA ⊗ SUðNfÞV ⊗ Uð1ÞB=ZðNfÞ ↦
μ;m

SUðNfÞV ⊗ Uð1ÞB=ZðNfÞ: (19)

If one first introduces a mass and only afterwards a
chemical potential, then one notices that for μ ≠ 0 the
Lagrangian is off diagonal in the Majorana basis such that
is not possible to transform the Majorana components of a
Dirac spinor independently. Therefore, the vector sym-
metry SOð2NfÞV of the massive theory is further reduced to
transformations that do not interchange the Majorana
spinors. However, complex transformations are allowed,
leading to the residual SUðNfÞV symmetry group.
The pattern of chiral symmetry breaking in G2-QCD is

summarized in Fig. 1. If chiral symmetry is spontaneously
broken, the axial chiral multiplet becomes massless accord-
ing to Goldstone’s theorem. In contrast to QCD, because of
the extended chiral symmetry group, in the case of a single
Dirac flavor it already contains a nontrivial SUð2Þ and
chiral symmetry breaking is possible. This is one reasonwhy
in the following only G2-QCD with a single Dirac flavor
Nf ¼ 1 is investigated. The chiral symmetry is then given by

SUð2Þ ⊗ Zð2ÞB: (20)

The corresponding creation operators for the Goldstone
bosons are given by

dð0þþÞ ¼ χ̄γ5η ¼
1

4i
ðΨ̄Cγ5Ψ − Ψ̄γ5ΨCÞ;

dð0þ−Þ ¼ 1ffiffiffi
2

p ðχ̄γ5χ − η̄γ5ηÞ ¼
1

2
ffiffiffi
2

p ðΨ̄Cγ5Ψþ Ψ̄γ5ΨCÞ:
(21)

As usual, the baryon number nB is here defined as the
transformation behavior of an operator under the Uð1Þ
subgroup of the vector chiral transformation,

Ψ↦ einBαΨ; (22)

such that a quark has the baryon number nB ¼ 1 and an
antiquark nB ¼ −1. With this definition of the baryon
number the Goldstone bosons have nB ¼ 2. In the single
flavor theory the scalar diquarks are the only Goldstone
bosons. The pseudoscalar mesons become part of the larger
Goldstone boson multiplet with the extended chiral
SUð2NfÞ symmetry for Nf ≥ 2.

III. SPECTROSCOPY FOR Nf ¼ 1 G2-QCD

Thepossible quark and gluon content of (colorless) bound
states is determined by the tensor products of G2-QCD.
Quarks in G2 transform under the seven-dimensional fun-
damental representation, gluons under the 14-dimensional
fundamental (and at the same time adjoint) represen-
tation. The decomposition of tensor products of the lowest-
dimensional representations into irreducible representations
is given by

ð7Þ⊗ ð7Þ¼ð1Þ⊕ð7Þ⊕ð14Þ⊕ð27Þ;
ð7Þ⊗ ð7Þ⊗ ð7Þ¼ð1Þ⊕4·ð7Þ⊕2·ð14Þ⊕3·ð27Þ

⊕2·ð64Þ⊕ð770Þ;
ð14Þ⊗ ð14Þ¼ð1Þ⊕ð14Þ⊕ð27Þ⊕ð77Þ⊕ð770Þ;

ð14Þ⊗ ð14Þ⊗ ð14Þ¼ð1Þ⊕ð7Þ⊕5·ð14Þ
⊕3·ð27Þ⊕ ���;

ð7Þ⊗ ð14Þ⊗ ð14Þ⊗ ð14Þ¼ð1Þ⊕ ���: (23)

FIG. 1. Pattern of chiral symmetry breaking in G2-QCD.
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Thus we expect to find bound states for every integer quark
number nq. Mesons have nq ¼ 0, diquarks nq ¼ 2, and
nucleons nq ¼ 3. In addition, there are more exotic bound
states of gluons and quarks, for example a hybrid with
nq ¼ 1. The latter statewould be especially important, as the
nucleons will only be stable in the chiral limit if the hybrid
is heavier than the nucleon. Of course, more complicated
states with higher baryon numbers are possible, as well as
glueballs, but are expected to play no role either in the
vacuum or at the moderate densities we investigate here.
In the following we give an overview of our implemen-

tation of possible bound states for Nf ¼ 2, see Tables I–IV.
The subset of states of the one-flavor model, treated
numerically below, are easily recognized.
In all tablesO is the interpolating operator used to extract

the mass in simulations, T the behavior of the wave
function under change of position, spin, color and flavor
(S stands for symmetric, A for antisymmetric), and the spin
(J), parity (P) and charge conjugation (C) quantum

numbers. States with baryon number 0 and 3 are also
present in QCD, while the others are additional states of
G2-QCD.
In our simulations the states of the two-flavor model are

included by partial quenching; that means we are dealing
with two valence quark flavors, but only one sea quark
flavor. In QCD, this is a surprisingly good approximation,
see e. g. [39], and there is no obvious reason why this
should be different in G2-QCD.
There is one particular caveat, which is due to the

limitation in computational resources for this project.
The diquark correlation function that we measure on the
lattice is given by

showing that the diquark masses are degenerate and its
correlation functions contain only connected contributions,
like for example the correlation function for the pion in
QCD. The corresponding correlation function for the η
meson reads

The difference between the η and the diquark correlation
function is only the disconnected contribution. Therefore,
uncertainties in the treatment of the disconnected contri-
bution can blur the line between the η and the diquarks.
Analog relations lead for the partially quenched calcu-

lations performed here to some relations between flavor
singlet diquark masses and flavor nonsinglet meson masses,

mdð0þÞ ¼ mπð0−Þ

mdð0−Þ ¼ mað0þÞ
mdð1þÞ ¼ mρð1−Þ

mdð1−Þ ¼ mbð1þÞ: (26)

Thus, for every diquark there is a flavor nonsinglet meson
with the same mass but opposite parity.

TABLE IV. Bound states with baryon number nB ¼ 3. For
details see text.

Name O T J P C

N TabcðūCa γ5dbÞuc SAAA 1/2 � �
Δ TabcðūCa γμubÞuc SSAS 3/2 � �

TABLE I. Bound states of G2-QCD with two flavors and
baryon number nB ¼ 0. For details see text.

Name O T J P C

π ūγ5d SASS 0 − þ
η ūγ5u SASS 0 − þ
a ūd SASS 0 þ þ
f ūu SASS 0 þ þ
ρ ūγμd SSSA 1 − þ
ω ūγμu SSSA 1 − þ
b ūγ5γμd SSSA 1 þ þ
h ūγ5γμu SSSA 1 þ þ

TABLE II. Bound states with baryon number nB ¼ 1. For
details see text.

Name O T J P C

N0 Tabcðūaγ5dbÞuc SAAA 1/2 � �
Δ0 TabcðūaγμubÞuc SSAS 3/2 � �
Hybrid ϵabcdefguaFbc

μνFde
μνF

fg
μν SSSS 1/2 � �

TABLE III. Bound states with baryon number nB ¼ 2. For
details see text.

Name O T J P C

dð0þþÞ ūCγ5uþ c:c: SASS 0 þ þ
dð0þ−Þ ūCγ5u − c:c: SASS 0 þ −
dð0−þÞ ūCuþ c:c: SASS 0 − þ
dð0−−Þ ūCu − c:c: SASS 0 − −
dð1þþÞ ūCγμd − d̄Cγμuþ c:c: SSSA 1 þ þ
dð1þ−Þ ūCγμd − d̄Cγμu − c:c: SSSA 1 þ −
dð1−þÞ ūCγ5γμd − d̄Cγ5γμuþ c:c: SSSA 1 − þ
dð1−−Þ ūCγ5γμd − d̄Cγ5γμu − c:c: SSSA 1 − −
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IV. ALGORITHMIC CONSIDERATIONS

In our lattice simulations we use a hybrid Monte Carlo
algorithm [40] to generate the probability distribution. Our
implementation is based on [35], where the algorithm was
applied to G2-Yang-Mills-Higgs theory.
For the gauge action we choose the tree-level improved

Symanzik gauge action [41–44]

S½U� ¼ β

Nc

�
c0
X
□

trð1 − ReU□Þþc1
X
□□

trð1 − ReU□□Þ
�
:

(27)

Here, U□ stands for the plaquette variable and U□□ for a
rectangular path around two plaquettes. The parameters are
given by c0 ¼ 1 − 8c1, c1 ¼ −1=2. Note that our conven-
tion is to factorize the number of colors from β.
For the fermion part, we use the ordinary Wilson action

without improvements [3]. Though we cannot expect good
chiral properties in this case, we can avoid rooting for
staggered fermion. Using unrooted staggered fermions, and
thus four flavors, would on the one hand create far too many
Goldstonebosons, andwouldpossiblyput the theory tooclose
or in the conformal window, according to the two-loop β-
function. Fermion implementations with better chiral proper-
ties are unfortunately beyond our numerical resources.
For the fermion determinant we use pseudofermions

together with a rational approximation of the inverse
fermion matrix (RHMC algorithm) [45]. In the case of
Dirac fermions the path integral is given by1

Z ¼
Z

DΨDΨ̄DUe−S½U�−trΨ̄DΨ

¼ N
Z

DU det ðD½U�Þe−S½U�

¼ N
Z

DU det ðM½U�12Þe−S½U�; (28)

where D is the fermion operator and M ¼ D†D is a
Hermitian and positive operator. Introducing NPF
complex-valued pseudo-fermions ϕ [46], one can write
the partition function as

Z ¼
Z

DUDϕ expf−SB½U;ϕ�g

with SB½U;ϕ� ¼ S½U� þ tr
XNPF

p¼1

ϕ†
pM−qϕp;

(29)

where SB is the bosonic action and q is given by q ¼ 1
2NPF

.
In the RHMC dynamics M−q is replaced by a rational
approximation according to

rðxÞ ¼ x−q ≈ α0 þ
XNR

r¼1

αr
xþ βr

: (30)

For any rational number q the coefficients α and β can
be calculated with the Remez algorithm [47]. The numeri-
cal accuracy of the approximation in the interval I ¼
½xMin; xMax� depends on the number of terms NR in (30)
and the numerical accuracy of the coefficients α and β.
In the following rSðxÞ;S ¼ fI; ϵ; qg denotes a rational
approximation of the function x−q with ϵ ¼
supx∈IjjrðxÞ − x−qjj.
In order to obtain an exact update algorithm, the bosonic

action is written in the form

SB½U;ϕ� ¼ S½U� þ SmdðMÞ þ SaccðMÞ þ SrwðMÞ; (31)

where the different contributions are given by

Smd ¼ tr
XNPF

p¼1

ϕ†
prSmd

ϕp;

Sacc ¼ tr
XNPF

p¼1

ϕ†
pðrSacc

ðMÞ − rSmd
ðMÞÞϕp;

Srw ¼ tr
XNPF

p¼1

ϕ†
pðM−q − rSacc

ðMÞÞϕp: (32)

The sum S½U� þ SmdðMÞ is used in the calculation of the
HMC molecular dynamics, the sum S½U� þ SmdðMÞ þ
SaccðMÞ in the Metropolis acceptance step of the HMC
algorithm and the last term SrwðMÞ in a reweighting step to
ensure an exact update algorithm.
In practice, the reweighting step is not necessary since it

is more efficient to choose rSacc
such that it approximates

M−q up to machine precision. For the generation of the
pseudofermion fields from a Gaussian distributed vector
the square root ofMq is needed as well. This is achieved by
an approximation rSpf

ðMÞ ≈Mq=2. To obtain an exact
update algorithm, the following choices are made:

rSpf
ðMÞ ¼ fI⊇ΣðMÞ; 10−16;−q=2g;

rSacc
ðMÞ ¼ fI⊇ΣðMÞ; 10−16; qg; (33)

where ΣðMÞ ¼ ½λmin; λmax� is the spectral range of the
Hermitian operator M. In most of the simulations, an
approximation for the pseudofermion and acceptance step
approximation of degree NR ¼ 25 is used in an inter-
val I ¼ ½10−7; 10�.
The free parameters left to optimize the algorithm are the

integration scheme used in the molecular dynamics and
the degree and approximation range of the molecular
dynamics rational approximation rSmd

ðMÞ. The inversions
of the matrix M in the rational approximations are
calculated with a multiple-mass conjugate gradient solver

1Below, tr denotes the integral over d-dimensional spacetime
and the trace over all internal degrees of freedom.
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(MMCG) [48] which is able to compute all terms of (30)
within a single inversion of the fermion matrix M.

A. Symplectic integration and multiple time scales

In order to speed up our simulation, we use integration
on different time scales in a HMC trajectory. The simplest
possible integration scheme is the leapfrog scheme [49].
The time evolution T from τ ¼ 0 to τ ¼ tHMC with step size
δτ ¼ tHMC

n with the leapfrog time evolution operator TLF can
be written as

TðtHMC; δτÞ ¼ TLFðδτÞn;

TLFðδτÞ ¼ TS

�
1

2
δτ

�
TUðδτÞTS

�
1

2
δτ

�
; (34)

where TS describes time evolution for the momenta and TU
for the fields. An improved second-order integrator is given
by the Sexton-Weingarten scheme [50],

TSWðδτÞ ¼ TS

�
δτ

6

�
TU

�
δτ

2

�
TS

�
2δτ

3

�
TU

�
δτ

2

�
TS

�
δτ

6

�
:

(35)

A fourth-order integrator is given by [51],

T4ðδτÞ ¼ TSðρδτÞTUðλδτÞTSðθδτÞ

× TU

�
ð1 − 2λÞ δτ

2

�
TSðð1 − 2ðθ þ ρÞÞδτÞ

× TU

�
ð1 − 2λÞ δτ

2

�
TSðθδτÞ × TUðλδτÞTSðρδτÞ;

(36)

with parameter values

ρ ¼ 0.1786178958448091;

θ ¼ 0.06626458266981843 and

λ ¼ 0.7123418310626056: (37)

Higher-order integrators are constructed in [52]. Further
improvement can be achieved by integration on multiple
time scales [53]. For this purpose an arbitrary integrator Ts
(here s stands for the integration scheme) is written as a
function of the basic time evolution operators TS and TU
and the integration step size δτ, Ts ¼ TsðTS; TU ; δτÞ.
If the action can be written as a sum of contributions Sj,

i.e. S ¼ S1 þ S2 þ…, then multiple time scale integration
can be defined by the recursion relation

Tj
sjðTSj ;TU ;δτjÞ ¼ Tj

sjðTSj ; ½Tj−1
sj−1ðTSj−1 ;TU ;δτj=njÞ�nj ;δτjÞ;

(38)

where Sj denotes the subset of the action that should be
taken into account in the computation of the “force” on the
jth time scale with step size δτj. Here, we often use a two-
time-scale integration, which is a combination of the
Sexton-Weingarten scheme with the leapfrog scheme,

TðδτÞ ¼ TS0

�
δτ

2

�
TSWðTS1 ; TU ; δτÞTS0

�
δτ

2

�

¼ TS0

�
δτ

2

�
TS1

�
δτ

6

�
TU

�
δτ

2

�

× TS1

�
2δτ

3

�
TU

�
δτ

2

�
TS1

�
δτ

6

�
TS0

�
δτ

2

�
: (39)

Here, the force according to S1 has to be calculated twice as
often as the force belonging to S0.
Another scheme often used is the combination of a

fourth-order integrator with the Sexton-Weingarten scheme
or with the simple leapfrog scheme. Multiple-time-
scale integration is efficient if parts of the action with
large contribution to the HMC force are cheap in
computation time.

B. Optimization of the RHMC algorithm

The efficiency of the RHMC algorithm depends crucially
on the lowest eigenvalues entering the condition number
κ ≈ λmax=λmin of the Hermitian operator used in the rational
approximation. The number of total inversion steps for a
given precision δmax (the inversion precision for the lowest
mass, i.e. the lowest value of βr) in the MMCG solver
increases significantly with decreasing values of the con-
stants βr in the rational approximation. Fortunately, the
force contribution in the RHMC algorithm is for small
constants also significantly lower than for larger constants
(the reason is that αr decreases also with decreasing βr).
The force from these lowest eigenmodes becomes more
important only in the case of very small eigenvalues.
This feature of the RHMC algorithm can now be used to

optimize the algorithm with respect to computation time.
Two different strategies are useful: The first is to integrate
the terms with smaller βr on a coarser time scale than the
terms with larger βr, i.e. larger force. The second is to
increase the lower bound of the approximation interval,
resulting in larger values of βr and a possibly smaller
degree of the rational function used for the molecular
dynamics. This reduces the number of CG steps for a given
inversion precision δmax significantly.
Further optimization can be achieved by increasing the

precision δmax used for the inversion, also leading to a
significantly reduced number of CG steps. The best choice
of course depends on the given problem and is in general a
combination of both strategies. Further optimizations
implemented include even-odd preconditioning [54] as
well as an exact computation of a few lowest eigenvalues
in the MMCG solver. According to [55], the optimal
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number of pseudofermions is roughly given by the con-
dition number of the fermion matrix, Nopt

PF ≈ 1
n ln κðMÞ.

C. Fermionic correlation functions

For the computation of the connected part of the
correlation function, the fermion matrix is inverted on a
pointlike source in space and time at a randomly chosen
lattice point y, leading to the point-to-all propagator. Here,
Nc × Ns (number of colors times the dimension of the
representation of the Clifford algebra) inversions of the
fermion matrix with the CG solver have to be made.
The disconnected diagrams, and for instance observables

like the chiral condensate or the quark number density, are
calculated with the stochastic estimator technique [56,57].
Here every element of the fermion propagator is calculated
as an ensemble average over a noisy estimator η,

~Δij ¼ lim
Nest→∞

hη†jχii with

χ ¼ ~Δη and lim
Nest→∞

hη†i ηji ¼ δij: (40)

In practice, the ensemble average is taken over a finite
number of Nest noisy estimators, where the source η is
given by Gaussian or Zð2Þ noise, satisfying the last
equation in (40). The sink is again calculated with a CG
solver, making a total of Nest matrix inversions to obtain an
estimator for every matrix element of the propagator. In the
case of local lattice averaged observables, like the chiral
condensate, a number of Nest ≈ 10 estimators is sufficient
to get a reliable result. For the disconnected part of four-
point correlation functions (many) more estimators are
necessary.
Note that we extract the masses from the correlators CðtÞ

by fits of the type

CðtÞ ¼ a coshðmtÞ þ b coshðm�tÞ; (41)

or with a single-cosh fit, where a double-cosh fit was not
possible. The quoted errors denote only the statistical error
from a simultaneous up- or down-shift of the correlation
function by one standard deviation.
We identify the smaller of the two parameters m and m�

in (41) as the ground state mass, and mark the next higher
mass with an asterisk‘*’. We do not make any attempt to
identify whether these are genuine excited states or merely
scattering states, and, as noted in Sec. III, we use a single
operator per quantum number channel. We also do not
attempt to identify whether the lowest state is a genuine
bound state or a scattering state, even if it appears
energetically favorable for them to decay. For some states
we are also limited by statistics, and thus could not measure
the mass of all relevant channels. This applies especially to
the hybrids. We therefore have to assume in the following
that at least the ground states are reasonably stable states.

V. LATTICE SPECTROSCOPY RESULTS

In order to fix our parameters we compute the diquark
masses and the proton mass for different parameters of the
inverse gauge coupling β and the hopping parameter κ on a
83 × 16 lattice. We make here the implicit assumption that
the nucleon is (quasi) stable, i.e. it is not energetically
favorable or possible for it to decay into a hybrid and a
diquark. Since the hybrids were too noisy to obtain reliable
results, we could not check this assumption.
To assess the distance from the chiral limit, we first

compare the Goldstone sector to the nucleon sector. In
Fig. 2 the dð0þÞ mass is shown as a function of the
inverse gauge coupling β for a fixed value of the hopping
parameter κ. In Fig. 3 the proton mass is plotted for the
same parameters.
Care has to be taken, as G2-QCD possesses an unphys-

ical lattice bulk phase at strong coupling where monopoles
condense. The critical inverse gauge coupling for the
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FIG. 2 (color online). Mass of the pseudo-Goldstone boson as a
function of β for κ ¼ 0.147.
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FIG. 3 (color online). Mass of the proton as a function of β for
κ ¼ 0.147.
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transition to the physical weak coupling phase depends on
the hopping parameter. For κ ¼ 0.147 it is located around
β ≈ 0.90. We observe that in the bulk phase the lattice
diquark mass depends only rather weakly on the gauge
coupling which is unphysical. Above the transition, the
diquark mass in lattice units decreases with increasing β as
it must in order to define a proper continuum limit. Since
the bulk transition is a crossover (at least for infinitely
heavy quarks [34,58]) we have to choose a gauge coupling
for our simulations that is far above the transition point. For
our spectroscopy results we have checked that the monop-
ole density is always below 1 percent of the monopole
saturation density in the bulk phase.
For heavy quarks the ratio of diquark and proton mass

should be 2/3 while it should go to zero in the chiral limit.
A second mass ratio to fix the bare parameters is the ratio
of the 0þ and the 1þ diquark. For heavy quarks only the
number of quarks is important and the ratio should be 1,
while in the chiral limit the spin zero diquark becomes
massless while the spin one diquarks stay massive. The
results for the masses are shown in Fig. 4 as a function of κ
and fixed β. Indeed we see that for smaller Goldstone
masses the ratio increases. In the following we discuss two
different ensembles with parameters shown in Table V. In
the following, we will set our mass scale by the proton
mass, mN ¼ 938 MeV.
The mass spectrum for the heavy quark ensemble is

shown in Fig. 5. The diquark masses are almost degenerate.
Also the η has essentially the same mass as the diquarks.
For the nucleons there is almost no mass splitting between
parity even and odd states.

In the light ensemble, shown in Fig. 6, the diquark
masses are no longer degenerate. We observe a significant
mass splitting between parity even and odd states as well
as between scalar and vector diquarks. In particular, the
Goldstone boson becomes the lightest state, with the η also
being somewhat heavier. This mass difference comes
entirely from the disconnected part of the meson correlation
function in (25). For the nucleons we also observe different
masses for parity even and odd states and the spin 1/2 and
spin 3/2 representations. Thus, the spectrum is indeed
consistent with spontaneous chiral symmetry breaking, in
accordancewith quenched [27] and previous results [29]. In
particular, we find three clearly different scales in the light
spectrum: a Goldstone scale, an intermediate boson scale
set by the remaining diquarks, and the nucleon scale set by
the N and Δ.
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FIG. 4 (color online). Mass of the 0þ and the 1þ diquark as a
function of κ for β ¼ 0.96.
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FIG. 5 (color online). Mass spectrum of the heavy ensemble.

FIG. 6 (color online). Mass spectrum of the light ensemble.

TABLE V. Parameters for two different ensembles. All results are from a 83 × 16 lattice.

Ensemble β κ mdð0þÞa mNa mdð0þÞ [MeV] a [fm] a−1 [MeV] MC

Heavy 1.05 0.147 0.59(2) 1.70(9) 326 0.357(33) 552(50) 7 K
Light 0.96 0.159 0.43(2) 1.63(13) 247 0.343(45) 575(75) 5 K
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VI. G2-QCD AT ZERO TEMPERATURE AND
FINITE BARYON DENSITY

A. Overview

In [29] we provided an overview over the full phase
diagramofG2-QCDas a function of temperature and baryon
density. Wewill now show that the different hadronic scales
observed in the spectra in Figs. 5 and 6 reflect themselves
in the structure of the finite density phase diagram.
The first scale, the Goldstone scale, must be related to the

onset transition to baryonic matter, since the Goldstones
carry a quark number. This follows immediately from the
silver blaze property of quantum field theories [59] at zero
temperature and finite density.
To investigate this regime, we have calculated the quark

number density nq given by

nq ¼
1

V
∂ ln Z
∂μ : (42)

In [29] we observed that for small values of the chemical
potential the system remains in the vacuum, i.e. the quark
number density vanishes, which is expected due to the
silver blaze property. When increasing the chemical poten-
tial further the quark number density starts rising, indicat-
ing that baryonic matter is present and the system is no
longer in the vacuum state. At even larger values of μ the
quark number density saturates. The value of the saturation
matches the theoretical prediction of nq;max ¼ 2Nc ¼ 14
[29]. This is depicted in Fig. 7.
The same figure shows the dependence of the Polyakov

loop on the chemical potential from μ ¼ 0 up to saturation.
The decrease of the Polyakov loop close to saturation also
indicates that the system enters a quasiquenched phase,
where the quark dynamics freezes out [19,29]. This

emphasizes that for aμ ≈ 1 lattice artifacts start to dominate
the system. However, this is for both ensembles at an
already high quark chemical potential of about 550 MeV,
corresponding to a nucleon chemical potential of 1.65 GeV.
Therefore we focus on the region aμ ≤ 1 from now on.

B. Scales at finite density

A closer look into this phase diagram at zero temperature
shows that the quark number density jumps, or very quickly
rises, to a very small, but nonzero, value already at a very
small chemical potential. In Fig. 8 this onset transition is
compared to half of the mass of the lightest baryon, the
Goldstone 0þ diquark. For various values of β very good
agreement is found. This is the expected manifestation of
the silver blaze property for baryon chemical potential, i.e.
half of the mass of the lightest bound state carrying a
baryon number is a lower bound for the onset transition to a
nonvacuum state.2

For larger values of the chemical potential a series of
plateaus develop where the quark number density is almost
constant, see Fig. 9 for the heavy ensemble and Fig. 10 for
the light ensemble. In both cases, we observe at inter-
mediate chemical potential interesting structures, which
will be discussed below. At around aμ ¼ 0.6 for the heavy
ensemble and aμ ¼ 0.55 for the light ensemble the quark
number density starts increasing again and no further
plateau is observed.
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FIG. 7 (color online). Quark number density in lattice units
(red stars) and Polyakov loop (green squares) as a function of
chemical potential. Saturation occurs when the finite lattice starts
to get filled with the maximum number of fermions, which leads
to an artificial behavior above aμ ≈ 1.
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FIG. 8 (color online). The onset transition observed in the quark
number density is compared to half of the mass of the lightest
state, the 0þ diquark, for different gauge couplings β, and thus
different quark masses.

2Note that a finite lattice is strictly speaking never at zero
temperature, and therefore the silver blaze property is never
exactly realized. The finiteness of the spatial volume has
analogous effects. Although they are exponentially suppressed
in general, regions close to a phase transition are very sensitive to
those finite-size effects. We do indeed observe such artifacts.
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It is quite interesting to compare these transitions to the
masses of the diquarks and baryons normalized by their
baryon number.
For the heavy ensemble, in addition to the silver blaze

transition due to the diquark states we find good agreement
of the Δ mass with the point where the quark number
density increases without building a plateau.
For the light ensemble the two transitions at aμ ≈ 0.22

and aμ ≈ 0.32, each followed by a plateau (see Fig. 10), can
be related to the observation of the splitting of the 0þ and
0− diquark masses. Again the transition at aμ ≈ 0.55 is in
good agreement with the Δ mass divided by 3.
For both ensembles our observation is thus that tran-

sitions in the quark number density approximately coincide
with various hadron masses divided by their baryon
number. For a bosonic hadron a plateau is formed after
the transition, while for a fermionic hadron the quark
number density increases further with increasing chemical

potential. In both ensembles we observe also a transition at
aμ ≈ 0.52 (heavy ensemble) and aμ ≈ 0.38 (light ensem-
ble) that does not coincide with any of our spectroscopic
states. Since this transition is followed by a plateau we
speculate that this state might also be a bosonic hadron.
A possible candidate could for example be a bound state of
four quarks. However, this may also relate to some of the
known states, if their masses turn out to be significantly
dependent on the chemical potential. It is also possible that
additional collective excitations arise if any of the phases
sustain a Bose-Einstein condensate, as has been argued for
the low-density phase in two-color QCD [17–23].
This question is not simple to decide, as it is not clear

how to reliably and unambiguously determine the mass of
(quasi) particles at finite density in lattice simulations.
However, it will be crucial to understand it in the future.

C. Free fermions

Further interesting insights can be gained by comparing
the results with the corresponding ones for noninteracting
systems of fermionic particles. On the one hand, this can
test whether the idea of (quasifree) fermions or fermionic
quasiparticles describe the theory adequately at some
densities. On the other hand, the saturation effects should
also yield a quasifree behavior, indicating the onset of
lattice artifacts. We will only consider here the heavy
ensemble, as for the light ensemble the acceptance rate
dropped seriously in the range of aμ ¼ 0.7 to aμ ≈ 1.5, and
therefore we cannot really assess the intermediate and
saturation regime yet.
We begin with the fermion density for a theory of free

lattice (Wilson) fermions with mass ~m ¼ mþ d ¼ 1=ð2κÞ.
It can be derived in analogy to the staggered result of [18]
and is given by

nfreef ðμ; ~mÞ=nsatf ¼
X
~p

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~p2

0

p
ðPi ~pi − ~mÞ

4þ ~m2 − 2 ~m
P

μ ~pμð
P

ν>μ ~pν − ~mÞ
(43)

where the sum extends over all lattice momenta

~p0 ¼ cos

�
2π

Nt

�
k0 þ

1

2

�
− iμ

�
and

~pi ¼ cos

�
2πki
Ns

�
with

k0 ¼ 1…Nt and ki ¼ 1…Ns: (44)

When we tried to fit our data for the heavy ensemble to
this formula with fitting parameters κ (which enters ~m) and
nsatf we observed that the behavior changes at around
aμ ≈ 1, see Fig. 11. Above aμ ¼ 1 the best fit for the
data yields κ ¼ 0.162 and nsatf ¼ 14.4. This is in good
agreement with the values for free quarks of κ ¼ 0.147 and

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

FIG. 9 (color online). Shown is the quark number density
compared to baryon mass divided by baryon number for the
heavy ensemble.
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FIG. 10 (color online). Shown is the quark number density
compared to baryon mass divided by baryon number for the light
ensemble.
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nsatf ¼ nsatq ¼ 14. Although we expect that for very large
values of μ the theory is exactly described by free quarks, in
this intermediate region the Polyakov loop is not constant,
and also the contribution of gluons to the free energy has
not yet reached its quenched limit [29]. This might explain
deviations from the exact values. Still, the rather good fit
suggests strongly that for aμ > 1 lattice artifacts become
important.
Below aμ ¼ 1 the data are very well described by

κ ¼ 0.211 and nsatf ¼ 4.02. The theoretical value for the
saturation of a lattice gas of free Δ baryons is nsatB ¼ 4. This
suggests that between aμ ≈ 0.6 and aμ ≈ 1.0 the main
contribution to the quark number density may come from
fermionic baryons, in agreement with our findings in the
last section. Somewhat surprisingly these fermionic bary-
ons would behave very much like a noninteracting gas. One
should note, however, that formally the κ value yields a
negative mass. This is a consequence of using Wilson
fermions. In principle we would have to correct for the
additive mass shift. However, we do not yet know κcritical to
do so. Determining it will require substantial amounts of
calculation time, currently beyond our reach.

VII. CONCLUSIONS

We have presented a first study of the hadronic spectrum
of G2-QCD. We found that for sufficiently small quark
masses a splitting of the spectrum is observed into a

Goldstone sector, an intermediate bosonic sector, and a
nucleonic sector, quite similar to the situation in ordinary
QCD. The spectrum also shows strong evidence of sponta-
neous chiral symmetry breaking, like the emergence of the
aforementioned Goldstone bosons, or the nondegeneracy
of parity partners. Therefore, the hadronic physics appears
to be qualitatively similar to QCD, even though there are
many more states in the spectrum. Unfortunately we could
not reliably determine the mass of the lightest hybrid,
though this would be crucial in assuring that the nucleon
dynamics is truly similar to QCD. This will require a much
more sophisticated spectroscopy analysis in the future.
We have also found evidence that the scale hierarchy of

the vacuum reflects itself in the phase structure at finite
densities. We found a number of transitions, in particular
for light quark mass, which correlate with the scales of the
hadron spectrum. In fact, we even found an additional
transition. This already indicates a very rich phase structure
of the theory at finite densities. We also find some hints that
a phase dominated by fermionic hadrons may exist at quark
chemical potentials of about 300–600 MeV.
Besides understanding in more detail the already

observed phase structure, the next logical step is to go
to smaller lattice spacings and larger lattices. This would
ensure that we can disentangle the transition occurring at
the nucleon scale from possible lattice artifacts. Also, larger
volumes will be necessary to reduce artifacts from the
residual temperature. Both steps are necessary to show
whether a genuine nuclear matter phase is present, which
would be of central importance for a qualitative under-
standing of fermionic effects in finite density QCD and,
eventually, neutron stars.
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