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We study the quark spectrum at finite temperature near and above the pseudocritical temperature of the
chiral phase transition incorporating the effects of the collective modes with the quantum number of the
sigma (parasigma) and pion (parapion) in a chiral effective model with a nonzero current quark mass.
Below the pion zero-binding temperature where the pionic modes are bound, the quark self-energy has van
Hove singularity induced by the scattering of quarks with the composite bound pions with a nonhyperbolic
dispersion curve. This singularity is found to cause a drastic change in the quark spectrum from that in the
mean field picture near the pseudocritical temperature: The quark spectrum has an unexpected sharp peak at
an energy considerably lower than the constituent quark mass, while the spectrum approaches the mean
field one at high temperatures. We clarify that the emergence of this anomalous structure of the quark
spectral function originates from the composite nature of the pionic modes with a non-Lorentz invariant
dispersion relation in the medium at finite temperature.
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I. INTRODUCTION

The exploration of the nature of the hot medium near the
phase boundary of chiral and deconfinement phase tran-
sitions is an intriguing subject in quantum chromodynamics
(QCD). Experimental results in heavy-ion collisions at the
Relativistic Heavy Ion Collider (RHIC) [1] and the Large
Hadron Collider (LHC) [2] suggest that the quark-gluon
medium near the phase boundary is a strongly interacting
system. The properties of the hot medium are also actively
investigated by the lattice QCD Monte Carlo simulations,
which have recently revealed that the phase transition
between hadronic and quark-gluon media at vanishing
baryon chemical potential is a smooth crossover without
a sharp boundary [3]. The lattice simulations also suggest
that the thermodynamic observables including higher-order
fluctuations of conserved charges are well described by the
hadron resonance gas model below the pseudocritical
temperature TPC, but such a picture breaks down in a
narrow range of temperature (T) near TPC [3,4]. This result
indicates that, despite the crossover nature, the hot medium
suddenly changes its character from that of a simple system
composed of approximately free hadrons to a highly
correlated system with unknown but intriguing degrees
of freedom in the vicinity of TPC.
To explore the nature of the hot medium above TPC, it is

natural to begin with an investigation of the existence and
properties of collective excitations having the quantum
numbers of the quarks and gluons. As for collective modes
carrying a quark quantum number, it is notable that recent

nonperturbative analyses on the quark spectral function on
the lattice [5–7] and Schwinger-Dyson approaches [8–12]
indicate the existence of such quasiparticle excitations even
for temperatures not much greater than TPC.
For temperatures near but above TPC, interesting ingre-

dients come into play owing to the strong coupling. One of
them is a possible existence of hadronic excitations that
may survive the phase transition. Indeed, lattice simulations
show that charm quarkonia can still exist as relatively stable
states with an increasing width even well above TPC [13].
Another example of such hadronic states is the soft modes
of chiral phase transition [14]. When the chiral transition is
not so strong first order, some specific collective modes of
quarks and antiquarks have a chance to develop in the
scalar (σ) and pseudoscalar (π) channels near the critical
temperature in accordance with the enhancement of the
fluctuations of the order parameter. Moreover the masses
(peak position of the spectral function) of these collective
modes decrease as the system approaches the critical point,
and these modes are called the soft modes of chiral
transition [14]: They become exactly massless at the critical
temperature in the chiral limit.
When such soft modes exist above TPC, they can in turn

affect the properties of the quasiquark excitations. This
possibility was explored in Ref. [15] in a two-flavor
Nambu–Jona-Lasinio (NJL) model as in Ref. [14] in the
chiral limit. In this case, the chiral transition at nonzero T is
of second order and the quark has no constituent quark
mass above the critical temperature Tc, where the well-
developed soft modes appear near Tc. It was shown that the
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fermion spectrum at low momentum has a three-peak
structure for T ∼ Tc; the fermion spectrum acquires a sharp
peak at low energy in addition to normal and plasmino
modes having thermal masses.
It is worth mentioning that the emergence of the three-

peak structure in the fermion spectrum is a universal
phenomenon for fermion-boson systems at nonzero tem-
perature T when the fermion mass mf is not so large
[16,17]; see also [18]. In Ref. [16], the fermion spectrum at
nonzero T was investigated in a simple Yukawa model
composed of a massless fermion and an elementary boson
with mass mb at the one-loop order, where the boson
dispersion relation,ωb ¼ ωbðqÞ, is simply assumed to be of

the hyperbolic form ωbðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

b þ q2
q

and the possible

modification of it owing to the coupling to the fermion at
T ≠ 0 is neglected. It was found that the fermion spectrum
at low momentum has a three-peak structure for T ≃mb.
The existence of the sharp peak in the quark spectrum
at low energy is later confirmed in various models
and analyses incorporating higher-order contributions
[8,11,19], in some of which the needed nonzero boson
mass mb is supplied by the thermal mass. On the other
hand, it was shown in a Yukawa model with a massive
fermion and an elementary massive boson [17] that the
nonzero fermion mass mf tends to suppress the appearance
of the sharp peak at small energy that would be seen for
T ≃mb: Such a peak can exist in the fermion spectrum
only when the masses satisfy the condition mf ≲ 0.2mb.
The purpose of the present study is to extend the analysis

in Ref. [15] to the case off the chiral limit with nonzero
current quark mass m0. With the explicit chiral symmetry
breaking, the constituent quark mass takes nonzero values
for all T, while the soft modes in the σ and π channels do
not become massless. In view of the analysis in Ref. [17] on
the effect of nonzero fermion mass and the fact that the
nonzero mass of the bosonic modes would also act to
suppress the thermal effect on the fermion spectrum, one
might suspect that the interesting structure in the quark
spectrum obtained in the chiral limit will be blurred by
nonzero m0. In this paper, we shall show that it is not the
case. One of the basic facts is the existence of the composite
pionic mode with a stability above TPC: Because the
constituent quark mass takes a nonzero value above TPC,
the soft pionic modes can be stable against the decay into a
quark and an antiquark even above TPC up to some
temperature at least one-loop level [20]. We call the soft
mode in the pionic channel existing above TPC the para-
pion. The other important ingredient leading to the results
contrary to the naive suspect is a well-known fact that the
dispersion relation ωπðqÞ of the pionic mode in the medium
at T ≠ 0 is generically different from the hyperbolic form
given by ωrelðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ½ωπð0Þ�2

p
because of the viola-

tion of Lorentz symmetry at nonzero temperature and/or
density [21,22]. We shall show that van Hove singularity

[21,23–25] is brought about in the quark self-energy
through the scattering of quarks with the pionic modes
having such a modified dispersion relation, and the
singularity drastically changes the quark spectrum. In
particular, we find that the quark spectral function has a
sharp peak at an energy significantly lower than the
constituent quark mass, which is quite reminiscent of
but has a different origin from that of the peak found in
Refs. [8,11,15,16,19]. It will also be addressed that the
modification of the quark spectrum with this mechanism is
expected to take place when a bosonic mode that couples to
the quark has a nonhyperbolic dispersion relation irrespec-
tive of the detailed structure of the dispersion relation.
Indeed, possible phenomenological consequences of such
a modified dispersion relation of the pionic mode in the
hot and/or dense medium were discussed in various
contexts by many authors [21,22,24].
The paper is organized as follows. The next section deals

with the chiral soft modes. In Sec. III, we calculate the
quark self-energy due to the soft modes and evaluate the
quark spectral function. The numerical results are shown in
Sec. IV. The final section is devoted to a summary and
concluding remarks.

II. FLUCTUATION MODES

To study the fluctuation modes in the scalar (σ) and
pseudoscalar (π) channels on the spectral properties of
quarks near the phase boundary, we employ the two-flavor
NJL model [26] as an effective model of low-energy
QCD [20]

L ¼ ψ̄ði∂ −m0Þψ þ GS½ðψ̄ψÞ2 þ ðψ̄iγ5τψÞ2�; (1)

with τ being the flavor SU(2) Pauli matrices and the
nonzero current quark mass m0 ¼ 5.5 MeV. The coupling
constantGS ¼ 5.5 GeV−2 and the three-dimensional cutoff
Λ ¼ 631 MeV are determined so as to reproduce the pion
mass, the pion decay constant, and the quark condensate in
vacuum [20]. We can expect that there will be no essential
systematic uncertainty in the numerical results to be
presented in the present work, once the parameters are
fitted to reproduce the physical values in vacuum, although
another parameter set may be possible for that.
The constituent quark mass in the self-consistent

mean-field approximation (MFA) at T ≠ 0 is given by

m ¼ m0 − 2GShψ̄ψi; (2)

with the chiral condensate hψ̄ψi evaluated with the massm.
In Fig. 1, we show the T dependence of the resultantm. The
figure shows that in the vacuum m ¼ 337 MeV is signifi-
cantly larger than m0 as a consequence of the spontaneous
chiral symmetry breaking. For nonzero T, the constituent
quark mass smoothly decreases in accordance with the
chiral restoration in medium. Because of the crossover
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nature, there are several definitions of the pseudocritical
temperature TPC. One can, for example, define TPC as the
temperature at which the magnitude of the chiral conden-
sate becomes half the vacuum value. With this definition
we have TPC ≃ 192 MeV. Another possible choice is to use
the dynamic chiral susceptibility in the spacelike region
[27], which diverges at the critical point when the transition
is second order [28]: When TPC is defined as the temper-
ature where the dynamic chiral susceptibility with the
momentum jqj ¼ 10 MeV has the maximum, we have
TPC ≃ 206 MeV. One can also define TPC as the temper-
ature at which the static chiral susceptibility has the
maximum, which gives TPC ≃ 211 MeV in this model.
The properties of the fluctuation modes in the σ and π

channels are encoded in the retarded propagator of these
channels, DR

σ ðq; q0Þ and DR
π ðq; q0Þ, respectively. In the

random phase approximation, these propagators are
given by

DR
σðπÞðq; q0Þ ¼ − 2GS

1þ 2GSQR
σðπÞðq; q0Þ

; (3)

with the one-loop quark-antiquark polarization functions
QR

σðπÞðq; q0Þ. The diagrammatic representation of Eq. (3) is
shown in the upper part of Fig. 2. The imaginary-time
(Matsubara) propagators corresponding to QR

σðπÞðq; q0Þ are

Qσðq;νnÞ¼T
X
m

Z
d3p
ð2πÞ3Tr½G0ðp;ωmÞG0ðqþp;νnþωmÞ�;

(4)

Qπðq; νnÞ ¼
T
3

X
m

Z
d3p
ð2πÞ3 Tr½iγ5τG0ðp;ωmÞ

× iγ5τG0ðqþ p; νn þ ωmÞ�; (5)

where G0ðp;ωnÞ ¼ ½iωnγ0 − p · γ −m�−1 is the quark
propagator in the MFA, and νn ¼ 2nπT and ωn ¼
ð2nþ 1ÞπT denote the Matsubara frequencies for bosons
and fermions, respectively, and Tr denotes the trace over the
color, flavor, and Dirac indices.
After the summation of the Matsubara frequency and the

analytic continuation with a replacement iνn → q0 þ iη in
Eqs. (4) and (5), we obtain the corresponding retarded
polarization functions QR

σ ðq; q0Þ and QR
π ðq; q0Þ. For the

numerical calculation of QR
σðπÞðq; q0Þ, we first calculate

their imaginary parts and then evaluate the real parts with
the Kramers-Kronig relation

ReQR
σðπÞðq; q0Þ ¼ − 1

π
P
Z

Λ0

−Λ0
dq00

ImQR
σðπÞðq; q00Þ
q0 − q00

; (6)

where P denotes the principal value. The cutoff of the q00

integral in Eq. (6), Λ0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
, must be chosen to be

the same as that used in the evaluation of the static
quantities [20], which ensures that DR

σ ðq; q0Þ at small q
and q0 diverges at the critical point of second order phase
transition determined in the MFA [15].
The imaginary parts of QR

σ ðq; q0Þ and QR
π ðq; q0Þ are

proportional to the difference between the decay and creation
rates of each mode. It is easily shown that ImQR

σðπÞðq; q0Þ
take nonzero values for jq0j >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p
and jq0j < q,

with q ¼ jqj. The decay process for q0 >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p
in

each channel corresponds to that into a quark and an
antiquark, while the one in the spacelike region represents
the Landau damping.
Collective modes in the π channel are characterized by

the poles of the propagatorDR
π ðq; q0Þ. When a pole is on the

real axis, its location, q0 ¼ ωπðqÞ, i.e., the dispersion
relation of the bound pionic modes, is determined by
solving

Re½DR
π ðq;ωπðqÞÞ�−1 ¼ − 1

2GS
− ReQR

π ðq;ωπðqÞÞ ¼ 0; (7)

with the residue ZπðqÞ of the pole

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200  250  300  350  400

[M
eV

]

T [MeV]

ωπ(0)

m

ωσ(0)

2m

TZB

FIG. 1 (color online). Temperature dependence of the constitu-
ent quark mass m, and the solution of Eq. (7) at zero momentum
for π and σ channels, ωπð0Þ and ωσð0Þ, respectively. Twice the
constituent quark mass is also plotted. The vertical line shows
the pion zero-binding temperature TZB.

FIG. 2. Diagrammatic representation of the propagators of the
bosonic and fermionic modes in this study. The shaded area of the
upper diagram represents the propagator of the sigma or pionic
modes,DR

σðπÞðq;ωnÞ in Eq. (3), while the lower line represents the
quark propagator defined in Eq. (14).
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1

ZπðqÞ
¼ − 1

π

∂½DR
π ðq;ωπðqÞÞ�−1

∂q0
����
q0¼ωπðqÞ

¼ − 1

π

∂QR
π ðq;ωπðqÞÞ
∂q0

����
q0¼ωπðqÞ

: (8)

The pole on the real axis can exist in the range
q < jωπðqÞj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p
in which ImQR

π ðq; q0Þ van-
ishes. While a solution of Eq. (7) no longer corresponds
to a bound pole when ωπðqÞ is outside this range, it is
known that ωπðqÞ approximately represents the real part of
the corresponding pole on the lower-half complex-energy
plane.
In the vacuum, DR

π ðq; q0Þ has a bound pole on the real
axis as the pseudo-Nambu-Goldstone pion. As T is raised,
the pionic modes eventually become unstable against the
decay into a quark and an antiquark, as the constituent
quark mass m becomes smaller while the rest mass of
pions, ωπð0Þ, becomes larger as shown in Fig. 1 [20]. We
denote the temperature at which the rest pionic modes
become unstable by TZB and call it the pion zero-binding
temperature. Since the rest pionic modes are unstable for
ωπð0Þ > 2m, TZB is determined by

½DR
π ð0; 2mÞ�−1T¼TZB

¼ 0: (9)

In our model, the dissociation takes place at TZB ¼
216 MeV, which is depicted in Fig. 1 by the vertical line.
Note that the value of TZB is higher than TPC irrespective of
the choices of the definition discussed before. In Fig. 1, the
solution of Eq. (7) for the σ channel with q ¼ 0, ωσð0Þ, is
also shown. As in the figure, the solution is always in the
continuum, i.e., ωσð0Þ > 2m, which means that the stable σ
mode does not exist in our model [20].
In the vacuum, the dispersion relation of the pions should

obey the relativistic one

ωrelðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ½ωπð0Þ�2

q
; (10)

because of the Lorentz symmetry. In the medium at nonzero
temperature and/or baryonic density, however, ωπðqÞ can
deviate from this form since the medium effect violates
the Lorentz symmetry [21,22]. In Fig. 3 we show the
dispersion relation of the bound pionic modes ωπðqÞ at
T ¼ 206 MeV, which is slightly below TZB. One finds that
ωπðqÞ clearly deviates from the Lorentz-invariant form
shown by the dashed line in the figure. It is also notable that
ωπðqÞ enters the continuum and the pionic modes become
unstable at q≃ 360 MeV. This result indicates that a
pionic mode moving with a large velocity relative to the
medium can become unstable even when the rest pion can
exist as a bound state. As we will see later, the deviation of
ωπðqÞ from the relativistic form plays a crucial role for
the emergence of the unexpected behaviors of the quark
spectrum for T ≲ TZB.

The result in Fig. 3 shows that the pion dispersion
relation near TZB is steeper than the relativistic one,
Eq. (10). We note that this result in our model is to some
extent affected by the explicit breaking of Lorentz sym-
metry due to the three-dimensional cutoff besides the
genuine medium effect. In fact, the dispersion relation
ωπðqÞ in our model slightly deviates from Eq. (10) toward
a steeper direction even in the vacuum. Nonetheless, as
shown in Ref. [20], there are some advantages to adopt
this cutoff, and we can show that the resultant van Hove
singularity near the pseudocritical point appears irrespec-
tive of the cutoff scheme as mentioned in Sec. IV B.
The qualitative structure of the pion dispersion relation

in the medium has been discussed in various contexts
[21,22]. Among them, it is shown in Ref. [22] that the pion
dispersion relation at sufficiently low temperature becomes
shallower than in the vacuum on the basis of the chiral
symmetry and Nambu-Goldstone nature of the pions. On
the other hand, it seems that there is no conclusive argu-
ment on the behavior of the dispersion relation at T above
the pseudocritical temperature. Because the structure of the
pion dispersion relation plays a crucial role on the quark
spectrum, we will come back to this point later in Sec. IV.
Before closing this section, we introduce the spectral

function of the sigma (pionic) mode

ρσðπÞðq; q0Þ ¼ − 1

π
ImDR

σðπÞðq; q0Þ: (11)

When DR
π ðq; q0Þ has a bound pole, ρπðq; q0Þ is

decomposed as

ρπðq; q0Þ ¼ ρcontπ ðq; q0Þ þ ρpoleπ ðq; q0Þ; (12)

where ρcontπ ðq; q0Þ is the continuum part taking nonzero
values for jq0j >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p
and jq0j < q, and
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FIG. 3 (color online). The dispersion relations of the pionic
modes (solid line) and the relativistic dispersion relation for free
particles

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ½ωπð0Þ�2

p
(dashed line) at T ¼ 206 MeV. The

dotted line denotes the continuum threshold
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

p
.
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ρpoleπ ðq;q0Þ¼ZπðqÞ½δðq0−ωπðqÞÞ−δðq0þωπðqÞÞ�: (13)

III. QUARK SPECTRAL FUNCTION

The collective modes composed of quarks and anti-
quarks have a natural coupling with quarks, which in turn
leads to a modification of the spectral properties of quarks,
in particular, near the pseudocritical temperature. To show
how this modification is significant, let us calculate the
quark propagator coupled with the sigma and pionic
modes in the random phase approximation [15]. The quark
self-energy in the imaginary time formalism in this
approximation is given by

~Σðp¼ 0;ωnÞ≡ ~ΣðωnÞ

¼−TX
m

Z
d3q
ð2πÞ3 fDσðq;ωn−ωmÞG0ðq;ωmÞ

þ 3Dπðq;ωn −ωmÞiγ5G0ðq;ωmÞiγ5g; (14)

with the Matsubara propagators of the sigma and pionic
modes DσðπÞðq; νnÞ. The quark propagator in this approxi-
mation is diagrammatically represented in Fig. 2. The
factor 3 in the second term in Eq. (14) comes from the
isospin degeneracy of pions. Since we are interested in
excitation modes at low energy and low momentum, we
limit our attention to the quark spectrum at zero momen-
tum. The summation of the Matsubara frequency can be
carried out analytically with an equivalent contour integral
on the complex energy plane [29]. Then, after the analytic
continuation iωn → p0 þ iη, we obtain the retarded quark
self-energy,

ΣRðp0Þ ¼ ΣR
σ ðp0Þ þ ΣR

π ðp0Þ; (15)

ΣR
σ ðp0Þ ¼

1

2

X
s¼�

Z
d3qdω
ð2πÞ4

πρσðq;ωÞ
ω − p0 þ sEq − iη

×

�
γ0 þ s

m
Eq

��
coth

�
ω

2T

�
þ tanh

sEq

2T

�
; (16)

ΣR
π ðp0Þ ¼

1

2

X
s¼�

Z
d3qdω
ð2πÞ4

3πρπðq;ωÞ
ω − p0 þ sEq − iη

×

�
γ0 − s

m
Eq

��
coth

�
ω

2T

�
þ tanh

sEq

2T

�
; (17)

with Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

p
. To avoid the ultraviolet divergence

in Eqs. (16) and (17), we first determine the imaginary part
that is free from the divergence, and then evaluate the real
part with the Kramers-Kronig relation

ReΣR
σðπÞðp0Þ ¼ − 1

π
P
Z

Λ

−Λ
dp0

0 ImΣR
σðπÞðp0

0Þ
p0 − p0

0 ; (18)

where the energy integral is regularized by the cutoff
Λ [15].
The retarded quark propagator for zero momentum,

GRðp0Þ ¼
1

ðp0 þ iηÞγ0 −m − ΣRðp0Þ
; (19)

is decomposed in terms of the projection operators Λ� ¼
ð1� γ0Þ=2 as

GRðp0Þ ¼ Gþðp0ÞΛþγ0 þG−ðp0ÞΛ−γ0; (20)

with

G�ðp0Þ ¼
1

2
Tr½GRγ0Λ�� ¼

1

p0 þ iη∓m − Σ�ðp0Þ
; (21)

and Σ�ðp0Þ ¼ ð1=2ÞTr½ΣRðp0ÞΛ�γ0� [17]. The quasiquark
and quasi-antiquark spectral functions are defined in
accordance with Eq. (20) as

ρ�ðp0Þ ¼ − 1

π
ImG�ðp0Þ: (22)

For vanishing quark chemical potential, the charge con-
jugation symmetry of the medium ensures the symmetry
relation ρ−ðp0Þ ¼ ρþð−p0Þ. In the analysis of the quark
spectrum in the next section, we thus concentrate on
ρþðp0Þ.
When the pionic modes have a bound pole, Σ�ðp0Þ are

decomposed as

Σ�ðp0Þ ¼ Σ�
σ ðp0Þ þ Σ�

π-poleðp0Þ þ Σ�
π-contðp0Þ; (23)

where Σ�
σ ðp0Þ represents the contribution of Eq. (16). The

contribution of the pionic modes, Eq. (17), is decomposed
into those of ρcontπ ðq; p0Þ and ρpoleπ ðq; p0Þ in Eq. (12). Using
Eq. (13), one obtains

ImΣ�
π-poleðp0Þ¼

3

4π2
X
r;s¼�

X
q¼qsr

�
ZπðωðqÞÞ

�
1∓r

m
Eq

�

×q2
����dEsðqÞ

dq

����
−1
½1þnðrωðqÞÞ−fðsEqÞ�

�
;

(24)

where qsr with r, s ¼ � are solutions of

p0 ¼ rEsðqsrÞ ¼ rðsEq þ ωπðqÞÞq¼qsr
; (25)

with E�ðqÞ ¼ �Eq þ ωπðqÞ, and the sum in Eq. (24) is
taken for all the solutions of Eq. (25) for each s and r.
The functions nðxÞ and fðxÞ are the Bose-Einstein and
the Fermi-Dirac distribution functions, nðxÞ ¼
½expðx=TÞ − 1�−1 and fðxÞ ¼ ½expðx=TÞ þ 1�−1, respec-
tively. The product of the first two factors in the second
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line in Eq. (24) is proportional to the difference between
the quark and pion-mode density of states, which is called
the joint density of states. We note that dE−ðqÞ=dq ¼
−dEq=dqþ dωπðqÞ=dq has the meaning of the relative
group velocity of the quark and the pion mode [21,22].
When ωπðqÞ is of the relativistic (hyperbolic) form as

given by Eq. (10), E�ðqÞ are monotonic functions of q.
Equation (25) thus can have at most one solution for a given
p0. In the hot and dense medium, however, the deviation of
ωπðqÞ from the hyperbolic form can provide multiple
solutions of these equations for a given p0. The nonhyper-
bolic formofωπðqÞ can also lead to zerosof the relativegroup
velocity dE−ðqÞ=dq. For energies p0 where dEsðqsrÞ=dq
vanish, ImΣ�

π-poleðp0Þ diverges owing to the divergence of the
joint density of states q2½dE−ðqÞ=dq�−1 with q ≠ 0. Such
singularities are known as the van Hove singularity
[23,25,30]. As we will see in the next section, the van
Hove singularities in ImΣ�

π-poleðp0Þ, which manifest them-
selves as a consequence of the composite nature of bound
pionic modes and medium effects, plays a crucial role to
modify the quark spectral function significantly for T ≲ TZB.

IV. NUMERICAL RESULTS

A. Near pseudocritical temperature

Now we present the numerical results for the quark
spectrum. In this subsection, we first investigate the effects
of the bound pionic modes below TZB on the quark
spectrum. To see this effect, we fix the temperature to T ¼
206 MeV throughout this subsection; this value is chosen as
a typical temperature below TZB but not less than TPC. As
discussed in Sec. II, the dynamic chiral susceptibility has the
largest peak in the spacelike region at this temperature [27].
As we will see in this subsection, however, the effect of the
sigma mode does not have a significant contribution to the
quark spectrum even for this temperature.
We first show ρþðp0Þ at T ¼ 206 MeV in the upper

panel of Fig. 4. The figure shows that the quark spectrum is
significantly modified from the one in the MFA,
ρþðp0Þ ¼ δðp0 −mÞ, with m≃ 120 MeV being the con-
stituent quark mass in the MFA at this temperature. The
quasiquark spectrum has a sharp peak at p0 ≃ 25 MeV,
which is considerably smaller than m. The spectral weight
of this peak may be defined by

Z ¼
Z
Δ
dp0ρþðp0Þ; (26)

whereΔ is a range of p0 that well covers the peak structure.
The numerical calculation gives Z≃ 0.16, which is small
but not negligible. The spectrum ρþðp0Þ also has a broad
peak structure around p0 ≃ 160 MeV. While there exists
another peak at p0 ≃−50 MeV, the spectral weight of this
peak is negligibly small.
To understand the origin of these structures in ρþðp0Þ,

the real and imaginary parts of Σþðp0Þ are shown

in the middle and lower panels of Fig. 4, respectively.
The real part of Σþðp0Þ determines the quasipoles of the
quark, where the real part of the inverse propagator
vanishes as

Re½Gþðp0Þ�−1 ¼ p0 −m − ReΣþðp0Þ ¼ 0: (27)

The quasipole gives approximate position of a peak in
ρþðp0Þ when ImΣþðp0Þ is small there [15]. The solutions
of Eq. (27) are graphically determined by crossing points of
ReΣþðp0Þ and a line p0 −m, which is drawn by the dashed
line in the middle panel in Fig. 4. One finds that there exists
a quasipole at p0 ≃ 25 MeV corresponding to the sharp
peak in ρþðp0Þ. There also exists a quasipole around
p0 ≃ 150 MeV, but a clear peak corresponding to this
quasipole does not appear in ρþðp0Þ because of the large
ImΣþðp0Þ around this energy. Although there are some
more solutions of Eq. (27) around p0 ¼ �50 MeV owing
to the singular behaviors of ReΣþðp0Þ, clear peaks corre-
sponding to these quasipoles are not formed in ρþðp0Þ.
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FIG. 4 (color online). The upper panel shows the quark spectral
function ρþðp0Þ for T ¼ 206 MeV. The middle and lower panels
represent the real and imaginary parts of the corresponding quark
self-energy Σþðp0Þ. The dashed line in the middle panel
denotes p0 −m.
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In the lower panel of Fig. 4, one finds that ImΣþðp0Þ is
divergent at four energies, p0 ¼ �pð1Þ

0 and �pð2Þ
0 with

pð1Þ
0 ≃ 47 MeV and pð2Þ

0 ≃ 52 MeV. As shown in the small
windows in the panel, jImΣþðp0Þj is large in the range

pð1Þ
0 < jp0j < pð2Þ

0 . Through the Kramers-Kronig relation
Eq. (18), this structure in ImΣþðp0Þ in turn brings about the
singularities in ReΣþðp0Þ at p0 ¼ �pð1Þ

0 and �pð2Þ
0 . These

divergences are thus responsible for the emergence of the
quasipoles discussed above, and hence the sharp peak at
p0 ≃ 25 MeV in ρþðp0Þ.
To clarify the origin of the divergences in ImΣþðp0Þ, we

show each part of ImΣþðp0Þ in the decomposition of
Eq. (23) in Fig. 5. The figure shows that the divergences
come from ImΣþ

π-poleðp0Þ, i.e., scattering of quarks with the
bound pionic modes. As is seen from Eq. (24), this term
takes nonzero values for p0 satisfying Eq. (25). For
s ¼ þ1, EþðqÞ is a monotonically increasing function of
q with the minimum Eþð0Þ ¼ mþ ωπð0Þ≃ 270 MeV at
q ¼ 0. Equation (25) thus has one solution for rp0 >
mþ ωπð0Þ with r ¼ �1, which, however, is outside the
range of p0 shown in Fig. 5. With s ¼ −1, on the other
hand, E−ðqÞ ¼ −Eq þ ωπðqÞ is not monotonic as shown in

Fig. 6, and the range of E−ðqÞ is limited to pð1Þ
0 <

p0 < pð2Þ
0 . Therefore, ImΣþ

π-poleðp0Þ takes nonzero values

for pð1Þ
0 < jp0j < pð2Þ

0 . Note that the line of E−ðqÞ in Fig. 6
terminates around q ¼ 360 MeV, because ωπðqÞ enters the
continuum and the bound pole disappears at this momen-
tum as shown in Fig. 3. At the extrema of E−ðqÞ,
the relative group velocity dE−ðqÞ=dq vanishes. This
leads to the divergence of the joint density of states
q2jdE−ðqÞ=dqj−1 and the singularity of ImΣþ

π-poleðp0Þ at

jp0j ¼ pð1Þ
0 and pð2Þ

0 . The divergences in ImΣþ
π-poleðp0Þ thus

come from van Hove singularity owing to the divergence of
the joint density of states.

We remark that the van Hove singularity discussed here
does not manifest itself if ωπðqÞ takes the relativistic form
Eq. (10), since E−ðqÞ is then a monotonic function of q and
dE−ðqÞ=dq remains nonzero for q ≠ 0 [17]. Therefore,
the van Hove singularity does not appear in the models
composed of a fermion and boson with the hyperbolic
dispersion relation assumed in Refs. [16–18]. The
composite nature and medium effects that lead to a non-
hyperbolic form of ωπðqÞ play a crucial role for realizing
the van Hove singularity and the drastic modification of
the quark spectrum as a result of the singularity.
For the σ contribution, we see that there are small peaks in

ImΣþ
σ ðp0Þ at jp0j≃ 130 MeV. They come from the scatter-

ing of quarks with the sigma mode in the timelike region.
Because this mode is always in the continuum, it does not
form a singular structure in ImΣþ

σ ðp0Þ unlike the pionic
mode. On the other hand, as discussed above, the dynamic
chiral susceptibility that lies in the spacelike region in the
sigma mode has the maximum at T ¼ 206 MeV. This
contribution to the quark spectrum is, however, so small
that it does not lead to a peak in ImΣþ

σ ðp0Þ. This is due to the
fact that the critical point at which the chiral susceptibility
diverges is far from this temperature and (zero) density in
this model; it is located at T ≃ 47 MeV and the quark
chemical potential μ≃ 329 MeV. Therefore, at the vanish-
ing quark chemical potential, the contribution of the soft
mode associated with this critical point is negligible at any
temperature. Effects of the soft mode on the quark spectrum
near the critical point will be investigated in Ref. [27].

B. Discussion

Here we shall closely examine the origin of the sharp
peak in the quark spectrum in the far-soft region in terms of
the van Hove singularity.
We first compare the quark spectrum in Fig. 4 with the

results in Refs. [16–18] where the fermion spectra are
computed in Yukawa models composed of an elementary
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fermion and boson with masses mf and mb. Since the
present analysis deals with the constituent quarks withm≃
120 MeV coupled to the bound pions with the rest masses
ωπð0Þ≃ 150 MeV and a vanishing width, the resultant
quark spectrum may well be compared to the one obtained
for the elementary particle systems with mf ¼ m and
mb ¼ ωπð0Þ. In Ref. [16], it is found that the spectrum
of a massless fermion coupled with a massive boson has a
three-peak structure with a sharp peak at the origin for
T ≃mb. For a massive fermion, the peak position shifts
toward nonzero positive energy, and gradually ceases to
exist [17]; the range of mf where the clear peak structure is
realized is limited for mf=mb ≲ 0.2. Now since the present
mass ratio m=ωπð0Þ≃ 0.8 is significantly larger than this
upper limit, the quark spectral function should never have
the peak structure, if the boson were described as an
elementary particle with the free dispersion relation. It is
also notable that the clear peak in Fig. 4 appears at an
unexpectedly low energy, p0 ≪ m.
As already noted in the previous sections, the crucial

difference of the present analysis from the ones in
Refs. [16–18] is the compositeness of the bosonic modes
with a nonhyperbolic dispersion relation due to the medium
effect. Owing to the modified dispersion relation the van
Hove singularity emerges in ImΣþðp0Þ, which significantly
modifies the quark spectrum. On the other hand, the
collective excitation corresponding to the quasipole at p0 ≃
150 MeV no longer makes a sharp peak because of the
large decay rate. Here, the composite nature of the para-
sigma and parapion is again responsible for this behavior,
since the large decay rates around p0 ¼ 150 MeV come
from the contribution of continuum spectra in the σ and π
channels as shown in Fig. 5.
While we have emphasized the effect of the van Hove

singularity on ρþðp0Þ, we notice that the divergence is not
necessarily indispensable for the drastic modification of the
quark spectrum. The important feature is the existence of
sharp peaks in ImΣþðp0Þ, i.e., a concentration of the decay
rate of quasiquarks to some narrow energy regions. Such a
sharp peak in ImΣþðp0Þ in turn makes a sharp rise and
decrease in ReΣþðp0Þ through the Kramers-Kronig relation
Eq. (18), and thus leads to a distorted quark spectrum. In
fact, we will see in the next subsection that a somewhat
moderate but still strong modification of the quark spec-
trum is realized even above TZB where the van Hove
singularity no longer exists because of the absence of the
stable pionic modes. When we incorporate the higher-order
corrections, the bound pionic modes and quarks acquire
nonzero decay widths and the would-be van Hove singu-
larity will turn into a smeared peak. Even in this case, the
modification of the quark spectrum and the emergence of a
peak in a far-soft region is expected if a sharp peak exists in
ImΣþðp0Þ. The modification of the quark spectrum
induced by the scattering with a boson having a distorted
dispersion relation, therefore, is expected to take place

irrespective of the details of the model and approximation
used in the present analysis.
As mentioned in Sec. II, the detailed form of the pion

dispersion relation ωπðqÞ in our model is affected by the
cutoff scheme, and so is the detailed properties such as
the position and strength of the van Hove singularity in the
quark self-energy, although the drastic change of the quark
spectrum itself takes place in a generic way once the
dispersion relations of the parapion and quarks take non-
hyperbolic forms in the medium. In fact, we have checked
that the van Hove singularity in the quark self-energy
emerges at some temperature even if we employ different
regularization schemes in our model; while our model
predicts a steep dispersion relation as shown in Fig. 3, the
singularity appears even with a shallow dispersion relation
of the pionic mode.
For determining the position and the strength of the van

Hove singularity quantitatively, a precise determination of the
spectral properties of thepionicmode, including its dispersion
relation and width, near TZB is necessary. For this purpose,
simulations on the lattice should hopefully be helpful.

C. High temperatures

Next, let us see the quark spectrum near and significantly
above the pion zero-binding temperature TZB. In Fig. 7, we
show the quark spectrum ρþðp0Þ and the corresponding
self-energy Σþðp0Þ for T ¼ 0.98TZB, 1.02TZB, and 1.5TZB.
It is found from the left panel of Fig. 7 that the van Hove
singularity is not seen in the quark self-energy, although the
stable pionic modes still exist at T ¼ 0.98TZB. This is
because the momentum range where the stable pionic
modes exist becomes narrow as T increases and the relative
group velocity does not have a chance to vanish in the
range. We, however, see that there exist sharp but finite
peaks in ImΣþðp0Þ at jp0j≃ 55 MeV. These peaks are
understood as the remnant of the van Hove singularity in
ImΣþðp0Þ in Fig. 4. As a result of these peaks in ImΣþðp0Þ,
three quasipoles manifest themselves with the same mecha-
nism discussed in the previous subsection, and a sharp peak
is formed at low energy p0 ≃ 16 MeV. The position of this
peak with the strength Z≃ 0.17 is much lower than the
constituent quark massm≃ 100 MeV for this temperature.
For T > TZB, the stable pionic modes no longer exist,

and hence the quark self-energy is smooth as a function of
p0. At T ¼ 1.02TZB, which is slightly above TZB, there
exist broad peaks in ImΣþðp0Þ around p0 ≃�76 MeV.
These peaks come from the coupling of quarks with the
pionic modes; whereas the pionic modes are no longer
stable, there still exists a well developed collective
mode slightly above TZB. As a consequence of these
peaks in ImΣþðp0Þ, a sharp peak is formed in ρþðp0Þ at
p0 ≃ 12 MeV with Z≃ 0.18. The position of this peak is
still considerably lower than the constituent quark mass
m≃ 79 MeV. The strong modification of the quark
spectrum thus sustains even slightly above TZB.
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As T is raised further, the bump structure in ImΣþðp0Þ
disappears since the well-developed collective modes in the
σ and π channels cease to exist. This behavior is seen in the
right panel of Fig. 7, which presents the quark spectrum for
T ¼ 1.5TZB. As a result, the quark spectrum approaches the
mean field one as T increases. For T ¼ 1.5TZB, the position
of the sharp peak of ρþðp0Þ is close to the the constituent
quark mass m≃ 21 MeV.

V. SUMMARY

In the present study, we have investigated the quark
spectrum near the pseudocritical temperature TPC of chiral
phase transition and the pion zero-binding temperature TZB
at vanishing quark chemical potential focusing on the effect
of fluctuation modes in the σ and π channels in the two-
flavor NJL model with nonzero current quark mass m0.
Compared with the previous study in the chiral limit [15],
nonzero m0 gives rise to the nonzero constituent quark
mass m even above TPC because of the crossover nature of
the phase transition. In Ref. [17], it was shown in a Yukawa
model where the boson has a dispersion relation valid in the
free space that the nonzero fermion mass tends to suppress
the appearance of the multipeak structures in the quark
spectrum ρþðp0Þ. Our microscopic model calculation has
shown that ρþðp0Þ near TPC is significantly modified by the
scattering with stable pionic modes that have a nonhyper-
bolic dispersion relation, as was argued in various models
in different contexts [21,22]. We have clarified that these
modifications are caused by the van Hove singularity owing
to the vanishing of the relative group velocity between
quarks and bound pionic modes. The composite nature of
the pionic modes that gives rise to the nonhyperbolic
dispersion relation plays a crucial role for the modification
of the quark spectrum. We have found that the quark
spectrum has a sharp peak at an energy considerably lower
than the constituent quark mass near TPC as a consequence
of the van Hove singularity.

Because our results show that the quark spectrumnearTPC
is stronglymodified by the scatteringwith pionicmodes, it is
interesting to pursue the effects of this modification on other
observables near TPC. For example, the existence of light
quasiquark excitation would affect the T dependence of
thermodynamic observables nearTPC. Itwould also affect the
experimental observables in heavy ion collisions, such as
the dilepton production rate [30]. Exploring the existence of
the van Hove singularity in the early Universe in neutrino
spectra and estimating their effects on the formation of
baryon asymmetry [31] are also interesting subjects.
In this paper we have concentrated on the quark

spectrum at zero momentum and evaluated the quark
self-energy at the one-loop order. Since the medium near
TPC is thought to be a strongly correlated system, it is more
desirable to adopt a more sophisticated approximation
taking into account the self-consistency between the
fluctuation modes and the quasiquarks, as was done for
other problems in Ref. [9], in which the investigation is,
however, not for the system close to TPC, and the van Hove
singularity is not seen. Indeed, as shown in the present
work, when the system is far from TPC, the peak in the
quark spectrum is close to the one in the mean field
approximation and the van Hove singularity does not occur.
It would be quite interesting to investigate the quark
spectrum near TPC in such an approach. Such an inves-
tigation of the quark spectrum around the pseudocritical
temperature is, however, beyond the scope of the present
work and is left for a future project.
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