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We analyze the behavior of several renormalization group functions at infrared fixed points for SUðNÞ
gauge theories with fermions in the fundamental and two-indexed representations. This includes the beta
function of the gauge coupling, the anomalous dimension of the gauge parameter and the anomalous
dimension of the mass. The scheme in which the analysis is performed is the minimal momentum subtraction
scheme through third-loop order. Because of the fact that scheme dependence is inevitable once the
perturbation theory is truncated we compare to previous identical studies done in the minimal subtraction
scheme and themodified regularization invariant scheme.We find onlymild tomoderate scheme dependence.
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I. INTRODUCTION

The study of the infrared (IR) dynamics of gauge
theories has been of considerable interest for the past
many decades. Specifically the possibility of whether
certain theories may possess the features consistent with
conformal symmetry has received much attention [1–23].
Recently two independent investigations studied the

evolution of the renormalization group functions from
the ultraviolet (UV) to the IR in the MS scheme [24,25]
at three- and four-loop order. One of the important insights
gained by including three and four loops in the calculations
was the realization that the anomalous dimension of the
mass was lowered significantly compared to the two-loop
analysis. These results align with virtually all of the lattice
simulations studying similar issues. The main theories
investigated include: three colors and a set of flavors in
the fundamental representation, two colors and a set of
flavors in the fundamental representation, two colors and
two flavors in the adjoint representation and three colors
and two flavors in the two-indexed symmetric representa-
tion. Via [26] one can find an up to date review on all the
simulations. On the analytical side more work along these
lines can be found in [27,28].
In supersymmetric theories one has the exact results of

Seiberg [29,30] for the boundary of the conformal window.
Therefore since the beta function and anomalous dimension
are known to three-loop order in the DR scheme a study
comparing the exact results with the higher-loop results has
also appeared [31].
With such results in hand the question of scheme depend-

ence must be asked. Initial steps in this direction were taken
in [32–34] where the stability of the higher-loop analysis in
the MS scheme was investigated. More precisely it was
studied by transforming the coupling constant away from its
value in theMS scheme using rather generic transformations.

More recently the question of scheme dependence was
studied by comparing the results in the MS scheme with a
similar analysis carried out in a scheme known as the
modified regularization invariant (RI’) scheme [35]. This
enabled a first comparison of various renormalization
group functions evaluated at an infrared fixed point in
two different and explicit schemes. In the RI’ scheme the
analysis was done at the three-loop order [36–39].
It is reasonable to say that the work done so far cannot be

considered complete. Therefore it is the purpose of this paper
to take the investigations one step further by studying the
evolution of the gauge coupling and the anomalous dimen-
sion towards an IR fixed point in a different scheme known as
the minimal momentum subtraction (mMOM) scheme [40].
Itwill provide an important additional checkon the size of the
scheme dependence of earlier results. Since the method used
to estimate the anomalous dimension is similar to the one
used in the RI’ scheme we refer the reader to [35] for more
details on the setup of the analysis. The body of this work is
devoted to the associated numerical results.
In Sec. II we introduce our notation while in Sec. III we

discuss specific schemes including the mMOM scheme.
We then investigate the IR dynamics and possible fixed
points within the mMOM scheme in Sec. IV. Finally we
conclude in Sec. V. Appendix A provides all the necessary
information to do the analysis while Appendix B is a
summary of our numerical results.

II. SETUP

We will consider gauge theories with gauge group G and
a set of Nf Dirac fermions belonging to a representation r
of G. We let dðrÞ denote the dimension of the representa-
tion r. The adjoint representation is denoted byG. The trace
normalization factor TðrÞ and the quadratic Casimir C2ðrÞ
are defined via

Tr½Ta
rTb

r � ¼ TðrÞδab; (1)*ryttov@cp3.dias.sdu.dk
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Ta
rTa

r ¼ C2ðrÞI; (2)

a; b ¼ 1;…; dðGÞ; (3)

where Ta
r are the generators of the gauge group in the

representation r. From these definitions we note the
following identity: C2ðrÞdðrÞ ¼ TðrÞdðGÞ. In Table I we
provide the specific values of the group factors for the
fundamental and two-indexed representations used
throughout this paper.
Of specific interest to us are the beta function of the

coupling constant and the beta function of the gauge
parameter

βαðα; ξÞ ¼
∂α

∂ ln μ ; βξðα; ξÞ ¼
∂ξ

∂ ln μ ; (4)

where α ¼ g2

4π is the gauge coupling and ξ is the gauge
parameter. It should be noted that in general both renorm-
alization group functions depend on the gauge coupling as
well as the gauge parameter. Finally wewish to consider the
anomalous dimension of ψ̄ψ :

γðα; ξÞ ¼ −∂ lnZψ̄ψ

∂ ln μ ; (5)

where Zψ̄ψ is the associated renormalization constant. It is
the behavior of these three renormalization group functions
that is of our concern. For a more general discussion of the
above renormalization group functions see [35].

III. THE MINIMAL MOM SCHEME

Scheme dependence in the renormalization group func-
tions cannot be avoided. As our way of regularizing the
divergent integrals in the Greens functions we shall use
dimensional regularization. If we by d ¼ 4 − 2ϵ denote the
number of space-time dimensions, the divergencies will
then show up as poles in ϵ. As a subtraction procedure there
are several possibilities from which one can choose.
Throughout many years the standard way has been to

subtract only the infinite part or the infinite part plus an
additional finite term containing the Euler-Mascheroni
constant. These two schemes are known as the minimal
subtraction (MS) scheme [41] and the modified minimal
subtraction (MS) scheme [42], respectively.
The beta function of the gauge coupling and the

anomalous dimension of the mass were both computed
to four-loop order in [43,44] within these schemes and both

results were confirmed in [45,46]. The computations show
explicitly that both renormalization group functions are
independent of the gauge parameter, a feature not shared by
all schemes. Note that one can study the unification of all
MS-type schemes as done in [47,48].
Of specific interest are also theMOMschemes [49]. In the

MOMschemes thepoles inϵ togetherwithall finitepiecesare
absorbed into the renormalization constant. However this
procedure produces several independent schemes, the reason
being that there are three different vertices one can use to
define the couplingconstant [49].These are thegluon-gluon-
gluon, quark-quark-gluon and ghost-ghost-gluon vertices.
For this classof schemes the renormalizationgroup functions
have been computed numerically to three-loop order in [50]
and explicitly to three-loop order in [51]. The results were
derived in the Landau gauge. Finally in [52] they were also
derived at three-loop order in any gauge using conversion
functions connecting the MS scheme with each of the three
MOM schemes.
Recently it was realized that an approach which preserves

the definition of the coupling constant could be achieved
within the MOM schemes [40]. This construction relies on
certain properties of the ghost-ghost-gluon vertex. The
scheme is known as the mMOM scheme. The fact that there
is a single coupling associated with the mMOM scheme
makes it attractable for the study of IR fixed points as
compared to thegeneralMOMschemes. In the originalwork
[40] the beta function of the coupling constantwas derived to
four-looporderwhile all the renormalizationgroup functions
to three-loop order and in any gauge were explicitly calcu-
lated in [53]. In Appendix Awe have provided the specific
results that will be used throughout this work using [53].

IV. FIXED POINTS IN THE
MINIMAL MOM SCHEME

Conformal dynamics occur when the beta function of the
coupling constant vanishes. When there are multiple cou-
plings conformal dynamics occur when all of the beta
functions vanish simultaneously. The case of multiple cou-
plings is theone that resembles thesituationencounteredhere
where the beta function of the coupling constant and the beta
function of the gauge parameter are coupled. We must
guarantee that both beta functions vanish simultaneously:

βαðα0; ξ0Þ ¼ 0; βξðα0; ξ0Þ ¼ 0: (6)

Hence in order to find the fixed point values α0 and ξ0 of the
gauge coupling and gauge parameter we have to solve two
coupled equations that are polynomials in α and ξ.
Having discussed how to find the fixed points of the

theory we finally note that value of the anomalous
dimension γðα0; ξ0Þ is a scheme-independent quantity.
The value is the same within two different schemes
provided both beta functions vanish simultaneously [35].
The two beta functions and the anomalous dimension are

written as

TABLE I. Relevant group factors for the various representations.

r TðrÞ C2ðrÞ dðrÞ
□

1
2

N2−1
2N N

G N N N2 − 1
Nþ2
2

ðN−1ÞðNþ2Þ
N

NðNþ1Þ
2

N−2
2

ðNþ1ÞðN−2Þ
N

NðN−1Þ
2
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βαðα;ξÞ¼−bα;1
�
α

4π

�
2−bα;2

�
α

4π

�
3−bα;3

�
α

4π

�
4

þOðα5Þ;

(7)

βξðα;ξÞ¼ξ

�
−bξ;1

�
α

4π

�
−bξ;2

�
α

4π

�
2−bξ;3

�
α

4π

�
3

þOðα4Þ
�
;

(8)

γðα; ξÞ ¼ c1

�
α

4π

�
þ c2

�
α

4π

�
2

þ c3

�
α

4π

�
3

þOðα4Þ: (9)

They have all been computed explicitly to three-loop order
in the mMOM scheme in [53]. All of the coefficients are
reported in Appendix A.
We are now in a position to study the evolution of the

beta functions and the anomalous dimension towards an IR
fixed point. First we solve the coupled set of beta functions
to find the value of the coupling constant and the gauge
parameter at the fixed point. We then evaluate the anoma-
lous dimension at this fixed point. Everything is performed
in the mMOM scheme and compared to a similar analysis
performed in the MS scheme [24,25].
First it is only within a limited region of theory space that

theories have the potential to develop an IR fixed point. It is
clear that the theory should be asymptotically free and
hence we shall only consider a number of flavors for
which Nf < 11

4

C2ðGÞ
TðrÞ .

As the number of flavors is decreased the critical value of
thecouplingconstantat thefixedpoint increases.Thenumber
offlavors is thenboundedfrombelowbyonlyallowingvalues
of the coupling constant that are less than order unity since at
this point the theory is instead expected to form the chiral
condensate and break chiral symmetry [3–7].
Lastly we note that at the three-loop level we are bound

to have many solutions to the set of coupled fixed point
equations. Many of these however will be discarded. We
will only keep the solutions in the coupling constant that
are positive while we shall allow both positive and negative
solutions of the gauge parameter.

A. Results

At two loops there is a solution for a vanishing value of
the coupling constant and for any value of the gauge
parameter. This is the UV fixed point. In addition there are
one negative and two complex solutions of the value of the
coupling constant which are all discarded on physical
grounds. We are then left with two IR fixed points
ðα2l;1; ξ2l;1Þ and ðα2l;2; ξ2l;2Þ which follow the pattern1

(i) The first fixed point ðα2l;1; ξ2l;1Þ is a saddle point. It
is located at ξ2l;1 ¼ 0 being stable in the α direction.
This fixed point is therefore only reached along the
trajectory ξðμÞ ¼ 0 for all scales μ.

(ii) The second fixed point ðα2l;2; ξ2l;2Þ is stable in all
directions. It exists as an IR fixed point in a limited
range of the number of flavors just below where
asymptotic freedom is lost. The value of the gauge
parameter is ξ2l;2 ≲ −3 in the entire range.

At three loops the solutions follow the same pattern as in
the two-loop case with the addition of two negative and
four complex solutions which are all discarded. There is
also a solution for a positive value of the coupling constant.
However this solution does not tend to zero as the number
of flavors approaches the critical value where asymptotic
freedom is lost. Hence it is also discarded.2 The results can
be found in Tables II–IX in Appendix B.
It is clear from these tables that the difference between

the anomalous dimension at the two IR fixed points is very
small even though it is evaluated at rather different values
of the gauge parameter. This is very similar to the results
obtained in the RI’ scheme [35] in which the renormaliza-
tion group functions also depend on the gauge parameter. In
addition the value of the anomalous dimension is lowered
when including the three-loop contributions. This is seen
both in the MS scheme [24,25] and in the RI’ scheme [35].
Finally we observe a mild scheme dependence among the
three different schemes showing an overall quite remark-
able stability of the analysis.

V. CONCLUSION

An analysis of the infrared evolution of various renormal-
izationgroupfunctionswascarriedout in themMOMscheme.
Since the beta functions and anomalous dimension of the ψ̄ψ
operator depend on the gauge parameter we had to use the
method developed in [35] in order for us to investigate the IR
fixed points. Our results indicated a mild scheme dependence
when compared to theMS scheme [24,25] and slightly larger
deviations when compared to the RI’ scheme [35].
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1For a few isolated theories the negative solution for the
coupling constant is positive. This is the case for N ¼ 3, r ¼ □,
Nf ¼ 16 and N ¼ 4, r ¼ □, Nf ¼ 21 and N ¼ 3, r ¼ , Nf ¼
3 and N ¼ 4, r ¼ , Nf ¼ 3 and N ¼ 4, r ¼ , Nf ¼ 10.
However the associated value is large and cannot be trusted
within perturbation theory. The solution is therefore discarded.

2For a few isolated theories two additional positive zeros of
coupling constant exist. This is the case for N ¼ 3, r ¼ □, Nf ¼
11 and N ¼ 4, r ¼ , Nf ¼ 7. However since these solution do
not persist in the limit where the number of flavors approaches the
critical value where asymptotic freedom is lost they are discarded.
Also for the specific theory N ¼ 4, r ¼ , Nf ¼ 7 there are in
total eight complex, two negative, one vanishing and two positive
solutions for the value of the coupling constant.
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APPENDIX A: RENORMALIZATION GROUP FUNCTIONS IN THE RI’ SCHEME

The coefficients of the coupling constant beta function are

bα;1 ¼
11

3
C2ðGÞ − 4

3
TðrÞNf; (A1)

bα;2 ¼ −
1

12
ð−3ξ3C2ðGÞ2 þ 10ξ2C2ðGÞ2 − 8ξ2C2ðGÞTðrÞNf þ 13ξC2ðGÞ2 − 8ξC2ðGÞTðrÞNf − 136C2ðGÞ2

þ 80C2ðGÞTðrÞNf þ 48C2ðrÞTðrÞNfÞ; (A2)

bα;3 ¼ −
1

288
ð−165ξ4C2ðGÞ3 þ 24ξ4C2ðGÞ2TðrÞNf þ 108ζð3Þξ3C2ðGÞ3 − 189ξ3C2ðGÞ3

− 144ξ3C2ðGÞ2TðrÞNf − 468ζð3Þξ2C2ðGÞ3 þ 2175ξ2C2ðGÞ3 þ 144ζð3Þξ2C2ðGÞ2TðrÞNf

− 1656ξ2C2ðGÞ2TðrÞNf − 864ξ2C2ðGÞC2ðrÞTðrÞNf − 1188ζð3ÞξC2ðGÞ3 þ 3291ξC2ðGÞ3
− 1776ξC2ðGÞ2TðrÞNf − 1152ξC2ðGÞC2ðrÞTðrÞNf þ 5148ζð3ÞC2ðGÞ3 − 38620C2ðGÞ3
þ 6576ζð3ÞC2ðGÞ2TðrÞNf þ 32144C2ðGÞ2TðrÞNf − 16896ζð3ÞC2ðGÞC2ðrÞTðrÞNf

þ 20512C2ðGÞC2ðrÞTðrÞNf − 3072ζð3ÞC2ðGÞTðrÞ2N2
f − 4416C2ðGÞTðrÞ2N2

f

− 576C2ðrÞ2TðrÞNf þ 6144ζð3ÞC2ðrÞTðrÞ2N2
f − 5888C2ðrÞTðrÞ2N2

fÞ: (A3)

The coefficients of the gauge parameter beta function are

bξ;1 ¼
1

6
ð3ξC2ðGÞ − 13C2ðGÞ þ 8TðrÞNfÞ; (A4)

bξ;2 ¼
1

24
ð−6ξ3C2ðGÞ2 þ 17ξ2C2ðGÞ2 − 16ξ2C2ðGÞTðrÞNf þ 17ξC2ðGÞ2 − 16ξC2ðGÞTðrÞNf − 170C2ðGÞ2

þ 136C2ðGÞTðrÞNf þ 96C2ðrÞTðrÞNf; (A5)

bξ;3¼
1

288
ð−165ξ4C2ðGÞ3þ24ξ4C2ðGÞ2TðrÞNfþ54ζð3Þξ3C2ðGÞ3−126ξ3C2ðGÞ3−144ξ3C2ðGÞ2TðrÞNf

−576ζð3Þξ2C2ðGÞ3þ1761ξ2C2ðGÞ3þ144ζð3Þξ2C2ðGÞ2TðrÞNf−1512ξ2C2ðGÞ2TðrÞNf−864ξ2C2ðGÞC2ðrÞTðrÞNf

−774ζð3ÞξC2ðGÞ3þ102ξC2ðGÞ3−288ζð3ÞξC2ðGÞ2TðrÞNf−600ξC2ðGÞ2TðrÞNf−1152ξC2ðGÞC2ðrÞTðrÞNf

þ3456ζð3ÞC2ðGÞ3−23032C2ðGÞ3þ6288ζð3ÞC2ðGÞ2TðrÞNfþ21320C2ðGÞ2TðrÞNf

−16896ζð3ÞC2ðGÞC2ðrÞTðrÞNfþ19648C2ðGÞC2ðrÞTðrÞNf−3072ζð3ÞC2ðGÞTðrÞ2N2
f−2496C2ðGÞTðrÞ2N2

f

−576C2ðrÞ2TðrÞNfþ6144ζð3ÞC2ðrÞTðrÞ2N2
f−5888C2ðrÞTðrÞ2N2

f: (A6)

The coefficients of γðα; ξÞ are
c1 ¼ 6C2ðrÞ; (A7)

c2 ¼ −
1

2
½ξ2C2ðGÞ − 67C2ðGÞ − 6C2ðrÞ þ 8TðrÞNf�C2ðrÞ; (A8)

c3 ¼ −
1

24
½−3ξ3C2ðGÞ2 þ 24ξ3C2ðGÞC2ðrÞ − 54ζð3Þξ2C2ðGÞ2 þ 411ξ2C2ðGÞ2 þ 108ξ2C2ðGÞC2ðrÞ

− 48ξ2C2ðGÞTðrÞNf þ 396ζð3ÞξC2ðGÞ2 þ 15ξC2ðGÞ2 þ 72ξC2ðGÞC2ðrÞ þ 48ξC2ðGÞTðrÞNf

þ 5634ζð3ÞC2ðGÞ2 − 10095C2ðGÞ2 − 4224ζð3ÞC2ðGÞC2ðrÞ þ 244C2ðGÞC2ðrÞ
− 1152ζð3ÞC2ðGÞTðrÞNf þ 3888C2ðGÞTðrÞNf − 3096C2ðrÞ2 þ 1536ζð3ÞC2ðrÞTðrÞNf

þ 736C2ðrÞTðrÞNf − 384TðrÞ2N2
f�C2ðrÞ: (A9)
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APPENDIX B: TABLES

TABLE II. Values of the IR zeros αnl and ξnl with Nf fermions in the fundamental representation and N ¼ 2, 3, 4. The loop order is
denoted by n.

N Nf α2l;1 ξ2l;1 α2l;2 ξ2l;2 α3l;1 ξ3l;1 α3l;2 ξ3l;2

2 7 2.83 0 � � � � � � 0.854 0 � � � � � �
2 8 1.26 0 � � � � � � 0.588 0 0.612 −3.34
2 9 0.595 0 0.421 −3.25 0.377 0 0.386 −3.18
2 10 0.231 0 0.202 −3.11 0.187 0 0.190 −3.01
3 10 2.21 0 � � � � � � 0.621 0 � � � � � �
3 11 1.23 0 � � � � � � 0.485 0 0.539 −3.51
3 12 0.754 0 � � � � � � 0.377 0 0.393 −3.32
3 13 0.468 0 0.312 −3.29 0.283 0 0.291 −3.21
3 14 0.278 0 0.219 −3.19 0.198 0 0.203 −3.14
3 15 0.143 0 0.127 −3.10 0.118 0 0.120 −3.08
3 16 0.0416 0 0.0402 −3.03 0.0392 0 0.0394 −3.03
4 13 1.85 0 � � � � � � 0.490 0 � � � � � �
4 14 1.16 0 � � � � � � 0.406 0 � � � � � �
4 15 0.783 0 � � � � � � 0.338 0 0.365 −3.45
4 16 0.546 0 � � � � � � 0.278 0 0.291 −3.32
4 17 0.384 0 � � � � � � 0.226 0 0.233 −3.23
4 18 0.266 0 0.195 −3.24 0.177 0 0.182 −3.17
4 19 0.175 0 0.143 −3.17 0.131 0 0.134 −3.12
4 20 0.105 0 0.0929 −3.10 0.0868 0 0.0882 −3.08
4 21 0.0472 0 0.0448 −3.05 0.0432 0 0.0436 −3.04

TABLE III. Values of the anomalous dimension γnl with Nf fermions in the fundamental representation and N ¼ 2, 3, 4. The loop
order is denoted by n. We also include the values in the MS scheme.

mMOM mMOM MS
N Nf γ2l;1 γ2l;2 γ3l;1 γ3l;2 γ2l γ3l γ4l

2 7 3.12 � � � 0.524 � � � 2.67 0.457 0.0325
2 8 0.849 � � � 0.300 0.283 0.752 0.272 0.204
2 9 0.299 0.185 0.169 0.164 0.275 0.161 0.157
2 10 0.0950 0.0801 0.0748 0.0744 0.0910 0.0738 0.0748
3 10 4.89 � � � 0.735 � � � 4.19 0.674 0.156
3 11 1.85 � � � 0.493 0.476 1.61 0.439 0.250
3 12 0.867 � � � 0.340 0.324 0.773 0.312 0.253
3 13 0.443 0.250 0.233 0.226 0.404 0.220 0.210
3 14 0.227 0.164 0.151 0.149 0.212 0.146 0.147
3 15 0.104 0.0887 0.0836 0.0832 0.0997 0.0826 0.0836
3 16 0.0276 0.0264 0.0259 0.0259 0.0272 0.0258 0.0259
4 13 6.28 � � � 0.857 � � � 5.38 0.755 0.192
4 14 2.82 � � � 0.623 � � � 2.45 0.552 0.259
4 15 1.50 � � � 0.467 0.447 1.32 0.420 0.281
4 16 0871 � � � 0.354 0.338 0.778 0.325 0.269
4 17 0.529 � � � 0.267 0.258 0.481 0.251 0.234
4 18 0.325 0.212 0.197 0.193 0.301 0.189 0.187
4 19 0.194 0.148 0.138 0.136 0.183 0.134 0.136
4 20 0.106 0.0914 0.0864 0.0860 0.102 0.0854 0.0865
4 21 0.0449 0.0420 0.0408 0.0408 0.0440 0.0407 0.0409
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TABLE IV. Values of the IR zeros αnl and ξnl with Nf ¼ 2 fermions in the adjoint representation and N ¼ 2, 3, 4. The loop order is
denoted by n.

N Nf α2l;1 ξ2l;1 α2l;2 ξ2l;2 α3l;1 ξ3l;1 α3l;2 ξ3l;2

2 2 0.628 0 � � � � � � 0.424 0 0.447 −3.23
3 2 0.419 0 � � � � � � 0.283 0 0.298 −3.23
4 2 0.314 0 � � � � � � 0.212 0 0.223 −3.23

TABLE V. Values of the anomalous dimension γnl with Nf ¼ 2 fermions in the adjoint representation and N ¼ 2, 3, 4. The loop order
is denoted by n. We also include the values in the MS scheme.

mMOM mMOM MS
N Nf γ2l;1 γ2l;2 γ3l;1 γ3l;2 γ2l γ3l γ4l

2 2 0.885 � � � 0.569 0.570 0.820 0.543 0.500
3 2 0.885 � � � 0.569 0.570 0.820 0.543 0.523
4 2 0.885 � � � 0.569 0.570 0.820 0.543 0.532

TABLE VI. Values of the IR zeros αnl and ξnl with Nf fermions in the two-indexed symmetric representation and N ¼ 3, 4. The loop
order is denoted by n.

N Nf α2l;1 ξ2l;1 α2l;2 ξ2l;2 α3l;1 ξ3l;1 α3l;2 ξ3l;2

3 2 0.842 0 � � � � � � 0.460 0 (22.5) −3.10
3 3 0.0849 0 0.0793 −3.07 0.0771 0 0.0781 −3.05
4 2 0.967 0 � � � � � � 0.451 0 � � � � � �
4 3 0.152 0 0.128 −3.16 0.123 0 0.126 −3.12

TABLE VII. Values of the anomalous dimension γnl with Nf fermions in the two-indexed symmetric representation and N ¼ 3, 4.
The loop order is denoted by n. We also include the values in the MS scheme.

mMOM mMOM MS
N Nf γ2l;1 γ2l;2 γ3l;1 γ3l;2 γ2l γ3l γ4l

3 2 2.69 � � � 1.42 (27055) 2.44 1.28 1.12
3 3 0.147 0.135 0.133 0.133 0.144 0.133 0.133
4 2 5.37 � � � 2.44 � � � 4.82 2.08 1.79
4 3 0.400 0.318 0.319 0.319 0.381 0.313 0.315

TABLE VIII. Values of the IR zeros αnl and ξnl with Nf fermions in the two-indexed antisymmetric representation and N ¼ 4. The
loop order is denoted by n.

N Nf α2l;1 ξ2l;1 α2l;2 ξ2l;2 α3l;1 ξ3l;1 α3l;2 ξ3l;2

4 6 2.16 0 � � � � � � 0.557 0 � � � � � �
4 7 0.890 0 � � � � � � 0.376 0 0.478 −3.73
4 8 0.449 0 � � � � � � 0.255 0 0.268 −3.29
4 9 0.225 0 0.174 −3.21 0.161 0 0.165 −3.15
4 10 0.0904 0 0.0818 −3.09 0.0775 0 0.0787 −3.07
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