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All current experiments searching for an electron electric dipole moment (EDM) de are performed with
atoms and diatomic molecules. Motivated by significant recent progress in searches for an EDM-type
signal in diatomic molecules with an uncompensated electron spin, we provide an estimate for the expected
signal in the Standard Model due to the Cabibbo-Kobayashi-Maskawa (CKM) phase. We find that the main
contribution originates from the effective electron-nucleon operator ēiγ5eN̄N, induced by a combination of
weak and electromagnetic interactions at OðG2

Fα
2Þ, and not by the CKM-induced electron EDM itself.

When the resulting atomic P; T-odd mixing is interpreted as an equivalent electron EDM, this estimate
leads to the benchmark dequive ðCKMÞ ∼ 10−38 ecm.
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I. INTRODUCTION

Electric dipole moments (EDMs) of nucleons, atoms and
molecules, have for many years provided some of our most
sensitive probes for new sources of T violation in nature, as
required for baryogenesis. There has been significant
experimental progress in the past few years [1–4], most
recently with the announcement of an impressive limit on
T-odd effects in the polar molecule ThO, interpreted as a
stringent constraint on the electron EDM, jdej < 8.7 ×
10−29 ecm [4]. The new physics reach of these experiments
varies depending on the source of T (or CP) violation, but
can reach hundreds of TeV [5].
The Standard Model (SM) itself has two sources of CP

violation: the Kobayashi-Maskawa phase, characterized by
the reduced Jarlskog invariant J ¼ ImðVtbV�

tdVcdV�
cbÞ ∼

3 × 10−5 [6], and θQCD ¼ θ0 − ArgðYuYdÞ which is con-
strained by the limit on the neutron EDM to be below 10−10

[3]. Since the value of θQCD is unknown, for the purposes of
this paper we will treat it as a source of new physics, and
focus our attention on the Kobayashi-Maskawa phase [7] in
the Cabbibbo-Kobayashi-Maskawa (CKM) mixing matrix,
which is now well tested as the dominant source of CP
violation in the kaon and B-meson system. Given the
continuing improvements in experimental sensitivity to
EDMs, it is natural to ask about the size of the observable
EDMs, dobs, induced by the CKM phase. In practice,
calculations of these contributions are not available with
high precision, and the estimates represent in effect the
ultimate level of sensitivity of EDM searches to new
physics. One can turn this statement around and ask, given
the limited calculational precision available for dobsðJ Þ,
what is the largest conceivable size of these CKM-induced
contributions? Answering this question would assist us in
defining a “line in the sand,” corresponding to the level at
which a nonzero EDM detection would unambiguously be
due to new physics. However, the difficulty in quantifying

the size of CKM-induced EDMs is apparent on noting that
similar physical mechanisms, e.g. penguin diagrams in the
up-quark sector, are at play in evaluating CP-odd observ-
ables in kaon physics. Specifically in the case of ϵ0=ϵ, the
hadronic matrix elements are enhanced by factors ofOð10Þ
compared to naive expectations.
CKM contributions to a number of observable EDMs

have been discussed in the literature, as we will review
below. However, the case of atoms and molecules where the
angular momentum is carried by an uncompensated
electron spin (leading to what is often referred to as a
“paramagnetic EDM”) has not been explored in detail.
Paramagnetic EDMs are an important class of observables,
allowing for relatively precise theoretical calculations of the
dependence on underlying CP-odd sources of new physics,
such as the electron EDM. Providing an estimate of the
CKM contribution, and thus the effective threshold for
EDM searches, is the main goal of this work and the result
is summarized below.
First, we define the electron EDM operator de, and the

semileptonic CP-odd operator CSP,

LCP ¼ −
i
2
deēFσγ5e −

GFffiffiffi
2

p CSPN̄Nēiγ5eþ � � � : (1)

CSP does not depend on the nuclear spin, gives a con-
tribution to the atomic/molecular EDM even for spin-zero
nuclei, and is coherently enhanced by the number of
nucleonsA. This singles outCSP as likely themost important
contribution to paramagentic EDMs among a multitude of
other CP-odd four-fermion operators. In general CSP can
have isospin dependence, which for this paper we will
disregard, taking CSP to be an approximate isoscalar. As
defined above, with the Fermi constant factored out, CSP is
dimensionless.
One can write the shift of atomic/molecular energy levels

under an applied external field Eext as
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ΔE
Eext

¼ fdðde þ rCSPÞ þ � � � : (2)

The coefficient fd reflects the relativistic violation of the
Schiff theorem, and provides large enhancement factors [8]
for heavy paramagnetic atoms, and particularly for polar-
izable paramagnetic molecules.1 The coefficient r in Eq. (2)
has the dimensions of a dipole, ecm, and is determined by a
ratio of the atomic matrix elements of the CSP and de
operators. Over the years, significant theoretical effort has
gone into computing the fd and r coefficients for different
molecular and atomic species; see e.g. Refs. [9–13].
If only one species is used for an EDMmeasurement, the

effects of CSP and de cannot be separated (see e.g.
Refs. [14,15] for recent discussions). Since the experimen-
tal sensitivity is usually reported as an inferred limit on the
electron EDM, it is convenient to parametrize the effect of
CSP as a contribution from an equivalent EDM,

dequive ≡ rCSP: (3)

Taking the three leading experimental limits on the electron
EDM, we list the relevant r coefficients [9–13],

rTl ¼ 1.2 × 10−20 ecm;

rYbF ¼ 0.88 × 10−20 ecm; (4)

rThO ¼ 1.33 × 10−20 ecm: (5)

Notice that although the fd coefficients for these systems
actually differ widely, the r coefficients are approximately
the same, reflecting the very similar dynamical nature of the
P; T-odd perturbations to the electron Hamiltonian gen-
erated by both terms in Ref. (1). This leaves only a mild
species dependence in dequive .
In this paper, we find that in the Standard Model

the CKM-induced CSP contribution dominates the direct
contribution from de, and estimate it as

CSPðJ Þ ∼ 10−18; (6)

where J is the reduced Jarlskog invariant. Using the r
coefficients in Eq. (4), we can translate this into a
characteristic CKM background to searches for the electron
EDM,

dequive ðJ Þ ∼ 10−38 ecm: (7)

This is roughly 9 orders of magnitude below the best
current sensitivity to de, from ThO [4].
The rest of this paper is organized as follows. In the next

section, we briefly review the CKM contributions to
fundamental fermions and other observable EDMs.

In Sec. III, we turn to the CKM contribution to para-
magnetic EDMs, and obtain the result (6). We finish with
some concluding remarks in Sec. IV.

II. OVERVIEW OF EDMS FROM THE
CKM PHASE

In this section, we briefly review existing computations
of EDMs induced by the CKM phase. We will organize the
discussion around a simple counting scheme, using the
basic symmetries to estimate the largest viable contribution
to different classes of EDMs. In particular, CKM contri-
butions to flavor-diagonal observables necessarily vanish at
first order in the weak interaction, due to the conjugated
weak vertices. Nonzero contributions only start at second
order ∝ G2

F, and are necessarily proportional to the reduced
Jarlskog invariant

J ¼ s21s2s3c1c2c3 sin δ≃ 2.9 × 10−5; (8)

where si and ci are the sines and cosines of the CKM angles
in the Kobayashi-Maskawa basis and δ is the complex
phase. The antisymmetric flavor structure ofJ also leads to
additional loop-level suppression of the EDMs of quarks
and leptons in perturbation theory [16,17].

A. Fundamental fermion EDMs

In addition to the general constraints above, the EDM
operator for quarks and leptons breaks chiral symmetry,
and thus the coefficient must be at least linear in a chirality
breaking parameter. In perturbation theory, this is generi-
cally the fermion mass mf itself. It turns out that the
antisymmetric flavor structure of J actually ensures that all
two-loop contributions to dq vanish [16], and the second-
order weak exchanges need to be dressed with a further
gluonic loop. Thus, the d-quark EDM for example arises
only at three-loop order [18,19], and takes the general form

dðestÞd ðJ Þ ∼ eJ
αsα

2
W

ð4πÞ3
md

m2
W

m2
c

m2
W
< 10−34 ecm: (9)

This estimates assigns αi=ð4πÞ per corresponding loop, and
ignores additional numerical suppression or modest
numerical enhancement by logarithms of quark mass ratios
(including the dependence on mt). The factor of m2

c enters
due to the flavor structure of J . The corresponding
contribution to du is instead proportional to mum2

s , and
somewhat further suppressed. The most precise calculation
of dqðJ Þ can be found in Ref. [19].
EDMs of leptons are even further suppressed. A generic

de diagram involves a quark loop with a minimum of four
W-boson vertices. Such a loop can be attached to the
electron line either by two W-boson lines [Fig. 1 (left)], at
third order in the weak interaction, or via three virtual
photons [Fig. 1 (right)], at even higher loop order.

1Molecular polarization is a nonlinear function of the applied
electric field, and so fd itself is a nonlinear function of Eext.
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Moreover, as mentioned before, the full three-loop
contribution to de vanishes once again on account of
the implicit antisymmetry of J [17]. An additional
gluonic loop is required to generate de at four-loop order.
Thus, one can estimate the results for the two families of
diagrams in Fig. 1, taking into account all the relevant
coupling constants,

dFig.1 ðleftÞe ∼ eJ
mem2

cm2
s

m6
W

α3Wαs
ð4πÞ4 ;

dFig.1 ðrightÞe ∼ eJ
mem2

cm2
s

m4
Wm

2
had

α2Wα
3

ð4πÞ5 ; (10)

where in the second line mhad is a soft QCD mass scale
(e.g. mπ) accounting for the fact that the loop may be
saturated in the IR. To obtain an estimate, it suffices to take
mhad ∼ms. Both contributions to de are highly suppressed
and give comparable values,

deðJ Þ ∼Oð10−44Þ ecm: (11)

A very small number indeed!
To conclude this section, we discuss the origin of the

quark mass suppression factors in Eqs. (9) and (10) in more
detail. These expressions contain an extra factor of m2

s
compared to the d-quark EDM estimate, Eq. (9). This factor
originates from the closed quark loop of Fig. 1, where a
complete antisymmetrization over d- ,s-, and b-quark
masses is applied compared to the open quark line with
the d flavor as an in and out state, where only the s and b
flavors internal to the diagram are antisymmetrized. As a
result, the quark diagram can contain ms, mb factors in a
logarithm, dd ∝ logðm2

b=m
2
sÞ and the power-like Glashow-

Iliopoulos-Maiani (GIM) suppression bym2
s is avoided. For

the closed quark loop, complete antisymmetrization leads
to logðm2

b=m
2
sÞ þ logðm2

d=m
2
bÞ þ logðm2

s=m2
dÞ ¼ 0, and

consequently the power-like GIM suppression by m2
s

necessarily arises. Explicit calculations of the quark loop
in the CKM model giving rise to the triple-gluon Weinberg
operator [20] and the magnetic quadrupole moment of the
W boson [21] confirm the power suppression by m2

s. One

can also argue that since Fig. 1 (left) is third order in the
electroweak coupling, the 1=M6

W factor is inevitable, as the
W bosons can be integrated out to give contact ∼GF
interactions [18]. Then a factor of ðmassÞ5 is required in the
numerator, and mem2

sm2
c is the only combination of quark

and electron masses that is consistent with all the sym-
metries of the problem. If, for instance, m2

s=M2
W were to be

absent, it would signal a quadratic divergence in the contact
limit with loop momenta on the order of M2

W . If that were
possible, all down-type quarks could be considered mass-
less and setting ms ¼ md would nullify the answer.
Retaining the finite m2

s=M2
W correction returns us to the

estimate (10).

B. Nucleon EDMs

In practice, these primary fermion EDMs are not the
dominant source of the CKM-induced EDMs of nucleons,
and diamagnetic atoms. The largest CKM contributions
generically arise through CP-odd multiquark operators,
containing (part of) the required flavor structure to produce
J . For four-quark operators of this type, there is also the
possibility of enhanced hadronic-scale contributions when
these operators contribute to the interactions between
nucleons and light pseudoscalar mesons. To get an idea
of the size of possible enhancements, we can write down an
expression for the nucleon EDM in a form which accounts,
as above, for the irreducible requirements, and makes no
further assumptions about small parameters,

dðlimÞ
N ðJ Þ ∼ ecnJG2

Fm
3
had

< 10−29 ecm × cn

�
mhad

300 MeV

�
3

: (12)

In this limiting estimate, the chiral parameter mhad is taken
to be characteristic of the quark condensate. In all practical
estimates, the overall coefficient cn ≪ 1, but is not known
with great precision.
The antisymmetry of J requires that the operators

obtained by combining weak currents at second order must
contain at least two sea-quark flavors, e.g. s and c.
Integrating out the c; t quarks at one-loop via a strong
penguin (see Fig. 2) allows for the possibility of an enhanced
phase, with the GIM cancellation factor being rather large,
lnðm2

t =m2
cÞ [or rather lnðm2

W=m
2
cÞ since m2

W < m2
t ]. This

penguin-induced four-quark operatorwas originally used by
Khriplovich and Zhitnitsky to estimate dnðJ Þ via CP-odd
nπΣ and nKp vertices entering a pion loop [22]. In these
diagrams, the chiral scale m3

had ∼ hq̄qim2
π=ðfπmsÞ ∼

ð300 MeVÞ3 is enhanced, while the coefficient cn roughly
scales as cn ∼ αs=ð4πÞ lnðmK=mπÞ ∼ 10−2, leading to
dn ∼ 10−32 − 10−31 e × cm. A somewhat larger estimate,
dn ∝ 10−30 e × cm, was obtained in Ref. [23].
An alternative to generating four-quark operators at

one-loop is to integrate out charm at tree level, generating

FIG. 1. Electron EDM de induced by the CKM phase via a
closed quark loop. The contributions shown are (left) Oðα3WαsÞ
and (right) Oðα2α3Þ.
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a six-quark operator with a coefficient ∝ 1=m2
c. Recently,

evidence for enhanced CP violation in theD-meson system
led to further scrutiny of this contribution by Mannel and
Uraltsev [24]. While avoiding the corresponding loop
factor, there is suppression by 1=m2

c and it remains difficult
to obtain reliable estimates for the matrix element of
this dimension-nine operator over the nucleon. Scaling
estimates suggest cn ∼m2

had=m
2
c ∼ 10−2 again leading to

dn ∼ 10−31 e × cm [24].

C. Diamagnetic EDMs

Atomic EDMs can be characterized in a similar way, but
one needs to account for the Schiff theorem. We will focus
on the case of paramagnetic systems below, but for
diamagnetic atoms (such as Hg) Schiff screening sup-
presses the induced atomic EDM by a factor of roughly 103,
barring special cases with deformed nuclei. The leading
contribution is determined by the Schiff moment S, and in
addition to contributions from the individual nucleon
EDMs, there is also the possibility of an enhanced con-
tribution from the CP-odd nucleon potential. Indeed, the
penguin diagram in Fig. 1 will contribute to N̄NN̄iγ5N
interactions and thus to the CP-odd nucleon potential,
via e.g. kaon exchange. This mechanism was first studied
in Ref. [25], and reconsidered in Ref. [26], and may provide
a contribution to SðJ Þ which is somewhat larger than
the nucleon EDMs. Focussing on dHg, the dominant
contribution takes the form [27]

dHgðJ Þ ∼ −10−17
�
SðJ Þ
efm3

�
ecmþ � � �

∼ 10−25ηnpðJ Þ ecm; (13)

where ηnp provides a dimensionless normalization of
the four-nucleon interactions; schematically Lnuc ¼
1ffiffi
2

p GFηnpN̄NN̄iγ5N. The precision of the nuclear calcula-

tion leading to the second line above is under scrutiny in the
recent literature [28] (see also Ref. [15]), but will be
sufficient for our discussion below.

An estimate for ηnpðJ Þ can be obtained along the same
lines as those above. Recalling that a factor GF forms part
of the definition, we expect the leading contribution to
emerge at first order in GF, so the estimate takes the form

ηðlimÞ
np ðJ Þ ∼ cSchiffJGFm2

had

∼ 10−11 × cSchiff

�
mhad

300 MeV

�
2

: (14)

For cSchiff ∼Oð1Þ, this is roughly in line with the
chiral constraints and matrix element estimates of
Donoghue et al. [26]. This implies a CKM contribution
to dHgðJ Þ < 10−35 e × cm.

III. CKM CONTRIBUTION TO THE
ELECTRON-NUCLEON CP-VIOLATING

INTERACTION

We turn now to the main topic of this paper, namely the
CKM contribution to “paramagnetic” atoms and molecules
containing an uncompensated electron spin. As discussed
earlier, we are interested in the EDM-equivalent contribu-
tion from CSP, Eq. (3). The highly suppressed nature of
deðJ Þ reviewed above implies that the dominant CKM
background arises from CSP, which we will proceed to
compute below. We first consider a simple scaling estimate
along the same lines as those above. Accounting for the
required chirality flips, and the factor of e4=16π2 ¼ α2

required to connect electron and nucleon (or quark) lines
with the minimal loop factor suppression, we have the
following limiting value:

CSPðJ ÞðlimÞ ∼ cCJGFα
2memhad

∼ 3 × 10−18 × cC

�
mhad

300 MeV

�
: (15)

As we will discover shortly, a more elaborate estimate turns
out to be about an order of magnitude lower than Eq. (15)
with cC ∼Oð1Þ. However, it is already apparent that the
CKM-induced dequive will not exceed 10−37 e × cm.

A. Effective electron-photon-nucleon
CP-odd operator

The two-photon exchanges (2PEs) between the electron
and the nucleon exhibited in Fig. 3 suggest that it is natural
to first identify the local CP-violating nucleon operator,
obtained in the limit when the hadronic scales are consid-
ered to be larger than the virtuality k of the photon loop.
The leading dimension two-photon operator is N̄NFμν

~Fμν

(we ignore nuclear spin-dependent contributions such as
N̄iγ5NFμνFμν). The pion exchange diagram, shown in
Fig. 3 (right), can be interpreted in precisely this form.
We will instead focus on another important, and in some
sense more useful, operator associated with Fig. 3 (left)
which arises as follows. Keeping in mind that the operators
of interest will not couple to the nucleon spin, we start

FIG. 2. Strong and electromagnetic penguin diagrams generat-
ing flavor-changing CP-violating four-quark and semileptonic
operators.
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with the following higher-dimensional nucleon-photon
operator associated with the lower part of Fig. 3 (left):
~Fμνð∂αFαμÞ∂νðN̄NÞ, where ~Fμν ≡ ϵμνρσFρσ=2. The factor
of ∂αFαμ is characteristic of the electromagnetic (EM)
penguin, and can be traded immediately for the electron
electromagnetic current, ēγμe. This singles out the follow-
ing dimension-nine operator coupling the nucleon to the
electron current,

Leff ¼ eC9O9; O9 ¼ ~FμνðēγνeÞ∂μðN̄NÞ: (16)

The operator O9, and thus the Wilson coefficient C9, is T
and P odd, and C even, as required to contribute to CSP.
Note that another possible nucleon-spin-independent oper-
ator ~FμνðN̄NÞ∂μðēγνeÞ is directly reducible to O9 upon
integration by parts and use of the identity ∂μ

~Fμν ≡ 0.
The coefficient C9 already incorporates the CP-odd

photon exchange associated with the penguin vertex, and
as a second step one can “integrate out” the remaining
photon (see Fig. 4). At one-loop order, the ~FμνðēγνeÞ part of
O9 transmutes to ēγμγ5e, with a quadratically divergent loop
integral. The ðēγμγ5eÞ∂μðN̄NÞ operator can then be reduced
to the standard CSP form upon using the divergence of the
axial current. Performing this computation, we can identify

GFffiffiffi
2

p × CSP ≃ 3αme

2π

Z
dk2C9: (17)

In this expression, the quadratic divergencewill be cut off by
the hadronic vertex form factor C9ðk2Þ. In general, C9 will

depend independently on both k20 and k⃗
2. In fact, in deriving

Eq. (17) we have used kαkβd4k → 1
2
14gαβk2d4k, which will

not strictly be valid in the presence of a non-Lorentz-
invariant form factor. Nonetheless, in relying on the
hadronic form factor to cut off the divergent integral, we
are necessarily focusing only on an order-of-magnitude
estimate, and thus we can safely neglect these issues.

B. EM penguin contrubution to C9

We now estimate the CKM-induced value of C9 and the
resulting value of CSP by combining the ΔS ¼ 1 and ΔS ¼
−1 transitions. Inside the 2PE box diagram [Fig. 3 (left)],
there are a multitude of propagating hadronic states with
nonzero strangeness. To simplify the computation, we
shall saturate them with the Σ baryon, and estimate the
resulting ΣNγ vertices using the on-shell data for Σ decays.
Once again, this approximation will only capture part of
the answer, as the off-shell vertex may contain further
contributions not captured by Σ decays. However, this
simplification will be sufficient for the purpose of an order-
of-magnitude estimate.
We start by quoting the result for theCP-violating part of

the electromagnetic penguin operator,

Lpen ¼ iCpenðs̄LγμdLÞðēγμeÞ þ ðH.c.Þ; (18)

where [29]

Cpen ¼
GFffiffiffi
2

p × ðs1s2s3c2Þ sin δ ×
4α

9π
× log

�
m2

W

m2
c

�
: (19)

The logarithmic factor originates from the relative sign
between the charm and top contributions in the loop, and
with logarithmic accuracy, the upper limit can be chosen to
be mW . The i in front of the whole expression is the
signature of CP violation.
In order to go from s̄LγμdL to the sigma-nucleon vertex,

one can use experimental information from semileptonic
nucleon and hyperon decays and SU(3) flavor symmetry
(see e.g. Ref. [30]),

hΣjs̄LγμdLjpi≃ −0.8Σ̄ðγμ − 0.43γμγ5Þp; (20)

with analogous relations for the neutron. However, retain-
ing the exact isospin factors and the relation gA=gV ¼ 1.26
is beyond the precision goal of the present estimate. Note
that at other stages of the calculation (e.g. saturating the
integral

R
C9dk2 by its upper limit) the precision is not

better than an order of magnitude. Therefore, we will
simply assume that s̄LγμdL generates the ∼Σ̄LγμNL Lorentz
structure with an order unity coefficient, and disregard the
isospin dependence and any moderate deviations of the
current matrix elements from unity. Thus, to obtain an
estimate, we simply assume the approximate transition

Lpen → iCpenðΣ̄LγμNLÞðēγμeÞ þ ðH:c:Þ: (21)

FIG. 3. Examples of the 2PE mechanism, leading to ēiγ5eN̄N
interactions. (Left): A combination of two weak transitions
changing strangeness by �1. The crossed and filled circles stand
for the CP-odd and CP-even ΣNγ vertices, respectively; the
CP-odd vertex is induced by an EM penguin as in Fig. 2. (Right):
A diagram involving π0 mediation. The crossed vertex in this case
represents the CP-odd π0NN coupling.

FIG. 4. Left panel: Schematic representation of the contact
electron-nucleon-photon operator O9. Right panel: Integrating
out the hard photon loop transmutes this operator to the more
familiar four-fermion operator ēiγ5eN̄N.
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The tree-level amplitude for the ΣNγ transition can be
extracted directly from the Σ → pγ decay, modulo the off-
shell virtuality of bothΣ and γ. FollowingRef. [30], wewrite

Ltree ≃ eGF

2
Σ̄σμνðaþ bγ5ÞpFμν; (22)

where a and b are phenomenological functions of k2, the
momentum of the remaining photon, which have both real
and imaginary (dispersive) parts. We will only keep track
of the substantially larger real parts, which can be fixed by
the total decay rate and angular correlations in the decay.
Note that, as defined, a and b incorporate some dependence
on the CKM angles, so it is useful to introduce CKM
angle-free functions A and B via a ¼ s1c1c3 × A and
b ¼ s1c1c3 × B. The coefficient of the left-handed structure
is given by the combination ða − bÞ, which is determined by
the relations [30]

að0Þ2 þ bð0Þ2 ≃ ð15 MeVÞ2;
að0Þbð0Þ≃ −85 MeV2: (23)

This data implies að0Þ − bð0Þ≃ 20 MeV, and thus
Að0Þ − Bð0ÞÞ≃ 100 MeV, which is a natural energy scale
in this problem.
We can now combine the CP-odd and CP-even vertices

in Lpen and Ltree, respectively, into one diagram containing
an intermediate Σ state [see Fig. 3 (left)]. Expanding the
internal Σ propagator to first order in the small momentum
transfer, we can isolate the Lorentz structure corresponding
to the nucleon-spin-independent term. Carrying out this
procedure, we observe that the O9 operator is indeed
generated, and the matching procedure gives the following
Wilson coefficient in the limit of small photon momenta:

C9ð0Þ≃ Cpen ×
GFðað0Þ − bð0ÞÞ
2ðm2

Σ −m2
NÞ

: (24)

Ideally, one would need the full dependence of C9

on photon virtualities in order to compute the loop integral
in Eq. (17). For the purpose of obtaining an estimate,
we take Z

C9dk2 ∼ Cpen ×
1

4
GFðað0Þ − bð0ÞÞ; (25)

which corresponds to setting the cutoff of the dk2 integral at
1
2
12ðm2

Σ −m2
NÞ ∼ ð500 MeVÞ2. This choice seems justi-

fied, since it is of order the characteristic quark momenta
inside nucleons.
We are now ready to combine all the numerical factors in

a final estimate of CSP,

CSP∼J ×
α2

6π2
×GFmeðAð0Þ−Bð0ÞÞ×log

�
m2

W

m2
c

�
∼10−19;

(26)

leading to the equivalent electron EDM benchmark,

dequive ðJ Þ ¼ rCSPðJ Þ ∼ 10−39 e × cm; (27)

which is roughly 1 order of magnitude below our limiting
estimate (15) if one usesmhad ∼ 100 MeV, but many orders
of magnitude above deðJ Þ proper. Given the approximate
nature of this estimate, it is certainly possible that the full
equivalent electron EDM may reach the level of the scaling
estimate, 10−38 e × cm.

IV. CONCLUDING REMARKS

The CKM benchmark obtained above is ∼9–10 orders
of magnitude below the best current sensitivity to the
electron EDM from the ThO experiment. This gap is not a
surprise, given the high degree of suppression for all CKM-
induced contributions to flavor-conserving observables.
Nonetheless, it is somewhat larger than in other channels,
such as the neutron or diatomic EDMs, for which the CKM
contributions are ∼ 5–6 orders of magnitude below current
sensitivity. Since current electron EDM measurements are
performed with atoms and molecules, rather than isolated
electrons, the CP-odd observable measured in these experi-
ments is inevitably sensitive not only to de itself, but also to
nucleon-spin-independent four-fermion operators, charac-
terized by CSP. We have estimated the value of CSP induced
by the CKM phase, and inferred the size of the equivalent
electron EDM, dequive ≡ rCSPðJ Þ ∼ 10−38 e × cm. This is
many orders of magnitude larger than the contribution of
deðJ Þ proper, which itself is highly suppressed by the
degree of flavor cancellations within the closed quark loops
of Fig. 1.
The dominance of the CKM contribution to CSP over de,

by ∼5 orders of magnitude, shows how important the
relative contribution of CSP can be. Other known examples
where CSP may also provide a dominant contribution
include some special cases of beyond the SM physics,
such as the two-Higgs doublet model and supersymmetric
models at large tan β [31–34].
Finally, given that the field content of the SM needs to be

enlarged to include the effects of nonzero neutrino masses,
one can ask about the size of de and CSP in the SM
extended by right-handed neutrinos. This is, in a certain
sense, the most conservative extension of the SM that is
supported by experimental evidence. The Majorana nature
of neutrino masses then allows for a nonzero de at the
two-loop level [35–37]. However, the typical size of
this contribution remains extremely small, as it is sup-
pressed by the smallness of the neutrino Yukawa couplings
and/or by the large scale for the Majorana mass of the
right-handed neutrinos. In exceptional/tuned cases de can
reach 10−33 e × cm [36], which is still below the current
sensitivity limit [4].
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