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We present a new clash-of-symmetries mechanism in the context of an intersecting domain-wall brane
model in 5þ 1-dimensional Minkowskian spacetime recently proposed by the authors. This new
application of the Dvali—Shifman idea is designed for localizing gauge fields on a domain-wall
intersection, and we employ it by adding a gauge group G and giving the scalar fields which form
lumplike profiles gauge charges. These fields in turn break G to two different subgroups H1 and H2

respectively on each domain wall, and the gauge fields of these subgroups are taken to be localized to the
respective walls by the confinement dynamics of G. There is then a further breaking on the domain-wall
intersection toH1∩H2, and gauge fields of this overlap group can then be localized to the intersection if they
belong inside non-Abelian subgroups of both H1 and H2, which are spontaneously broken on the
intersection and confining in the 4þ 1-dimensional bulks of the respective domain-wall branes. This
mechanism has some similarities to the clash-of-symmetries mechanism on a single domain wall, except that
in this caseH1 andH2 need not be isomorphic. We then give some interesting examples of the mechanism in
an SUð7Þ gauge theory, several of which result in the localization of the Standard Model gauge group.

DOI: 10.1103/PhysRevD.89.056004 PACS numbers: 11.27.+d, 11.10.Kk, 12.10.Dm

I. INTRODUCTION

Braneworld models, in which we live on a 3þ 1-
dimensional brane or subspace embedded in a higher-
dimensional space, have been a popular application of
extra dimensions to solving particle physics problems for
many years [1–8]. Branes are frequently used to trap
Standard Model fields in models with large extra dimen-
sions [5,6] and in models where the extra dimensions are
warped with the geometry of anti-de Sitter space [7,8].
Braneworld models have been useful for resolving the
hierarchy problem [5,7] and also the fermion mass hierarchy
problem and other flavor problems [9–11]. The model
proposed by Arkani-Hamed, Dimopoulos, and Dvali [5]
can be extended to an arbitrary number of dimensions and in
particular the Randall—Sundrum type-2 model (RS2) can
naturally be extended beyond five dimensions [12].
Domain-wall brane models are extradimensional models

of Universe in which branes are generated dynamically from
field theory rather than being fundamental objects placed in
the theory by hand, like D-branes. The idea of our 3þ 1-
dimensional universe being trapped to the world volume of
a domain wall was first put forward by Rubakov and
Shaposhnikov [13]. Using a dynamically generated object
as a prototype brane also has the appeal that all dimensions
are treated on an equal footing, so that translational
invariance is broken spontaneously rather than explicitly.
If we take the brane to be dynamically constructed rather
than fundamental, then it also follows that the Standard

Model fields must be dynamically localized to the brane
rather than placed on the brane by hand. This means that we
need a mechanism or several mechanisms to trap scalars,
fermions, gauge bosons, and gravitons on the domain wall.
Since domain walls are generated by scalar fields, fermions
and scalars are very easy to trap since we can couple them to
the background scalar fields through Yukawa and quartic
interactions, respectively. In the case of fermions interacting
with a single domain wall, it is always the case that a single
chiral zero mode is localized to the wall when a five-
dimensional fermion is coupled to the wall [14–16], which
is important since chirality must be reproduced if we are to
localize the Standard Model on the wall. For scalars, when
quartic interactions are introduced, there will always exist a
lowest energy mode localized to the wall, and its squared
mass is dependent on the parameters of its interaction with
the wall and its bulk mass; potentially the squared mass of
the lowest energy mode can be tachyonic, and this means
we can localize a realistic Higgs sector [15,16]. In both the
fermionic and scalar cases, there exists a tower of massive
localized Kaluza—Klein modes after the zero mode and
lowest energy mode, respectively. After coupling the
domain wall to gravity, one can show that gravitons and
thus gravity are localized to the domain wall [16] and that
the warped geometry in the presence of this domain wall
closely resembles that of the RS2 model [8].
On the other hand, gauge bosons are notoriously difficult

to dynamically localize to a domain wall. They cannot
be localized to the wall in a similar manner as fermions
and scalars by introducing some cubic or quartic coupling
between the gauge boson fields and the scalar field
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generating the domain wall since this will mean gauge
invariance and gauge charge universality will be lost [17].
Instead, the only mechanism for trapping gauge bosons
without destroying gauge invariance or gauge charge
universality that is known to be plausible is the Dvali—
Shifman mechanism [18]. Under this mechanism, a non-
Abelian gauge group G is spontaneously broken to a
subgroup H in the interior of the domain wall by an
additional scalar field, and the bulk where G is unbroken
is taken to be in the confinement phase. If we take the
’t Hooft—Mandelstam picture of confinement being the
result of the formation of a magnetic monopole condensate,
then it follows that the bulk in this case will behave as a
dual superconductor. This makes it pretty obvious what
happens on the domain wall in the case that G ¼ SUð2Þ
and H ¼ Uð1Þ: for a test charge placed on the wall, the
electric field lines of H ¼ Uð1Þ are free to propagate, but
they will be repelled by the dual Meissner effect from the
bulk. Similarly, if we place the test charge in the bulk, the
electric field lines will still be repelled from the bulk, and
they will form a flux string which will then diverge out onto
the wall and behave as if the test charge was in fact on the
wall. Under the Dvali—Shifman conjecture, this general-
izes to the case where G is a larger non-Abelian gauge
group, and H is non-Abelian. An alternative way to view
this mechanism is in terms of the mass gaps that appear
in confining, non-Abelian theories. In the bulk, all the
gauge bosons of H must exist in a G-glueball state, which
has a mass of order the mass gap naturally arising in the
confining field theory in the bulk. However, on the brane,
the same bosons are either massless photons or they exist in
glueballs if they are non-Abelian. It then follows that if the
mass gap in the bulk is much larger than any of the mass
gaps of the non-Abelian factors ofH, therewill be an energy
cost for anH boson localizedon thewall to propagate into the
bulk. It is important to note that the Dvali—Shifman
mechanism remains a conjecture and that in the single-wall
case it relies on five-dimensional confinement.
Assuming that the Dvali—Shifman mechanism works in

higher dimensions, we have all the key ingredients to
construct a realistic domain-wall brane model. In Ref. [19],
a realistic model was constructed where G ¼ SUð5Þ and
H ¼ SUð3Þ × SUð2Þ ×Uð1Þ. This model has some inter-
esting phenomenology since the different Standard Model
(SM) fermions and scalars are naturally split, in a way
analogous to the mechanism for separating fermions first
given by Arkani-Hamed and Schmaltz [20] and to the
“families as neighbors” idea of Dvali and Shifman [21]. It
was further shown that the fermion mass hierarchy problem
as well as quark mixing could be explained naturally in the
model [22] and that by adding the discrete flavor symmetry
A4 appropriate lepton mixing could be generated as well
[23]. The domain-wall brane framework has also been
extended to higher gauge groups such as SOð10Þ [24] and
E6 [25].

The E6 model in Ref. [25] is particularly interesting
as it is based on a generalization of the Dvali—Shifman
mechanism called the clash-of-symmetries (CoS) mecha-
nism [25–31]. The condition of the original Dvali—
Shifman mechanism where G was unbroken is not a
necessary one; one just has to ensure that the subgroup
preserved on the wall is contained by a larger non-Abelian
subgroup of G, which is in the confinement phase in the
bulk. It was realized that a smaller subgroup on the wall
could still be localized if G was broken, respectively, to
isomorphic but differently embedded subgroups H and H0
on each side of the domain wall. In the interior of the wall,
the symmetry respected is the intersection of these sub-
groups H∩H0, and some of the factors of this final
subgroup will be localized to the domain wall, provided
they are proper subgroups of non-Abelian factors of bothH
and H0 which are confining in the respective halves of the
bulk. In proposing the CoS mechanism, we have many
tools in our framework in which to extend domain-wall
brane models to larger gauge groups.
Apart from extending the gauge group, we can also

consider extending the dimensionality of the bulk space-
time. In doing this one might naturally consider how to
construct a model based on domain walls in 5þ 1-
dimensional spacetime. Given that domain walls by
themselves are codimension-1 defects, it is necessary to
introduce two domain walls. There are two options for
dimensionally reducing 5þ 1 dimensions to 3þ 1 dimen-
sions with two domain walls. One is to construct what is
called a domain ribbon, in which a first domain wall is
generated by one scalar field and then a second scalar field
gets localized to the first domain wall with a tachyonic mass
so that it in turn forms the second domain wall in the world
volume of the first [32,33]: a wall within a wall. A second
idea is to set up domain walls which intersect. Some early
attempts at this second option are given in Refs. [34–36].
In a previous paper [37], the authors proposed a model in

5þ 1 dimensions based on the discrete groupZ2 × Z2 with
four real scalar fields in which two of the scalar fields
generate intersecting domain walls and the other two attain
lumplike profiles parallel to each of the walls. It was found
that there existed a small, special region of parameter
space generating analytic solutions. It was also shown that
fermions and scalars could be localized to the domain-wall
intersection, with the couplings to the lumps shifting the
profiles away from the center. To construct a realistic model
with a Standard Model localized to the domain-wall
intersection then requires that we introduce mechanisms
for the localization of gravity and the localization of gauge
bosons. This paper focuses on the latter.
Just as there is more freedom in constructing brane-

worlds based on solitons such as domain walls in 5þ 1
dimensions and higher, there is clearly also more freedom
in how we localize gauge fields from the Dvali—Shifman
mechanism assuming that 5þ 1-dimensional non-Abelian
theories have a confinement phase. Although we are
unaware of any work which attempts to prove that a
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confinement phase exists in 5þ 1-dimensional non-
Abelian gauge theories, we are encouraged by lattice gauge
simulations which have shown that there exist confining
phases in 4þ 1-dimensional SU(2) [38] and SU(5) [39]
Yang—Mills gauge theories. The simplest scenario one
could think of in both intersecting and nested wall scenarios
is a simple codimension-2 generalization of the standard
Dvali—Shifman picture on a single wall where a scalar
field attains a tachyonic mass in the center of the defect or
intersection region and breaks a non-Abelian gauge group
G to a subgroup H with the entire 5þ 1-dimensional bulk
around the core of the defect in the confinement phase.
With domain ribbons, one could imagine a nested Dvali—
Shifman scenario where we use scalar fields to break G to a
subgroup H on the first wall with another scalar field
localized to the first domain wall breaking a non-Abelian
factor of H to yet a smaller gauge group on the core of the
domain ribbon.
This paper focuses on an application of the Dvali—

Shifman mechanism suited for intersecting domain walls
and which is the natural one to consider in the context of the
model proposed in Ref. [37], namely, that of what we call
an intersecting clash-of-symmetries mechanism. Here,
we use the two scalar fields which attain one-dimensional
lumplike profiles parallel to each domain wall by giving
them gauge charges so that they break G to two subgroups
H1 andH2 on the respective domain walls. Here, the 5þ 1-
dimensional bulk away from both domain walls is assumed
to be in the confinement phase so that H1 and H2 are
localized to the respective walls by the standard Dvali—
Shifman mechanism. On the intersection of these walls,
there in general is a further symmetry breaking to the
overlap of these subgroupsH1∩H2. We in turn assume that
the non-Abelian factors of H1 and H2 are in confinement
phase in the 4þ 1-dimensional bulk of the respective
domain walls outside the intersection. This means that
non-Abelian factors of H1∩H2 are localized by Dvali-
Shifman dynamics if they are proper subgroups of non-
Abelian factors of bothH1 andH2. Further, Abelian factors
of H1∩H2 are localized if their generators can be written
completely in terms of generators belonging to the non-
Abelian factors of both H1 and H2. Given that the scalar
fields generating lumps need not be in the same represen-
tation or have the same symmetry breaking pattern, in this
version of the CoS mechanism, we need not have H1 and
H2 isomorphic. In general, the clashing groups H1 and H2

are determined by the 4þ 1-dimensional energy densities
(or brane tensions) of the two perpendicular kink-lump
pairs, which can be calculated in terms of the kink-lump
solutions that we set as the boundary conditions at infinity
around the plane spanned by the two extra dimensions.
Given that the 4þ 1-dimensional energy density is degen-
erate for single kink-lump solutions which break G to
different embeddings of the same subgroup, it is then the
minimization of the 3þ 1-dimensional junction tension or

energy density which arises due to interactions between the
perpendicular kink-lump solutions which determines the
exact form of the resultant H1∩H2 on the intersection.
After laying out the details of the intersecting CoS

mechanism, we give several toy models based on the
gauge group SUð7Þ. It turns out that it is possible to
localize a Standard Model gauge group1 under this mecha-
nism withG ¼ SUð7Þ. The first three examples we give are
all with the fields attaining lumplike profiles in the adjoint
representation. The first example is one where the lump
fields attain vacua such that H1 ¼ SUð5Þ × SUð2Þ ×Uð1Þ
and H2 ¼ SUð4Þ × SUð3Þ ×Uð1Þ. We show that a par-
ticular intersecting CoS solution yields a localized Standard
Model gauge group with the hypercharge generator propor-
tional to diagð−2=3;−2=3;−2=3;þ1;þ1;−2;þ2Þ. This
arrangement does have some problems since a single kink-
lump solution breaking SUð7Þ to H1 ¼ SUð5Þ × SUð2Þ ×
Uð1Þ is not the most stable one for the interaction potential
between the two scalar fields involved in this kink-lump
pair, but we give some suggestions about how to overcome
this, including adding a cubic invariant for the lump field
and accepting metastability or alternatively extending the
model to a sextic potential. We also find that we can embed
the SM fermions in the anomaly-free combination
7̄þ 7̄þ 7̄þ 21, and we outline how to embed the electro-
weak Higgs doublet and the additional Higgs fields
required to break the semidelocalized Uð1Þ groups that
we get in addition to the SM.
The second example we give is one in which H1 and H2

are differently embedded subgroups isomorphic to
SUð4Þ × SUð3Þ ×Uð1Þ. This can also yield a localized
Standard Model gauge group, but this time with a hyper-
charge generator which acts on the fundamental as
diagð−2=3;−2=3;−2=3;−1;−1;þ2;þ2Þ. This seems like
it might not work due to the highly unusual form of this
hypercharge generator, but it actually turns out that the SM
fermions can still be embedded into SUð7Þ multiplets with
the correct quantum numbers, this time in the anomaly-free
combination 7þ 2̄1þ 35. This model has the advantage
over the previous one in that the energetics of the single
kink-lump solutions used as the boundary conditions can
be assured in a model of the form given in Ref. [37] without
resorting to a sextic potential or other additional physics.
The third example we give for adjoint scalars is one in

which we show that this form of the clash-of-symmetries
mechanism can also be used to implement the approach
taken in Ref. [25] by localizing a grand unification group
to the domain wall. Here, we haveH1 andH2 as differently
embedded subgroups isomorphic to SUð6Þ×Uð1Þ, yielding
an SUð5Þ gauge group which is fully localized to the

1Let us note that by saying that a gauge group is localized, we
mean that all the gauge bosons associated with that gauge group
are localized.
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intersection along with some semidelocalized Uð1Þ gauge
groups which must be broken.
The last example we give is one in which we have one

of the lump-forming fields in the 21 representation and
the other in the 35 representation. The 21 representation
can naturally break SUð7Þ to H1 ¼ SUð5Þ × SUð2Þ, and
the 35 representation can naturally induce a breaking to
H2 ¼ SUð4Þ × SUð3Þ. This is the most elegant example we
give in the paper since we attain the same Standard Model
gauge group as we get in the first example with adjoint
scalars with the generators corresponding to the semi-
delocalized Uð1Þ generators that we got previously already
broken naturally. Furthermore, we can choose parameters
such that the desired solution is the most energetically
favorable one.
In Sec. II, we give a review of the Dvali—Shifman and

clash-of-symmetries mechanisms, which includes giving
the conditions necessary for localization of both Abelian
and non-Abelian gauge fields under the clash-of-
symmetries mechanism. In Sec. III, we review the inter-
secting kink-lump solution given in Ref. [37]. In Sec. IV,
we outline the proposal for the intersecting clash-of-
symmetries mechanism, again outlining the necessary
conditions for localization which are similar to those for
the original CoS mechanism. In Sec. V, we give all four of
the examples we have discussed, applying this mechanism
in the case that G ¼ SUð7Þ. Section VI is our conclusion.

II. THE DVALI—SHIFMAN AND
CLASH-OF-SYMMETRIES MECHANISMS

IN THE SINGLE DOMAIN-WALL SCENARIO

To employ the Dvali—Shifman mechanism [18] that we
discussed in the introduction in 4þ 1-dimensional space-
time, we need to introduce a singlet scalar field η which
generates the domain wall along with an additional gauge-
charged scalar field χ, which condenses in the interior of the
domain wall, breaking G to H. As a simple example,
consider G ¼ SUð2Þ and H ¼ Uð1Þ and an SUð2Þ × Z2-
invariant scalar field theory with χ charged under the
adjoint representation 3 of SUð2Þ. Under the discrete
symmetry Z2, η → −η and χ → −χ. The scalar potential
of this theory may be written as

Vðη; χÞ ¼ 1

4
ληðη2 − v2Þ2 þ ληχðη2 − v2ÞTr½χ2�

þ μ2χTr½χ2� þ λχTr½χ2�2: (1)

We want to generate a kink-lump solution. To do this χ
must go to zero at spatial infinity while η interpolates
between nonzero vacua from negative infinity to positive
infinity along a direction y. In the interior of the wall, where
η is zero, we then want χ to attain a tachyonic mass. Since χ
is an adjoint scalar field, some component of it proportional
to some linear combination of the SUð2Þ generators must
condense, and all other components vanish. Without loss of

generality, we choose the component proportional to the
Pauli matrix σ3, χ1 to condense, and we normalize our
generators to Tr½TiTj� ¼ 1=2δij. To generate a stable
kink-lump solution, we impose the constraints

λη > 0; λχ > 0; ληχv2 > μ2χ > 0: (2)

Under these conditions, the global minima are η ¼ �v,
χ ¼ 0. To find a kink-lump solution, we need to find
solutions for η and χ1 to the Euler—Lagrange equations
subject to the boundary conditions

ηðy ¼ �∞Þ ¼ �v; χ1ðy ¼ �∞Þ ¼ 0: (3)

For a finite region of parameter space, numerical
solutions with kinklike profiles exist. For the special
parameter choice

2μ2χðληχ − λχÞ þ ðληλχ − λ2ηχÞv2 ¼ 0; (4)

one finds the analytic solution

ηðyÞ ¼ v tanh ðkyÞ; χ1ðyÞ ¼ AsechðkyÞ; (5)

where k2 ¼ μ2χ and A2 ¼ ληχv2−2μ2χ
λχ

. A plot of this solution is
shown in Fig. 1.
Hence, we have successfully generated a kink-lump

solution in which the underlying SUð2Þ gauge symmetry
is unbroken in the bulk but spontaneously broken in the
interior of the topological defect. Hence, since SUð2Þ is
confining in the bulk, the Dvali—Shifman mechanism
is induced, localizing the unbroken Uð1Þ photon to the
domain wall. We assume, if non-Abelian theories are
confining in the bulk (which is not generally known in
dimensions higher than 4, although, as noted in the
introduction, there is some evidence that a confining phase
exists in 4þ 1-dimensional gauge theories [38,39]), that
this can generalize to higher gauge groups. Indeed, the
model proposed in Ref. [19] localizes the entire Standard
Model gauge group by choosing G ¼ SUð5Þ and then
choosing parameters such that the hypercharge component
of χ condenses on the domain wall.
In single domain-wall models, we can generalize the

Dvali—Shifman mechanism to the CoS mechanism.
Several applications of the CoS mechanism were given
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FIG. 1. A plot of the profiles for η and χ1.
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in Refs. [25–28], and for a more detailed treatment of the
underlying group theory behind the CoS mechanism, see
Ref. [40]. Some other papers in which the CoS mechanism
is used, but with different motivations than ours, are given
in Refs. [29–31]. Under the CoS mechanism, only the field
generating the kink, η, is retained, and it is assigned to the
adjoint representation of the gauge group G rather than
being a singlet. To employ this mechanism, we require a
disconnected vacuum manifold, and the way we achieve
this is to ensure that the discreteZ2 symmetry is outside the
gauge group. Hence, the full symmetry group is G × Z2. In
the CoS mechanism, η attains a vacuum expectation value
toward spatial infinity on each side of the wall, except this
time these vacua spontaneously break G. In general, η can
break G to two differently embedded but isomorphic
subgroups H and H0 on each side of the wall. On such
a CoS domain wall, there is a further breaking in the interior
to the subgroup H∩H0. Assuming the H and H0 respecting
bulks are confining, there should be a similar Dvali—
Shifman mechanism localizing the gauge fields of H∩H0.
Whether the full clashing group H∩H0 or only some of

its factor groups are localized on the wall depends on how
they are embedded within the subgroups of G respected on
each wall. Generically, the subgroups on each side of the
wall, H and H0, will be semisimple and may be written in
the form

H ¼ N1 × N2 × N3 ×… × Nk−1 × Nk ×Uð1ÞQ1

×Uð1ÞQ2
× Uð1ÞQ3

…Uð1ÞQl−1 × Uð1ÞQl
;

H0 ¼ N0
1 × N0

2 × N0
3 ×… × N0

k0−1 × N0
k0 ×Uð1ÞQ0

1

×Uð1ÞQ0
2
× Uð1ÞQ0

3
…Uð1ÞQ0

l0−1
×Uð1ÞQ0

l0
; (6)

where the Ni and N0
i denote the non-Abelian factor groups

and the Qi and Q0
i denote the generators of the Abelian

factor groups belonging toH andH0, respectively. Since,H
and H0 are semisimple, H∩H0 is also semisimple. We will
denote its non-Abelian factor groups as ni and the gen-
erators of its Abelian factor groups as qi and write

H∩H0 ¼ n1 × n2 × n3 ×… × nr−1 × nr ×Uð1Þq1
×Uð1Þq2 ×Uð1Þq3 ×… ×Uð1Þqs−1 ×Uð1Þqs :

(7)

The above is the general form of the entire H∩H0 group
respected on the domain wall at the level of symmetries. In
general, not all of the factor groups, both Abelian and non-
Abelian, of H∩H0 will be fully localized to the wall. For a
factor group of H∩H0 to be localized, it must be fully
embedded in the non-Abelian factor groups of both H and
H0 respected in each semi-infinite region of the bulk, since
for a gauge group to be localized via a Dvali—Shifman

mechanism, it must lie inside a larger non-Abelian group
which is confining in the bulk.
In the non-Abelian case, this means that a non-Abelian

factor of H∩H0, ni ð1 ≤ i ≤ rÞ, is localized only if it is a
proper subgroup of simple, non-Abelian factors Na and N0

b
of both H and H0, respectively. In other words, we require

ni ⊂ Na and ni ⊂ N0
b; (8)

for some 1 ≤ a ≤ k and 1 ≤ b ≤ k0. If, for any a, ni is
precisely equal toNa but is still a proper subgroup ofN0

b for
some b, there will be no Dvali—Shifman mechanism
taking place in the H-respecting part of the bulk, and thus
the gauge bosons of ni will be semidelocalized. Likewise,
if ni ⊂ Na but ni ¼ N0

b, ni will be semidelocalized, and
its gauge bosons will be able to propagate into the
H0-respecting bulk. If ni ¼ Na ¼ N0

b for some a and b,
then there is no Dvali—Shifman mechanism acting on ni
on either side of the bulk, and it is thus fully delocalized; its
gauge bosons are able to propagate through the whole bulk.
The Abelian case is a little more complicated but follows

similar principles. All the generators qi from Eq. (7) which
are preserved on the wall at the level of symmetries must be
linear combinations of generators residing in both H and
H0. Obviously, the respective Uð1Þ generators Qi and Q0

i
can contribute to both these linear combinations, but there
are also generators that belong to the non-Abelian factor
groups Na and N0

b which lie outside the resultant non-
Abelian factors ni of the clash. For example, suppose we
had for some a and b the factors Na ¼ SUð4Þ and N0

b ¼
SUð3Þ and the resultant clash was a group ni ¼ SUð2Þ.
Then there exists a generator T ¼ diagðþ1;þ1;−1;−1Þ in
Na for which the first two eigenvalues act on components
transforming under ni and the latter two act on the two
components which do not. Because this generator acts
nontrivially on components not acted upon by the resultant
SUð2Þ subgroup, it is outside ni. Similarly N0

b will have
some generator T 0 ¼ diagð−2;þ1;þ1Þ in which the latter
two components act on ni which is also outside ni. We will
label these generators Ti and T 0

i for H and H0, respectively.
Hence, for a generator qi to be a preserved generator on the
domain wall at the level of symmetries, it must be that

qi ¼
Xl

i¼1

αiQi þ
Xm
i¼1

βiTi;

¼
Xl0
i¼1

α0iQ
0
i þ

Xm0

i¼1

β0iT
0
i; (9)

where all the αi, βi, α0i, and β0i are real numbers and m and
m0 are some non-negative integers.
Equation (9) is just the condition for the generator to be

respected at the level of symmetries; the condition for the
Abelian generator to be localized is more stringent. For an
Abelian generator qi to be fully localized to the domain
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wall, it must be always embedded inside non-Abelian
subgroups of both H and H0 for the photon to experience
the Dvali—Shifmanmechanism from both sides of the bulk.
This means that it cannot contain any partition proportional
to one of the Qi or Q0

i in either of the linear combinations
describing qi in terms of generators from H and H0;
otherwise, it will be delocalized in at least one part of the
bulk. Thismeans that the condition for full localization of an
Abelian generator qi to the domain wall is

qi ¼
Xm
i¼1

βiTi ¼
Xm0

i¼1

β0iT
0
i; αi ¼ α0i0 ¼ 0 ∀ i; i0:

(10)

If some αi are nonzero but all the α0i are zero, then qi is free to
propagate and leak into the H-respecting side of the bulk.
Likewise, if all the αi are zero but some α0i are nonzero, qi is
semidelocalized with respect to theH0-respecting side of the
bulk. If there exist some αa and some α0b which are nonzero,
the photon corresponding to qi is free to propagate in both
sides of the bulk and is thus fully delocalized.
Several attempts have been made at constructing a reali-

stic model via the CoSmechanism in Ref. [25]. In this paper,
the authors first mentioned an attempt to construct a
model based on SOð10Þ, as noted in the paragraphs above.
Notwithstanding some issues with the energetics, this model
fails because the resultant photon is semidelocalized.
Here, on one side of the wall, H ¼ SUð5Þ ×Uð1Þ, and
on the other,H0 ¼ SUð5Þ0 ×Uð1Þ0. Depending on the vacua
at the two ends at spatial infinity, there are three possible
outcomes for H∩H0∶ SUð5Þ ×Uð1Þ, SUð3Þ × SUð2Þ×
Uð1Þ ×Uð1Þ, and SUð4Þ × Uð1Þ ×Uð1Þ. Obviously, it is
the second of these two outcomes which is potentially the
desirable one. It turned out that in the region of parameter
space that was assumed in that paper to generate analytic
solutions, the third option was the most energetically
favorable one; that is, it minimized the domain-wall tension.
However, the authors continued the analysis assuming the
second outcome on the basis that there existed a different
region of parameter space where the second outcome was
the most energetically favorable. If we do this, we immedi-
ately notice that the SUð3Þ color and SUð2Þ weak isospin
subgroups are localized to the domain wall since these
groups are contained in both SUð5Þ of H and SUð5Þ0
ofH0. Where even the second outcome fails is in considering
the localization of the hypercharge generator Y. Since
the hypercharge generator can be embedded entirely in an
SUð5Þ subgroup, we can choose it to be embedded in
either SUð5Þ or SUð5Þ0. Without loss of generality,
we will assume that Y is contained in the SUð5Þ subgroup
of H. However, since SUð5Þ0 is a differently embedded
subgroup of SOð10Þ, it cannot be that the analogous
generator Y 0 is equal to Y. Hence, the hypercharge generator
Y must be a nontrivial linear combination of the Y 0 and the
generator of the Uð1Þ0 subgroup of H0. From the analysis

above, it follows that the hypercharge generator is semi-
delocalized [the other Uð1Þ of H∩H0 will also be
semidelocalized].
There are several approaches that one could take to get

around the problem of semidelocalized photons in generating
a theory in which the Standard Model is reproduced on the
domain wall, or as it turns out in the different clash-of-
symmetries mechanism on a domain-wall intersection in the
six-dimensional model that we will discuss in the rest of the
paper. One approach is to localize the gauge fields corre-
sponding to a grand unification group containing the Standard
Model on the domain wall instead of just the Standard Model
gauge group [plus some additional Uð1Þ’s perhaps]. This is
indeed the approach taken in Ref. [25], in which the authors
use the gauge group E6 instead of SOð10Þ and break it down
toH ¼ SOð10Þ ×Uð1Þ andH0 ¼ SOð10Þ0 ×Uð1Þ0 on each
side of the wall. One particular outcome for the clash is
H∩H0 ¼ SUð5Þ ×Uð1Þ × Uð1Þ, for which the SUð5Þ sub-
group is always localized since it is contained in both SOð10Þ
and SOð10Þ0. Assuming there is a region of parameter space
where this is the most stable configuration, to reproduce an
acceptable model, it is just a case of breaking the localized
SUð5Þ subgroup to the Standard Model as well as breaking
the additional Uð1Þ subgroups and localizing the required
matter content to the wall.
A second approach, the one we will take when we use

the clash-of-symmetries mechanism for intersecting
domain walls in a theory based on SUð7Þ, is to employ
a gauge group which is large enough to generate and
localize the SUð3Þ color and SUð2Þ weak isospin sub-
groups and at the same time generate more contributing
Uð1Þ generators of the second type described in this
section, those that initially belong to non-Abelian sub-
groups respected in the bulk. If at the very least one of the
clashing subgroups contained at least two Uð1Þ generators
coming from non-Abelian groups and the other at least one,
then as noted above, if there exists a Uð1Þ generator which
is a linear combination of Uð1Þ generators derived solely
from non-Abelian subgroups of both the subgroups of G
which clash, then this photon will be localized. This is
exactly how the SUð7Þ theory localizes a generator con-
taining the correct hypercharge quantum numbers for the
Standard Model components, along with quantum numbers
of �2 for non-SM components (so we get the Standard
Model along with some exotics with Y ¼ �2). Before
discussing the clash-of-symmetries mechanism for inter-
secting domain walls, we will discuss the generation of
intersecting kink-lump solutions in the next section.

III. INTERSECTING KINK-LUMP SOLUTIONS
IN A Z2 × Z2 SCALAR FIELD THEORY

In this section, we review the intersecting domain-wall
solution of a Z2 × Z2-invariant scalar field theory proposed
in Ref. [37]. This scalar field theory has four scalar fields:
η1 and η2 form the domain-wall kinks while the fields
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χ1 and χ2 form lumplike profiles parallel to each domain wall. The parities assigned for these fields under the
Z2 × Z2 are

η1 ∼ ð−;þÞ χ1 ∼ ð−;þÞ; η2 ∼ ðþ;−Þ χ2 ∼ ðþ;−Þ; (11)

and thus the most general scalar potential under these discrete symmetries is

VDW ¼ 1

4
λη1ðη21 − v21Þ2 þ

1

2
λη1χ1ðη21 − v21Þχ21 þ

1

2
μ2χ1χ

2
1 þ

1

4
λχ1χ

4
1 þ gη1χ1η

3
1χ1 þ hη1χ1η1χ

3
1 þ

1

4
λη2ðη22 − v22Þ2

þ 1

2
λη2χ2ðη22 − v22Þχ22 þ

1

2
μ2χ2χ

2
2 þ

1

4
λχ2χ

4
2 þ gη2χ2η

3
2χ2 þ hη2χ2η2χ

3
2 þ

1

2
λη1η2ðη21 − v21Þðη22 − v22Þ þ

1

2
λη1χ2ðη21 − v21Þχ22

þ 1

2
λχ1η2χ

2
1ðη22 − v22Þ þ

1

2
λχ1χ2χ

2
1χ

2
2 þ

1

2
λη1η2χ2η

2
1η2χ2 þ

1

2
λχ1η2χ2χ

2
1η2χ2 þ

1

2
λη1χ1η2η1χ1η

2
2 þ

1

2
λη1χ1χ2η1χ1χ

2
2

þ λη1χ1η2χ2η1χ1η2χ2: (12)

We wish to find a solution with two stable, perpendicular
kink-lumpsolutions.This requires choosinga potentialwhich
is bounded from below, has four discrete and degenerate
minima, and has the fields χ1 and χ2 attaining tachyonic
masses in the centers of each wall generated, respectively, by
η1 and η2. To ensure this we impose the parameter conditions
λη1;2 > 0, λχ1;2 > 0, λη1η2 > 0, λη1χ2 > 0, λχ1η2 > 0, λχ1χ2 > 0,
λη1χ1v

2
1 > μ2χ1 , and λη2χ2v

2
2 > μ2χ2 . To set up the background

intersecting domain walls and the corresponding lumps, we
need to find solutions to the Euler—Lagrange equations for
η1, η2, χ1, and χ2 subject to some boundary conditions which
interpolate among the four degenerate vacua η1 ¼ �v1,
η2 ¼ �v2, χ1 ¼ χ2 ¼ 0. To generate an intersecting wall
solution, generally one can consider the boundary conditions
of the fields at infinity to interpolate among all four vacua
along the edge of some two-dimensional object of infinite
size, ideally a square. Thus, if we desire perpendicular kink-
lump solutions, we can impose the boundary conditions

η1ðy¼�∞;zÞ¼�v1; η1ðy;z¼�∞Þ¼v1 tanh ðkyÞ;
η2ðy¼�∞;zÞ¼v2 tanh ðlzÞ; η2ðy;z¼�∞Þ¼�v2;

χ1ðy¼�∞;zÞ¼0; χ1ðy;z¼�∞Þ¼A1sechðkyÞ;
χ2ðy¼�∞;zÞ¼A2sechðlzÞ; χ2ðy;z¼�∞Þ¼0. (13)

The above conditions are basically one-dimensional kink-
lump solutions interpolating from one vacuum to another
vacuum along all four corners of a rectangle at infinity. Upon
taking the parameter choice

λη1η2χ2 ¼ λχ1η2χ2 ¼ λη1χ1η2 ¼ λη1χ1χ2 ¼ λη1χ1η2χ2 ¼0;

gη1χ1 ¼hη1χ1 ¼gη2χ2 ¼hη2χ2 ¼0;

λη1η2v
2
1¼ λχ1η2A

2
1; λη1η2v

2
2¼ λη1χ2A

2
2;

λη1χ2v
2
1¼ λχ1χ2A

2
1; λχ1η2v

2
2¼ λχ1χ2A

2
2;

2μ2χ1ðλη1χ1 −λχ1Þþðλη1λχ1 −λ2η1χ1Þv2¼0;

2μ2χ2ðλη2χ2 −λχ2Þþðλη2λχ2 −λ2η2χ2Þv2¼0;

(14)

one can show that the solution to the Euler—Lagrange
equations satisfying Eq. (13) is

η1ðyÞ ¼ v1 tanh ðkyÞ; χ1ðyÞ ¼ A1sechðkyÞ;
η2ðzÞ ¼ v2 tanh ðlzÞ; χ2ðzÞ ¼ A2sechðlzÞ; (15)

where k2 ¼ μ2χ1 , l
2 ¼ μ2χ2 ,A

2
1 ¼

λη1χ1v
2
1
−2μ2χ1

λχ1
,A2

2 ¼
λη2χ2v

2
2
−2μ2χ2

λχ2
.

One can also show that under the conditions of Eq. (14)
there exists a class of solutions of the form

η1ðyÞ ¼ v1 tanh ðkyÞ;
χ1ðyÞ ¼ A1sechðkyÞ;

η2ðy; zÞ ¼ v2 tanh ðluðy; zÞÞ;
χ2ðy; zÞ ¼ A2sechðluðy; zÞÞ;

(16)

where uðy; zÞ ¼ cos θyþ sin θz and 0 ≤ θ ≤ π=2.
Solutions with different θ will satisfy different boundary
conditions, and in particular all solutions with θ < π=2
will satisfy boundary conditions which are different from
those in Eq. (13). The solution with θ ¼ 0 has the two walls
parallel and can be thought of as a single wall between the
vacua η1 ¼ −v1, η2 ¼ −v2, χ1 ¼ χ2 ¼ 0 and η1 ¼ þv1,
η2 ¼ þv2, χ1 ¼ χ2 ¼ 0, while the solution with θ ¼ π=2 is
obviously the perpendicular solution. All other solutions,
with 0 < θ < π=2, describe walls that intersect at an angle
less than 90 deg.
There exists a conserved topological charge defined by

QABC ¼
Z

d6xJ0 ABC; (17)

where the associated current JABCD is defined by

JMNOP ¼ ϵMNOPQRϵij∂Qηi∂Rηj; (18)

which is zero for the θ ¼ 0 solution and equal to 4v1v2 for
0 < θ ≤ π=2. Hence, the perpendicular solution in Eq. (15)
as well as the intersecting solutions with a nonzero
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intersection angle less than 90 deg cannot decay or evolve
into the solution where the walls are parallel.
We have good reason to believe, at least in sections of

parameter space which are small deviations away from
the conditions contained in Eq. (14), that the perpendicular
solution also cannot evolve to a solution with θ less than
90 deg [37]. It was concluded in Ref. [37] that further
(numerical) analysis was required to show this explicitly.
For the purposes of this paper, in which our main focus is
on adding a gauge structure and reproducing the smaller
subgroups and the Standard Model on the domain-wall
intersection via a clash-of-symmetries realization of the
Dvali—Shifman mechanism, we will assume that the
perpendicular solution can always be chosen and is stable.

IV. CLASH-OF-SYMMETRIES MECHANISM
FROM INTERSECTING KINK-LUMP SOLUTIONS

We now give an outline for a new clash-of-symmetries
mechanism applicable in the context of the intersecting
domain-wall model treated in the previous section, which is
the main purpose of this paper. We now add a gauge group
G and give the fields which form lumps, χ1 and χ2, gauge
charges. When these fields condense in the interior of each
of the respective domain walls η1 and η2, they break G to
two subgroupsH1 andH2 on each wall. Now consider what
happens on the intersection of the domain walls. Naturally,
we assume G is again confining in the bulk, just as it
usually is in the single-wall case. Then by the Dvali—
Shifman mechanism, H1 is localized to the domain wall
described by η1, and H2 is localized to the domain wall
described by η2. In general ,H1 and H2 are not the same
group, so in the intersection these groups will clash, and the
subgroup respected on the intersection will be H1∩H2,
analogously to the single-wall CoS mechanism. A graph of
this scenario is shown in Fig. 2.
Unlike the single-wall CoS mechanism, H1 and H2 need

not be differently embedded isomorphic subgroups of G.
This is because χ1 and χ2 are independent fields and so they
potentially can attain vacuum expectation values which
break G into two different nonisomorphic subgroups.
Furthermore, χ1 and χ2 need not be in the adjoint
representation; nor do they need to be in the same
representation. These phenomena open up a whole new
set of theoretical possibilities for the CoS mechanism.
For instance, consider G ¼ SUð4Þ. With an adjoint, we can
break G to SUð3Þ ×Uð1Þ or to SUð2Þ × SUð2Þ ×Uð1Þ.
Unlike the single-wall case where we only had one adjoint
field, here we have two adjoint fields so we could break G
to SUð3Þ ×Uð1Þ on one wall and to SUð2Þ × SUð2Þ ×
Uð1Þ on the other, leading to possible CoS groups which
are isomorphic to SUð2Þ × Uð1Þ ×Uð1Þ. On the other
hand, we could make, say, χ2 transform under the funda-
mental representation which always breaks G to SUð3Þ
and consider the possible CoS groups when χ1 breaks
G to SUð3Þ ×Uð1Þ or when it breaks G to

SUð2Þ × SUð2Þ ×Uð1Þ. Yet another possibility is the case
where both η1 and η2 are fundamentals, leading to both H1

and H2 being isomorphic to SUð3Þ. In fact, for the case
where G ¼ SUð7Þ, it turns out that there is a phenomeno-
logically acceptable solution which breaks to the Standard
Model [plus two Uð1Þ gauge groups], which results from a
clash between nonisomorphic subgroups, with H1 ¼
SUð5Þ × SUð2Þ ×Uð1Þ and H2¼SUð4Þ×SUð3Þ×Uð1Þ.
We will discuss all these possibilities in further detail in the
sections that follow.
When interactions between these fields are switched on,

the configuration of vacua attained by these fields will be
the one that minimizes the energy of the solution. This is
not necessarily the one where both vacua are the same
and aligned. To see this one needs to see the different
contributions to the energy density. The contributions will
be the energy densities of each 4þ 1-dimensional domain
wall as well as a 3þ 1-dimensional junction tension which
is associated with the interactions between the walls.
Because of the additional dimensionality, the 4þ 1-dimen-
sional wall tensions will be positive and infinitely larger
in magnitude than the junction tension. As an illustrative
example to describe this set of physics, let χ1 and χ2
transform under the adjoint representation, although this
also works more generally. Each kink-lump pair can by
itself break G into a number of subgroups depending on
the vacuum expectation value (VEV) pattern of the respec-
tive lump fields χ1 and χ2. Since the value of these VEVs
depends on the coordinates, we can write these patterns in
the form χ1ðyÞ ¼ Aa

1TaχA1
ðyÞ and χ2ðzÞ ¼ Aa

2TaχA2
ðzÞ,

G

H2

H1

H1 H2

z

y

FIG. 2. A picture of the intersecting clash-of-symmetries
mechanism in the y-z plane. The gauge group G is spontaneously
broken to two subgroups H1 and H2 along the walls parallel to
the y and z axes, respectively. Further symmetry breaking occurs
in the intersection region of the walls where the total symmetry
respected is H1∩H2. If H1∩H2 is semisimple, then, provided
each factor subgroup is entirely contained in a non-Abelian
subgroup or factor group of each of H1 and H2, it will be
completely localized to the intersection. Otherwise, there is at
least a subgroup of H1∩H2 which will be semidelocalized along
one of the domain walls.
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where χA1
ðyÞ and χA2

ðzÞ are just one-dimensional real fields
corresponding to the generators encompassed by the
breaking patterns A1 and A2, respectively. Because of
the presence (in general) of Tr½χ41;2� terms, each of the
different configurations with the lumps breaking G into
different subgroups will generate different effective quartic
self-couplings for χA1

ðyÞ and χA2
ðzÞ and will thus have

different energy densities. The resultant clashing groupsH1

and H2 will be determined by which breakings minimize
the four-dimensional brane tensions. After determining the
subgroups respected on each wall up to isomorphism, since
single kink-lump configurations which respect isomorphic
but differently embedded subgroups will not differ in
energy, it will be the minimization of the three-dimensional
junction tension energy density that will determine which
particular clash gives the minimal energy configuration and
thus the intersection group H1∩H2. Taking a given
embedding of H2 as a reference, then the resultant
intersection of H2 with different embeddings of H1 will
not be the same in general. It turns out that the various
interaction terms between the two sets of fields generating
the kink-lump pairs, like Tr½χ21χ22�, Tr½χ1χ2χ1χ2�, and
½Trðχ1χ2Þ�2, are sensitive to the exact clash and thus the
surviving subgroup resulting from the clash of H1 and H2.
Thus, the final subgroup respected on the domain-wall
intersection first depends on the subgroups respected on
each wall, which are more or less determined by the
coupling constants in the η1 − χ1 and η2 − χ2 sectors
and then second on which particular embeddings of those
subgroups minimize the junction energy density, which is
determined from the couplings between the η1 − χ1 and
η2 − χ2 sectors.
The localization of the subgroups of H1∩H2 in the

clash-of-symmetries mechanism in the intersecting wall
scenario follows analogously to the single domain-wall
case discussed in Sec. II. As discussed above, since G is
non-Abelian and confining in the bulk, H1 and H2 are
automatically localized to the respective domain walls.
Again, as in the single-wall scenario, H1 and H2 are in
general semisimple and may be written in the form
described by Eq. (6), and their overlap H1∩H2 is also
described by Eq. (7). The conditions for the full localization
of non-Abelian and Abelian groups to the junction are the
same as those for the single-kink clash-of-symmetries; a
non-Abelian subgroup n ofH1∩H2 must satisfy Eq. (8), and
an Abelian generator qmust satisfy Eq. (10). In the case that
these conditions are not satisfied, the gauge bosons are
semidelocalized, and there are obvious physical differences
to the single-wall case; in this case semidelocalized photons
are able to propagate along one or bothwalls (but not into the
G-respecting parts of the bulk) rather than being able to
propagate through one-half of the bulk or through the entire
bulk in the single-wall case.
For this application of the Dvali—Shifman mechanism

to work, there is a certain hierarchy of scales which needs

to be respected. This hierarchy is very similar to that stated
for the single-wall SUð5Þ model of Ref. [19], and it is
based on similar principles. First, as our theory is a 5þ 1-
dimensional field theory, it is nonrenormalizable, and
a UV cutoff ΛUV must be imposed. Second, there are
the symmetry breaking scales for H1 and H2 on each wall
which are roughly of the order of A1=2

1 and A1=2
2 , respec-

tively, where here A1 and A2 simply denote the maximum
value of the lump profiles in the components of χ1 and χ2
which condense. Because of the bulk being in the confine-
ment phase, there exists the bulk confinement scale for G,
which we call ΛG;conf . There are also the confinement
scales for the non-Abelian factor groups of H1 and H2,
which we label collectively as ΛH1;conf and ΛH2;conf as well
as the confinement scales of the localized non-Abelian
factor groups of H1∩H2, which we label ΛH1∩H2;conf .
Finally, there are the inverse widths of each domain wall, k
and l. The required hierarchy is

ΛUV > A1=2
1 ; A1=2

2 > ΛG;conf > ΛH1;conf ;ΛH2;conf

> k; l > ΛH1∩H2;conf : (19)

Obviously,ΛUV must be the highest scale of the theory. Next,
the symmetry breaking scales A1=2

1 and A1=2
2 must be larger

than the confinement scale in the bulk ΛG;conf so that our
background solutions for χ1 and χ2 are not destroyed by the
confinement dynamics of G. In turn, ΛG;conf must be higher
than any of the confinement scales ΛH1;conf and ΛH2;conf in
order to localize H1 and H2 by the Dvali—Shifman mecha-
nismand ensure that there is amassgapbetween themasses of
the glueballs ofG and those of the non-Abelian factor groups
of H1 and H2. The confinement scales ΛH1;conf and ΛH2;conf
on each wall must be larger the the inverse widths of the
domain walls k and l for the same reasons that the bulk
confinement scale must be larger than the domain-wall scale
in the single-wall case usingDvali—Shifman, as discussed in
Ref. [41]. Finally,ΛH1∩H2;conf must be lower thanΛH1;conf and
ΛH2;conf to ensure that its gauge bosons are localized by the
Dvali—Shifman mechanism. In fact, ΛH1∩H2;conf should be
the lowest scale of the theory since if we reproduce the
StandardModel on the domain-wall intersectionwe naturally
expectΛH1∩H2;conf ∼ ΛQCD. All the scales exceptΛH1∩H2;conf
should be above the electroweak scale.
In the next section, we will discuss applying this

realization of the clash-of-symmetries mechanism in prac-
tice. We will also discuss how to build a realistic model
from an SUð7Þ gauge group.

V. SOME SLICES OF HEAVEN FROM SUð7Þ:
A CONSTRUCTION OF A REALISTIC MODEL

FROM THE CLASH-OF-SYMMETRIES
MECHANISM

In this section we discuss how to build a realistic model
on an SUð7Þ gauge group. Given SUð7Þ is not a commonly
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used gauge group, we give a basic overview of the
representation theory of SUð7Þ in Appendix A. In the
forthcoming analysis, we will assume that both χ1 and χ2
are charged under the adjoint representation, that is, the
48 of SUð7Þ. First, we need to consider the possible
breaking patterns of a single adjoint scalar field, which
can be analyzed by simply looking at the Cartan
subalgebra.
We can always gauge rotate the vacuum expectation

value of an adjoint scalar field χ (which could be either χ1
and χ2 here) such that it is represented by a traceless
diagonal matrix, which in the case of SUð7Þ may be
written

χ ¼ diagða1; a2; a3; a4; a5; a6; a7Þ; (20)

where the ai are numbers parametrizing the Cartan
subalgebra and satisfying the traceless conditionP

7
i¼1 ai ¼ 0. From considering various values of the

six independent ai, it is possible to generate all the
possible symmetry breaking patterns for a single adjoint.
The most stable configuration will depend on the
potential for χ in the theory. In Ref. [42], Ruegg showed
that the quartic Higgs potential resulting for the ai after
substitution for χ only has extrema (and thus minima) if
at most two of the ai are different. Hence, the possible
resulting subgroups after breaking with the 48 of SUð7Þ
are SUð6Þ × Uð1Þ, for which six of the ai are equal and
the other differs, SUð5Þ × SUð2Þ ×Uð1Þ when five ai are
equal and the remaining two ai are equal to a different
value, and SUð4Þ × SUð3Þ ×Uð1Þ which results when
one eigenvalue of χ has a multiplicity of 4 and the
other three.
In the context of our model with intersecting kink-lump

solutions, this means that each of χ1 and χ2 break SUð7Þ
to one of these three subgroups. As a result, the possible
clashes are between two different embeddings of one of the
three subgroups SUð6Þ ×Uð1Þ, SUð5Þ × SUð2Þ ×Uð1Þ,
or SUð4Þ × SUð3Þ × Uð1Þ or between particular embed-
dings of two different choices of these groups. Most of the
possibilities are physically uninteresting; a full description
of all the possibilities is given in Appendix B.
The most physically interesting possibility with χ1 and

χ2 in the adjoint representation is a clash between a
particular embedding of H1 ¼ SUð5Þ × SUð2Þ ×Uð1Þ
and H2 ¼ SUð4Þ × SUð3Þ ×Uð1Þ. It turns out that a
possible subgroup resulting from the clash contains a
Standard Model gauge group, including the Abelian group
generated by hypercharge, which is fully localized to the
domain-wall intersection, along with some semidelocalized
Uð1Þ gauge groups that we must break by adding additional
Higgs fields in the appropriate representations. Given that
the top 5 × 5 block of the localized Abelian generator is
just the usual SUð5Þ hypercharge generator, the Standard
Model fermions can be embedded in SUð7Þ multiplets in

the most obvious way: in a combination of the antifunda-
mental 7̄ representation and the antisymmetric 21 repre-
sentation along with a couple of additional fermions in the
7̄ to ensure that the effective 3þ 1-dimensional field theory
is anomaly free. The main difficulty with this arrangement
is ensuring that the kink-lump solution breaking SUð7Þ to
H1 ¼ SUð5Þ × SUð2Þ ×Uð1Þ is the most energetically
favorable one in the η1-χ1 sector. This cannot be generated
in the parameter region with analytic solutions with a
quartic potential, and it seems necessary to use a sextic
potential.
Another particular choice that we mention that works in

an unusual way is that between two different embeddings
of SUð4Þ × SUð3Þ × Uð1Þ. Having looked at the possibil-
ity mentioned in the previous paragraph, it might seem
perfectly reasonable to consider two different embeddings
of SUð4Þ × SUð3Þ ×Uð1Þ and particularly so since it
avoids some of the problems of the previous solution in
ensuring that it is energetically favorable. This choice
indeed can localize a SM-like gauge group but with a
localized Uð1Þ subgroup for which the generator has the
wrong relative sign between the charges of the right-handed
down quark and the lepton doublet. In spite of this, the
Standard Model fermions can be successfully embedded
into representations of SUð7Þ, albeit in a rather unusual
way: they are embedded in the combination of a 7, a 2̄1,
and a 35 rather than the more obvious combination of a 7̄
and a 21. This means that this solution yields a Standard
Model with more exotics.
The third possibility we mention is one between two

different embeddings of SUð6Þ × Uð1Þ. Like the case with
two embeddings of SUð4Þ × SUð3Þ ×Uð1Þ, one can easily
choose energetically favored solutions for the two different
walls. In the case of differently embedded SUð6Þ ×Uð1Þ
subgroups, there will be a localized SUð5Þ gauge group on
the intersection along with two semidelocalized Uð1Þ
gauge groups. Hence, this example provides a six-
dimensional realization of the approach taken in the
single-wall case in Ref. [25] to localizing the photon
along with the non-Abelian gauge bosons of the
Standard Model, namely, that of localizing a grand unified
gauge group to the intersection containing our 3þ 1-
dimensional Universe. It then follows that one just needs
to break the semidelocalized Abelian groups and then break
the SUð5Þ group to the SM in the usual way.
The last possibility we illustrate is a case where neither

χ1 or χ2 are adjoint scalars but transform instead under the
totally antisymmetric 21 and 35 representations, respec-
tively. The 21 can break SUð7Þ to H1 ¼ SUð5Þ × SUð2Þ,
and the 35 can induce a breaking toH2 ¼ SUð4Þ × SUð3Þ.
A particular clash between these two groups leads directly
to the localization of the same Standard Model gauge
group as that generated in the first example given with
adjoint scalars. There are two main advantages with this
situation over the one with two adjoint scalars in
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generating the same Standard Model gauge group.
Obviously, the first is that we have a localized
Standard Model without the need to break any additional
semidelocalized Abelian groups. The second is that,
unlike the case with an adjoint scalar, for a particular
parameter choice, the arrangement on the first wall where
the 21 induces the breaking to the SUð5Þ × SUð2Þ sub-
group can be guaranteed to be the most stable one with a
quartic potential. The breaking to SUð4Þ × SUð3Þ on the
second wall with the 35 can also be guaranteed to be the
most stable arrangement with a quartic potential.
We discuss these four possibilities in the following four

subsections.

A. FULLY LOCALIZED STANDARD MODEL
WITH H1 ¼ SUð5Þ × SUð2Þ × Uð1Þ AND

H2 ¼ SUð4Þ × SUð3Þ × Uð1Þ ON A
DOMAIN-WALL INTERSECTION

Here we will describe first the group theoretic back-
ground behind the solution with H1 ¼ SUð5Þ × SUð2Þ ×
Uð1Þ and H2 ¼ SUð4Þ × SUð3Þ × Uð1Þ, which localizes
the Standard Model along with some Y ¼ �2 exotics.
Later we will discuss the energetics and parameter choices
needed to ensure that such a solution is the most
stable one.
Let us list all the possible subgroups resulting from a

clash between an SUð5Þ × SUð2Þ ×Uð1Þ subgroup and an
SUð4Þ × SUð3Þ ×Uð1Þ subgroup of SUð7Þ, at the level of
symmetries. There are three possibilities: H1∩H2¼
SUð4Þ×SUð2Þ×Uð1Þ×Uð1Þ,H1∩H2¼SUð3Þ×SUð2Þ×
SUð2Þ×Uð1Þ×Uð1Þ, and H1∩H2 ¼ SUð3Þ × SUð2Þ×
Uð1Þ ×Uð1Þ ×Uð1Þ. The first two are physically unin-
teresting since, in both these cases, one of the non-Abelian
subgroups is semidelocalized due to being respected along
one wall [the SUð4Þ subgroup in the first case and the
SUð3Þ subgroup in the second]. It is the last case, which is
interesting since here the whole Standard Model gauge
group is localized. Along with the Standard Model come
two Uð1Þ subgroups which are semidelocalized and thus
must be broken at a sufficiently high energy scale to avoid a
leakage of energy into the bulk in the low energy field
theory.
As an example which yields this desired situation,

consider the case where the component of χ1 which
condenses is proportional to the matrix

Q1 ¼

0
BBBBBBBB@

2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 −5 0

0 0 0 0 0 0 −5

1
CCCCCCCCA

(21)

and the component of χ2 which condenses is proportional
to

Q0
1 ¼

0
BBBBBBBB@

3 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 −4 0 0 0

0 0 0 0 −4 0 0

0 0 0 0 0 −4 0

0 0 0 0 0 0 3

1
CCCCCCCCA
: (22)

The former clearly induces the breaking SUð7Þ →
SUð5Þ × SUð2Þ ×Uð1Þ, and the latter induces the break-
ing SUð7Þ → SUð4Þ × SUð3Þ ×Uð1Þ. Inspecting these
two matrices, one notices that there is an SUð3Þ subgroup
which preserves the top-left 3 × 3 blocks of these two
matrices. This SUð3Þ subgroup is the one common to the
SUð5Þ and SUð4Þ subgroups induced by the respective
vacua. Similarly, an SUð2Þ subgroup represented by
generators with nontrivial components in the 2 × 2 block
on the intersection of the fourth and fifth rows and fourth
and fifth columns preserves the fourth and fifth elements
along the diagonal along both matrices, which is common
to the SUð5Þ and SUð3Þ subgroups. Looking at the lower-
right 2 × 2 block, one sees that the SUð2Þ subgroup
induced by the condensation of χ1 does not survive and
is thus broken since this same group does not preserve the
corresponding elements of the diagonal in the VEV
pattern of χ2, represented by Q0

1. Hence, the non-
Abelian sector surviving the clash is SUð3Þ × SUð2Þ,
which is precisely that required for a localized SM.
Since both these non-Abelian subgroups are entirely
contained in larger non-Abelian subgroups respected
along each wall [SUð5Þ and SUð4Þ in the case of
SUð3Þ color and SUð5Þ and SUð3Þ in the case of
SUð2Þ weak isospin], they are fully localized as required
to the domain-wall intersection.
Next, we need to determine the remaining Uð1Þ

subgroups respected on the wall at the level of sym-
metries and then determine if any of them are localized.
As is well known, any spontaneous breaking by an
adjoint scalar field always preserves a Uð1Þ subgroup,
and the generator of this Uð1Þ subgroup is precisely
equal to the generator which condenses. Hence, Q1 and
Q0

1 are the generators of these associated Uð1Þ subgroups
in the case of the walls generated by η1 and η2,
respectively. We now look at any potential leftover
generators inside the non-Abelian groups respected on
each wall but which are outside the smaller non-Abelian
subgroups respected on the intersection [i.e., Uð1Þ gen-
erators of the T, T 0 type discussed previously]. For H1

one sees that the usual SUð5Þ hypercharge generator is
one of the leftover generators,
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T1 ¼

0
BBBBBBBB@

þ 2
3

0 0 0 0 0 0

0 þ 2
3

0 0 0 0 0

0 0 þ 2
3

0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1
CCCCCCCCA
; (23)

which lies inside the SUð5Þ subgroup respected on the
first wall but is outside both its SUð3Þ and SUð2Þ
subgroups that survive the clash. Similarly,

T2 ¼

0
BBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −1

1
CCCCCCCCA

(24)

is inside the SUð2Þ subgroup respected on the first wall
and could potentially contribute to a surviving Uð1Þ.
For H2 the respective generators inside SUð4Þ and SUð3Þ
but outside the preserved non-Abelian groups are,
respectively,

T 0
1 ¼

0
BBBBBBBB@

þ 2
3

0 0 0 0 0 0

0 þ 2
3

0 0 0 0 0

0 0 þ 2
3

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −2

1
CCCCCCCCA

(25)

and

T 0
2 ¼

0
BBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 0

1
CCCCCCCCA
: (26)

We have listed all the possible contributing generators
above. For a Uð1Þ subgroup to be respected on the wall at
the level of symmetries, as discussed previously, it must be
a linear combination of generators satisfying Eq. (9). By
inspection, one can easily see from the above generators
that there exists a generator Y which can be written solely in
terms of the Ti and T 0

i generators:

Y ¼ −T1 − 2T2 ¼ −T 0
1 − T 0

2

¼

0
BBBBBBBB@

− 2
3

0 0 0 0 0 0

0 − 2
3

0 0 0 0 0

0 0 − 2
3

0 0 0 0

0 0 0 þ1 0 0 0

0 0 0 0 þ1 0 0

0 0 0 0 0 −2 0

0 0 0 0 0 0 þ2

1
CCCCCCCCA
: (27)

Thus, Y satisfies Eq. (10) and is thus localized to the
domain-wall intersection. Furthermore, the upper-left 5 × 5
block of Y is precisely the usual hypercharge generator so it
has the desired properties of a localized Abelian generator
on the components which transform under the SUð3Þ color
and SUð2Þ isospin subgroups. Hence, this configuration
successfully localizes the Standard Model gauge group.
Along with the localized Standard Model, we also get a

couple of semidelocalized Uð1Þ gauge groups. The gen-
erators of these Abelian groups may be taken to be

A ¼ 4Q1 þ 7T1 − 6T2 ¼ 2Q0
1 þ 10T 0

1 þ 9T 0
2

¼

0
BBBBBBBB@

38
3

0 0 0 0 0 0

0 38
3

0 0 0 0 0

0 0 38
3

0 0 0 0

0 0 0 þ1 0 0 0

0 0 0 0 þ1 0 0

0 0 0 0 0 −26 0

0 0 0 0 0 0 −14

1
CCCCCCCCA

(28)

and

B ¼ −3Q1 þ 12T1 þ 12T2 ¼
3

2
Q0

1 − 3

8
T 0
1 − 150T2

¼

0
BBBBBBBB@

2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 −18 0 0 0

0 0 0 0 −18 0 0

0 0 0 0 0 27 0

0 0 0 0 0 0 3

1
CCCCCCCCA
: (29)

Evidently, both A and B satisfy Eq. (9) but not Eq. (10), as
one expects for semidelocalized generators. The resultant
photons are able to propagate along both walls, and thus
these Abelian groups must be broken on the domain-wall
intersection as the existence of massless five-dimensional
states coupling to the Standard Model fermions would
obviously be disastrous.
Since the lower-right 2 × 2 block is proportional to twice

the third Pauli matrix, once we include the fermionic
particle content and Higgs fields required for electroweak
symmetry breaking, we expect exotic scalars and fermions.
If we embed the right-handed down quark and the lepton
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doublet in a 7̄, for instance, there will be exotics with
hypercharge Y ¼ �2. Thus, to construct realistic models,
we need to ensure that the masses of the localized modes
for these exotics are sufficiently more massive than those
corresponding to the SM particle content. The exact
breakdowns of the 7̄, 21, and 35 representations in terms
of the full SUð3Þc × SUð2ÞI ×Uð1ÞY × Uð1ÞA ×Uð1ÞB
subgroup preserved at the level of symmetries on the
domain-wall intersection are

7̄ ¼
�
3̄; 1; þ 2

3
; − 38

3
; −2

�
þ ð1; 2; −1; −1; þ18Þ

þ ð1; 1; þ2; þ26; −27Þ þ ð1; 1; −2; þ14; −3Þ;
(30)

21 ¼
�
3̄; 1;− 4

3
;þ 76

3
;þ4

�
þ
�
3; 2;þ 1

3
;þ 41

3
;−16

�

þ ð1; 1;þ2;þ2;−36Þ þ
�
3; 1;− 8

3
;− 40

3
;þ29

�

þ
�
3; 1;þ 4

3
;− 4

3
;þ5

�
þ ð1; 2;−1;−25;þ9Þ

þ ð1; 2;þ3;−13;−15Þ þ ð1; 1; 0;−40;þ30Þ;
(31)

and

35 ¼
�
3; 1;þ 4

3
;þ 44

3
;−34

�
þ
�
3̄; 2;− 1

3
;þ 79

3
;−14

�

þ ð1; 1;−2;þ38;þ6Þ þ
�
3̄; 1;− 10

3
;− 2

3
;þ31

�

þ
�
3; 2;− 5

3
;− 37

3
;þ11

�
þ ð1; 1; 0;−24;−9Þ

þ
�
3̄; 1;þ 2

3
;þ 34

3
;þ7

�
þ
�
3; 2;þ 7

3
;− 1

3
;−13

�

þ ð1; 1;þ4;−12;−33Þ þ
�
3; 1;− 2

3
;− 82

3
;þ32

�

þ ð1; 2;þ1;−39;þ12Þ: (32)

Thus, we can easily see that we can embed the Standard
Model fermions in the most obvious way with the charge
conjugate of the right-chiral down quark ðdRÞc and the
lepton doublet L embedded in the 7̄ and the charge
conjugates of the right-chiral up quark ðuRÞc and of the
right-chiral electron ðeRÞc along with the quark doublet Q
embedded in the 21. There is also a component which is a
singlet under the SM, the ð1; 1; 0;−40;þ30Þ component,
inside the 21 which could be potentially used as a right-
chiral neutrino or its charge conjugate.

One thing that is not completely clear is what is the
minimal content necessary for anomaly cancellation.
Fermion localization in the model described in Sec. III
was treated in Ref. [37], and it was shown that a single
chiral zero mode was reproduced on the intersection
when a 5þ 1-dimensional Dirac fermion was coupled to
the background scalar fields through scalar and pseudo-
scalar Yukawa couplings. The fact that we use full eight-
component Dirac spinors to embed 3þ 1-dimensional
chiral zero modes is important since this means that the
underlying 5þ 1-dimensional theory is vectorlike and is
thus free from both 5þ 1-dimensional gravitational and
gauge anomalies. However, the effective 3þ 1-dimensional
theory reproduced on the intersection is in general chiral
since each 5þ 1-dimensional Dirac fermion produces a
single chiral zero mode. Hence, one may plausibly repro-
duce an anomalous 3þ 1-dimensional theory from an
anomaly-free 5þ 1-dimensional theory, as would be the
case if we chose the only fermionic content to be a single
5þ 1-dimensional Dirac fermion in the 7̄ representation and
another in the 21 representation to embed each generation of
the SM fermions. In an SUð7Þ theory in 3þ 1 dimensions
with chiral fermions, 7̄þ 21 is anomalous, and the minimal
anomaly-free combination is in fact a left-chiral fermion in
the 21 representation along with three transforming as a 7̄.
This phenomenon of an anomalous lower dimensional
theory reproduced from an anomaly-free one in higher
dimensions has been noted previously [43,44], and in some
cases the anomalies of the lower dimensional theory have
been shown to be canceled by effects coming from the bulk
[43]. It is not clear to us if this is the case in our model and
that bulk effects will protect our 3þ 1-dimensional theory
from anomalies if we simply choose a single 7̄ Dirac fermion
and a 21 Dirac fermion in 5þ 1 dimensions for each SM
generation. Nevertheless, we can always make the safe choice
and include the full 7̄þ 7̄þ 7̄þ 21 combination forour initial
5þ 1-dimensional Dirac fermion content. Alternatively, there
is the next-to-minimal choice 7̄þ 21þ 3̄5.
With regards to the Higgs sector, we not only need a

Higgs field in which to embed the electroweak Higgs
doublet, but we also need to include the requisite Higgs
fields to break the semidelocalized Abelian groups gen-
erated by A and B. Both the Abelian groups Uð1ÞA and
Uð1ÞB must be broken without breaking Uð1ÞY , so the
required Higgs fields must contain components which
transform as singlets under the Standard Model but are
charged under the semidelocalized Abelian groups. The
obvious candidates are the 21 and the 35 since the 21
contains a component transforming as ð1; 1; 0;−40;þ30Þ
and the 35 contains a component transforming as
ð1; 1; 0;−24;−9Þ. Furthermore, it is obvious that these
two different components will completely break Uð1ÞA ×
Uð1ÞB since each component will preserve different linear
combinations of A and B after attaining a VEV. Hence, the
21þ 35 combination will do the job. For embedding the
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electroweak Higgs, one might first consider the anti-
fundamental 7̄. While a scalar transforming as a 7̄ can
form a gauge invariant Yukawa coupling with fermion in
the 7̄ and another in the 21, it cannot form a Yukawa
coupling with the 21 fermion and its charge conjugate,
which we need to get a mass matrix for the uplike
quarks. Neither can a scalar in the 21 representation,
even though it contains a component transforming as an
electroweak doublet. On the other hand, the 35 repre-
sentation can both form a Yukawa coupling between a 7̄
and a 21 as well as a gauge invariant Yukawa coupling
between the 21 and its charge conjugate. Further, the 3̄5
contains a component transforming as an electroweak
doublet, the ð1; 2;−1;þ39;−12Þ component, and thus it
is necessary to embed the electroweak Higgs in this
representation. Although a phenomenological analysis
of the fermion and scalar modes is beyond the scope of
this paper, it would be interesting to see if we can embed
the electroweak Higgs field along with the SM singlet
required to break one of the semidelocalized Abelian
groups in the same 3̄5 scalar and choose parameters such
that these components attain tachyonic masses on the
intersection while all other components attain positive
definite squared masses.
To ensure that we get this configuration, we need to

ensure that it is the most energetically favorable and
stable one. The most general Z2 × Z2 invariant quartic
potential for η1, χ1, η2, and χ2 with χ1 and χ2 as adjoint
scalar fields is

V ¼ Vη1χ1 þ Vη2χ2 þ Vη1χ1η2χ2 ; (33)

where Vηiχi for i ¼ 1, 2 are the self-interaction potentials

Vηiχi ¼
1

4
ληiðη2i − v2i Þ2 þ ληiχiðη2i − v2i ÞTr½χ2i � þ μ2χiTr½χ2i �

þ hηiχiηiTr½χ3i � þ λ1χiTr½χ2i �2 þ λ2χiTr½χ4i �; (34)

for the η1-χ1 and η2-χ2 sectors, respectively, and Vη1χ1η2χ2
is the interaction potential between these two sectors,
which may be written

Vη1χ1η2χ2 ¼
1

2
λη1η2ðη21 − v21Þðη22 − v22Þ þ λη1χ2ðη21 − v21ÞTr½χ22�

þ λχ1η2ðη22 − v22ÞTr½χ21� þ 2λ1χ1χ2Tr½χ21�Tr½χ22�
þ 2λ2χ1χ2 ½Tr½χ1χ2��2 þ 2λ3χ1χ2Tr½χ21χ22�
þ 2λ4χ1χ2Tr½χ1χ2χ1χ2� þ λη1χ1χ2η1Tr½χ1χ22�
þ λχ1η2χ2η2Tr½χ21χ2� þ λη1χ1η2χ2η1η2Tr½χ1χ2�:

(35)

First, we need to ensure that the configurations on the
boundary leading to the desired subgroups being respected
on each wall are the most stable. This involves analyzing

the respective one-dimensional kink-lump solutions,
which we use as the boundary conditions generated by
the self-interaction potentials Vηiχi given in Eq. (34). At the
boundaries, we obviously set ηiðyi → �∞Þ ¼ �vi (here,
y1 ¼ y, y2 ¼ z), and here the corresponding χi must be zero
since here it experiences a potential bounded from below
with a positive definite squared mass. At some point, on the
wall where ηi traverses from one vacuum to the other,
ηi ¼ 0, and here the squared mass of χi becomes tachyonic
and is thus expected to condense. In this region, χi
experiences a standard quartic symmetry-breaking poten-
tial for an adjoint scalar. In generating analytic solutions,
we normally set the coupling constant for the ηiTr½χ3i � term
to zero (and other terms involving odd powers of ηi and χi
in the full potential for similar reasons). This means that the
resultant effective quartic potential experienced by χi in the
region where it is tachyonic has a Z2 symmetry, with its
breaking patterns determined by Li [45]. Since all gen-
erators are normalized to 1=2, the ½Trðχ2i Þ�2 always yields a
quartic self-interaction term which has the same strength no
matter which breaking pattern is chosen. On the other hand,
the value of Tr½χ4i � differs depending on the VEV pattern
chosen. Hence, the real components of χi corresponding to
different symmetry breaking patterns experience different
effective quartic self-couplings, which will be linear com-
binations of λ1χi and λ2χi . If we write the effective λχieff
coupling constants for these different components with the
normalization given in Eq. (12) in terms of λ1χi and λ

2
χi , then

for an SUð6Þ ×Uð1Þ breaking pattern, the effective cou-
pling is λ1χi þ 31λ2χi=42; for an SUð5Þ × SUð2Þ ×Uð1Þ
breaking pattern, it is λ1χi þ 19λ2χi=70; and for SUð4Þ×
SUð3Þ × Uð1Þ, it is λ1χi þ 13λ2χi=84. Since the energy of the
effective potential for χi at the respective vacuum is
−μ4χi=4λχieff , the configuration with the lowest effective
quartic coupling will have the lowest energy and conse-
quently the most stable vacuum. Thus, of the three breaking
patterns, for λ2χi > 0 the SUð4Þ × SUð3Þ ×Uð1Þ is the
most stable, and for λ2χi < 0 the SUð6Þ ×Uð1Þ vacuum
is the most stable (provided λ1χi þ λ2χi > 0 to ensure the
potential is bound from below); these results agree
with Ref. [45].
The energy of the effective potential for an SUð5Þ ×

SUð2Þ × Uð1Þ symmetry breaking pattern thus always
lies in between that for the SUð6Þ ×Uð1Þ and SUð4Þ ×
SUð3Þ × Uð1Þ symmetry breaking patterns in the case that
the effective potential for χi has the Z2 symmetry (not the
ones initially imposed). This means that for a quartic
potential with the η1χ

3
1 term set to zero the configuration

where the component of χ1 which is proportional to Q1

condenses to form the lump is never the most stable one.
We can ensure that the SUð4Þ × SUð3Þ ×Uð1Þ breaking
pattern is the most stable one in the η2 − χ2 sector, but we
need some way to ensure that SUð5Þ × SUð2Þ ×Uð1Þ
breaking kink-lump configuration is the most stable one
for the η1 − χ1 sector if we are to generate the desired
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outcome with a localized Standard Model outlined in this
section.
There are several ways around the problem in the

previous paragraph. One might first think that one of these
would be to switch on the η1Tr½χ31� term. However, there
will still be a point where η1 ¼ 0, and thus around this point
one of the other breaking patterns would still be expected to
be more stable. Furthermore, this term will affect the
localization of the lump, and once again the effective
coupling for this interaction is largest in magnitude for the
SUð6Þ × Uð1Þ breaking pattern followed by that for
SUð5Þ×SUð2Þ×Uð1Þ followed again by SUð4Þ×SUð3Þ×
Uð1Þ. By examining this term, we have noticed that it
generally lowers the energy density of the solutions, and the
more the lump is delocalized from the center of the kink,
the more the energy density lowers. Thus, one initially
thinks that there may be a way to make the SUð5Þ ×
SUð2Þ × Uð1Þ preserving configuration the lowest in
energy. The magnitude of its effective coupling constant
for this term is greater than the SUð4Þ × SUð3Þ ×Uð1Þ
one, so if we choose λ2χ1 > 0 initially and then slowly
increase hη1χ1 from zero, one may expect the energy density
of the SUð5Þ × SUð2Þ ×Uð1Þ to become lower.
Unfortunately, in the exploration of the parameter space
that we have done, it seems that the energy density of the
SUð6Þ × Uð1Þ decreases too rapidly for there to be some
point at which SUð5Þ × SUð2Þ ×Uð1Þ becomes the most
stable one. Thus, the η1Tr½χ31� term seems unlikely to solve
this problem.
In terms of the cubic invariant, what one would really

like is just a bare cubic term of the form dχ1Tr½χ31�. Let us
first mention that in Ref. [42] Ruegg also showed that
when λ2χi > 0 as the ratio between dχ1 and λ2χi increased
from zero to infinity the most stable breaking pattern
cascaded from SUðN − nÞ × SUðnÞ ×Uð1Þ, where
n ¼ ⌊N=2⌋, to SUðN − nþ 1Þ × SUðn − 1Þ ×Uð1Þ, then
to SUðN − nþ 2Þ × SUðn − 2Þ ×Uð1Þ, and so on up to
SUðN − 1Þ ×Uð1Þ. Hence, in the case of SUð7Þ, there
would exist a parameter region where the configuration
breaking to SUð5Þ × SUð2Þ ×Uð1Þ would become the
most stable one if we had a bare cubic term for χ1. The
main difficulty would then be ensuring that this cubic term
would be allowed, as it is not under the current symmetries
and parities imposed in our theory. One could imagine
changing the parity of χ1 to ðþ;þÞ under the Z2 × Z2

symmetry or perhaps using a different discrete symmetry
with which to form a domain wall between discrete vacua
so that such a cubic term is allowed. Provided χ1 could then
be coupled to scalars and fermions in an acceptable way,
this would be an ideal approach.
Another obvious solution is to go to a sextic potential.

Resorting to a sextic potential in our extradimensional
theory is not a problem since any interacting field theory in
a spacetime with dimension more than 4 is nonrenormaliz-
able anyway. One of the problems we had was ensuring that

there were enough different invariant operators, and hence
parameters, for χ1 to permit greater freedom in symmetry
breaking outcomes. For the sake of simplicity and as an
example, make the quartic self-couplings for χ1 and any
sextic term involving η1 zero, with just the sextic self-
couplings for χ1 nonzero. In this case, the effective
potential for χ1 where η1 ¼ 0 is just a tachyonic mass
term with a positive definite sextic term. Just as before with
the quartic case, the symmetry breaking pattern will be
determined by the effective sextic coupling, and the
configuration with the lowest effective sextic coupling will
be the most stable. Unlike the quartic case, there are more
invariants to play with since we can have Tr½χ61�, ðTr½χ21�Þ3,
Tr½χ21�Tr½χ41�, and ðTr½χ31�Þ2. With this number of invariants,
one can easily manipulate the parameters such that the
SUð5Þ × SUð2Þ ×Uð1Þ respecting configuration has the
lowest effective sextic coupling and is thus the most stable.
A potential difficulty with this approach is that the theorem
proven by Ruegg [42] where any extrema and thus minima
of the potential for an adjoint scalar exist only if at most two
of the eigenvalues of the VEV of the adjoint scalar differ
may not apply here since we are dealing with a sextic
potential and the aforementioned theorem was only proven
for a quartic potential. Thus, with a sextic there may be
configurations where the VEV pattern has more than two
distinct eigenvalues, and one would need to check through
these to ensure that the desired configuration is the most
stable one.
Once one has ensured that one wall generating SUð5Þ ×

SUð2Þ × Uð1Þ is stable and has chosen parameters such
that the other wall breaks SUð7Þ to SUð4Þ×SUð3Þ×Uð1Þ,
we need to determine the possible symmetries and localized
groups on the intersection under the clash-of-symmetries
mechanism. As we stated in the previous section, the
most stable clash-of-symmetries arrangement will be
the one that minimizes the 3þ 1-dimensional junction
energy density. Just as there existed effective quartic self-
couplings for the components of χ1 and χ2 chosen to
condense after computing the traces of the powers of
the respective generators involved, so there will exist
other effective coupling constants describing interactions
between these different components. In fact, each different
configuration will lead to a different effective scalar
potential of the form given in Eq. (12). For the analytic
solution given in Eq. (15) yielded by the parameter
conditions in Eq. (14), only the terms in Vη1χ1η2χ2 contribute
to the junction energy density. For parameters not satisfying
Eq. (14), the self-interaction potentials Vηiχi will in
general make a small contribution. Fortunately, there
is a way to extract the energy density by defining the
fields η̄1, χ̄1, η̄2, and χ̄2 as differences between the real two-
dimensional interacting kink-lump solutions and the one-
dimensional kink-lump solutions which are used as the
boundary conditions. In other words, these fields are
defined as
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η̄1ðy; zÞ ¼ η1ðy; zÞ − η1d1 ðyÞ ¼ η1ðy; zÞ − v1 tanh ðkyÞ;
χ̄1ðy; zÞ ¼ χ1ðy; zÞ − χ1d1 ðyÞ ¼ χ1ðy; zÞ − A1sechðkyÞ;
η̄2ðy; zÞ ¼ η2ðy; zÞ − η1d2 ðzÞ ¼ η2ðy; zÞ − v2 tanh ðlzÞ;
χ̄2ðy; zÞ ¼ χ2ðy; zÞ − χ1d2 ðzÞ ¼ χ2ðy; zÞ − A2sechðlzÞ:

(36)

Given the boundary conditions in Eq. (13) for the full
fields η1, η2, χ1, and χ2, one can show that η̄1, χ̄1, η̄2, and χ̄2
all vanish along the entire two-dimensional boundary at
infinity. Since for a sensible solution the deviations from
the one-dimensional solutions should be largest on the
intersection with the solutions for η1, η2, χ1, and χ2
asymptoting to the one-dimensional solutions out at
infinity, it should also be the case that η̄1, χ̄1, η̄2, and
χ̄2 should decay to zero faster than 1=y and 1=z in both
directions toward infinity. Given this, since η1, η2, χ1, and
χ2 are all bounded functions, when we expand the
potential V in terms of η̄1, χ̄1, η̄2, and χ̄2 and η1d1 , χ1d1 ,
η1d2 , and χ1d2 , any term proportional to any power of η̄1, χ̄1,
η̄2, or χ̄2 should be integrable over the y − z plane and
should thus give a finite contribution to the junction
energy density.
If we make choices consistent with those of Eq. (14) and

set λη1χ1χ2 ¼ λχ1η2χ2 ¼ λη1χ1η2χ2 ¼ 0, then the most impor-
tant terms in Vη1χ1η2χ2 which decide which clash-of-
symmetries solutions are most energetically favorable
are the quartic couplings between χ1 and χ2, which are
Tr½χ21�Tr½χ22�, Tr½χ1χ2�2, Tr½χ21χ22�, and Tr½χ1χ2χ1χ2�. For a
given solution, after we take the relevant traces of these
operators, we obtain an effective quartic coupling between
the components of χ1 and χ2. After integrating this effective
term over the y − z plane, we should obtain its contribution
to the junction energy density. Since this effective term is
proportional to the squares of the condensing components
of χ1 and χ2, if the effective coupling constant for a
particular solution is positive, the contribution to the
junction energy density will be positive. Furthermore, if
we compare it with the contributions coming from the
perturbations to the fields as a result of turning on
interactions, the former will be proportional to
A2
1A

2
2sech

2ðkyÞsech2ðlzÞ, but the latter will be proportional
to say (at first order) v31 tanh ðkyÞsech2ðkyÞη̄1ðy; zÞ. The vi
and Ai (i ¼ 1, 2) should be roughly the same order, and
they will be associated with a high energy scale (typically
ΛGUT), and given we expect the perturbations η̄1, χ̄1, η̄2, and
χ̄2 to be small, the contribution coming from the back-
ground dependent terms arising from the quartic couplings
of Vη1χ1η2χ2 are naturally expected to be one power of this
energy scale larger and will dominate the overall contri-
bution to the junction energy density. It then follows that
the clash-of-symmetries solution with the lowest effective
coupling between the components of χ1 and χ2 which
condense will minimize the energy density and thus be the
most stable intersecting kink-lump solution.

We now have to determine the effective quartic
couplings between χ1 and χ2 for each of the different
clash-of-symmetries solutions. If χ1a and χ2b are the
components which condense, we define the effective
quartic coupling between them to have the same normali-
zation as the χ21χ

2
2 term in the original intersecting kink-

lump model given in Eq. (12). That is, after computing the
relevant traces of the generators in which χ1 and χ2
condense, the effective coupling λeffχ1χ2 is defined such that
the quartic term appears in the effective potential
as 1

2
λeffχ1χ2χ

2
1aχ

2
2b.

There are three possible clash-of-symmetries solutions
coming from H1 ¼ SUð5Þ × SUð2Þ ×Uð1Þ and
H2 ¼ SUð4Þ × SUð3Þ ×Uð1Þ. The other patterns along
with the one we have discussed in this section can be
found in the Appendix. We will label these resultant
CoS groups X1 ¼ SUð4Þ × SUð2Þ × Uð1Þ ×Uð1Þ, X2 ¼
SUð3Þc × SUð2ÞI ×Uð1ÞY ×Uð1Þ ×Uð1Þ, and X3 ¼
SUð3Þ × SUð2Þ × SUð2Þ ×Uð1Þ ×Uð1Þ. Obviously, the
solution with X2 is the one we have discussed and the
one we desire to be the most stable. It turns out that
the effective χ1 − χ2 couplings for the three breaking
patterns are

λX1
χ1χ2 ¼ λ1χ1χ2 þ

1

15
λ2χ1χ2 þ

6

35
ðλ3χ1χ2 þ λ4χ1χ2Þ;

λX2
χ1χ2 ¼ λ1χ1χ2 þ

1

120
λ2χ1χ2 þ

41

280
ðλ3χ1χ2 þ λ4χ1χ2Þ;

λX3
χ1χ2 ¼ λ1χ1χ2 þ

3

10
λ2χ1χ2 þ

407

5880
ðλ3χ1χ2 þ λ4χ1χ2Þ:

(37)

From this it follows that the solution generating the
Standard Model that we have discussed above has the
lowest λeffχ1χ2 and is thus the most stable CoS solution if
the parameter conditions λ2χ1χ2 > 0 and − 7

3
λ2χ1χ2 < λ3χ1χ2 þ

λ4χ1χ2 <
1715
454

λ2χ1χ2 are imposed. We also impose λ1χ1χ2 þ
λ2χ1χ2 þ λ3χ1χ2 þ λ4χ1χ2 > 0 to ensure that the potential is
bounded from below.
After doing the above analysis, one notices that there is

actually another solution to the problem of making the
kink-lump generating the SUð5Þ × SUð2Þ ×Uð1Þ sub-
group stable, although it involves a fine-tuning that is
not ideal. If we fine-tune the self-coupling λ2χ1 to zero, then
all three solutions generating the respective subgroups
SUð6Þ×Uð1Þ, SUð5Þ×SUð2Þ×Uð1Þ, and SUð4Þ×
SUð3Þ×Uð1Þ become degenerate. The other reason this
is problematic is that it introduces an accidental Oð48Þ
symmetry among the components of χ1 in the potential
Vη1χ1 , and thus we would naturally expect these solutions
to fluctuate. However, the interactions in Vη1χ1η2χ2 do not
respect this Oð48Þ symmetry, breaking it explicitly back
to SUð7Þ. The resultant possible solutions then are
not only the three with H1 ¼ SUð5Þ × SUð2Þ ×Uð1Þ
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and H2 ¼ SUð4Þ × SUð3Þ ×Uð1Þ but also those where
H1 ¼ SUð6Þ × Uð1Þ and H2 ¼ SUð4Þ × SUð3Þ ×Uð1Þ as
well as those coming from H1 ¼ SUð4Þ × SUð3Þ ×Uð1Þ
and H2 ¼ SUð4Þ0 × SUð3Þ0 ×Uð1Þ0 (which includes
the alternate SM we discuss in the next subsection).
In other words, making the fine-tuning λ2χ1 ¼ 0, our
desired solution simply has more competitors.
Amazingly, when one computes all the effective
χ1 − χ2 couplings of the additional CoS solutions, it is
still possible to make the solution with the SM discussed
in this subsection the most stable one. This is largely
due to the very small coefficient in front of the λ2χ1χ2
coupling constant. One finds that the solution discussed
in this subsection is still the most stable in this scenario
if we tighten the parameter conditions to λ2χ1χ2 > 0

and − 7
3
λ2χ1χ2 < λ3χ1χ2 þ λ4χ1χ2 <

98
383

λ2χ1χ2 .

B. Rather nonstandard Standard Model
from H1 ¼ SUð4Þ × SUð3Þ × Uð1Þ and

H2 ¼ SUð4Þ0 × SUð3Þ0 × Uð1Þ0
In the last subsection, we described a scenario which

produced a Standard Model-like gauge group with the
correct hypercharge quantum numbers for the known
SM field content along with some Y ¼ �2 exotics
from a clash between SUð5Þ × SUð2Þ ×Uð1Þ and
SUð4Þ × SUð3Þ ×Uð1Þ. As noted above, there are some
problems in ensuring that the arrangement where we
have an SUð5Þ × SUð2Þ ×Uð1Þ subgroup as one of the
clashing groups is the most stable one for one kink-lump
pair. One naturally might then be motivated to consider
obtaining a Standard Model-like gauge group from a
clash between two differently embedded copies of
SUð4Þ × SUð3Þ ×Uð1Þ. First, this has the advantage that
we can ensure the most stable arrangement for each
kink-lump pair from a one-dimensional point of view is
the one generating a SUð4Þ × SUð3Þ ×Uð1Þ subgroup,
since to do this we simply choose λ2χ1 > 0 and λ2χ2 > 0
in each sector. Furthermore, it is obvious that we can
obtain the non-Abelian part of the Standard Model
gauge group since if we call the second group
H2 ¼ SUð4Þ0 × SUð3Þ0 ×Uð1Þ0, we can easily choose
the embeddings such that SUð4Þ∩SUð4Þ0 ⊃ SUð3Þc
and SUð3Þ∩SUð3Þ0 ⊃ SUð2ÞI. One also suspects that
we can get a localized Uð1Þ in this case since, like the
case in the previous section, there will be four leftover
diagonal generators from all four non-Abelian groups
involved in the clash. Indeed, it turns out that this is the
case. In this case, we obtain a rather different localized
hypercharge generator, one that makes it seem like a
successful embedding of the Standard Model fermion
content is not possible
To realize the above described situation, we make χ1

condense in a component proportional to the Abelian
generator,

Q1 ¼

0
BBBBBBBB@

3 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 −4 0 0 0

0 0 0 0 −4 0 0

0 0 0 0 0 −4 0

0 0 0 0 0 0 3

1
CCCCCCCCA
; (38)

and let the component of χ2 which condenses be propor-
tional to

Q0
1 ¼

0
BBBBBBBB@

3 0 0 0 0 0 0

0 3 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 −4 0 0 0

0 0 0 0 −4 0 0

0 0 0 0 0 3 0

0 0 0 0 0 0 −4

1
CCCCCCCCA
: (39)

From this we easily see that the groups preserved by the
clash are, as noted in the first paragraph of this section,
SUð3Þc ⊂ SUð4Þ∩SUð4Þ0 and SUð2ÞI ⊂ SUð3Þ∩SUð3Þ0.
The leftover generators from SUð4Þ, SUð3Þ from H1 and
SUð4Þ0, SUð3Þ0 from H2 are, respectively,

T1 ¼

0
BBBBBBBB@

þ 2
3

0 0 0 0 0 0

0 þ 2
3

0 0 0 0 0

0 0 þ 2
3

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −2

1
CCCCCCCCA
; (40)

T2 ¼

0
BBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 þ1 0 0 0

0 0 0 0 þ1 0 0

0 0 0 0 0 −2 0

0 0 0 0 0 0 0

1
CCCCCCCCA
; (41)

T 0
1 ¼

0
BBBBBBBB@

þ 2
3

0 0 0 0 0 0

0 þ 2
3

0 0 0 0 0

0 0 þ 2
3

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −2 0

0 0 0 0 0 0 0

1
CCCCCCCCA
; (42)

and
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T 0
2 ¼

0
BBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 þ1 0 0 0

0 0 0 0 þ1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −2

1
CCCCCCCCA
: (43)

Again there is an Abelian generator surviving the clash,
which is solely a linear combination of the above four
generators and thus satisfies the localization condition
described in Eq. (10), namely,

Y 0 ¼ −T1 − T2 ¼ −T 0
1 − T 0

2

¼

0
BBBBBBBB@

− 2
3

0 0 0 0 0 0

0 − 2
3

0 0 0 0 0

0 0 − 2
3

0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 þ2 0

0 0 0 0 0 0 þ2

1
CCCCCCCCA
: (44)

Again, we also get a couple of semidelocalized Uð1Þ
gauge groups. In this case, the semidelocalized generators
A and B may be taken to be

A ¼ 4Q1 þ T1 − T2 ¼ 2Q0
1 þ 10T 0

1 − 9T 0
2

¼

0
BBBBBBBB@

38
3

0 0 0 0 0 0

0 38
3

0 0 0 0 0

0 0 38
3

0 0 0 0

0 0 0 −17 0 0 0

0 0 0 0 −17 0 0

0 0 0 0 0 −14 0

0 0 0 0 0 0 10

1
CCCCCCCCA
; (45)

and

B ¼ Q1 − 2T1 þ 2T2 ¼ − 1

2
Q0

1 þ
29

4
T 0
1 − 6T 0

2

¼

0
BBBBBBBB@

5
3

0 0 0 0 0 0

0 5
3

0 0 0 0 0

0 0 5
3

0 0 0 0

0 0 0 −2 0 0 0

0 0 0 0 −2 0 0

0 0 0 0 0 −8 0

0 0 0 0 0 0 7

1
CCCCCCCCA
: (46)

Thus, we have a localized hypercharge generator with a
relative sign between the charge for the lepton doublet and
the charge for the conjugate of the right-chiral down quark,
which is opposite that of the usual SUð5Þ hypercharge
generator. It seems that it would be extremely difficult to
pick representations containing the SM field content in a

simple way, since the charges for the components in the
antisymmetric 21 representation would also be affected,
which is problematic since the 21 is the natural candidate
for embedding the right-chiral up quark, right-chiral
electron, and the quark doublet. For instance, instead of
having a hypercharge Y ¼ þ1=3, the component inside the
21 that transforms as (3,2) under SUð3Þc × SUð2ÞI now has
Y ¼ −5=3. This rules out using the minimal anomaly-free
fermion combination of 7̄þ 7̄þ 7̄þ 21 to embed each
generation of the Standard Model fermions. However, it in
fact turns out that the SM fermion content can be embedded
in the next-to-minimal anomaly-free fermion combination
of 7þ 2̄1þ 35. Under SUð3Þc × SUð2ÞI ×Uð1ÞY 0×
Uð1ÞA ×Uð1ÞB, the SUð7Þ representations break down as

7 ¼
�
3; 1;− 2

3
;þ 38

3
;þ 5

3

�
þ ð1; 2;−1;−17;−2Þ

þ ð1; 1;þ2;−14;−8Þ þ ð1; 1;þ2;þ10;þ7Þ; (47)

2̄1 ¼
�
3; 1;þ 4

3
;− 76

3
;− 10

3

�
þ
�
3̄; 2;þ 5

3
;þ 13

3
;þ 1

3

�

þ ð1; 1;þ2;þ34;þ4Þ þ
�
3̄; 1;− 4

3
;þ 4

3
;þ 19

3

�

þ
�
3̄; 1;− 4

3
;− 68

3
;− 26

3

�
þ ð1; 2;−1;þ31;þ10Þ

þ ð1; 2;−1;þ7;−5Þ þ ð1; 1;−4;þ4;þ1Þ; (48)

35¼
�
3;1;−8

3
;−64

3
;−7

3

�
þ
�
3̄;2;−7

3
;þ25

3
;þ4

3

�

þ ð1;1;−2;þ38;þ5Þ þ
�
3̄;1;þ2

3
;þ34

3
;−14

3

�

þ
�
3̄;1;þ2

3
;þ106

3
;þ31

3

�
þ
�
3;2;þ1

3
;−55

3
;−25

3

�

þ
�
3;2;þ1

3
;þ17

3
;þ20

3

�
þ
�
3;1;þ10

3
;þ26

3
;þ2

3

�

þ ð1;2;þ3;−21;−3Þ þ ð1;1;0;−48;−12Þ
þ ð1;1;0;−24;þ3Þ: (49)

Hence, if we choose the couplings to the background scalar
fields such that each of the fermion fields charged under
these representations has a localized left-chiral zero mode,
both the lepton doublet L and the charge conjugate of the
right-chiral electron ðeRÞc can be embedded in either the 7
or the 2̄1, the charge conjugate of the right-chiral up quark
ðuRÞc can be embedded in the 2̄1, and the quark doublet Q
can be embedded in the 35. In choosing the representations
in this way, the charge conjugate of the right-chiral down
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quark, ðdRÞc, must be embedded in the 35. We can even fit
in the charge conjugate of the right-chiral neutrino as the 35
contains two singlet representations. In fact, we can fit in
two generations of quarks and three generations of charged
leptons along with two right-chiral neutrinos.
The electroweak Higgs could fit into either a 7 or a 21.

However, given both Q and ðdRÞc are embedded in a 35, to
form a down-quark mass matrix, we need an invariant
between a Higgs field and the Dirac bilinear formed from a
fermion field in the 35 representation and its charge
conjugate. The only choice that can do the job is a 7 since
the tensor product 35 × 35 contains a 7̄ but not a 2̄1. Since
the tensor products 7 × 7 × 2̄1 and 7̄ × 2̄1 × 35 contain
singlets, we can form mass matrices for the charged leptons
and the up-type quarks with the electroweak Higgs in a 7.
With regards to breaking the semidelocalized photons, we
can use the ð1; 1; 0;−48;−12Þ and ð1; 1; 0;−24;þ3Þ of the
35. It would be interesting to see whether we could use both
these components from the one 35 and choose parameters
such that both these components attain tachyonic masses.
Otherwise, we can use two 35’s. From there, like with the
previous realization of the SM, the main task is to ensure
that the profiles for the scalars and fermions are split
appropriately so that the exotic states, other extra states, and
the semidelocalized photons become sufficiently massive.
Like before, we also need to make sure that there are no
unwanted breakings coming from additional localized
Higgs components.
Last, we need to check that we can make the afore-

mentioned CoS solution the most stable one. As in the
previous section, the relevant operators are Tr½χ21�Tr½χ22�,
Tr½χ1χ2�2, Tr½χ21χ22�, and Tr½χ1χ2χ1χ2�, and we need to take
the relevant traces to compute λχ1χ2eff for each different
solution. There are three other clash-of-symmetries break-
ing patterns, the VEV patterns for which are listed in
Appendix B, along with the one we have described. These
other solutions break SUð7Þ down to W1 ¼ SUð4Þ×
SUð3Þ × Uð1Þ, W2 ¼ SUð2Þ × SUð2Þ × SUð2Þ ×Uð1Þ×
Uð1Þ ×Uð1Þ, and W3 ¼ SUð3Þ × SUð3Þ ×Uð1Þ ×Uð1Þ.
After taking the relevant traces, it turns out that the effective
coupling constants are in this case

λSM×Uð1Þ2
χ1χ2eff

¼ λ1χ1χ2 þ
25

576
λ2χ1χ2 þ

149

1008
ðλ3χ1χ2 þ λ4χ1χ2Þ;

λW1

χ1χ2eff
¼ λ1χ1χ2 þ λ2χ1χ2 þ

13

84
ðλ3χ1χ2 þ λ4χ1χ2Þ;

λW2

χ1χ2eff
¼ λ1χ1χ2 þ

1

36
λ2χ1χ2 þ

71

1008
ðλ3χ1χ2 þ λ4χ1χ2Þ;

λW3

χ1χ2eff
¼ λ1χ1χ2 þ

9

16
λ2χ1χ2 þ

15

112
ðλ3χ1χ2 þ λ4χ1χ2Þ:

(50)

Again we can easily choose parameters such that

λSM×Uð1Þ2
χ1χ2eff

is the smallest of the effective couplings, render-
ing the arrangement we have described above the most

stable. In fact, one can show that λSM×Uð1Þ2
χ1χ2eff

is smaller than

all of λW1

χ1χ2eff
, λW2

χ1χ2eff
, and λW3

χ1χ2eff
if we choose parameters

such that λ2χ1χ2 > 0 and −551λ2χ1χ2=4 < λ3χ1χ2 þ λ4χ1χ2 <−21λ2χ1χ2=104.

C. GUT approach: A localized SUð5Þ theory from
H1 ¼ SUð6Þ × Uð1Þ and H2 ¼ SUð6Þ × Uð1Þ

We can also take the approach of Ref. [25] and localize
a grand unification group. If we choose our clashing
subgroups to be differently embedded copies of
SUð6Þ × Uð1Þ, then it is clear that we can obtain a localized
SUð5Þ subgroup. Again, from what we know from
Ref. [45], if we choose λ2χ1 < 0 and λ2χ2 < 0, then an
SUð6Þ × Uð1Þ breaking pattern will be the most stable
one-dimensional kink-lump configuration for each sector,
provided we also choose parameters such that λ1χ1 þ λ2χ1 > 0
and λ1χ2 þ λ2χ2 > 0 still hold so that it is absolutely guar-
anteed that the potentials are bounded from below. This
means that the only thing we really need to check is that the
arrangement where the clash yields a localized SUð5Þ
subgroup is the most stable arrangement, which in this
case just means that it is more stable than the only other
arrangement where H1 ¼ H2 to give a semidelocal-
ized SUð6Þ × Uð1Þ.
The VEV pattern we desire is one in which χ1 condenses

in the component corresponding to the matrix

Q1 ¼

0
BBBBBBBB@

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −6

1
CCCCCCCCA
; (51)

and χ2 condenses in the component corresponding to

Q0
1 ¼

0
BBBBBBBB@

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 −6 0

0 0 0 0 0 0 1

1
CCCCCCCCA
: (52)

Clearly, SUð6Þ∩SUð6Þ0 ¼ SUð5Þ. The leftover generators
coming from inside the SUð6Þ and SUð6Þ0 generators are
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T1 ¼

0
BBBBBBBB@

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 −5 0

0 0 0 0 0 0 0

1
CCCCCCCCA
; (53)

and χ2 condenses in the component corresponding to

T 0
1 ¼

0
BBBBBBBB@

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −5

1
CCCCCCCCA
: (54)

There are therefore a couple of semidelocalized Uð1Þ
generators, which may be taken to be

q1 ¼ 5=6Q1 þ 7=6T1 ¼ 5=6Q0
1 þ 7=6T 0

1

¼

0
BBBBBBBB@

2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0

0 0 0 2 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 −5 0

0 0 0 0 0 0 −5

1
CCCCCCCCA

(55)

and

q2 ¼ 1=6ðQ1 − T1Þ ¼ 1=6ðT 0
1 −Q0

1Þ

¼

0
BBBBBBBB@

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 −1

1
CCCCCCCCA
: (56)

Thus, the full symmetry respected on the wall is
SUð5Þ × Uð1Þq1 ×Uð1Þq2 , but only the SUð5Þ subgroup
is fully localized to the junction, and just as before in the
other cases with adjoint scalars, we will have to introduce
additional Higgs fields to break the residual Abelian groups.
To work out if this arrangement is the most stable one,

again we just analyze the effective quartic coupling
constants coming from the interactions Tr½χ21�Tr½χ22�,
ðTr½χ1χ2�Þ2, Tr½χ21χ22�, and Tr½χ1χ2χ1χ2�. First, note that a
pattern generating a clash between identical SUð6Þ ×Uð1Þ
subgroups is simply one where both χ1 and χ2 condense in
the component proportional to Q1 in Eq. (51). In

calculating the relevant traces of the generators involved,
we find that the effective quartic coupling λχ1χ2eff ¼
1=2λ1χ1χ2 þ 1=72λ2χ1χ2 þ 11=504ðλ3χ1χ2 þ λ4χ1χ2Þ for the
SUð5Þ × Uð1Þ ×Uð1Þ breaking pattern, and it is λχ1χ2eff ¼
1=2ðλ1χ1χ2 þ λ2χ1χ2Þ þ 31=84ðλ3χ1χ2 þ λ4χ1χ2Þ for the SUð6Þ ×
Uð1Þ pattern. Thus, there is a very large parameter space
where the SUð5Þ ×Uð1Þ ×Uð1Þ has the lowest effective
quartic coupling given that the coefficients coming from the
traces of the ðTr½χ1χ2�Þ2, Tr½χ21χ22�, and Tr½χ1χ2χ1χ2� terms
are much lower than those for the SUð6Þ × Uð1Þ pattern.
Indeed, one can ensure that SUð5Þ ×Uð1Þ ×Uð1Þ has the
lowest effective χ1 − χ2 coupling by choosing all of λ2χ1χ2 ,
λ3χ1χ2 , and λ4χ1χ2 to be positive.
Having now ensured that the desired clash-of-symmetries

breaking pattern wherewe have a localized SUð5Þ subgroup
on the domain-wall intersection can be the most stable one,
let us comment briefly on how to construct a realistic
scenario. We obviously have to break SUð5Þ on the
domain-wall intersection.We do this by introducing another
adjoint scalar since under SUð5Þ ×Uð1ÞA ×Uð1ÞB the 48
breaks down as

48 ¼ ð24; 0; 0Þ þ ð5;þ7;−1Þ þ ð5̄;−7;þ1Þ
þ ð5;þ7;þ1Þ þ ð5̄;−7;−1Þ þ ð1; 0;−2Þ
þ ð1; 0;þ2Þ þ ð1; 0; 0Þ þ ð1; 0; 0Þ; (57)

and subsequently we perform dynamical localization on this
additional adjoint scalar field. As usual, each of the different
SUð5Þ × Uð1ÞA ×Uð1ÞB components of the 48 will have
their own set of discrete localized modes and continuum
modes. To break to the SM, we need the (24,0,0) component
to have at least one localized mode, and we need its lowest
energy localized mode to attain a tachyonic mass on the
domain-wall intersection. Although doing the exact full
analysis is beyond the scope of this paper, it would be
interesting to see if we canmake the lowest energy localized
mode of one of the ð1; 0;−2Þ and ð1; 0;þ2Þ components
tachyonic simultaneously with that of the (24,0,0) compo-
nent in order to efficiently break one of the semidelocalized
subgroups.
We need to break both the semidelocalized Uð1Þ sub-

groups to produce a phenomenologically acceptable model.
As noted above we can break one of them by using some
of the components inside the additional adjoint scalar.
Under SUð5Þ ×Uð1ÞA × Uð1ÞB symmetry, the 7, 21, and
35 reduce, respectively, to

7 ¼ ð5;þ2; 0Þ þ ð1;−5;þ1Þ þ ð1;−5;−1Þ; (58)

21¼ ð10;þ4;0Þþ ð5;−3;þ1Þþ ð5;−3;−1Þþ ð1;−10;0Þ;
(59)
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35 ¼ ð10;þ6; 0Þ þ ð10;−1;þ1Þ þ ð10;−1;−1Þ
þ ð5;−8; 0Þ: (60)

Thus, we can use one of the ð1;−5;�1Þ components inside
the 7 or the ð1;−10; 0Þ component of the 21 in conjunction
with one of the ð1; 0;�2Þ components inside the 48 to
break both the semidelocalized Abelian groups.
Alternatively, we could use any two SUð5Þ singlet com-
ponents which have different nontrivial charges under the
Abelian symmetries in any combination of 7’s and 21’s.
From the above equations for the representations, we can

easily see how to make the exotic and unwanted fermionic
states much more massive than the SUð5Þ states yielding
the SM quark and lepton field content. If we choose the
standard anomaly-free combination 7̄þ 7̄þ 7̄þ 21 for
each generation, we can see that if we use the combination
of a 7 and a 21 to break the semidelocalized Uð1Þ gauge
symmetries by giving the respective ð1;−5;þ1Þ and
ð1;−5;−1Þ components tachyonic masses, the quintets
ð5̄;−2; 0Þ from the extra two antifundamentals can form
singlets with the ð5;−3;þ1Þ and ð5;−3;−1Þ components
inside the 21 and thus decouple as heavy fermions.
Finally, one needs to break electroweak symmetry.

In principle one could do this with any of the quintets
embedded in the 7, 21, or 35 representations. If we embed
the usual Higgs quintet in a 7, we can form the electron and
down-quark mass matrices with the ð5;þ2; 0Þ component
of the 7 and the ð10;þ4; 0Þ component of the 21. On the
other hand, we cannot use the same quintet to yield the up-
quark mass matrix: we instead require the ð5;−8; 0Þ
component of the 35 to give the SM fermions inside the
ð10;þ4; 0Þ component of the 21 masses. Thus, it seems we
require a two-Higgs doublet model in this scenario, along
with more singlet Higgs fields than is necessary to break the
semidelocalized Uð1Þ’s in order to give the exotic states
masses.

D. Alternative path to the Standard Model
with χ 1 ∼ 21 and χ 2 ∼ 35

Finally, we give an example yielding a Standard Model
gauge group where the scalar fields responsible for the
breakings on each wall are not in the adjoint representation.
Instead, the field χ1 will be chosen to transform under the
21 representation, and χ2 will be chosen to transform under
the 35 representation. With these representations, we can
end up with exactly the Standard Model gauge group
without any semidelocalized Uð1Þ gauge groups.
The full scalar potential is

V ¼ Vη1χ1 þ Vη2χ2 þ Vη1χ1η2χ2 ; (61)

where in this case the self-interaction potentials for each
kink-lump generating pair are

Vη1χ1 ¼
1

4
λη1ðη21 − v21Þ2 þ λη1χ1ðη21 − v21Þχab1 χ1 ba

þ μ2χ1χ
ab
1 χ1 ba þ λ1χ1 ½χab1 χ1 ab�2

þ λ2χ1χ
ab
1 χ1 bcχ

cd
1 χ1 da (62)

and

Vη2χ2 ¼
1

4
λη2ðη22 − v22Þ2 þ λη2χ2ðη22 − v22Þχabc2 χ2 abc

þ μ2χ2χ
abc
2 χ2 abc þ λ1χ2 ½χabc2 χ2 abc�2

þ λ2χ2χ
abc
1 χ1 bcdχ

def
1 χ1 efa; (63)

and the interaction potential between the two sectors is

Vη1χ1η2χ2 ¼
1

2
λη1η2ðη21−v21Þðη22−v22Þþλη1χ2ðη21−v21Þχabc2 χ2abc

þλχ1η2ðη22−v22Þχab1 χ1abþ2λ1χ1χ2χ
ab
1 χ1abχ

cde
2 χ2cde

þ2λ2χ1χ2χ
ab
1 χ1bcχ

cde
2 χ2deaþ2λ3χ1χ2χ

ab
1 χ2 abcχ

cde
2 χ1de

þλχ1η2χ2ϵ
abcdefgχ1abχ1cdχ2efgη2

þλ�χ1η2χ2ϵabcdefgχ
ab
1 χcd1 χefg2 η2: (64)

There are some clear advantages with regard to the
energetics by choosing χ1 ∼ 21 and χ2 ∼ 35. First, the 21
representation corresponds to a rank-2 antisymmetric tensor.
It was shown in Ref. [45] that for a potential just involving a
rank-2 antisymmetric SUðNÞ tensor that for λ2χ1 > 0 the
lowest energy breaking pattern was onewhere a single 2 × 2
block of the tensor is nonzero and proportional to the rank-2
alternating tensor while all other components vanish, yield-
ing SUðN − 2Þ × SUð2Þ as the unbroken subgroup. Thus, if
we choose λ2χ1 > 0, then in the region where χ1 is tachyonic,
it should condensewith this pattern, and therefore the lowest
energy one-dimensional kink-lump solution should have
SUð7Þ broken to SUð5Þ × SUð2Þ. Thus, we have done what
we had trouble doing in a simple way with an adjoint scalar
in Sec. V A and ensured that one wall generates the same
SUð5Þ × SUð2Þ subgroup. Furthermore, as the 21 is an
antisymmetric tensor rather than an adjoint, the Uð1Þ
subgroup of SUð5Þ × SUð2Þ ×Uð1Þ that we got with an
adjoint scalar is already broken.
In a similar way to how the 21 attains a VEV pattern with

one block proportional to the rank-2 alternating tensor ϵij,
one might think that for a certain region of parameter space
a rank-3 totally antisymmetric tensor such as the 35 of
SUð7Þ might attain a VEV pattern in which just three
indices trace over the elements of the rank-3 alternating
tensor ϵijk with all other components zero. If this were the
case, since ϵijk is an invariant tensor under SUð3Þ and the
VEV patttern of the 35 would vanish for the remaining four
indices, one would expect the unbroken subgroup would to
be SUð4Þ × SUð3Þ. Although obtaining the canonical form
for a rank-3 alternating tensor is a much more nontrivial
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problem than that for a rank-2 antisymmetric tensor,
this was indeed shown to be the case [46,47]. Choosing
7λ1χ2 þ λ2χ2 > 0 to ensure boundedness from below, if we
choose λ2χ1 > 0, then the 35 will indeed condense with the
aforementioned pattern. In choosing the 35, we also
automatically break the Uð1Þ that usually comes with
the SUð4Þ × SUð3Þ subgroup if we perform the breaking
with an adjoint, which is analogous to how the 21 breaks
the Uð1Þ associated with SUð5Þ × SUð2Þ. Hence, in
choosing χ1 ∼ 21 and χ2 ∼ 35, we have already broken
the semidelocalized Uð1Þ subgroups that we get when we
use adjoint scalars.
The last thing to check is whether we can guarantee that

the pattern generating a Standard Model gauge group
localized to the intersection is the most stable one. It is
obvious that we can generate the same Standard Model
gauge group given Sec. VA. It is this precise SM group since
if we choose our VEVs such that SUð5Þ∩SUð4Þ ⊃ SUð3Þ
and SUð5Þ∩SUð3Þ ⊃ SUð2Þ we still obtain the same left-
over generators from each group given in Eqs. (23), (24),
(25) and (26), yielding the same hypercharge generator as in
Eq. (27). To show this outcome can be achieved obviously
requires looking at the possible VEV patterns.
As χ1 is a rank-2 antisymmetric tensor, it will attain a

VEV of the form

V21
ab ¼ A1ðϵ12δma δnb þ ϵ21δ

n
aδ

m
b Þ; (65)

where here 1 ≤ m < n ≤ 7 denote some fixed, distinct
integers. In a similar manner, χ2 ∼ 35 will attain a VEVof
the form

V35
abc ¼ A2ðϵ123ðδqaδrbδsc þ δsaδ

q
bδ

r
c þ δraδ

s
bδ

q
cÞ

þ ϵ132ðδqaδsbδrc þ δsaδ
r
bδ

q
c þ δraδ

q
bδ

s
cÞÞ; (66)

where again 1 ≤ q < r < s ≤ 7 are fixed, distinct integers.
Up to rearrangement of the indices and gauge trans-

formations, there are three distinct clashing patterns. The
first is where neither of the integers m or n of Eq. (65) are
equal to any of the integers q, r, or s of Eq. (66). For this
first pattern, the SUð2Þ subgroup preserving the rank-2
alternating tensor of V21

ab is outside the SUð3Þ alternating
tensor preserving the rank-3 alternating tensor of the
pattern V35

abc, and thus the unbroken symmetry in the
intersection region is SUð3Þ × SUð2Þ × SUð2Þ, with only
one of the SUð2Þ subgroups localized and the other SUð2Þ
and the SUð3Þ semidelocalized.
The second pattern is where, without loss of generality,

n ¼ q with m not equal to neither of r or s. Here, since the
two indices r and s overlap with the remaining five indices
for which any element of V21

ab is zero, the SUð2Þ subgroup
of the SUð3Þ preserving V35

abc is also contained in the SUð5Þ
subgroup preserved by V21

ab. Also, three of the indices
transformed by the SUð4Þ subgroup left unbroken by V35

abc
also transform under the SUð5Þ subgroup left unbroken by

V21
ab. Hence, this is the pattern we want, with SUð3Þc ×

SUð2ÞI ×Uð1ÞY localized to the domain-wall intersection.
The last possible pattern is where, without loss of

generality, m ¼ q and n ¼ r. Here, the SUð2Þ subgroup
preserving V21

ab is also a subgroup of the SUð3Þ subgroup
preserving V35

abc. Also, the SUð4Þ subgroup left unbroken
by V35

abc is also a subgroup of the SUð5Þ subgroup
preserved by V21

ab. Thus, the group respected on the wall
with this pattern is SUð4Þ × SUð2Þ, with both non-Abelian
factor groups semidelocalized.
Having outlined the possible groups resulting from the

clash-of-symmetries mechanism, we now need to look at
the effective couplings between the relevant components
of χ1 and χ2 involved in each clash. For simplicity of
analysis, we will ignore the ϵabcdefgχ1 abχ1 cdχ2 efgη2 term
and set λχ1η2χ2 ¼ 0. This leaves as the relevant terms
χab1 χ1 baχ

cde
2 χ2 cde, χab1 χ1 bcχ

cde
2 χ2 dea, and χab1 χ2 abcχ

cde
2 χ1 de.

To determine the effective quartic coupling constants, we
need to calculate the contractions of the various epsilon
tensors involved in the products, which can be though
of as products between V21

ab=A1 and V35
abc=A2. For

χab1 χ1 baχ
cde
2 χ2 cde, the resulting coefficient is always

the same; namely, we have χab1 χ1 baχ
cde
2 χ2 cde ∝

ϵijϵijϵ
uvwϵuvw ¼ 2 × 6 ¼ 12. Hence, the χab1 χ1 bcχ

cde
2 χ2 dea

and χab1 χ2 abcχ
cde
2 χ1 de terms are ultimately the ones which

determine which clash-of-symmetries group is favored.
For theSUð3Þ×SUð2Þ×SUð2Þ pattern, χab1 χ1 bcχ

cde
2 χ2 dea

andχab1 χ2 abcχ
cde
2 χ1 de bothvanish since the rank-2andrank-3

tensors contained in V21
ab and V

35
abc do not have any indices in

common. Therefore, the effective quartic coupling in this
situation is simply λχ1χ2eff ¼ λ1χ1χ2.
For the pattern generating a localized SUð3Þc ×

SUð2ÞI ×Uð1ÞY to the intersection, there is one index in
common between the rank-2 alternating tensor from V21

ab
and the rank-3 alternating tensor from V35

abc. This means
that χab1 χ2 abcχ

cde
2 χ1 de must vanish because it involves a

contraction between V21
ab and V35

abc over two indices rather
than just one. On the other hand, since ϵijϵjk ¼ δik and
V21 abV21

bc ∝ δamδ
m
c þ δanδ

n
c , we have

χab1 χ1 bcχ
cde
2 χ2 dea ∝ ðδamδmc þ δanδ

n
cÞV35 cdeV35

dea

¼ V35 mdeV35
dem þ V35 ndeV35

den

¼ 0þ 2V35 qrsV35
rsq

¼ 2V35 qrsV35
qrs

∝ 2ϵijkϵijk

¼ 12: (67)

Thus, for the pattern we want, λχ1χ2eff ¼ λ1χ1χ2 þ λ2χ1χ2 . For
the SUð4Þ × SUð2Þ pattern, both indices of the rank-2
alternating tensor in V21

ab coincide with indices of the rank-3
alternating tensor in V35

abc. Thus, in this case, both the
nontrivial quartic coupling terms are nonvanishing. For
χab1 χ1 bcχ

cde
2 χ2 dea, we have
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χab1 χ1 bcχ
cde
2 χ2 dea ∝ ðδamδmc þ δanδ

n
cÞV35 cdeV35

dea

¼ V35 mdeV35
dem þ V35 ndeV35

den

¼ 2V35 qrsV35
rsq þ 2V35 rsqV35

sqr

¼ 4V35 qrsV35
qrs ∝ 4ϵijkϵijk ¼ 24: (68)

Given V21
abV

35 cab∝ δma δ
n
bV

35 cab−δnaδ
m
b V

35 cab¼2V35 cmn

and V21 abV35
abc ∝ −δamδbnV35

abc þ δanδ
b
mV35 abc ¼ −2V35

mnc,
we have

χab1 χ2 abcχ
cde
2 χ1 de ∝ −4V35

mncV35 cmn

¼ −4V35
mncV35 mnc

∝ −4ϵijkϵijk
¼ −24: (69)

Thus, for the SUð4Þ × SUð2Þ pattern, λχ1χ2eff ¼
λ1χ1χ2 þ 2λ2χ1χ2 − 2λ3χ1χ2 .
We can easily choose parameters such that the pattern

yielding the localized Standard Model has the lowest
effective χ1 − χ2 coupling and is thus the most stable
solution. One can easily see by inspection that choosing
λ1χ1χ2 > 0, λ2χ1χ2 < 0, λ1χ1χ2 þ λ2χ1χ2 > 0, and λ2χ1χ2 − λ3χ1χ2 > 0
that λχ1χ2eff will be positive for all three patterns and will
always be lowest for the SUð3Þc × SUð2ÞI ×Uð1ÞY pattern
and highest for the SUð4Þ × SUð2Þ pattern.
We have successfully shown that an intersecting kink-

lump solution with χ1 ∼ 21 and χ2 ∼ 35 yields a subgroup
localized to the domain-wall intersection, which is precisely
the Standard Model gauge group with no other localized or

semidelocalized gauge symmetries respected there.
Furthermore, we have shown that this solution can
be the most stable one possible. From here, aside from
the semidelocalizedUð1Þ’s, which are already broken in this
case, we face many of the same challenges as with the
models produced from adjoint scalars. We need to localize
the requisite Higgs fields to the intersection with tachyonic
masses, and we need to ensure that other unwanted
components have positive definite squared masses. As
the Standard Model produced here is equivalent to the
one produced with two adjoint scalars in Sec. VA, we will
have to embed the electroweak Higgs doublet inside another
scalar field charged under the 35 representation if we embed
the Standard Model fermions inside a 7̄ and a 21 with a
couple of 7̄’s in addition to ensure anomaly cancellation.
Since the 21 and 35 representations are complex, the

fermion couplings to χ1 and χ2 are not exactly vectorlike as
they are in the case in which they are adjoint scalars. They
involve Dirac scalar products between spinor fields Ψ7 ∼ 7̄
and Ψ21 ∼ 21 and their charge conjugates. Note that if a
5þ 1-dimensional spinor Ψ transforms under the two
discrete Z2 symmetries as Ψ → iΓ4Γ7Ψ and Ψ → iΓ5Ψ,
respectively, then its charge conjugate ΨC also transforms
as ΨC → iΓ4Γ7ΨC and Ψ → iΓ5ΨC. This implies that it is
also the case that Ψ̄CΨ → Ψ̄CΨ and Ψ̄CΓ7Ψ → −Ψ̄CΓ7Ψ
under the first Z2 symmetry and Ψ̄CΨ → −Ψ̄CΨ and
Ψ̄CΓ7Ψ → Ψ̄CΓ7Ψ under the second. Hence, in this sce-
nario, the background Yukawa Lagrangian for one gen-
eration, with the SM fermions embedded inΨ7 andΨ21 and
with the fermionic fields K1 ∼ 7̄ and K2 ∼ 7̄ added for
anomaly cancellation, is

LYuk ¼ −ih7η1Ψ̄7Γ7Ψ7η1 þ h7η2Ψ̄7Ψ7η2 − ih7Kiη1Ψ̄7Γ7Kiη1 þ h7Kiη2Ψ̄7Kiη2 − ih�
7Kiη1

K̄iΓ7Ψ7η1 þ h�
7Kiη2

K̄iΨ7η2

− ihKiKjη1K̄
iΓ7Kjη1 þ hKiKjη2K̄

iKjη2 þ Ψ̄C
7 − 2ih21η1Tr½Ψ̄21Γ7Ψ21�η1 þ 2h21η2Tr½Ψ̄21Ψ21�η2 − ih7χ1Ψ̄7χ

†
1Γ7ΨC

7

− ih�7χ1Ψ̄
C
7 χ1Γ7Ψ7 − ih7Kiχ1Ψ̄7χ

†
1Γ7KiC − ih�

7Kiχ1
K̄iC

7 χ1Γ7Ψ7 − ihKiKjχ1K̄
iχ†1Γ7KjC − ih�KiKjχ1

¯KjCχ†1Γ7Ki

þ h7χ221Ψ̄21
abΨc

7χ2 abc: (70)

It would be interesting to see what effect some of these
nonstandard background couplings have on the profiles.
There should still be chiral zero modes localized on the
intersection since their existence is mainly due to the
couplings to the fields generating the kinks η1 and η2. If
the couplings are vectorlike, the interactions with χ1 and χ2
tend to affect the localization centers, although in this case
we also have interactions mixing the fermionic fields, so
one would expect some mixing induced in the profiles. The
analysis for fermion localization is beyond the scope of
the paper.
In showing that there is an interesting solution in a case

where the fields inducing the symmetry breaking on each
wall are not adjoint scalar fields, we have demonstrated that

the scope for application of this new realization of the
clash-of-symmetries mechanism is broad. One of the
advantages of using complex representations to induce
the breakings on the walls is that the residual Uð1Þ’s are
automatically broken. Indeed, one can imagine using
different representations from the ones chosen in this
section to reproduce other interesting scenarios. For exam-
ple, it is obvious that the SM-like gauge group produced
and described in Sec. V B could alternatively be produced
by using two scalars in the 35 representation since they
both induce breakings to SUð4Þ × SUð3Þ subgroups.
Likewise, an SUð5Þ theory equivalent to the one produced
in Sec. V C could also be reproduced by replacing the
adjoint scalars with fundamental scalars.
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VI. CONCLUSION

In this paper, we have proposed a new version of the
clash-of-symmetries mechanism, which is an extension of
the Dvali—Shifman mechanism, in the context of intersect-
ing domain walls in 5þ 1-dimensional spacetime. Here, a
large gauge group G was assumed to be in the confinement
phase in the six-dimensional bulk away from both domain-
wall branes, and on the branes G was broken to subgroups
H1 andH2 on each wall by the fields which attain lumplike
VEV patterns on the wall. H1 and H2 are taken to be
localized via the Dvali—Shifman mechanism. In turn, there
is a clash-of-symmetries mechanism on the domain-wall
intersection between H1 and H2, where the symmetry
respected is H1∩H2. Subgroups of H1∩H2 are then taken
to be localized to the domain-wall intersection by confine-
ment dynamics if they are proper subgroups of confining,
non-Abelian factor subgroups of both H1 and H2.
Assuming that both five-dimensional and six-dimensional
non-Abelian Yang—Mills gauge theories exhibit confine-
ment, this is a plausible mechanism to localize subgroups of
a larger group on the intersection of two domain walls.
Wethendealtwitha toySUð7Þmodel,whichyieldedsome

interesting results. In a model in which both χ1 and χ2 were
chargedunder theadjoint representation,weshowed that two
choices for theVEVpatterns for these fields yielded SM-like
gaugegroups fully localized to the domain-wall intersection,
and another yielded a localized SUð5Þ gauge theory. We
found that in these cases, there are always leftover photons
that are semidelocalized and thus must be broken. We then
gave the most elegant example in the paper in which χ1 is
charged under the 21 representation and χ2 is charged under
the 35 representation, yielding exactly an SM-like gauge
group localized to the intersection with no leftover semi-
delocalized photons. This case also has another advantage
over the case with adjoint scalars generating the same SM,
namely, that it is possible to ensure that the desired configu-
ration is the most stable in a quartic scalar field theory.
In all the examples that we have given, we only briefly

touched on some of the basics of how to construct realistic
fermionic and scalar sectors localized to the domain-wall
intersection. We did not, for example, go into the specifics
of scalar and fermion localization and show that realistic
masses for the StandardModel fermions could be generated
and that all the extra exotic fermions and scalars could be
made massive enough. In some of the examples we have
used, this seems to be quite a formidable task and one that
is truly beyond the scope of this paper. Nevertheless, we
have achieved something quite nontrivial in showing that in
principle it is possible to localize and break straight down to
a Standard Model gauge group by using the clash-of-
symmetries mechanism. We showed this could be done
both by using adjoint scalars and scalars in complex
representations, and we have thus shown that the scope
for use of this particular version of the clash-of-symmetries
mechanism is very broad. It may not turn out that the

particular models we have described in this paper are of
phenomenological relevance after a more thorough analysis
of the fermionic and scalar sectors, but we have laid the
foundations for building a successful intersecting domain-
wall braneworld model with gauge bosons localized to the
intersection.
There is still further work that needs to be done in the

intersecting domain-wall braneworld framework. We also
need to successfully localize gravity, and we also need to
analyze the local stability properties of these intersecting
domain-wall solutions.
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APPENDIX A: SOME SUð7Þ REPRESENTATIONS,
PRODUCTS, AND EMBEDDINGS

1. Basic SUð7Þ representations
7 ¼ ð1; 0; 0; 0; 0; 0Þ 196 ¼ ð0; 2; 0; 0; 0; 0Þ

21 ¼ ð0; 1; 0; 0; 0; 0Þ 2100 ¼ ð1; 0; 1; 0; 0; 0Þ
35 ¼ ð0; 0; 1; 0; 0; 0Þ 224 ¼ ð1; 0; 0; 1; 0; 0Þ
35 ¼ ð0; 0; 0; 1; 0; 0Þ 392 ¼ ð0; 1; 0; 0; 1; 0Þ
21 ¼ ð0; 0; 0; 0; 1; 0Þ 4900 ¼ ð0; 1; 1; 0; 0; 0Þ
7̄ ¼ ð0; 0; 0; 0; 0; 1Þ 540 ¼ ð2; 0; 0; 0; 1; 0Þ

28 ¼ ð2; 0; 0; 0; 0; 0Þ 588 ¼ ð0; 1; 0; 1; 0; 0Þ
48 ¼ ð1; 0; 0; 0; 0; 1Þ 735 ¼ ð2; 0; 0; 0; 0; 2Þ
84 ¼ ð3; 0; 0; 0; 0; 0Þ 7350 ¼ ð1; 1; 0; 0; 0; 1Þ
112 ¼ ð1; 1; 0; 0; 0; 0Þ 784 ¼ ð0; 0; 1; 1; 0; 0Þ
140 ¼ ð1; 0; 0; 0; 1; 0Þ 1323 ¼ ð1; 0; 1; 0; 0; 1Þ
189 ¼ ð2; 0; 0; 0; 0; 1Þ (A1)

2. Some tensor products of SUð7Þ representations
7 × 7̄ ¼ 1þ 48 21 × 21 ¼ 1þ 48þ 392

7 × 7 ¼ 21þ 28 21 × 35 ¼ 21þ 224þ 4900

7 × 21 ¼ 35þ 112 21 × 3̄5 ¼ 7̄þ 140þ 588

7 × 21 ¼ 7̄þ 140 21 × 48 ¼ 21þ 28þ 224þ 7350

7 × 35 ¼ 35þ 2100 35 × 35¼ 7̄þ140þ 4900 þ 588

7 × 35 ¼ 21þ 224 35 × 35 ¼ 1þ 48þ 392þ 784

7 × 48 ¼ 7þ 140þ 189

35 × 48 ¼ 35þ 112þ 2100 þ 1323

21 × 21 ¼ 35þ 196þ 2100

48 × 48 ¼ 1þ 48þ 48þ 392þ 540þ 540þ 735 (A2)
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3. Embeddings of subgroups of SUð7Þ
a. SUð7Þ ⊃ SUð6Þ × Uð1Þ

7 ¼ ð6;þ1Þ þ ð1;−6Þ
21 ¼ ð15;þ2Þ þ ð6;−5Þ
28 ¼ ð21;þ2Þ þ ð6;−5Þ þ ð1;−12Þ
35 ¼ ð20;þ3Þ þ ð15;−4Þ
48 ¼ ð35; 0Þ þ ð6;þ7Þ þ ð6̄;−7Þ þ ð1; 0Þ
112 ¼ ð70;þ3Þ þ ð21;−4Þ þ ð15;−4Þ þ ð6;−11Þ (A3)

b. SUð7Þ ⊃ SUð5Þ × SUð2Þ × Uð1Þ

7 ¼ ð5; 1;þ2Þ þ ð1; 2;−5Þ
21 ¼ ð10; 1;þ4Þ þ ð5; 2;−3Þ þ ð1; 1;−10Þ
28 ¼ ð15; 1;þ4Þ þ ð5; 2;−3Þ þ ð1; 3;−10Þ
35 ¼ ð10; 1;þ6Þ þ ð10; 2;−1Þ þ ð5; 1;−8Þ
48 ¼ ð24; 1; 0Þ þ ð5; 2̄;þ7Þ þ ð5̄; 2;−7Þ

þ ð1; 3; 0Þ þ ð1; 1; 0Þ
112 ¼ ð40; 1;þ6Þ þ ð15; 2;−1Þ þ ð10; 2;−1Þ

þ ð5; 3;−8Þ þ ð5; 1;−8Þ þ ð1; 2;−15Þ (A4)

c. SUð7Þ ⊃ SUð4Þ × SUð3Þ × Uð1Þ

7 ¼ ð4; 1;þ3Þ þ ð1; 3;−4Þ
21 ¼ ð6; 1;þ6Þ þ ð4; 3;−1Þ þ ð1; 3̄;−8Þ
28 ¼ ð10; 1;þ6Þ þ ð4; 3;−1Þ þ ð1; 6;−8Þ
35 ¼ ð4̄; 1;þ9Þ þ ð6; 3;þ2Þ þ ð4; 3̄;−5Þ þ ð1; 1;−12Þ
48 ¼ ð15; 1; 0Þ þ ð4; 3̄;þ7Þ þ ð4̄; 3;−7Þ

þ ð1; 8; 0Þ þ ð1; 1; 0Þ
112 ¼ ð20; 1;þ9Þ þ ð10; 3;þ2Þ þ ð6; 3;þ2Þ

þ ð4; 6;−5Þ þ ð4; 3̄;−5Þ þ ð1; 8;−12Þ (A5)

APPENDIX B:ALL POSSIBLE CLASH-OF-
SYMMETRIES GROUPS FROM SUð7Þ

WITH TWO ADJOINT SCALARS

In this appendix, we list all the possible clash-of-
symmetries breaking patterns with both of χ1 and χ2
transforming under the adjoint representation. For each
possibility, we give example VEV patterns for χ1 and χ2
which generate them. We also state which resultant gauge
groups are localized to the domain-wall intersection
under the Dvali—Shifman formalism and which are
semidelocalized. We start by detailing the possibilities
when H1 ≃H2 ≃ SUð6Þ ×Uð1Þ.

1. H1 ¼ SUð6Þ × Uð1Þ and H2 ¼ SUð6Þ0 × Uð1Þ0
a. Case 1: H1∩H2 ¼ H1 ¼ H2 ¼ SUð6Þ × Uð1Þ

(i) Example VEV pattern: both χ1 and χ2 condense in the component proportional to the generator Q1 ¼
diagð1; 1; 1; 1; 1; 1;−6Þ.

(ii) Here, SUð6Þ∩SUð6Þ0 ¼ SUð6Þ.
(iii) There are no leftover diagonal generators.
(iv) Hence, the only Abelian symmetry preserved on the wall is Q1.
(v) The full symmetry respected on the intersection is H1∩H2 ¼ SUð6Þ × Uð1ÞQ1

. Both the gauge groups are
semidelocalized and able to propagate along both walls.

b. Case 2: H1∩H2 ¼ SUð5Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: χ1 condenses in the component proportional to the generator Q1 ¼ diagð1; 1; 1; 1; 1; 1;−6Þ,

and χ2 condenses in the component proportional to the generator Q0
1 ¼ diagð1; 1; 1; 1; 1;−6; 1Þ.

(ii) Here, SUð6Þ∩SUð6Þ ¼ SUð5Þ.
(iii) The leftover diagonal generators are T1 ¼ diagð1; 1; 1; 1; 1;−5; 0Þ and T 0

1 ¼ diagð1; 1; 1; 1; 1; 0;−5Þ.
(iv) Hence, the Abelian symmetries preserved on the wall are q1 ¼ 5=6Q1 þ 7=6T1 ¼ 5=6Q0

1 þ 7=6T 0
1 ¼

diagð2; 2; 2; 2; 2;−5;−5Þ and q2 ¼ 1=6ðQ1 − T1Þ ¼ 1=6ðT 0
1 −Q0

1Þ ¼ diagð0; 0; 0; 0; 0; 1;−1Þ.
(v) The full symmetry respected on the intersection is H1∩H2 ¼ SUð5Þ ×Uð1Þq1 ×Uð1Þq2 . The SUð5Þ subgroup is fully

localized; the Abelian subgroups are not localized to the intersection and are free to propagate along both walls.

2. H1 ¼ SUð6Þ × Uð1Þ and H2 ¼ SUð5Þ × SUð2Þ × Uð1Þ
a. Case 1: H1∩H2 ¼ SUð5Þ × Uð1Þ × Uð1Þ

(i) Example VEV pattern: χ1 condenses in the component proportional to the generator Q1 ¼ diagð1; 1; 1; 1; 1; 1;−6Þ,
and χ2 condenses in the component proportional to the generator Q0

1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ.
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(ii) Here, SUð6Þ∩SUð5Þ ¼ SUð5Þ.
(iii) The leftover diagonal generators are T1 ¼ diagð1; 1; 1; 1; 1;−5; 0Þ and T 0

1 ¼ diagð0; 0; 0; 0; 0; 1;−1Þ.
(iv) Hence, the Abelian symmetries preserved on the wall are q1 ¼ Q1 þ T1 ¼ Q0

1 þ T 0
1 ¼ diagð2; 2; 2; 2; 2;−4;−6Þ

and q2 ¼ 1=6ðQ1 − T1Þ ¼ T 0
1 ¼ diagð0; 0; 0; 0; 0; 1;−1Þ.

(v) The full symmetry respected on the intersection isH1∩H2 ¼ SUð5Þ ×Uð1Þq1 × Uð1Þq2 . None of the gauge groups are
localized; the SUð5Þ gauge bosons are free to propagate along theH2-respecting wall, theUð1Þq2 photon can propagate
along the H1-respecting wall, and the Uð1Þq1 photon can propagate along both walls.

b. Case 2: H1∩H2 ¼ SUð4Þ × SUð2Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð1; 1; 1; 1; 1; 1;−6Þ and hχ2i ∝ Q0

1 ¼ diagð−5;−5; 2; 2; 2; 2; 2Þ.
(ii) Hence, SUð6Þ∩SUð5Þ ¼ SUð4Þ and SUð6Þ∩SUð2Þ ¼ SUð2Þ.
(iii) Leftover diagonal generators: T1 ¼ diagð−2;−2; 1; 1; 1; 1; 0Þ from H1 and T 0

1 ¼ diagð0; 0; 1; 1; 1; 1;−4Þ from H2.
(iv) Preserved Abelian generators: q1 ¼ Q1 − 2T1 ¼ T 0

1 −Q0
1 ¼ diagð5; 5;−1;−1;−1;−1;−6Þ and q2 ¼ 2Q1 þ T1 ¼

3T 0
1 ¼ diagð0; 0; 1; 1; 1; 1;−4Þ.

(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð4Þ × SUð2Þ ×Uð1Þq1 ×Uð1Þq2 . The SUð4Þ subgroup is fully
localized, the SUð2Þ and Uð1Þq2 subgroup is semidelocalized and able to propagate along the H2-respecting wall, and
Uð1Þq1 is semidelocalized and able to propagate along both walls.

3. H1 ¼ SUð6Þ × Uð1Þ and H2 ¼ SUð4Þ × SUð3Þ × Uð1Þ
a. Case 1: H1∩H2 ¼ SUð4Þ × SUð2Þ × Uð1Þ × Uð1Þ

(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð1; 1; 1; 1; 1; 1;−6Þ and hχ2i ∝ Q0
1 ¼ diagð3; 3; 3; 3;−4;−4;−4Þ.

(ii) Hence, SUð6Þ∩SUð4Þ ¼ SUð4Þ and SUð6Þ∩SUð3Þ ¼ SUð2Þ.
(iii) Leftover diagonal generators: T1 ¼ diagð1; 1; 1; 1;−2;−2; 0Þ from H1 and T 0

1 ¼ diagð0; 0; 0; 0; 1; 1;−2Þ from H2.
(iv) Preserved Abelian generators: q1 ¼ Q1 þ 2T1 ¼ Q0

1 þ T 0
1 ¼ diagð3; 3; 3; 3;−3;−3;−6Þ and q2 ¼ 2Q1 − T1 ¼

1=3ðQ0
1 þ 16T 0

1Þ ¼ diagð1; 1; 1; 1; 4; 4;−12Þ.
(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð4Þ × SUð2Þ ×Uð1Þq1 ×Uð1Þq2 . The SUð2Þ subgroup is fully

localized, the SUð4Þ subgroup is semidelocalized and able to propagate along the H2-respecting wall, and the Uð1Þq1
and Uð1Þq2 subgroups are semidelocalized and able to propagate along both walls.

b. Case 2: H1∩H2 ¼ SUð3Þ × SUð3Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð1; 1; 1; 1; 1; 1;−6Þ and hχ2i ∝ Q0

1 ¼ diagð3; 3; 3;−4;−4;−4; 3Þ.
(ii) Hence, SUð6Þ∩SUð4Þ ¼ SUð3Þ1 and SUð6Þ∩SUð3Þ ¼ SUð3Þ2.
(iii) Leftover diagonal generators: T1 ¼ diagð1; 1; 1;−1;−1;−1; 0Þ from H1 and T 0

1 ¼ diagð1; 1; 1; 0; 0; 0;−3Þ from H2.
(iv) Preserved Abelian generators: q1 ¼ 3T1 −Q1 ¼ Q0

1 − T 0
1 ¼ diagð2; 2; 2;−4;−4;−4; 6Þ and q2 ¼ 3Q1 þ T1 ¼

1=2ð11T 0
1 −Q0

1Þ ¼ diagð4; 4; 4; 2; 2; 2;−18Þ.
(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð3Þ1 × SUð3Þ2 ×Uð1Þq1 ×Uð1Þq2 . The SUð3Þ1 subgroup is fully

localized while the SUð3Þ2 subgroup is semidelocalized and able to propagate along the H2-respecting wall, and the
Uð1Þq1 and Uð1Þq2 subgroups are semidelocalized and able to propagate along both walls.

4. H1 ¼ SUð5Þ × SUð2Þ × Uð1Þ and H2 ¼ SUð5Þ0 × SUð2Þ0 × Uð1Þ0
a. Case 1: H1∩H2 ¼ H1 ¼ H2 ¼ SUð5Þ × SUð2Þ × Uð1Þ

(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ and hχ2i ∝ Q0
1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ.

(ii) Hence, SUð5Þ∩SUð5Þ0 ¼ SUð5Þ and SUð2Þ∩SUð2Þ0 ¼ SUð2Þ.
(iii) Leftover diagonal generators: None.
(iv) Preserved Abelian generators: q1 ¼ Q1 ¼ Q0

1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ
(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð5Þ × SUð2Þ ×Uð1Þq1 . All the factor gauge groups are semi-

delocalized and free to propagate along both walls.

b. Case 2: H1∩H2 ¼ SUð4Þ × Uð1Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ and hχ2i ∝ Q0

1 ¼ diagð2; 2; 2; 2;−5;−5; 2Þ.
(ii) Hence, SUð5Þ∩SUð5Þ0 ¼ SUð4Þ.
(iii) Leftover diagonal generators: T1 ¼ diagð1; 1; 1; 1;−4; 0; 0Þ, T2 ¼ diagð0; 0; 0; 0; 0; 1;−1Þ from H1 and

T 0
1 ¼ diagð1; 1; 1; 1; 0; 0;−4Þ, T 0

2 ¼ diagð0; 0; 0; 0; 1;−1; 0Þ from H2.
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(iv) Preserved Abelian generators: q1 ¼ T1 þ 4T2 ¼ T 0
1 − 4T 0

2 ¼ diagð1; 1; 1; 1;−4; 4;−4Þ, q2 ¼ 1=2ðQ1 − 7T2Þ ¼
1=2ðQ0

1 þ 7T 0
2Þ ¼ diagð1; 1; 1; 1; 1;−6; 1Þ, and q3 ¼ 1=5ð2Q1 þ T1Þ ¼ 1=5ðQ0

1 þ 3T 0
1 þ 5T 0

2 ¼ diagð1; 1; 1; 1;
0;−2;−2ÞÞ.

(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð4Þ ×Uð1Þq1 ×Uð1Þq2 ×Uð1Þq3 . The SUð4Þ and Uð1Þq1 sub-
groups are fully localized to the intersection while the Uð1Þq2 and Uð1Þq subgroups are semidelocalized and able to
propagate along both walls.

c. Case 3: H1∩H2 ¼ SUð3Þ × SUð2Þ × SUð2Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ and hχ2i ∝ Q0

1 ¼ diagð2; 2; 2;−5;−5; 2; 2Þ.
(ii) Hence, SUð5Þ∩SUð5Þ0 ¼ SUð3Þ, SUð2Þ∩SUð5Þ0 ¼ SUð2Þ1 and SUð5Þ∩SUð2Þ0 ¼ SUð2Þ2.
(iii) Leftover diagonal generators: T1 ¼ diagð2=3; 2=3; 2=3;−1;−1; 0; 0Þ from H1 and T 0

1 ¼ diagð2=3; 2=3; 2=3;
0; 0;−1;−1Þ from H2.

(iv) Preserved Abelian generators: q1 ¼ 9=5Q1 þ 3=5T1 ¼ 3=5Q0
1 − 9=5T 0

1 ¼ diagð4; 4; 4; 3; 3;−9;−9Þ and
q2 ¼ Q1 − 3T1 ¼ −Q0

1 þ 3T 0
1 ¼ diagð0; 0; 0; 5; 5;−5;−5Þ.

(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð3Þ × SUð2Þ1 × SUð2Þ2 ×Uð1Þq1 ×Uð1Þq2 . The SUð3Þ subgroup
is fully localized to the intersection, the SUð2Þ1 gauge bosons are semidelocalized and free to propagate along
the H1-respecting wall; similarly, the SUð2Þ2 gauge bosons are semidelocalized and free to propagate along
the H2-respecting wall, and the Abelian groups Uð1Þq1 and Uð1Þq2 are semidelocalized and free to propagate along
both walls.

5. H1 ¼ SUð5Þ × SUð2Þ × Uð1Þ and H2 ¼ SUð4Þ × SUð3Þ × Uð1Þ
a. Case 1: H1∩H2 ¼ SUð4Þ × SUð2Þ × Uð1Þ × Uð1Þ

(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ and hχ2i ∝ Q0
1 ¼ diagð3; 3; 3; 3;−4;−4;−4Þ.

(ii) Hence, SUð5Þ∩SUð4Þ ¼ SUð4Þ and SUð2Þ∩SUð3Þ ¼ SUð2Þ.
(iii) Leftover diagonal generators: T1 ¼ diagð1; 1; 1; 1;−4; 0; 0Þ from H1 and T 0

1 ¼ diagð0; 0; 0; 0;−2; 1; 1Þ from H2.
(iv) Preserved Abelian generators: q1 ¼ Q1 þ T1 ¼ Q0

1 − T 0
1 ¼ diagð3; 3; 3; 3;−2;−5;−5Þ and q2 ¼ −Q1 þ 5T1 ¼

Q0
1 þ 9T 0

1 ¼ diagð3; 3; 3; 3;−22; 5; 5Þ.
(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð4Þ × SUð2Þ ×Uð1Þq1 ×Uð1Þq2 . None of the subgroups are fully

localized. The SUð4Þ gauge bosons are semidelocalized and free to propagate along the H2-respecting wall; similarly,
the SUð2Þ gauge bosons are semidelocalized and free to propagate along the H1-respecting wall, and the Abelian
groups Uð1Þq1 and Uð1Þq2 are semidelocalized and free to propagate along both walls.

b. Case 2: H1∩H2 ¼ SUð3Þ × SUð2Þ × Uð1Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ and hχ2i ∝ Q0

1 ¼ diagð3; 3; 3;−4;−4;−4; 3Þ.
(ii) Hence, SUð5Þ∩SUð4Þ ¼ SUð3Þ and SUð5Þ∩SUð3Þ ¼ SUð2Þ.
(iii) Leftover diagonal generators: T1 ¼ diagð2=3; 2=3; 2=3;−1;−1; 0; 0Þ, T2 ¼ diagð0; 0; 0; 0; 0; 1;−1Þ from H1 and

T 0
1 ¼ diagð2=3; 2=3; 2=3; 0; 0; 0;−2Þ, T 0

2 ¼ diagð0; 0; 0; 1; 1;−2; 0Þ from H2.
(iv) Preserved Abelian generators: q1¼−T1−2T2¼−T 0

1þT 0
2¼diagð−2=3;−2=3;−2=3;1;1;−2;2Þ, q2 ¼ 4Q1þ

7T1 − 6T2 ¼ 2Q0
1 þ 10T 0

1 þ 9T 0
2 ¼ diagð38=3; 38=3; 38=3; 1; 1;−26;−14Þ, and q3 ¼ −3Q1 þ 12T1 þ 12T2 ¼

3=2Q0
1 − 3=8T 0

1 − 150T2 ¼ diagð2; 2; 2;−18;−18; 27; 3Þ.
(v) Preserved symmetry on intersection:H1∩H2 ¼ SUð3Þ × SUð2Þ ×Uð1Þq1 × Uð1Þq2 ×Uð1Þq3 . The SUð3Þ, SUð2Þ and

Uð1Þq1 subgroups are fully localized to the domain-wall intersection. The Uð1Þq2 and Uð1Þq3 subgroups are
semidelocalized, and their photons can propagate along both walls.

c. Case 3: H1∩H2 ¼ SUð3Þ × SUð2Þ × SUð2Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð2; 2; 2; 2; 2;−5;−5Þ and hχ2i ∝ Q0

1 ¼ diagð−4;−4;−4; 3; 3; 3; 3Þ.
(ii) Hence, SUð5Þ∩SUð3Þ ¼ SUð3Þ, SUð5Þ∩SUð4Þ ¼ SUð2Þ1 and SUð2Þ∩SUð4Þ ¼ SUð2Þ2.
(iii) Leftover diagonal generators: T1 ¼ diagð2=3; 2=3; 2=3;−1;−1; 0; 0Þ from H1 and T 0

1 ¼ diagð0; 0; 0; 1; 1;−1;−1Þ
from H2.

(iv) Preserved Abelian generators: q1 ¼ TQ1 þ 3T1 ¼ −Q0
1 þ 2T 0

1 ¼ diagð4; 4; 4;−1;−1;−5;−5Þ and q2 ¼
3Q1 − T1 ¼ −4=3Q0

1 þ 11T 0
1 ¼ diagð16=3; 16=3; 16=3; 7; 7;−15;−15Þ.

(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð3Þ × SUð2Þ1 × SUð2Þ2 ×Uð1Þq1 ×Uð1Þq2 . Only the SUð2Þ1
subgroup is fully localized to the domain-wall intersection. The SUð3Þ subgroup is semidelocalized, and its gauge
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bosons can propagate along the H2-respecting wall. The SUð2Þ2 subgroup is semidelocalized, and its gauge bosons
can propagate along theH1-respecting wall. The Uð1Þq2 and Uð1Þq3 subgroups are semidelocalized, and their photons
can propagate along both walls.

6. H1 ¼ SUð4Þ × SUð3Þ × Uð1Þ and H2 ¼ SUð4Þ0 × SUð3Þ0 × Uð1Þ0
a. Case 1: H1∩H2 ¼ SUð4Þ × SUð3Þ × Uð1Þ

(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð3; 3; 3; 3;−4;−4;−4Þ and hχ2i ∝ Q0
1 ¼ diagð3; 3; 3; 3;−4;−4;−4Þ.

(ii) Hence, SUð4Þ∩SUð4Þ0 ¼ SUð4Þ and SUð3Þ∩SUð3Þ0 ¼ SUð3Þ.
(iii) Leftover diagonal generators: None.
(iv) Preserved Abelian generators: q1 ¼ Q1 ¼ Q0

1 ¼ diagð3; 3; 3; 3;−4;−4;−4Þ.
(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð4Þ × SUð3Þ ×Uð1Þq1 . All the factor gauge groups are semi-

delocalized and free to propagate along both walls.

b. Case 2: H1∩H2 ¼ SUð3Þ × SUð2Þ × Uð1Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð3; 3; 3;−4;−4;−4; 3Þ and hχ2i ∝ Q0

1 ¼ diagð3; 3; 3;−4;−4; 3;−4Þ.
(ii) Hence, SUð4Þ∩SUð4Þ0 ¼ SUð3Þ and SUð3Þ∩SUð3Þ0 ¼ SUð2Þ.
(iii) Leftover diagonal generators: T1 ¼ diagð2=3; 2=3; 2=3; 0; 0; 0;−2Þ, T2 ¼ diagð0; 0; 0; 1; 1;−2; 0Þ from H1 and

T 0
1 ¼ diagð2=3; 2=3; 2=3; 0; 0;−2; 0Þ, T 0

2 ¼ diagð0; 0; 0; 1; 1; 0;−2Þ from H2.
(iv) Preserved Abelian generators: q1 ¼ −T1 − T2 ¼ −T 0

1 − T 0
2 ¼ diagð−2=3;−2=3;−2=3;−1;−1; 2; 2Þ,

q2 ¼ 4Q1 þ T1 − T2 ¼ 2Q0
1 þ 10T 0

1 − 9T 0
2 ¼ diagð38=3; 38=3; 38=3;−17;−17;−14; 10Þ,

and q3 ¼ Q1 − 2T1 þ 2T2 ¼ −1=2Q0
1 þ 29=4T 0

1 − 6T 0
2 ¼ diagð5=3; 5=3; 5=3;−2;−2;−8; 7ÞÞ.

(v) Preserved symmetry on intersection:H1∩H2 ¼ SUð3Þ × SUð2Þ ×Uð1Þq1 × Uð1Þq2 ×Uð1Þq3 . The SUð3Þ, SUð2Þ and
Uð1Þq1 subgroups are fully localized to the domain-wall intersection. The Uð1Þq2 and Uð1Þq3 subgroups are
semidelocalized, and their photons can propagate along both walls.

c. Case 3: H1∩H2 ¼ SUð2Þ × SUð2Þ × SUð2Þ × Uð1Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð3; 3; 3; 3;−4;−4;−4Þ and hχ2i ∝ Q0

1 ¼ diagð3; 3;−4;−4;−4; 3; 3Þ.
(ii) Hence, SUð4Þ∩SUð4Þ0 ¼ SUð2Þ1, SUð4Þ∩SUð3Þ0 ¼ SUð2Þ2 and SUð3Þ∩SUð4Þ0 ¼ SUð2Þ3.
(iii) Leftover diagonal generators: T1 ¼ diagð1; 1;−1;−1; 0; 0; 0Þ, T2 ¼ diagð0; 0; 0; 0;−2; 1; 1Þ from H1 and

T 0
1 ¼ diagð1; 1; 0; 0; 0;−1;−1Þ, T 0

2 ¼ diagð0; 0; 1; 1;−2; 0; 0Þ from H2.
(iv) Preserved Abelian generators: q1 ¼ T1 − T2 ¼ T 0

1 − T 0
2 ¼ diagð1; 1;−1;−1; 2;−1;−1Þ, q2 ¼ Q1 þ 2T1þ

2T2 ¼ 1=2ðQ0
1 þ 7T 0

1 þ 6T 0
2Þ ¼ diagð5; 5; 1; 1;−8;−2;−2Þ, and q3 ¼ 4Q1 − T1 − T2 ¼ −Q0

1 þ 14T 0
1 þ 9T 0

2 ¼
diagð11; 11; 13; 13;−14;−17;−17ÞÞ.

(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð2Þ1 × SUð2Þ2 × SUð2Þ3 ×Uð1Þq1 ×Uð1Þq2 ×Uð1Þq3 . The
SUð2Þ1, SUð2Þ2, SUð2Þ3, and Uð1Þq1 subgroups are fully localized to the domain-wall intersection. The Uð1Þq2
and Uð1Þq3 subgroups are semidelocalized, and their photons can propagate along both walls.

d. Case 4: H1∩H2 ¼ SUð3Þ × SUð3Þ × Uð1Þ × Uð1Þ
(i) Example VEV pattern: hχ1i ∝ Q1 ¼ diagð3; 3; 3; 3;−4;−4;−4Þ and hχ2i ∝ Q0

1 ¼ diagð−4;−4;−4; 3; 3; 3; 3Þ.
(ii) Hence, SUð3Þ∩SUð4Þ0 ¼ SUð3Þ1 and SUð4Þ∩SUð3Þ0 ¼ SUð3Þ2.
(iii) Leftover diagonal generators: T1 ¼ diagð1; 1; 1;−3; 0; 0; 0Þ from H1 and T 0

1 ¼ diagð0; 0; 0;−3; 1; 1; 1Þ from H2.
(iv) Preserved Abelian generators: q1 ¼ 1=4ðQ1 þ T1Þ ¼ −1=4ðQ0

1 þ T 0
1Þ ¼ diagð1; 1; 1; 0;−1;−1;−1Þ and

q2 ¼ 1=2ðQ1 − T1Þ ¼ −1=4ðQ0
1 þ 5T 0

1Þ ¼ diagð1; 1; 1; 3;−2;−2;−2Þ.
(v) Preserved symmetry on intersection: H1∩H2 ¼ SUð3Þ1 × SUð3Þ2 ×Uð1Þq1 ×Uð1Þq2 . The SUð3Þ1 subgroup is

semidelocalized, and its gauge bosons are able to propagate along the H1-respecting wall. The SUð3Þ2 subgroup is
semidelocalized, and its gauge bosons are able to propagate along the H2-respecting wall. The Uð1Þq1 and Uð1Þq2
subgroups are semidelocalized, and their photons can propagate along both walls.

BENJAMIN D. CALLEN AND RAYMOND R. VOLKAS PHYSICAL REVIEW D 89, 056004 (2014)

056004-28



[1] I. Antoniadis, Phys. Lett. B 246, 377 (1990).
[2] M. Visser, Phys. Lett. 159B, 22 (1985).
[3] K. Akama, Lect. Notes Phys. 176, 267 (1983).
[4] G.W. Gibbons and D. L. Wiltshire, Nucl. Phys. B287, 717

(1987).
[5] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys.

Lett. B 429, 263 (1998).
[6] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G.

Dvali, Phys. Lett. B 436, 257 (1998).
[7] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370

(1999).
[8] L.Randall andR. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).
[9] C. Csáki, C. Delaunay, C. Grojean, and Y. Grossman, J.

High Energy Phys. 10 (2008) 055.
[10] E. A. Mirabelli and M. Schmaltz, Phys. Rev. D 61, 113011

(2000).
[11] M. C. Chen, K. T. Mahanthappa, and F. Yu, Phys. Rev. D 81,

036004 (2010).
[12] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and N.

Kaloper, Phys. Rev. Lett. 84, 586 (2000).
[13] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. 125B,

136 (1983).
[14] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
[15] D. P. George and R. R. Volkas, Phys. Rev. D 75, 105007

(2007).
[16] R. Davies and D. P. George, Phys. Rev. D 76, 104010

(2007).
[17] S. L. Dubovsky and V. A. Rubakov, Int. J. Mod. Phys. A 16,

4331 (2001).
[18] G. R. Dvali and M. A. Shifman, Phys. Lett. B 396, 64

(1997).
[19] R. Davies, D. P. George, and R. R. Volkas, Phys. Rev. D 77,

124038 (2008).
[20] N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D 61,

033005 (2000).
[21] G. R.Dvali andM. A.Shifman,Phys.Lett.B475, 295 (2000).
[22] B. D. Callen and R. R. Volkas, Phys. Rev. D 83, 056004

(2011).
[23] B. D. Callen and R. R. Volkas, Phys. Rev. D 86, 056007

(2012).

[24] J. E. Thompson and R. R. Volkas, Phys. Rev. D 80, 125016
(2009).

[25] A. Davidson, D. P. George, A. Kobakhidze, R. R. Volkas,
and K. C. Wali, Phys. Rev. D 77, 085031 (2008).

[26] E. M. Shin and R. R. Volkas, Phys. Rev. D 69, 056007
(2004).

[27] J. S. Rozowsky, R. R. Volkas, and K. C. Wali, Phys. Lett. B
580 249 (2004).

[28] A. Davidson, B. F. Toner, R. R. Volkas, and K. C. Wali,
Phys. Rev. D 65, 125013 (2002).

[29] L. Pogosian and T. Vachaspati, Phys. Rev. D 62, 123506
(2000).

[30] T. Vachaspati, Phys. Rev. D 63, 105010 (2001).
[31] L. Pogosian and T. Vachaspati, Phys. Rev. D 64, 105023

(2001).
[32] J. R. Morris, Phys. Rev. D 51, 697 (1995).
[33] J. D. Edelstein, M. L. Trobo, F. A. Brito, and D. Bazeia,

Phys. Rev. D 57, 7561 (1998).
[34] J. P. Gauntlett, D. Tong, and P. K. Townsend, Phys. Rev. D

63, 085001 (2001).
[35] S. V. Troitskya and M. B. Voloshin, Phys. Lett. B 449, 17

(1999).
[36] H. Oda, K. Ito, M. Naganuma, and N. Sakai, Phys. Lett. B

471, 140 (1999).
[37] B. D. Callen and R. R. Volkas, Phys. Rev. D 87, 116002

(2013).
[38] M. Creutz, Phys. Rev. Lett. 43, 553 (1979).
[39] D. George, Ph.D thesis, University of Melbourne, 2009.
[40] D. P. George, A. Ram, J. E. Thompson, and R. R. Volkas,

Phys. Rev. D 87, 105009 (2013).
[41] M. Laine, H. B. Meyer, K. Rummukainen, and M.

Shaposhnikov, J. High Energy Phys. 04 (2004) 027.
[42] H. Ruegg, Phys. Rev. D 22, 2040 (1980).
[43] S. Randjbar-Daemi and M. Shaposhnikov, J. High Energy

Phys. 04 (2003) 016.
[44] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Phys.

Lett. B 626, 184 (2005).
[45] L.-F. Li, Phys. Rev. D 9, 1723 (1974).
[46] C. J. Cummins and R. C. King, J. Phys. A 17 L627 (1984).
[47] C. J. Cummins, J. Phys. A 19, 1055 (1986).

CLASH-OF-SYMMETRIES MECHANISM FROM … PHYSICAL REVIEW D 89, 056004 (2014)

056004-29

http://dx.doi.org/10.1016/0370-2693(90)90617-F
http://dx.doi.org/10.1016/0370-2693(85)90112-1
http://dx.doi.org/10.1007/3-540-11994-9
http://dx.doi.org/10.1016/0550-3213(87)90125-8
http://dx.doi.org/10.1016/0550-3213(87)90125-8
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1088/1126-6708/2008/10/055
http://dx.doi.org/10.1088/1126-6708/2008/10/055
http://dx.doi.org/10.1103/PhysRevD.61.113011
http://dx.doi.org/10.1103/PhysRevD.61.113011
http://dx.doi.org/10.1103/PhysRevD.81.036004
http://dx.doi.org/10.1103/PhysRevD.81.036004
http://dx.doi.org/10.1103/PhysRevLett.84.586
http://dx.doi.org/10.1016/0370-2693(83)91253-4
http://dx.doi.org/10.1016/0370-2693(83)91253-4
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevD.75.105007
http://dx.doi.org/10.1103/PhysRevD.75.105007
http://dx.doi.org/10.1103/PhysRevD.76.104010
http://dx.doi.org/10.1103/PhysRevD.76.104010
http://dx.doi.org/10.1142/S0217751X01005286
http://dx.doi.org/10.1142/S0217751X01005286
http://dx.doi.org/10.1016/S0370-2693(97)00131-7
http://dx.doi.org/10.1016/S0370-2693(97)00131-7
http://dx.doi.org/10.1103/PhysRevD.77.124038
http://dx.doi.org/10.1103/PhysRevD.77.124038
http://dx.doi.org/10.1103/PhysRevD.61.033005
http://dx.doi.org/10.1103/PhysRevD.61.033005
http://dx.doi.org/10.1016/S0370-2693(00)00083-6
http://dx.doi.org/10.1103/PhysRevD.83.056004
http://dx.doi.org/10.1103/PhysRevD.83.056004
http://dx.doi.org/10.1103/PhysRevD.86.056007
http://dx.doi.org/10.1103/PhysRevD.86.056007
http://dx.doi.org/10.1103/PhysRevD.80.125016
http://dx.doi.org/10.1103/PhysRevD.80.125016
http://dx.doi.org/10.1103/PhysRevD.77.085031
http://dx.doi.org/10.1103/PhysRevD.69.045010
http://dx.doi.org/10.1103/PhysRevD.69.045010
http://dx.doi.org/10.1016/j.physletb.2003.11.043
http://dx.doi.org/10.1016/j.physletb.2003.11.043
http://dx.doi.org/10.1103/PhysRevD.65.125013
http://dx.doi.org/10.1103/PhysRevD.62.123506
http://dx.doi.org/10.1103/PhysRevD.62.123506
http://dx.doi.org/10.1103/PhysRevD.63.105010
http://dx.doi.org/10.1103/PhysRevD.64.105023
http://dx.doi.org/10.1103/PhysRevD.64.105023
http://dx.doi.org/10.1103/PhysRevD.51.697
http://dx.doi.org/10.1103/PhysRevD.57.7561
http://dx.doi.org/10.1103/PhysRevD.63.085001
http://dx.doi.org/10.1103/PhysRevD.63.085001
http://dx.doi.org/10.1016/S0370-2693(99)00069-6
http://dx.doi.org/10.1016/S0370-2693(99)00069-6
http://dx.doi.org/10.1016/S0370-2693(99)01355-6
http://dx.doi.org/10.1016/S0370-2693(99)01355-6
http://dx.doi.org/10.1103/PhysRevD.87.116002
http://dx.doi.org/10.1103/PhysRevD.87.116002
http://dx.doi.org/10.1103/PhysRevLett.43.553
http://dx.doi.org/10.1103/PhysRevD.87.105009
http://dx.doi.org/10.1088/1126-6708/2004/04/027
http://dx.doi.org/10.1103/PhysRevD.22.2040
http://dx.doi.org/10.1088/1126-6708/2003/04/016
http://dx.doi.org/10.1088/1126-6708/2003/04/016
http://dx.doi.org/10.1016/j.physletb.2005.08.084
http://dx.doi.org/10.1016/j.physletb.2005.08.084
http://dx.doi.org/10.1103/PhysRevD.9.1723
http://dx.doi.org/10.1088/0305-4470/17/12/001
http://dx.doi.org/10.1088/0305-4470/19/7/010

