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In supersymmetric models, very heavy stop squarks introduce large logarithms into the computation of
the Higgs boson mass. Although it has long been known that in simple cases these logs can be resummed
using effective field theory techniques, it is technically easier to use fixed-order formulas, and many public
codes implement the latter. We calculate three- and four-loop next-to-next-to-leading-log corrections to the
Higgs mass and compare the fixed-order formulas numerically to the resummation results in order to
estimate the range of supersymmetry scales where the fixed-order results are reliable. We find that the four-
loop result may be accurate up to a few tens of TeV. We confirm an accidental cancellation between
different three-loop terms, first observed in S. P. Martin, Phys. Rev. D 75, 055005 (2007), and show that it
persists to higher scales and becomes more effective with the inclusion of higher radiative corrections.
Existing partial three-loop calculations that include only one of the two cancelling terms may overestimate
the Higgs mass. We give analytic expressions for the three- and four-loop corrections in terms of Standard
Model parameters and provide a complete dictionary for translating parameters between the SM and the
MSSM and the MS and DR renormalization schemes.
DOI: 10.1103/PhysRevD.89.055023 PACS numbers: 14.80.Da, 12.60.Jv, 14.80.Ly

I. INTRODUCTION

The discovery of the Higgs boson at the LHC by the
ATLAS and CMS collaborations [1,2] is a landmark
achievement in high-energy physics. Combining the
h → ZZ, γγ decay channels, using ≈5 fb−1 of data at

ffiffiffi
s

p ¼
7 TeV and ≈20 fb−1 of data at

ffiffiffi
s

p ¼ 8 TeV, the Higgs
boson mass is measured to be [3,4]

ATLAS∶ 125.5� 0.2þ0.5
−0.6 GeV; (1)

CMS∶ 125.7� 0.3� 0.3 GeV; (2)

where the quoted uncertainties are statistical and system-
atic, respectively.
It is by now well known that a variety of supersymmetric

models can accommodate the observed Higgs mass and
Standard Model (SM)-like couplings [5]. One of the
simplest possibilities for supersymmetry (SUSY) is that
the Higgs boson is the lightest CP-even state h in the
minimal supersymmetric Standard Model (MSSM), and its
mass, which is bounded at tree level by mZ, receives large
radiative corrections from heavy stop squarks. Exactly how
heavy the stop squarks should be is a function of other
model parameters, but if they are fixed, then the stop scale
can be predicted. Since heavy-stop models are well
motivated, it is of considerable interest to make the
predictions precise, particularly in a handful of benchmark
models. The stop mass scales in these benchmarks provide
interesting targets for future experimental programs.

Various methods have been employed to compute the
Higgs mass to high precision in the MSSM. Broadly, the
calculations fall into two categories: fixed-order computa-
tions in the full MSSM, and resummed (renormalization
group or “RG”) analyses in effective theories.
Examples of fixed-order computations include the “dia-

grammatic” method and the effective potential method. In
the former, the renormalized self-energies appearing in the
Higgs propagator matrix are evaluated from the complete
set of Feynman diagrams up to a fixed-loop order [6–8]. In
the latter, radiative corrections to the Higgs masses are
computed from derivatives of the MSSM potential
VðH1; H2Þ evaluated at the vacuum expectation values
(vev) hH1i ¼ v1, hH2i ¼ v2 [9–13]. The effective potential
result is obtained from the diagrammatic calculation in
the zero external momentum approximation. Fixed-order
computations have the virtue of being easily incorporated
into numerical codes that accept arbitrary MSSM spectra,
and have now been computed up to partial three-loop order
[14–17].
Effective field theory (EFT) analyses proceed by inte-

grating out MSSM particles at their thresholds, running the
effective theory couplings (most importantly the Higgs
potential quartic couplings) down to the electroweak scale,
and evaluating the Higgs pole mass or its effective potential
approximation in the effective theory [18–22]. This tech-
nique is most efficient in “simplified models,” where the
MSSM decoupling can be performed at one or two scales,
and below those scales the effective theory reduces to the
SM. In the simplest case (“High-Scale SUSY”), the entire
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MSSM, including the second Higgs doublet, is decoupled
simultaneously at a characteristic SUSY scale MS.
Calculations have been performed in this model using
three-loop SM β functions for the most important couplings
[23]. Furthermore, EFT methods may be used to obtain
fixed-order formulas for the Higgs mass, by solving the RG
equations analytically and perturbatively instead of
numerically.
For low SUSY scales, where logarithmic radiative

corrections are of size similar to the nonlogarithmic
corrections, fixed-order computations are expected to be
the most accurate, since they typically include a larger set
of nonlogarithmic terms. For very high SUSY scales, the
logs become large and fixed-order calculations break down,
while EFT calculations remain trustworthy since they
resum infinitely many large-log terms. For intermediate
scales, where the logs are large enough to dominate but the
perturbative series still exhibits converging behavior, one
would expect both calculations to be valid, particularly if
the fixed-order calculation is performed to high enough
loop order.
One need only perform crude estimates to recognize that

all three ranges of MS can be accessed by the benchmark
heavy-stop models. Since most public codes utilize fixed
order estimates for the Higgs mass, it is critical to under-
stand the parameter regimes in which these estimates are
trustworthy. The range of validity depends on the loop
order, and for low orders can also depend strongly on the
choice of renormalization scale.
In this paper, we compare fixed-order and resummed

calculations in the cases of high-scale SUSY and a similar
“electrosplit” model where the Higgsinos and electroweak
gauginos are allowed to be light.1 By matching the MSSM
onto the SM with two-loop threshold corrections and
perturbatively solving the SM renormalization group equa-
tions (RGEs), we obtain three- and four-loop fixed-order
formulas for mh that include terms through next-to-next-to-
leading-log in the dominant couplings. We analyze the
regimes of validity for these formulas and the impact of the
higher-order corrections on the mh → MS prediction. We
observe that convergence is better when couplings are
evaluated at a renormalization scale equal to the SUSY
scale rather than at the top quark mass, and that four-loop
results fall within 0.5–1 GeV of the resummed calculation
to scales of order a few tens of TeV. Solving the RGEs
numerically, for example at benchmark points with large
tan β and small mixing in the stop sector, we find MS ≈
18� 6 TeV and MS ≈ 7� 2 TeV for the heavy and light
electroweakino cases, respectively. This result is in some
tension with the results of [17]. The discrepancy may be

due in part to a cancellation between three-loop terms at
order α2sαt and α2t αs, first noticed in [14]; the α2t αs terms are
absent from the calculation of [17]. We demonstrate that the
cancellation persists at much higher SUSY scales than
considered in [14] and becomes even more effective with
the inclusion of higher-order corrections.
In addition to our quantitative results, we attempt to

provide a contained dictionary for the translation of the
parameters entering into the radiative corrections between
different renormalization schemes and theories, so that our
three- and four-loop NNLL formulas can be used in
existing two-loop public codes. Although we consider
models with only one or two decoupling scales, these
capture the most significant higher-order corrections, and
the formulas should give good approximations for more
generic spectra.
This paper is organized as follows. In Sec. II, we outline

the matching procedure at the high scaleMS and enumerate
the threshold corrections to the running parameters. In
Sec. III we give a brief overview of the renormalization
group evolution in the SM and describe the perturbative
solution that generates fixed-order analytic expressions for
the radiative corrections to the Higgs mass. Readers
interested primarily in final expressions can jump to
Sec. IV, where we present the fixed-order formulas for
mh. In this section we also compare the fixed-order
estimates to the integration of the RGEs in benchmark
models with small and large stop mixing and electro-
weakino masses. We study the three- and four-loop con-
tributions in detail. In Sec. V we conclude. Supporting
technical details in Secs. II and II, including parameter
conversion between the MSSM DR and SM MS schemes,
are collected in appendices.

II. INTEGRATING OUT THE HEAVY PARTICLES

We begin with an overview of the threshold corrections
to the running SM parameters in the MS scheme, obtained
by integrating out the MSSM at a scale MS. For the Higgs
quartic coupling, we include one-loop gauge, Higgs, and
third generation Yukawa corrections, as well as two-loop
corrections controlled by the top Yukawa and strong gauge
coupling. We pay particular attention to terms arising from
changing the renormalization scheme from DR in the
MSSM to MS.
The quartic coupling in the MSSM is determined at

leading order by the D-terms,

λtree ¼
1

4
ðg22 þ g2YÞc22β; (3)

where, in this section, we use the notation λ≡ λMSSMðMSÞ
for the MSSM quartic coupling in the MS scheme at Q ¼
MS and cβ ¼ cos β, sβ ¼ sin β, and tβ ¼ tan β ¼ vu=vd,
with vu and vd the vacuum expectation values of the MSSM
Higgs doublets. It is well known that λ receives significant

1This is similar to split SUSY, but we keep the gluino as heavy
as the scalars. We choose this somewhat unusual splitting in the
gaugino sector for phenomenological rather than top-down
reasons; the correction to the Higgs mass is largest for large
M3 and small M1, M2, μ.
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nonlogarithmic radiative corrections from the mixing of
heavy SUSY partners at the high scale. In the framework
of effective field theory, these “threshold corrections” are
a result of the decoupling of heavy particles at the
high scale.
The largest effect comes from the top-stop sector. The

squark mass matrix in the MSSM has the form

M2
~t

¼
�m2

~tL
þm2

t þc2βð12− 2
3
s2WÞm2

Z mtXt

mtXt m2
~tR
þm2

t þ 2
3
c2βs2Wm

2
Z

�
;

(4)

where we have followed the notation of [22] with the stop
mixing parameter defined as Xt ¼ At − μ cot β and
sW ¼ sin θW , with θW the Weinberg angle. We will set
all CP-violating phases in the MSSM to zero.
Diagonalizing this matrix yields the tree-level stop masses
m~t1 , m~t2 and the stop mixing angle θ~t. Neglecting the terms
proportional to mZ and setting m~tL ¼ m~tR ¼ MSUSY,
M2

S ¼ M2
SUSY þm2

t , we obtain the simplified squark mass
matrix

M2
~t ¼

�
M2

S mtXt

mtXt M2
S

�
; (5)

with

m2
~t1;2

¼ M2
S ∓ jmtXtj: (6)

We choose the scale MS as our high scale, assuming
that all supersymmetric partners have similar masses;
however, we keep the MSSM μ parameter free with
μ ¼ M1 ¼ M2 so that light electroweakinos can be
accommodated.
From [19,22], we include the most relevant one-loop

corrections that include terms from decoupling stops,
sbottoms, and staus:

ΔðαtÞ
th λ ¼ 6κh4t s4βX̂

2
t

�
1 −

X̂2
t

12

�
þ 3

4
κh2t s2βðg22 þ g2YÞX̂2

t c2β;

(7)

ΔðαbÞ
th λ ¼ −

1

2
κh4bs

4
βμ̂

4; (8)

ΔðατÞ
th λ ¼ −

1

6
κh4τs4βμ̂

4; (9)

where ht ðhb; hτÞ is the MSSM top (bottom, tau) Yukawa
coupling, X̂t ¼ Xt=MS, μ̂ ¼ μ=MS, and following the
notation of [14], we keep track of loop order via
κ ¼ 1=ð16π2Þ. Note that the parameters on the right-hand
sides of these equations are MS running couplings

evaluated at MS. At tree level, the MSSM Yukawa
couplings are related to the SM Yukawa couplings by

yt ¼ htsβ; yb ¼ hbcβ; yτ ¼ hτcβ; (10)

however, these couplings are modified at one-loop order at
MS by [24,25]:

ht ¼
yt
sβ

1

1 − κðΔht þ cot βδhtÞ
; (11)

hb ¼
yb
cβ

1

1 − κðΔhb þ tβδhbÞ
; (12)

hτ ¼
yτ
cβ

1

1 − κtβδhτ
; (13)

where

Δht ¼
8

3
g23m~gXtIðm~t1 ; m~t2 ; m~gÞ

− h2bμ cot βXbIðm ~b1
; m ~b2

; μÞ; (14)

δht ¼ g22M2μ

�
½c2bIðm ~b1

;M2; μÞ þ s2bIðm ~b2
;M2; μÞ�

þ 1

2
½c2t Iðm~t1 ;M2; μÞ þ s2t Iðm~t2 ;M2; μÞ�

�

þ 1

3
g2YM1

�
2

3
XttβIðm~t1 ; m~t2 ;M1Þ

−
1

2
μ½c2t Iðm~t1 ;M1; μÞ þ s2t Iðm~t2 ;M1; μÞ�

þ 2μ½s2t Iðm~t1 ;M1; μÞ þ c2t Iðm~t2 ;M1; μÞ�
�
; (15)

Δhb ¼
8

3
g23m~gXbIðm ~b1

; m ~b2
; m~gÞ − h2t μtβXtIðm~t1 ; m~t2 ; μÞ;

(16)

δhb ¼ g22M2μ

�
½c2t Iðm~t1 ;M2; μÞ þ s2t Iðm~t2 ;M2; μÞ�

þ 1

2
½c2bIðm ~b1

;M2; μÞ þ s2bIðm ~b2
;M2; μÞ�

�

þ 1

3
g2YM1

�
−
1

3
Xb cot βIðm ~b1

; m ~b2
;M1Þ

þ 1

2
μ½c2bIðm ~b1

;M1; μÞ þ s2bIðm ~b2
;M1; μÞ�

þ μ½s2bIðm ~b1
;M1; μÞ þ c2bIðm ~b2

;M1; μÞ�
�
; (17)
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δhτ ¼ g22M2μ

�
Iðm~ντ ;M2; μÞ

þ 1

2
½c2τIðm~τ1 ;M2; μÞ þ s2τIðm~τ2 ;M2; μÞ�

�

− g2YM1

�
Xτ cot βIðm~τ1 ; m~τ2 ;M1Þ

þ 1

2
μ½c2τIðm~τ1 ;M1; μÞ þ s2τ Iðm~τ2 ;M1; μÞ�

− μ½s2τIðm~τ1 ;M1; μÞ þ c2τ Iðm~τ2 ;M1; μÞ�
�
: (18)

Here Xb ¼ Ab − μtβ and Xτ ¼ Aτ − μtβ are the sbottom
and stau mixing parameters, st, sb, sτ ðct; cb; cτÞ are the
sines (cosines) of the stop, sbottom, and stau mixing angles,
and the function Iða; b; cÞ is defined as

Iða; b; cÞ

¼ a2b2 logða2=b2Þ þ b2c2 logðb2=c2Þ þ a2c2 logðc2=a2Þ
ða2 − b2Þðb2 − c2Þða2 − c2Þ :

(19)

Wewill set all MSSMmassesm~g ¼ m ~bi
¼ m~τi ¼ m~νi ¼ MS

(such that s2X ¼ c2X ¼ 1=2 with X ¼ t, b, τ), assume
At ¼ Ab ¼ Aτ, and consider the two scenarios M2 ¼ M1 ¼
μ ¼ MS (the “high μ” case) andM2 ¼ M1 ¼ μ ¼ 200 GeV
(the “low μ” case).2 Taking the appropriate limits when
the arguments are degenerate, we have the common
asymptotic forms for Iða; b; cÞ:

IðMS;MS;MSÞ ¼
1

2M2
S
; (20)

IðMS;MS; μÞ ¼
1

M2
S

1

1 − μ̂2

�
1þ μ̂2 log μ̂2

1 − μ̂2

�
; μ̂ < 1;

(21)

IðMS; μ; μÞ ¼ −
1

M2
S

1

1 − μ̂2

�
1þ log μ̂2

1 − μ̂2

�
; μ̂ < 1: (22)

The expressions for the dominant two-loop corrections
of OðαsαtÞ and Oðα2t Þ will depend on the scheme used for
the one-loop corrections. The two-loop finite OðαsαtÞ
corrections were computed diagrammatically in the on-
shell (OS) scheme in [7], and in the DR scheme using the
effective potential method in [11]. In a followup to the latter
paper [12], the Oðα2t Þ corrections were also computed. It
was shown in [12] and [22] that the different expressions
for the OðαtαsÞ corrections in the two schemes are
reconciled once the one-loop OðαtÞ corrections are written
in the appropriate scheme.
We will express λ in terms of the MSSM couplings in

the MS scheme given in Eqs. (11), (12), (13). To determine
ΔðαsαtÞ

th λ, Δðα2t Þ
th λ in this scheme, let us write the one-loop

correction to the running DR Higgs mass obtained from the
Higgs effective potential in [12]

ΔðαtÞ
DR

m2
h ¼

3

2π2
~m4
t

~v2

�
log

�
~M2
S

~m2
t

�
þ

~X2
t

~M2
S

�
1 −

1

12

~X2
t

~M2
S

��
;

(23)

wherewe have used the notation of Table IV in Appendix A,
i.e. all parameters with a tilde are in the DR scheme and
evaluated at a renormalization scale Q. Here, we have
included the logarithmic contribution; in the effective theory,
this is obtained from the running belowMS. Parameters in the
logarithmic term should be converted to the MS scheme in
the SM, i.e. ~mtðMSÞ → m̄tðMSÞ, multiplied by the appro-
priate one-loop corrections given in Appendix A. This
substitution produces a finite two-loop correction once the
logarithm is expanded to one-loop order. For the nonlogar-
ithmic terms, we change ~mt → mt, ~Xt → Xt, ~MS → MS, all
at Q ¼ MS, to match the threshold corrections in Eq. (7).
After performing the scheme conversion for the one-loop
terms and modifying the two-loopOðαsαtÞ andOðα2t Þ terms
in [12], we find for the threshold corrections to λ:

ΔðαsαtÞ
th λ ¼ 16κ2h4t s4βg

2
3

�
−2X̂t þ

1

3
X̂3
t −

1

12
X̂4
t

�
; (24)

Δðα2t Þ
th λ ¼ 3κ2h6t s4β

�
−
3

2
þ 6μ̂2 − 2ð4þ μ̂2Þf1ðμ̂Þ þ 3μ̂2f2ðμ̂Þ þ 4f3ðμ̂Þ −

π2

3

þ
�
−
17

2
− 6μ̂2 − ð4þ 3μ̂2Þf2ðμ̂Þ þ ð4 − 6μ̂2Þf1ðμ̂Þ

�
X̂2
t þ ½23þ 4s2β þ 4μ̂2 þ 2f2ðμ̂Þ − 2ð1 − 2μ̂2Þf1ðμ̂Þ�

X̂4
t

4

−
13

24
X̂6
t s2β þ c2β

�
−
9

2
þ 60K þ 4π2

3
þ
�
27

2
− 24k

�
X̂2
t − 6X̂4

t − ð3þ 16KÞð4X̂t þ ŶtÞŶt þ 4ð1þ 4KÞX̂3
t Ŷt

þ
�
14

3
þ 24K

�
X̂2
t Ŷ

2
t −

�
19

12
þ 8K

�
X̂4
t Ŷ

2
t

��
: (25)

2We have neglected the threshold corrections from this intermediate scale to λ, yt. They can be found in [26], and involve only gY, g2,
λ. We estimate that the corrections to λ lower mh by about 0.5 GeV.
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We have borrowed the notation of [12], with the constant K,
parameter Ŷt, and functions fi defined as

K ¼ −
1ffiffiffi
3

p
Z

π=6

0

dx logð2 cos xÞ ∼ −0.1953256; (26)

Ŷt ¼ ðAt − μtβÞ=MS ¼ X̂t þ
2μ̂

sin 2β
; (27)

f1ðμ̂Þ ¼
μ̂2

1 − μ̂2
log μ̂2; (28)

f2ðμ̂Þ ¼
1

1 − μ̂2

�
1þ μ̂2

1 − μ̂2
log μ̂2

�
; (29)

f3ðμ̂Þ ¼
−1þ 2μ̂2 þ 2μ̂4

ð1 − μ̂2Þ2

×

�
log μ̂2 logð1 − μ̂2Þ þ Li2ðμ̂2Þ −

π2

6
− μ̂2 log μ̂2

�
;

(30)

and the dilogarithm function Li2 is

Li2ðxÞ ¼ −
Z

1

0

dy
logð1 − xyÞ

y
: (31)

We will be interested in the limits of the fi as μ̂ → 0 or 1,
with

fð1;2;3Þðμ̂Þ ¼
(
ð0; 1; π2

6
Þ μ̂ ¼ 0;

ð−1; 1
2
;− 9

4
Þ μ̂ ¼ 1:

(32)

Finally, we include one-loop threshold corrections from
converting the tree-level quartic coupling from the DR to
the MS scheme and those from the heavy Higgs bosons,
which are taken from [26]

ΔðscÞ
th λ ¼ −κ

��
3

4
−
1

6
c22β

�
g42 þ

1

2
g2Yg

2
2 þ

1

4
g4Y

�
; (33)

ΔðHÞ
th λ ¼ −

1

16
κðg22 þ g2YÞ2s24β: (34)

Our final expression for λMSSMðMSÞ to which we match the
SM running quartic coupling is

λMSSMðMSÞ ¼ λtree þ ΔðscÞ
th λþ ΔðHÞ

th λþ ΔðαtÞ
th λþ ΔðαbÞ

th λ

þ ΔðατÞ
th λþ ΔðαsαtÞ

th λþ Δðα2t Þ
th λ: (35)

III. RUNNING THE SM DOWN FROM MS

Once the heavy sparticles have been integrated out, the
SM parameters can be run down to the electroweak scale

and the spectrum computed. The β function βλ ¼ dλ
dt for a

generic running coupling λ can be written as

βλðtÞ ¼
X∞
n¼1

κn
X∞
k¼0

βðn;kÞλ ð~tÞ
k!

ðt − ~tÞk; (36)

where

κ ≡ 1

16π2
; t≡ logQ; βðn;kÞλ ðtÞ≡ dkβðnÞλ

dtk
ðtÞ: (37)

Wewill also use the shorthand βðnÞλ ≡ βðn;0Þλ . We will denote
~Q as the high scale, and we define L≡ ~t − t ¼
logð ~Q=QÞ > 0. Integrating from t to ~t, we find

λðQÞ ¼ λð ~QÞ −
X∞
n¼1

κn
X∞
k¼0

ð−1Þk βðn;kÞλ
~t

ðkþ 1Þ!L
kþ1: (38)

Alternatively, we can expand the β-function coefficients
βðn;kÞλ about the low scale Q,

λð ~QÞ ¼ λðQÞ þ
X∞
n¼1

κn
X∞
k¼0

βðn;kÞλ ðtÞ
ðkþ 1Þ!L

kþ1: (39)

To see the equivalence with Eq. (38), we can evolve

the β-function coefficients βðn;kÞλ ð~tÞ down to the low scale

βðn;kÞλ ðtÞ using the same expansion as in Eq. (36). The effect
on the β functions in Eq. (38) is to remove the tildes and
make all the leading signs negative, which agrees with
Eq. (39).
We use two different methods to perform the renorm-

alization group running. The most precise approach is to
numerically integrate the coupled SM MS RGEs between
Q ¼ Mt and Q ¼ MS for the seven parameters g3, g2, g1,

TABLE I. Orders of the β functions of SM parameters used in
solving the RGEs in the resummation and fixed-order methods.
The second digit of the 2-tuple in the fixed-order column
indicates at which order electroweak, bottom, and tau contri-
butions are included. See Sec. IV for more details on the
fixed-order calculation. The β functions are taken from [27], and
we have checked them to 2-loop order against [28] with
corrections in [29].

Parameter
β-function order,
resummation

β-function order,
fixed order

g3 3þ 4-loop QCD (2, 0)
yt 3 (3, 1)
λ 3 (3, 1)
g1, g2 3 1 in Eq. (3)
yb, yτ 2 yb, yτ: (1, 1) in

Eqs. (12)–(13)
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yt, yb, yτ, λ, with g1 ¼
ffiffiffiffiffiffiffiffi
5=3

p
gY the SM hypercharge

coupling expressed in the SUð5Þ normalization. In the
middle column of Table I we indicate the order of β
function used for each coupling. Observables and electro-
weak scale boundary values for the SM parameters are
taken from Tables 2 and 3 of [27]. We reproduce the
observables and the parameters g2, g1, yb, and yτ in
Tables II and III. The next-to-next-to-leading-order
(NNLO) values of g3 and yt are given in terms of the
observables Mt and αsðMZÞ in [27], to which we refer the
reader for further details:

ytðQ ¼ MtÞ ¼ 0.93697� 0.00550

�
Mt

GeV
− 173.35

�

− 0.00042
αsðMZÞ − 0.1184

0.0007
; (40)

g3ðQ ¼ MtÞ ¼ 1.1666þ 0.00314
αsðMZÞ − 0.1184

0.0007

− 0.00046

�
Mt

GeV
− 173.35

�
: (41)

We note that the central value for ytðMtÞ quoted here
includes the N3LO pure QCD contribution. The value of
λðMtÞ is determined by beginning with the approximate
value of λðMtÞ corresponding to the Higgs pole mass
Mh ∼ 125.6 GeV. The numerical integration yields a
value λ̄ðMSÞ. This is compared to Eq. (35) from

Sec. II, which is determined by the other couplings at
MS. If the difference exceeds a specified tolerance, the
starting value λðMtÞ is appropriately adjusted. This
procedure is iterated until convergence is achieved. We
find that for a tolerance of 10−6, about 10 iterations are
required.
The second method is to solve the RGEs perturbatively

around a reference scale. The result is a fixed-order
expression. We take two values for the renormalization
scale in this approach, Q ¼ MS and Q ¼ Mt. Since we
know βλ up to the three-loop level, we can write an
expansion up to four-loop order excluding only the
four-loop N3LL terms, which we expect are small for
large MS:

λðMtÞ ¼ λðMSÞ − κβð1Þλ ðMSÞL − κ2βð2Þλ ðMSÞL

þ κ
βð1;1Þλ ðMSÞ

2!
L2 − κ3βð3Þλ ðMSÞL

þ κ2
βð2;1Þλ ðMSÞ

2!
L2 − κ

βð1;2Þλ ðMSÞ
3!

L3

þ κ3βð3;1Þλ ðMSÞL2 − κ2
βð2;2Þλ ðMSÞ

3!
L3

þ κ
βð1;3Þλ ðMSÞ

4!
L4 þ � � � : (42)

Note that the derivatives βðn;kÞλ , k > 0, contain β functions
for the couplings that appear in βðnÞλ . The computations
for both choices of renormalization scale are truncated at
four-loop order; however, for Q ¼ MS, the truncation
occurs before the couplings ytðMSÞ ½g3ðMSÞ� are com-
puted, and vice versa for Q ¼ Mt. The results for the two
choices should converge with the addition of higher-
order βðnÞλ .
Appendix B contains the relevant β functions appear-

ing in Eq. (42). We have included the g1, g2, yb, yτ terms

in βð1Þλ , βð1Þyt . For larger MS, the electroweak terms grow in
importance since the values of g1, g2 change much more

slowly compared to yt. Their inclusion in βð1Þyt lowers Mh

by about 1 GeV, as the dominant term in βð1Þλ is
proportional to y4t .

TABLE II. SM observables, collected in Table 2 of [27].

Observable Value

SUð3Þc MS gauge coupling (5 flavors) αsðMZÞ ¼ 0.1184� 0.0007
Fermi constant from muon decay V ¼ ð ffiffiffi

2
p

GFÞ−1=2 ¼ 246.21971� 0.00006 GeV
Top quark pole mass Mt ¼ 173.36� 0.65� 0.3 GeV
Z boson pole mass MZ ¼ 91.1876� 0.0021 GeV
Higgs pole mass Mh ¼ 125.66� 0.34 GeV

TABLE III. Values of SM parameters at Q ¼ Mt using two-
loop (NNLO) renormalization group running in the MS scheme,
from Table 3 of [27]. The SUð5Þ normalization relates g1 to the
SM hypercharge coupling gY . We have used the two-loop 5-flavor
MS renormalization group equations in the broken phase from
[28] to run mb, mτ from their initial values mbðmbÞ ¼ 4.18 GeV,
Mτ ¼ 1.777 GeV [30].

Parameter Value

g2 0.6483
gY ¼ ffiffiffiffiffiffiffiffi

3=5
p

g1 0.3587
yb 0.0156
yτ 0.0100
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IV. FIXED-ORDER RESULT AND COMPARISON
TO RESUMMATION

In this section we present approximate three- and four-
loop NNLL fixed-order formulas formh and compare to the
result of numerical resummation.
The running Higgs mass at Mt is given by

m2
hðMtÞ ¼ λðMtÞv2ðMtÞ: (43)

We use one-loop running to obtain vðMtÞ ¼ 246.517 GeV
from vðMZÞ ∼ V (see Table II). The logarithmic factors are
L ¼ logðMS=MtÞ and Lμ ¼ logðMS=μÞ [note that the latter
also includes logs of the form logðMS=M1;2Þ]. Below, all
parameters are in the MS scheme and should be evaluated
at Q ¼ MS:

λðMtÞ ¼ λþ κδ1λþ κ2δ2λþ κ3δ3λþ κ4δ4λ; (44)

and

δ1λ ¼
�
−12λ2 − λ

�
12y2t þ 12y2b þ 4y2τ − 9g22 −

9

5
g21

�

þ 12y4t þ 12y4b þ 4y4τ −
9

4
g42 −

9

10
g22g

2
1 −

27

100
g41

�
L

þ
�
−6λ

�
g22 þ

1

5
g21

�
þ
�
g22 þ

3

5
g21

�
2

þ 4g42½1 − 2s2βc
2
β�
�
Lμ; (45)

δ2λ ¼
�
144λ3 þ λ2

�
216y2t − 108g22 −

108

5
g21

�
þ λ

�
−18y4t þ 27g42 þ

54

5
g22g

2
1 þ

81

25
g41

�
þ λy2t ½−96g23 − 81g22 − 21g21�

þ y4t

�
−180y2t þ 192g23 þ 54g22 þ

102

5
g21

�
þ y2t

�
27

2
g42 þ

27

5
g22g

2
1 þ

81

50
g41

��
L2

−
��

24λþ 12y2t − 9g22 −
9

5
g21

��
6λ

�
g22 þ

1

5
g21

�
2

−
�
g22 þ

3

5
g21

�
2

− 4g42½1 − 2s2βc
2
β�
��

LLμ

þ
�
3

�
g22 þ

1

5
g21

��
6λ

�
g22 þ

1

5
g21

�
2

−
�
g22 þ

3

5
g21

�
2

− 4g42½1 − 2s2βc
2
β�
��

L2
μ

þ f78λ3 þ 72λ2y2t þ λy2t ð3y2t − 80g23Þ − 60y6t þ 64g23y
4
t gL; (46)

δ3λ ¼ f−1728λ4 − 3456λ3y2t þ λ2y2t ð−576y2t þ 1536g23Þ þ λy2t ð1908y4t þ 480y2t g23 − 960g43Þ
þ y4t ð1548y4t − 4416y2t g23 þ 2944g43ÞgL3 þ f−2340λ4 − 3582λ3y2t þ λ2y2t ð−378y2t þ 2016g23Þ
þ λy2t ð1521y4t þ 1032y2t g23 − 2496g43Þ þ y4t ð1476y4t − 3744y2t g23 þ 4064g43ÞgL2

þ f−1502.84λ4 − 436.5λ3y2t − λ2y2t ð1768.26y2t þ 160.77g23Þ þ λy2t ð446.764λy4t þ 1325.73y2t g23 − 713.936g43Þ
þ y4t ð972.596y4t − 1001.98y2t g23 þ 200.804g43ÞgL; (47)

δ4λ ¼ f20736λ5 þ 51840λ4y2t þ λ3y2t ð21600y2t − 23040g23Þ þ λ2y2t ð−30780y4t − 18720g23y
2
t þ 14400g43Þ

þ λy2t ð−22059y6t þ 28512g23y
4
t þ 10560g43y

2
t − 10560g63Þ þ y4t ð−8208y6t þ 56016y6t g23 − 84576y2t g43 þ 44160g63ÞgL4

þ f48672λ5 þ 101808λ4y2t þ λ3y2t ð30546y2t − 49152g23y
2
t Þλ2y2t ð−50292y4t − 40896y2t g23 þ 45696g43Þ

þ λy2t ð−33903y6t þ 41376y4t g23 þ 35440g43y
2
t − 45184g63Þ þ y4t ð−15588y6t þ 86880y4t g23 − 161632y2t g43

þ 112256g63ÞgL3 þ f63228.2λ5 þ 72058.1λ4y2t þ λ3y2t ð25004.6y2t − 11993.5g23Þ þ λ2y2t ð27483.8y4t − 52858y2t g23

þ 18215.3g43Þ þ λy2t ð−51279y6t − 5139.56y4t g23 þ 50795.3y2t g43 − 33858.8g63Þy4t ð−24318.2y6t þ 72896y4t g23

− 73567.3y2t g43 þ 36376.5g63ÞgL2: (48)

To simplify the expression, we have excluded the
yb; yτ contributions beyond one-loop order, and g1; g2
contributions beyond two-loop order, although they
propagate at higher orders in terms that include

βð1Þλ ; βð1Þyt .

We use two different calculations of the values of the SM
parameters at the renormalization scale Q ¼ MS. In the
simpler, approximate calculation, using Eq. (39), g3ðMSÞ
and ytðMSÞ are computed from g3ðMtÞ and ytðMtÞ using
two- and three-loop fixed-order formulas, respectively:
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ytðMSÞ ¼ yt þ κ

�
βð1Þyt Lþ βð1;1Þyt

2
L2 þ βð1;2Þyt

3!
L3

�

þ κ2
�
βð2Þyt Lþ βð2;1Þyt

2
L2

�
þ κ3βð3Þyt L; (49)

g3ðMSÞ ¼ g3 þ κ

�
βð1Þg3 Lþ βð1;1Þg3

2
L2

�
þ κ2βð2Þg3 L: (50)

Parameters on the right-hand sides of Eqs. (49) and (50) are
evaluated at Mt, and the β functions are given in
Appendix B. λðMSÞ is computed using Eq. (35), with
ytðMSÞ and g3ðMSÞ appearing in Eqs. (11)–(16), (24)
obtained from Eqs. (49) and (50). In Eqs. (12)–(13) only,
we perform a one-loop fixed-order running with couplings
at Mt to approximate yb and yτ at MS:

ybðMSÞ¼ybðMtÞ
�
1þκ

�
3

2
y2t −8g23−

9

4
g22−

1

4
g21

�
L

�
; (51)

yτðMSÞ ¼ yτðMtÞ
�
1þ κ

�
3y2t −

9

4
g22 −

9

4
g21

�
L
�
: (52)

In the tree-level λtree [Eq. (3)] of the zeroth-order λðMSÞ, i.e.
the first term on the right-hand side of Eq. (44), we have
also approximated g1 and g2 at MS using a one-loop fixed-
order running:

g21ðMSÞ ¼ g21ðMtÞ
�
1þ 2κ

�
41

10
g21Lþ 2

5
g21Lμ

��
; (53)

g22ðMSÞ ¼ g22ðMtÞ
�
1þ 2κ

�
−
19

6
g22Lþ 2g22Lμ

��
: (54)

Elsewhere in the calculation for λðMSÞ and in Eqs. (45)–
(48), we use the Q ¼ Mt values for g1; g2; yb; yτ.
To convert the running mass into the pole mass, we use

the one-loop formula
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FIG. 1 (color online). Plots of Higgs mass Mh versus the SUSY scale MS for X̂t ¼ 0; tan β ¼ 20 with μ ¼ MS (left column) and
μ ¼ 200 GeV (right column). The solid magenta, black dotted, blue dot-dashed, and red dotted lines correspond to the resummed
calculation and the four-, three-, and two-loop fixed-order calculations, respectively. The shaded regions for each calculation indicate the
uncertainty from varying Mt by the 1σ values. The top (bottom) figure in each column corresponds to the fixed-order calculation for
Q ¼ MS ðQ ¼ MtÞ. The grey (yellow) region corresponds to the approximate 1σ ð2σÞ values for the Higgs massMh ∼ 125.6� 0.7 GeV
measured by the ATLAS and CMS collaborations, and the cyan region is excluded by LEP.
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M2
h ¼ λðMtÞv2ðMtÞ þ κ

�
3y2t ð4m̄2

t −m2
hÞB0ðm̄t; m̄t; mhÞ −

9

2
λm2

h

�
2 −

πffiffiffi
3

p − log
m2

h

Q2

�

−
v2

4
½3g42 − 4λg22 þ 4λ2�B0ðmW;mW;mhÞ −

v2

8
½3ðg22 þ g2YÞ2 − 4λðg22 þ g2YÞ þ 4λ2�B0ðmZ;mZ;mhÞ

þ 1

2
g42

�
g22 − λ

�
log

m2
W

Q2
− 1

��
þ 1

4
ðg22 þ g2YÞ

�
ðg22 þ g2YÞÞ − λ

�
log

m2
Z

Q2
− 1

���
; (55)

where B0 is the one-loop Passarino-Veltman integral

B0ðm1; m2; m3Þ

¼ −
Z

1

0

log

�ð1 − xÞm2
1 þ xm2

2 − xð1 − xÞm2
3

Q2

�
; (56)

and all quantities appearing at one-loop are MS running
parameters with Q ¼ Mt. This correction is a small effect,
of order 0.5 GeV.
Together with the threshold corrections given in Sec. II,

Eqs. (43)–(55) can be used to compute the Higgs mass to
four-loop NNLL accuracy, in the approximation that one
scale controls the MSSM scalar and gluino masses and a

second (possibly equal) scale controls the electroweakino
masses. We will compare these analytic formulas with the
results from numerically integrating the RGEs, to under-
stand the regimes in which the fixed-order calculation
is good.
To begin the comparison, we plot Mh in Figs. 1 and 2

corresponding to two scenarios with the values
(1) tan β ¼ 20; X̂t ¼ 0, and
(2) tan β ¼ 4; X̂t ¼

ffiffiffi
6

p
,

and we consider the range of MS between 1 and 30 TeV.
These figures include results for the resummed calcula-
tion and the fixed-order calculations at two-loop, three-
loop, and four-loop with couplings evaluated at Q ¼ MS
and Q ¼ Mt.
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FIG. 2 (color online). Plots of Higgs mass Mh versus the SUSY scale MS for X̂t ¼
ffiffiffi
6

p
; tan β ¼ 4 with μ ¼ MS (left column) and

μ ¼ 200 GeV (right column). See Fig. 1 for details.
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For the two-loop fixed-order calculation with couplings
at Q ¼ Mt, we have used the NLO value for
yt;NLOðMtÞ ¼ 0.95096, whereas all other calculations use
the NNLO value yt;NNLOðMtÞ ¼ 0.93697 from Eq. (40).
This is responsible for the disagreement between the two-
loop curve and the other curves in the Q ¼ Mt plots in
Figs. 1 and 2 for low MS ∼ 1 TeV, where the threshold
corrections are more important.
We observe that the Q ¼ MS fixed-order results con-

verge approximately monotonically with increasing loop-
order towards the resummed result, whereas the Q ¼ Mt
exhibits the alternating behavior and shows significantly
worse agreement for large MS ≥ 10 TeV. The resummed
method and the Q ¼ MS four-loop fixed-order calculation
differ by less than 0.5 GeV in the μ ¼ MS case, and by just
over 1 GeV in the μ ¼ 200 GeV case; the difference
between the resummed and three-loop results is less than
1.5 GeV and 1 GeV, respectively. The value of the pole
mass Mt is the dominant source of parametric uncertainty
for Mh: taking the 1σ high and low values for Mt changes
Mh by about 0.8 GeV. We find that to achieve Mh ∼
125.6 GeV with μ ¼ 200 GeV, a SUSY scale of MS ∼
7 ð3.5Þ TeV is required in scenario 1 (2); for μ ¼ MS, we

require MS ∼ 18 ð12Þ TeV for scenario 1 (2). For tan β ¼
30 and X̂t ¼

ffiffiffi
6

p
, we find MS ∼ 1.5 ð1Þ TeV for μ ¼ MS

(200 GeV).
As mentioned above, we have also performed a second

fixed-order calculation, differing in the values taken for the
running parameters at Q ¼ MS. In the second case, we use
the exact running parameters, amounting to a hybrid
calculation, since they are extracted from the same numeri-
cal integration algorithm used to perform the fully
resummed computation of mh. The results for the two
scenarios above are shown in Fig. 3. As should be expected,
the analytic approximation now converges monotonically
to the resummed result, and the four-loop result remains
within 0.5 GeV of the resummed result for both μ ¼ MS
and μ ¼ 200 GeV in both scenarios. The difference
between the resummed and three-loop results is roughly
2 to 3 times greater, between 1.2 and 1.5 GeV.
From these plots we conclude that the four-loop NNLL

result with Q ¼ MS is equal to the resummed result, within
the current top mass uncertainties, forMS as large as tens of
TeV. Unsurprisingly, the three-loop result diverges more
rapidly, and underestimates the Higgs mass in the
case Q ¼ MS.
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FIG. 3 (color online). Plots of Higgs mass Mh versus the SUSY scale MS using the fixed-order calculation with couplings at MS
obtained from the full numerical integration. We use the values X̂t ¼ 0; tan β ¼ 20 (top row) and X̂t ¼

ffiffiffi
6

p
; tan β ¼ 4 (bottom row), with

μ ¼ MS (left column) and μ ¼ 200 GeV (right column). See Fig. 1 for details.
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On the other hand, it is also possible to overestimate
corrections to the Higgs mass by considering only a subset
of the three-loop terms. This is due to a striking accidental
cancellation at leading log in δ3λ (δ4λ) between leading
g43y

4
t ðg63y4t Þ and subleading g23y

6
t and y8t ðg43y6t ; g23y8t , and

y10t Þ contributions; these are the last three (four) terms
before the large closing curly braces in Eqs. (47) and (48).
We note that the cancellation persists to a lesser degree at
each subleading log order in Lk. The cancellation at leading
log was first noted in [14], the result of which we extend to
higher values of MS and improve by including subleading
log corrections. Our result is exhibited in Fig. 4. Although
the individual contributions to the radiative corrections are
about 50% larger in magnitude than was found in [14], our
cancellation is more efficient, in part because we are using
higher values forMt andMh and have included subleading
log orders.
Figure 4 raises the concern that a partial three-loop fixed-

order computation that includes only g43y
4
t corrections and

not g43y
6
t terms may overestimate the Higgs mass by several

GeV for MS of order 10 TeV. This may explain in part the

discrepancy between the required stop scales found with
resummation and those found in the analysis of [17].
In Fig. 5, we show contours of the central, 1σ, and 2σ

values for Mh in the ðMS; tan βÞ plane for X̂t ¼ 0;
ffiffiffi
6

p
and

μ ¼ MS, 200 GeV. For X̂t ¼ 0 and μ ¼ MS (200 GeV), we
see again that for large tan β > 20, we require MS ∼
18 ð7Þ TeV to achieve Mh ∼ 125.6 GeV, although within
uncertainties, this scale can vary by a few TeV. For a fixed
value of moderate to large tan β ≳ 10, the relatively large
spread in MS required to obtain Mh ∼ 125.6� 0.7 GeV
corresponds to the shallow slope of Mh in Fig. 1 at large
MS; the central value, however, constrains MS to the
range 18TeV≲MS ≲ 24 TeV ð6.5 TeV≲MS ≲ 8 TeVÞ.
For maximal mixing, Mh greatly constraints the param-

eter space. The central value favours MS < 2 ð1Þ TeV for
tan β > 10 for μ ¼ MS (200 GeV). Here, we again see the
larger spread in MS at low tan β. As in the case for zero
mixing, this allowed range of a few TeV can be mapped to
the equivalent shallow slope in Fig. 2.
We can also plot the Higgs mass as a function of the

normalized stop mixing parameter X̂t, fixing the scale MS,
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FIG. 4 (color online). Plots of the separate contributions of terms at n-loop order proportional to g2k3 ; 0 ≤ k ≤ n − 1. For the three-loop
figures (top row), the blue dashed (red dot-dashed) lines include the terms proportional to g43y

4
t ðg23y6t Þ. The green dotted line is the

remainder, and the black solid line is the total difference from the two-loop result. Similarly, for the four-loop figures (bottom row),
the blue dashed (red dot-dashed, green dotted) lines include the terms proportional to g63y

4
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remainder.
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tan β, and μ. This is shown in Fig. 6, where we have chosen
tan β ¼ 20; μ ¼ 200 GeV, and plotted three curves for
MS ¼ 1, 2, 4 TeV. The asymmetry in X̂t, which was noted
in [22] and [12], is due to the odd powers of X̂t in theOðαsαtÞ
threshold correction to λMSSMðMSÞ, Eq. (24). For large tan β
andMS ¼ 1 TeV, it is possible to obtainMh ¼ 125.6 GeV
with X̂t > 0 and near the maximal value. ForMS ¼ 2 TeV,
we require jX̂tj ∼ 1.5 TeV. We note that even for
MS ¼ 4 TeV, Mh ¼ 125.6 GeV is not achieved for zero
mixing, which was also shown in the top-left plot of Fig. 5.
Lastly, we comment on some comparisons with existing

calculations. We have generally presented Higgs masses
which are lower than those computed by, e.g. CPSUPERH
[31], FEYNHIGGS [32], SOFTSUSY [33], SPHENO [34], and

H3M [16] for MS ∼ 1 TeV. There are three differences
between the calculations. First, we have used the NNLO
value of yt, which leads to a running top quark mass m̄tðmtÞ
that is 2 GeV lower than the NLO value. Second, the
electroweak running of yt has a large effect, since the g22
contribution to βð1Þyt is about 10% that of the g23 contribution.
Since yt appears to the fourth power in both the one-loop
βð1Þλ and threshold corrections to λMSSM, these differences
are significant. At higher scales, the running of g1; g2 in the
tree-level λMSSMðMSÞ will also result in a lower Higgs
mass. Together, these three effects can lead to disagree-
ments of the order of a few GeV in Mh from other
approaches. We acknowledge that our calculation may still
be missing important nonleading-log corrections.
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FIG. 5 (color online). Plots of central (solid), 1σ (dashed), and 2σ (dotted) contours of the Higgs massMh in the tan β vsMS plane for
values of X̂t ¼ 0;

ffiffiffi
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p
(top, bottom rows) and μ ¼ MS, 200 GeV (left, right columns).
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V. CONCLUSION

In this work we have presented three- and four-loop next-
to-next-to-leading-log corrections to the lightest Higgs
boson mass in the MSSM, in the approximation where
the other MSSM scalars and gluino are heavy and con-
trolled by a common scale MS. We have compared the
fixed-order result to the full resummation method for
computing the Higgs mass and found that our four-loop
formula with renormalization scale Q ¼ MS is accurate up
to scales of order a few tens of TeV. Using lower-loop
truncations or the renormalization scale Q ¼ Mt leads to
worse agreement with the more accurate resummed result.
We also revisit a known accidental cancellation that appears
in the three- and four-loop terms and conclude that partial
three-loop results may overestimate theHiggsmass by a few
GeVat largeMS due to the absence of some of the cancelling
terms. Our results include relevant corrections that were not
present in previous calculations and become relevant when
one computes the Higgs mass with greater precision at
higher SUSY scales. In fact, even forMS ∼ 1 TeV, we find
that these lower the Higgs mass by 2–4 GeV depending on
the parameters of the stop sector. This has important
implications for the definition of the soft supersymmetric
breaking parameters in different SUSY scenarios.
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Note added.—While we were finishing this work,
Ref. [35] appeared that deals with similar issues in the
diagrammatic approach. In their analysis, the three coupled
SM RGE’s for yt; g3, and λ were numerically integrated
from MS to mt, with the values m~g ¼ 1.6 TeV, μ ¼
M2 ¼ 1 TeV, and tan β ¼ 10 for the MSSM parameters.
Our results agree for values of 1 ≤ MS ≤ 1.5 TeV; how-
ever, in the case of maximal mixing, we do not reproduce
the steep positive slope in the upper plot of Fig. 1 of [35].
Further investigation is needed to resolve this discrepancy.

APPENDIX A: CONVERSION BETWEEN DR
AND MS SCHEMES

In this appendix, we present the conversions between the
DR and MS schemes used in the literature for parameters
appearing in the threshold corrections to λ. Notation used in
this appendix is summarized in Table IV. We note that the
one-loop αt; αs conversions between the DR and the OS
schemes are presented in [12].
From [12], we express the MSSM running top quark

mass ~mt in the DR scheme and the SM running top
quark mass m̄t in the MS scheme in terms of the top quark
pole mass Mt:

~m2
t ðQÞ ¼ M2

t

�
1 −

8

3
κ ~g23

�
5þ 3 log

Q2

~m2
t
þ log

~M2
S

Q2
−

~Xt

~MS

�

þ 3

2
κ ~h2t

�
ð1þ c2βÞ

�
1

2
− log

~M2
S

Q2

�

þ s2β

�
8

3
þ log

Q2

~m2
t

�
− μ̂2f2ðμ̂ÞÞ

��
; (A1)

m̄2
t ðQÞ ¼ M2

t

�
1 −

8

3
κg23

�
4þ 3 log

Q2

m2
t

�

þ 1

2
κy2t

�
8þ 3 log

Q2

m2
t

��
; (A2)

where

f2ðμ̂Þ ¼
1

1 − μ̂2

�
1þ μ̂2

1 − μ̂2
log μ̂2

�
; (A3)

and the parameters in the one-loop corrections are actually
scheme independent in our approximation, as any correc-
tions would be of higher order. Using these two equations

1 , 2 ATLAS CMS

3 2 1 0 1 2 3
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M
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FIG. 6 (color online). Plot of Higgs mass Mh vs stop mixing
parameter normalized by the SUSY scale, X̂t ¼ Xt=MS. We have
fixed the values tan β ¼ 20; μ ¼ 200 GeV, and the (solid black,
blue dot-dashed, red dashed) contours correspond to MS¼
ð1;2;4ÞTeV.

TABLE IV. Notation for parameters in different schemes.

Parameter DR MS, (w/, w/o) thresholds

Top quark mass ~mt ðmt; m̄tÞ
Stop mixing parameter ~Xt ðXt; X̄tÞ
SUSY scale ~MS ðMS; M̄SÞ
Top quark Yukawa ~ht ðht; ytÞ
SUð3Þc gauge coupling ~g3 ðg3; g3Þ
Higgs vev ~v ðv; vÞ
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with yt ¼ ~htsβ, ~g3 ¼ g3, and ~Xt= ~MS ¼ Xt=MS ≡ X̂t to
leading order, we can derive the relation between the top
quark mass in the D̄R and M̄S schemes at Q ¼ MS:

~m2
t ðMSÞ ¼ m̄2

t ðMSÞ
�
1 −

8

3
κg23½1 − X̂t�

þ 3

2
κ
y2t
s2β

�
1

2
ð1þ c2βÞ − μ̂2f2ðμ̂Þ

��
: (A4)

To convert this expression into a relation between Yukawa
couplings, we use

~mt ¼ ~htsβ
~vffiffiffi
2

p ; m̄t ¼ yt
vffiffiffi
2

p ; (A5)

v2ðQÞ ¼ ~v2ðQÞ
�
1þ 1

2
κ ~h2t s2βX̂

2
t

�
; (A6)

so that

~h2t ðMSÞ ¼
y2t ðMSÞ

s2β

�
1 −

8

3
κg23½1 − X̂t�

þ 3

2
κ
y2t
s2β

�
1

2
ð1þ c2βÞ þ

1

3
X̂2
t s2β − μ̂2f2ðμ̂ÞÞ

��
:

(A7)

The result for the top quark Yukawa at Q ¼ MS can be
checked with the expression found in [14], for which we
obtain, in Martin’s notation,

cλ ¼ 12X̂2
t

�
1 −

X̂2
t

12

�
;

cg3 ¼ −
1

2
;

cyt ¼
4

3
ð1 − X̂tÞ;

c0yt ¼ −
3

8

1þ c2β
s2β

−
1

4
X̂2
t þ

3

4s2β

μ̂2

1 − μ̂2

�
1þ μ̂2

1 − μ̂2
log μ̂2

�
;

cv ¼
X̂2
t

4
: (A8)

These coefficients yield

g3 ¼ ~g3

�
1þ 1

2
κ ~g23

�
;

yt ¼ ~htsβ

�
1þ 4

3
κ ~g23ð1 − X̂tÞ − κ ~h2t

�
3

8
ð1þ c2βÞ þ

1

4
X̂2
t s2β

−
3

4

μ̂2

1 − μ̂2

�
1þ μ̂2

1 − μ̂2
log μ̂2

���
;

v ¼ ~v

�
1þ 1

4
κ ~h2t s2βX̂

2
t

�
: (A9)

The correction to g3 is less than 0.5% across the range of
MS considered in this paper, and is neglected since g3
appears at two-loop order in λMSSMðMSÞ. These agree with
the previous relations.
The top quark mass at Q ¼ MS used in Secs. 4 and 5 of

[22] will be denotedmtðMSÞ, and it is related to m̄tðMSÞ by

mtðMSÞ ¼ m̄tðMSÞ
�
1þ 4

3
κg23X̂t

�
; (A10)

i.e.mtðMSÞ includes the one-loop term proportional to g23X̂t
in Eq. (A4). We have checked that the g23 terms in these
expressions agree with those of [22]. The top quark Yukawa
coupling associated with this mt is htsβ, where ht is given
in Eq. (11) in Sec. II, with additional corrections. We can
then write

~h2t ðMSÞ ¼ h2t ðMSÞ
�
1 −

8

3
κg23

þ 3

2
κ
y2t
s2β

�
1

2
ð1þ c2βÞ þ

1

3
X̂2
t s2β − μ̂2f2ðμ̂Þ

��
:

(A11)

Let us now examine the MSSM parametersMS and Xt. If
we include radiative corrections, the relation between on-
shell stop masses M~ti and the DR running parameters
~MS; ~Xt; ~mt are

M2
~t1
¼ ~M2

S − ~mt
~Xt −

1

2
Re½Π~tL~tLðM2

~t2
Þ þ Π~tR~tRðM2

~t2
Þ�

þ ReΠ~tL~tRðM2
~t1
Þ; (A12)

M2
~t2
¼ ~M2

S þ ~mt
~Xt −

1

2
Re½Π~tL~tLðM2

~t1
Þ þ Π~tR~tRðM2

~t1
Þ�

− ReΠ~tL~tRðM2
~t1
Þ: (A13)

The self-energies Π, which can be found in [12,36,37],
contain one-loop corrections and are the same in both MS
and DR schemes. From this, we find

~M2
S ¼ M2

S

�
1 −

m2
t

M2
S

�
1 −

~m2
t

m2
t

��
; (A14)

~Xt ¼ Xt
mt

~mt
; (A15)

~Xt

~MS

¼ Xt

MS

�
1þ 4

3
κg23

�
1þ m2

t

M2
S

�

þ 3

2
κh2t

�
1

2
þ c2β

2
− μ̂2f2ðμ̂ÞÞ

��
1þ m2

t

M2
S

��
: (A16)

We will ignore the m2
t =M2

S corrections here, as these terms
appear at two-loop order. If we elect to use the SM MS top
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quark mass m̄t in lieu of mt, then X̄t; M̄S are obtained from
~Xt; ~MS using the above equations and replacing mt → m̄t
where it appears:

~Xt

~MS

¼ X̄t

M̄S

�
1þ 4

3
κg23

�
1 −

X̄t

M̄S

��
1þ m̄2

t

M̄2
S

�

þ 3

2
κ
y2t
s2β

�
1

2
þ c2β

2
− μ̂2f2ðμ̂Þ

��
1þ m̄2

t

M̄2
S

��
: (A17)

APPENDIX B: β FUNCTIONS FOR THE FIXED-
ORDER COMPUTATION

The two-loop SM β functions were first computed in
[38–40]; we have used the equations from Appendix A of
[28], with corrections to βð2Þλ in [29]. βð1Þλ j~χ , the one-loop
electroweakino contribution to βð1Þλ , can be found in
Appendix C of [10], and together with βð1Þyt j~χ also in in
[26]. The two-loop β functions with just λ; g3; yt can also be
found in [14]. βð3Þλ was computed in [15,16,41]. We use the
expressions for the three-loop β functions for g3; yt; λ from
[27], which also contains references to their computations.
When comparing the β functions in these references,

one must be careful of conventions for λ and v. We have
adopted those of [28], with a Higgs potential of the
form

VðΦÞ ¼ −
m2

2
jΦj2 þ λ

2
jΦj4; (B1)

and a Higgs doublet in the broken phase of the form

Φ ¼
�

0
vþhffiffi

2
p

�
; v ∼ 246 GeV: (B2)

For the case mA ∼MS, we include here the SM M̄S β
functions for λ; g3; yt used in the fixed-order computation
for performing the RG running between Q ¼ Mt and Q ¼
MS. We include yb; yτ; g2, and g1 only in β

ð1Þ
X , for X ¼ g3; λ.

We have assumed that the electroweak couplings do not
run. The one-loop electroweakino contribution to βλ is
denoted by βð1Þλ j~χ, and will be multiplied by a different

logarithmic enhancement, namely Lμ ¼ logðMS=μÞ ¼
logðMS=M1;2Þ.

βð1Þλ ¼ 12λ2 þ 4λð3y2t þ 3y2b þ y2τÞ − 4ð3y4t þ 3y4b þ y2τÞ

− 9λ
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βð1Þλ j~χ ¼
�
6λ

�
g22 þ

1

5
g21

�
−
�
g22 þ

3

5
g21

�
2

− 4g42ð1 − 2s2βc
2
βÞ
�
Lμ

L
; (B4)
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βð2Þλ ¼ −78λ3 − 72λ2y2t þ 80λg23y
2
t − 3λy4t − 64g23y

4
t þ 60y6t ; (B9)
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βð2;1Þλ ¼ dλ
dt

· ð−234λ2 − 144λy2t þ 80g23y
2
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βð3Þλ ¼ λ3

2

�
6011.35

λ

2
þ 873y2t

�
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þ 4y4t ð−243.149y4t þ 250.494g23y
2
t − 50.201g43Þ; (B12)
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The above couplings are evaluated at the scale MS, and
we use the following β functions to evolve g3; yt from MS
down to Mt.

βð1Þg3 ¼ −g33
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; (B14)
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βð2;1Þyt ¼ dλ
dt
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βð3Þyt ¼ yt
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λ2y2t þ λy2t ð99y2t þ 8g23Þ þ 58.6028y6t − 157y4t g23 þ 363.764y2t g43 − 619.35g63�: (B24)

We set the number of active quark flavors Nfl ¼ 6 for running above the scale Mt. Note that λðMtÞ appears in

βð2Þyt ; β
ð2;1Þ
yt ; βð3Þyt . We approximate it using the tree-level MSSM value, Eq. (3), in βð2;1Þyt ; βð3Þyt , and an effective one-loop value

in βð2Þyt that also includes the one-loop stop thresholds and one-loop running with βð1Þλ , with all parameters evaluated
at Q ¼ Mt.
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