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We analyze the two-loop renormalization group (RG) flow of the gauge and Yukawa couplings within
the E6 inspired supersymmetric models with extra Uð1ÞN gauge symmetry under which right-handed
neutrinos have zero charge. In these models, single discrete ~ZH

2 symmetry forbids the tree-level flavor-
changing transitions and the most dangerous baryon and lepton number violating operators. We consider
two different scenarios A and B that involve extra matter beyond the minimal supersymmetric Standard
Model contained in three and four 5þ 5̄ representations of SUð5Þ, respectively, plus three SUð5Þ singlets
which carry Uð1ÞN charges. In scenario A, the measured values of the SUð2ÞW and Uð1ÞY gauge couplings
lie near the fixed points of the RG equations. In scenario B, the contribution of two-loop corrections spoils
the unification of gauge couplings, resulting in the appearance of the Landau pole below the grand
unification scale MX . The solutions for the Yukawa couplings also approach the quasifixed points with
increasing their values at the scaleMX. We calculate the two-loop upper bounds on the lightest Higgs boson
mass in the vicinity of these quasifixed points and compare the results of our analysis with the
corresponding ones in the next-to-minimal supersymmetric Standard Model. In all these cases, the
theoretical restrictions on the Standard-Model-like Higgs boson mass are rather close to 125 GeV.
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I. INTRODUCTION

The recent discovery of a Standard-Model-like Higgs
state with a mass around ∼125 GeV [1,2] is consistent with
the supersymmetric (SUSY) extensions of the Standard
Model (SM). Indeed, in the minimal supersymmetric
Standard Model (MSSM), the mass of the lightest Higgs
particle, which manifests itself in the interactions with
gauge bosons and fermions as a SM-like Higgs boson, does
not exceed 130–135 GeV. Although the MSSM is one of
the most attractive and best studied extensions of the SM, it
suffers from the μ problem: the superpotential of the
MSSM contains one bilinear term μHdHu which is present
before SUSY is broken. Thus one would naturally expect
the parameter μ to be of the order of the Planck scale MPl.
On the other hand, in order to get the correct pattern of
electroweak symmetry breaking (EWSB), μ is required to
be of the order of the EW scale.
An elegant solution of the μ problem naturally arises in

the framework of E6 inspired models. At high energies E6

can be broken down to the rank-5 gauge group that leads to
low-energy gauge symmetry with an additional Uð1Þ0
factor in comparison to the SM. The remaining Uð1Þ0
symmetry is a linear combination of Uð1Þψ and Uð1Þχ :

Uð1Þ0 ¼ Uð1Þχ cos θ þ Uð1Þψ sin θ: (1)

Two anomaly-freeUð1Þψ andUð1Þχ symmetries are defined
by E6 → SOð10Þ×Uð1Þψ, SOð10Þ→ SUð5Þ×Uð1Þχ . If

θ ≠ 0 or π, the extra Uð1Þ0 gauge symmetry forbids an
elementary μ term but allows an interaction of the extra
SM singlet superfield S with the Higgs doublet super-
multiplets Hd and Hu in the superpotential: λSHdHu. At
the TeV scale the scalar component of the SM singlet
superfield S acquires a nonzero vacuum expectation value
(VEV) breaking Uð1Þ0, and an effective μ term of the
required size is automatically generated.
Here we focus on the supersymmetric extension of the

SM which is based on the low-energy SM gauge group
together with an extra Uð1ÞN gauge symmetry that corre-
sponds to the angle θ ¼ arctan

ffiffiffiffiffi
15

p
in Eq. (1). Only in this

exceptional supersymmetric Standard Model (E6SSM)
[3,4] right-handed neutrinos do not participate in the gauge
interactions. As a consequence, they may be superheavy,
shedding light on the origin of the mass hierarchy in the
lepton sector. Because right-handed neutrinos are allowed
to have large masses, they may decay into final states with
lepton number L ¼ �1, thereby creating a lepton asym-
metry in the early Universe that subsequently gets con-
verted into the observed baryon asymmetry through the
EW phase transition [5].
To ensure that E6SSM is anomaly-free, the particle

spectrum in this extension of the SM is extended to fill
out three complete 27-dimensional representations of the
gauge group E6. Each 27-plet contains one generation of
ordinary matter; singlet fields Si; up- and down-type Higgs
doublets Hu

i and Hd
i , respectively; and charged �1=3

colored exoticsDi and D̄i. The matter content and correctly

PHYSICAL REVIEW D 89, 055010 (2014)

1550-7998=2014=89(5)=055010(16) 055010-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.055010
http://dx.doi.org/10.1103/PhysRevD.89.055010
http://dx.doi.org/10.1103/PhysRevD.89.055010
http://dx.doi.org/10.1103/PhysRevD.89.055010


normalized Abelian charge assignment are summarized in
Table I. To suppress tree-level flavor-changing transitions
and the most dangerous baryon and lepton number violat-
ing operators in the E6SSM, an approximate ZH

2 symmetry
can be imposed. Under this symmetry all superfields except
one pair ofHu

i and H
d
i (i.e. Hu and Hd) and one of the SM-

type singlet superfields Si (i.e. S) are odd. When all ZH
2

symmetry violating couplings are small, this discrete
symmetry allows one to suppress flavor-changing proc-
esses. If the Lagrangian of the E6SSM is invariant with
respect to either a ZL

2 symmetry, under which all superfields
except leptons are even, or a ZB

2 discrete symmetry that
implies that exotic quark and lepton superfields are odd
whereas the others remain even, then the most dangerous
baryon and lepton number violating operators get forbidden
and proton is sufficiently long-lived [3,4]. The presence of
exotic matter predicted by the E6SSM at the TeV scale may
lead to spectacular new physics signals at the LHC which
were analyzed in [3,4,6]. Recently, the particle spectrum
and collider signatures associated with it were studied
within the constrained version of the E6SSM (cE6SSM) [7].
The threshold corrections to the running gauge and Yukawa
couplings in the E6SSM and cE6SSMwere studied in detail
in [8]. The renormalization of VEVs in the E6SSM was
considered in [9].
In this article, we explore the two-loop renormalization

group (RG) flow of the gauge and Yukawa couplings within
the E6 inspired supersymmetric extensions of the SM with
extra Uð1ÞN gauge symmetry in which a single discrete ~ZH

2

symmetry forbids tree-level flavor-changing transitions and
the most dangerous baryon and lepton number violating
operators [10]. Two different scenarios A and B, that
involve extra matter beyond the MSSM contained in three
and four 5þ 5̄ representations of SUð5Þ, respectively,
together with three SM singlets with Uð1ÞN charges, are
considered. These scenarios lead to different phenomeno-
logical implications associated with the exotic quarks Di
and D̄i. In the case of scenario A, we demonstrate that the
solutions of the RG equations for the SUð2ÞW and Uð1ÞY
gauge couplings tend to converge towards the quasifixed
points which are rather close to the experimentally mea-
sured low-energy values of these couplings, while the
convergence of the corresponding solutions for the strong
gauge coupling to the quasifixed point is rather weak. In
scenario B, the values of the strong gauge coupling g3ðQÞ
near the EW scale tend to be substantially smaller than the
experimentally measured central value of this coupling.

This implies that the values of α3ðMZÞ, which are within
one standard deviation of its measured central value, result
in the appearance of the Landau pole below the grand
unification theory (GUT) scale in this scenario. Thus the
gauge coupling unification gets basically spoiled by large
two-loop corrections in this case.
We also argue that the solutions for the Yukawa

couplings approach the quasifixed points with increasing
their values at the GUT scale MX. In contrast with the
MSSM, the quasifixed point scenarios in the SUSY models
being considered here, that correspond to tan β ∼ 1, have
not been ruled out. In other words, these scenarios can lead
to the solutions with the SM-like Higgs mass around
∼125 GeV. We calculate the two-loop upper bounds on
the lightest Higgs boson mass in the vicinity of the
quasifixed points in these models and compare the obtained
results with the corresponding ones in the next-to-minimal
supersymmetric Standard Model (NMSSM). Although we
focus primarily on the part of the parameter space where the
lightest Higgs boson mass attains its maximal value in the
SUSY models mentioned above (see, for example,
[11,12]), our analysis indicates that the values of the
Yukawa couplings near the quasifixed points are such that
the SM-like Higgs state has a mass which is lower than
130 GeV for TeV top squark masses.
The layout of the remainder of the paper is as follows. In

the next section, we briefly review the E6 inspired SUSY
models with exact custodial ~ZH

2 symmetry. In Sec. 3, the
RG flow of the gauge and Yukawa couplings is studied, and
the two-loop upper bounds on the lightest Higgs boson
mass in the vicinity of the quasifixed points are calculated.
Section 4 concludes the paper.

II. E6 inspired SUSY models with exact ~ZH
2 symmetry

In this section, we briefly review the E6 inspired SUSY
models with exact custodial ~ZH

2 symmetry [10]. These
models imply that near some high-energy scale (MX) E6 or
its subgroup is broken down to SUð3ÞC × SUð2ÞW×
Uð1ÞY ×Uð1Þψ ×Uð1Þχ . Below GUT scale MX, the par-
ticle content of the considered models involves three copies
of 27i-plets and a set ofMl and M̄l supermultiplets from the
incomplete 270l and 270l representations of E6.

1 All matter
superfields, that fill in complete 27i-plets, are odd under ~Z

H
2

TABLE I. The Uð1ÞY and Uð1ÞN charges of matter fields in the E6 inspired SUSY models with extra Uð1ÞN gauge symmetry.

Q uc dc L ec Nc S Hu Hd D D̄ffiffi
5
3

q
QY

i

1
6

− 2
3

1
3

− 1
2

1 0 0 1
2

− 1
2

− 1
3

1
3ffiffiffiffiffi

40
p

QN
i 1 1 2 2 1 0 5 −2 −3 −2 −3

1Because multiplets Ml and M̄l have opposite Uð1ÞY , Uð1Þψ ,
and Uð1Þχ charges, their contributions to the anomalies get
canceled identically.
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discrete symmetry, while the supermultiplets M̄l can be
either odd or even. All supermultiplets Ml are even under
the ~ZH

2 symmetry and therefore can be used for the
breakdown of gauge symmetry. In order to ensure that
the SUð2ÞW ×Uð1ÞY ×Uð1Þψ ×Uð1Þχ symmetry is bro-
ken down to Uð1Þem associated with the electromagnetism,
the set of multipletsMl should involve Hu, Hd, S, and Nc

H.
These E6 inspired SUSY models also imply that just

below the GUT scale Uð1Þψ ×Uð1Þχ gauge symmetry is
broken by the VEVs of Nc

H and N̄c
H down to Uð1ÞN × ZM

2 ,
where ZM

2 ¼ ð−1Þ3ðB−LÞ is a matter parity. This can be
easily arranged, because matter parity is a discrete sub-
group of Uð1Þψ and Uð1Þχ . Such a breakdown of Uð1Þψ
and Uð1Þχ gauge symmetries guarantees that the exotic
states which originate from 27i representations of E6 as
well as ordinary quark and lepton states survive to low
energies. The large VEVs of Nc

H and N̄c
H can induce the

large Majorana masses for right-handed neutrinos allowing
them to be used for the seesaw mechanism. Since Nc

H and
N̄c

H acquire VEVs, both supermultiplets must be even
under the ~ZH

2 symmetry.
Here we restrict our consideration to the simplest

scenarios in which H̄u, H̄d, and S̄ are odd under the ~ZH
2

symmetry and S̄ from the 270l gets combined with the
superposition of the corresponding components from 27i
resulting in the vectorlike states with masses of the order of
MX. At low energies (i.e. TeV scale) the superfields Hu,
Hd, and S play the role of Higgs fields. The VEVs of
these superfields (hHdi ¼ v1=

ffiffiffi
2

p
, hHui ¼ v2=

ffiffiffi
2

p
, and

hSi ¼ s=
ffiffiffi
2

p
) break the SUð2ÞW ×Uð1ÞY ×Uð1ÞN gauge

symmetry down to Uð1Þem. The ~ZH
2 symmetry allows the

Yukawa interactions in the superpotential that originate
from 270l × 270m × 270n and 270l × 27i × 27k. Since the set of

multiplets Ml contains only one pair of doublets Hd and
Hu, the ~ZH

2 symmetry defined above forbids flavor-
changing processes at the tree level. Nonetheless, if the
set of ~ZH

2 even supermultiplets Ml involve only Hu, Hd, S,
and Nc

H, then the lightest exotic quarks are extremely long-
lived particles, because ~ZH

2 symmetry forbids all Yukawa
interactions in the superpotential that can allow the lightest
exotic quarks to decay.2

To ensure that the lightest exotic quarks decay within a
reasonable time, the set of ~ZH

2 even supermultiplets Ml can
be supplemented by either L4 (scenario A) or dc4 (scenario
B). In both cases, it is assumed that at low energies extra
matter beyond the MSSM fills in complete SUð5Þ repre-
sentations to preserve gauge coupling unification which
remains almost exact in the one-loop approximation if this
condition is fulfilled. In scenario A, this requires that H̄u
and H̄d from the 270l get combined with the superposition
of the corresponding components from 27i forming vector-
like states which gain masses ∼MX. The supermultiplets L4

and L̄4 are also expected to form vectorlike states.
However, these states are required to be light enough to
ensure that the lightest exotic quarks decay sufficiently
fast.3 In this case, the baryon and lepton number con-
servation requires exotic quarks to be leptoquarks. The low-
energy matter content in scenario A involves

3½ðQi; uci ; d
c
i ; Li; eci Þ� þ 3ðDi; D̄iÞ þ 2ðSαÞ þ 2ðHu

αÞ
þ 2ðHd

αÞ þ L4 þ L̄4 þ SþHu þHd; (2)

where α ¼ 1; 2 and i ¼ 1; 2; 3. Neglecting all suppressed
nonrenormalizable interactions, one gets an explicit expres-
sion for the superpotential in this case:

WA ¼ λSðHuHdÞ þ λαβSðHd
αHu

βÞ þ κijSðDiD̄jÞ þ ~fαβSαðHd
βHuÞ þ fαβSαðHdHu

βÞ þ gDijðQiL4ÞD̄j þ hEiαe
c
i ðHd

αL4Þ
þ μLL4L̄4 þWMSSMðμ ¼ 0Þ: (3)

In scenario B, extra matter beyond the MSSM fills in
complete SUð5Þ representations if H̄u, H̄d, dc4, and dc4
survive to the TeV scale. In the simplest case, H̄u and H̄d
are odd under the ~ZH

2 symmetry so that they do not acquire
VEVs. In contrast, dc4 and dc4 are expected to be ~ZH

2 even
superfields, since these supermultiplets should give rise to
the decays of the lightest exotic color states. In this case,
the exotic quarks are allowed to have nonzero Yukawa

couplings with a pair of quarks. They can also interact with
dc4 and right-handed neutrinos. If Majorana right-handed
neutrinos are very heavy (∼MX), then the interactions of
exotic quarks with leptons are extremely suppressed so that
D̄i and Di manifest themselves in the Yukawa interactions
as superfields with baryon number ð� 2

3
Þ. When the Yukawa

couplings of dc4 are small enough (i.e. less than 10−5–10−4),
then the baryon and lepton number violating operators are
suppressed and the proton is sufficiently long-lived. In
scenario B, the low-energy matter content may be sum-
marized as

3½ðQi;uci ; d
c
i ;Li; eci Þ� þ 3ðDi; D̄iÞ þ 3ðHu

i Þ þ 3ðHd
i Þ

þ 2ðSαÞ þ dc4 þ dc4 þHu þ H̄u þHd þ H̄d þ S; (4)

2The models with stable charged exotic particles are ruled out
by different terrestrial experiments [13].

3The appropriate mass term μLL4L̄4 in the superpotential can
be induced within supergravity models just after the breakdown
of local SUSY if the Kähler potential contains an extra term
ðZLðL4L̄4Þ þ H:c:Þ [14].
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whereas the renormalizable part of the TeV scale super-
potential is given by

WB ¼ λSðHuHdÞ þ λijSðHd
i H

u
j Þ þ κijSðDiD̄jÞ

þ ~fαiSαðHd
i HuÞ þ fαiSαðHdHu

i Þ þ gqijD̄idc4u
c
j

þ hDijd
c
4ðHd

i QjÞ þ μddc4d̄
c
4 þ μui H

u
i H̄u þ μdi H

d
i H̄d

þWMSSMðμ ¼ 0Þ: (5)

The superpotential (5) contains a set of the TeV scale mass
parameters, i.e. μd, μui , μ

d
i , that can be induced after the

breakdown of local SUSY.
The gauge group and field content of the E6 inspired

SUSY models discussed above can originate from the 5D
and 6D orbifold GUT models in which the splitting of GUT
multiplets can be naturally achieved [10]. In these orbifold
GUT models, all GUT relations between the Yukawa
couplings can get entirely spoiled. On the other hand,
the approximate unification of the SM gauge couplings
should take place in these models. In scenario A, the
analysis of the solutions of the two-loop RG equations
indicates that the gauge coupling unification can be
achieved for any phenomenologically reasonable value
of α3ðMZÞ consistent with the central measured low-energy
value [10,15]. In scenario B, large two-loop corrections
spoil the exact unification of gauge couplings [10].
Nonetheless, the relative discrepancy of αiðMXÞ is about
10% that should not be probably considered as a big
problem within the orbifold GUT framework.
The invariance of the low-energy effective Lagrangian of

the E6 inspired SUSY models being considered here under
both ZM

2 and ~ZH
2 symmetries implies that it is also invariant

under the transformations of ZE
2 symmetry associated with

exotic states because ~ZH
2 ¼ ZM

2 × ZE
2 . The transformation

properties of different components of 27i, 270l, and 270l
supermultiplets under the ~ZH

2 , ZM
2 , and ZE

2 symmetries are
summarized in Table II. The ZE

2 symmetry conservation
implies that in collider experiments the exotic particles,
which are odd under this symmetry, can be created only in
pairs and the lightest exotic state must be stable. By using
the method proposed in [16], it was argued that the masses
of the lightest and second lightest inert neutralino states ( ~H0

1

and ~H0
2), which are predominantly the fermion components

of the two SM singlet superfields Si from 27i, do not
exceed 60–65 GeV [17]. Since these states are odd under
the ZE

2 symmetry, they tend to be the lightest exotic
particles in the spectrum [17].
On the other hand, the ZM

2 symmetry conservation
ensures that R parity is also conserved. Because ~H0

1 is
also the lightest R-parity odd state, either the lightest R-
parity even exotic state or the lightest R-parity odd state
with ZE

2 ¼ þ1 must be absolutely stable. Most commonly,
the second stable state is the lightest ordinary neutralino χ01
(ZE

2 ¼ þ1). Although both stable states are natural dark
matter candidates in these E6 inspired SUSY models, the
couplings of ~H0

1 to the gauge bosons, Higgs states, quarks,
and leptons are rather small when jm ~H0

1
j ≪ MZ. As a

consequence, the cold dark matter density tends to be much
larger than its measured value. In principle, ~H0

1 could
account for all or some of the observed cold dark matter
density if it had mass close to half the Z mass [17,18].
However, the usual SM-like Higgs boson decays more than
95% of the time into either ~H0

1 or ~H0
2 in these cases [17].

Thus, the corresponding scenarios are basically ruled out
nowadays.
The simplest phenomenologically viable scenarios imply

that fαβ ∼ ~fαβ ≲ 10−6 [10]. So small values of the Yukawa
couplings fαβ and ~fαβ result in extremely light inert
neutralino states ~H0

1 and ~H0
2 which are substantially lighter

than 1 eV.4 In this case, ~H0
1 and ~H0

2 form hot dark matter
(dark radiation) in the Universe but give only a very minor
contribution to the dark matter density, while the lightest
ordinary neutralino may account for all or some of the
observed dark matter density.

III. THE RG FLOW OF THE GAUGE AND
YUKAWA COUPLINGS

In this section, we consider the RG flow of the gauge and
Yukawa couplings in the case of scenarios A and B. The
superpotential in the E6 inspired SUSY models discussed
in the previous section involves a lot of new Yukawa
couplings in comparison to the SM and MSSM. New

TABLE II. Transformation properties of different components of E6 multiplets under ~ZH
2 , ZM

2 , and ZE
2 discrete symmetries.

27i 27i 270Hu
270S 270Hu

270S 270N 270L 270d
ð270Hd

Þ ð270Hd
Þ ð270NÞ ð270LÞ ð270dÞ

Qi; uci ; d
c
i , D̄i; Di, Hu S H̄u S̄ Nc

H L4 dc4
Li; eci ; N

c
i Hd

i ; H
u
i ; Si ðHdÞ ðH̄dÞ ðN̄c

HÞ ðL̄4Þ ðd̄c4Þ
~ZH
2 − − þ þ − − þ þ þ

ZM
2 − þ þ þ þ þ − − −

ZE
2 þ − þ þ − − − − −

4The presence of very light neutral fermions in the particle
spectrum might have interesting implications for the neutrino
physics (see, for example, [19]).
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couplings may be relatively large, affecting the running of
all parameters. This complicates the analysis of the RG
flow drastically, making it model dependent. Therefore, we
restrict our consideration here by the simplest scenarios that
allow one to get phenomenologically viable solutions. The
top-quark mass measurements clearly indicate that the top-
quark Yukawa coupling is large and cannot be ignored.
Nevertheless, the theoretical analysis performed in [20,21]
revealed that a broad class of solutions of the MSSM RG
equations concentrated near the quasifixed point corre-
sponds to tan β ¼ 1.3–1.8. These comparatively small
values of tan β lead to the lightest Higgs mass which does
not exceed 94� 5 GeV [20] nowadays, so a light SM-like
Higgs boson is ruled out. Thus, in order to get phenom-
enologically viable solutions within the E6 inspired SUSY
models studied here, we allow the Yukawa coupling λ to be
as large as the top-quark Yukawa coupling [i.e.
λðMXÞ ∼ htðMXÞ]. This should permit us to find self-
consistent solutions with the larger mass of the SM-like
Higgs state as compared with the MSSM. Moreover, large
values of λ can affect the evolution of the soft scalar mass
m2

S of the singlet field S rather strongly, resulting in
negative values of m2

S at low energies that trigger the
breakdown of Uð1ÞN symmetry. To simplify our analysis,
we further assumed that all other Yukawa couplings are
sufficiently small so that they can be neglected in the
leading approximation. Then the approximate superpoten-
tial studied is given by

W ≈ λSðHdHuÞ þ htðHuQ3Þuc3: (6)

A. The running of the gauge couplings

First of all, we discuss the evolution of the SM gauge
couplings giðQÞ. Their values at the EW scale are fixed by
the measurements at the Large Electron-Positron collider
(LEP) and other experimental data [22]. Assuming that the
gauge coupling unification is preserved, the solutions of the
one-loop RG equations for the SM gauge couplings may be
presented in the following form:

1

g2i ðQÞ ¼
1

g20
þ βi
ð4πÞ2 ln

M2
X

Q2
; (7)

where index i runs from 1 to 3 and βi are one-loop β
functions: β1 ¼ 33

5
þ nf, β2 ¼ 1þ nf, β3 ¼ −3þ nf. Here

nf is a number of pairs of 5þ 5̄ supermultiplets that survive
to the TeV scale in addition to the MSSM particle contents.
In scenarios A and B, the corresponding numbers are
nf ¼ 3 and nf ¼ 4, respectively. Although the high-energy
scale MX where the unification of the SM gauge couplings
takes place is almost insensitive to nf, the overall gauge
coupling g0 depends on the number of exotic supermultip-
lets nf rather strongly. It rises when nf grows. Indeed, in
the one-loop approximation we have

1

g20
¼ 1

β1 − β2

�
β1

g22ðM2
ZÞ

−
β2

g21ðM2
ZÞ
�
: (8)

For nf ¼ 3 the value of the overall gauge coupling
g0 ≃ 1.2, while for nf ¼ 4 Eq. (8) gives g0 ≃ 2.0. If
nf > 4, the right-hand side of Eq. (8) becomes negative
that restricts a possible number of extra 5þ 5̄ pairs which
can survive to the TeV scale by four.
In the case of the SUð2ÞW and Uð1ÞY gauge couplings,

the large values of g20 ≫ 1 imply that the first term in the
right-hand side of Eq. (7) is substantially smaller than the
second term and the corresponding solutions of the RG
equations are focused near the infrared stable fixed point at
low energies, i.e.

g21
g22

≃ β2
β1

: (9)

This fixed point corresponds to dg1=g2
dt → 0, where

t ¼ ln ðMX=QÞ, Q is a renormalization scale. In general,
the solutions of the RG equations always approach the
infrared stable fixed point when t → ∞. In our analysis, the
interval of variations of t remains always finite, i.e.

0 ≤ t ≤ lnM2
X

M2
Z
. As a consequence, the solutions for giðQÞ

are concentrated near the quasifixed points which set upper
limits on the allowed range of the low-energy values of
these couplings caused by the applicability of the pertur-
bation theory up to the scale MX, i.e. g0 ≲

ffiffiffiffiffiffi
4π

p
.

In the case of scenarios A and B, the values of the
SUð2ÞW and Uð1ÞY gauge couplings calculated in the limit
g20 ≫ 1 are relatively close to the measured values of these
couplings, i.e. g1ðMZÞ≃ 0.461 and g2ðMZÞ≃ 0.652. The
ratio of the measured values of the SUð2ÞW and Uð1ÞY
gauge couplings g21ðMZÞ=g22ðMZÞ≃ 0.5, whereas Eq. (9)

gives g2
1

g2
2

≃ 0.47 in scenario B and g2
1

g2
2

≃ 0.42 in scenario A.5

If β3 > 0, like in scenario B, the solutions of the RG
equations for the SUð2ÞW and SUð3ÞC gauge couplings
also approach the fixed point

g22
g23

≃ β3
β2

(10)

in the limit g20 → ∞. However, since even in scenario B the
value of the one-loop beta function associated with the
strong interactions is rather small, i.e. β3 ¼ 1, the con-
vergence of the solutions for g3ðQÞ to the corresponding
quasifixed point is rather weak. Therefore, the solutions of
the RG equations for g2ðQÞ=g3ðQÞ are also attracted to the

5In the MSSM the infrared fixed point (9) is very far from the
corresponding ratio of the physical quantities of the SUð2ÞW and
Uð1ÞY gauge couplings. Indeed, for nf ¼ 0, Eq. (9) gives
g2
1

g2
2

≃ 0.15.
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fixed point (10) very weakly. In the case of scenario A, β3
vanishes in the one-loop approximation, so that near the

fixed point (10) g2
2

g2
3

→ 0. It means that the ratios g21;2=g
2
3

become extremely small when t → ∞. At any low-energy
scaleQ, the value of the strong gauge coupling in scenarios
A and B is substantially larger than g1ðQÞ and g2ðQÞ, so
that the ratios g21;2=g

2
3 are quite small but not negligible.

The inclusion of the two-loop corrections shifts the
position of the quasifixed points where the solutions of
the RG equations are focused. The values of the gauge
couplings at the EW scale calculated for different values of
g0 in the two-loop approximation are given in Table III. The
two-loop RG flow of gauge couplings is shown in Fig. 1.
The corresponding two-loop beta functions can be found in
[10]. The results presented in Table 2 demonstrate that the
inclusion of the two-loop corrections leads to the growth of

the ratio g2
1

g2
2

near the quasifixed points. Indeed, for g0 ¼ 3 in

scenario A g2
1

g2
2

increases from 0.43 to 0.48, whereas in

scenario B g2
1

g2
2

grows from 0.48 to 0.52.

In the case of scenario A, the typical pattern of the RG
flow of the gauge couplings from Q ¼ MX to the EW scale
for different values of g0 is presented in Fig. 1. The same
plots can be obtained in scenario B as well. Since plots in
the case of scenarios A and B look very similar, we include
only ones that correspond to scenario A. From Fig. 1(a), it
follows that the solutions of the RG equations for g1ðQÞ
and g2ðQÞ are sufficiently strongly attracted to the quasi-
fixed points. In scenarios A and B, the numerical values of
these gauge couplings associated with the quasifixed points
(see Table III) are reasonably close to the measured values
of these couplings. On the other hand, as one can see from
Fig. 1(b), the convergence of the solutions of the RG
equations for g3ðQÞ to the quasifixed point is rather weak.
Moreover, our numerical analysis reveals that in the case of

scenario B the values of g3ðQÞ at the EW scale tend to be
substantially smaller than the experimentally measured
central value of this coupling.6 In scenario A, the value
of g3ðQÞ, where the solutions of the RG equations are
focused at low energies, is considerably larger than the one
that corresponds to α3ðMZÞ≃ 0.118. At the same time, the
results presented in Table III indicate that for g0 ¼ 1.5 all
SM gauge couplings at the EW scale including the strong
gauge coupling are rather close to their measured central
values in the case of scenario A.
The RG flow of the gauge couplings in scenarios A and

B is affected by the kinetic term mixing which is consistent
with all symmetries. Indeed, in the most general case, the
gauge kinetic part of the Lagrangian can be written as

Lkin ¼ −
1

4
ðFY

μνÞ2 −
1

4
ðFN

μνÞ2 −
sin χ
2

FY
μνFN

μν − � � � ; (11)

where FY
μν and FN

μν are field strengths for the Uð1ÞY and
Uð1ÞN gauge interactions, while BY

μ and BN
μ are the

corresponding gauge fields, respectively. In Eq. (11), the
terms associated with the SUð3ÞC and SUð2ÞW gauge
interactions are omitted. If Uð1ÞY and Uð1ÞN symmetries
arise from the breaking of the simple gauge group E6, the
parameter sin χ which parametrizes the gauge kinetic term
mixing is expected to vanish near the GUT scale.
Nevertheless, it gets induced due to loop effects, since

TrðQYQNÞ ¼
X

i¼chiral fields

ðQY
i Q

N
i Þ ≠ 0: (12)

TABLE III. The values of the gauge couplings at the EW scale. These couplings are calculated for g1ðMXÞ ¼ g01ðMXÞ ¼
g2ðMXÞ ¼ g3ðMXÞ ¼ htðMXÞ ¼ λðMXÞ ¼ g0, g11ðMXÞ ¼ 0, and different values of g0 in the two-loop approximation. The low-
energy values of the corresponding couplings calculated in the one-loop approximation are given in the brackets.

g0 g3 g2 g1 g01 g11 g2
1

g2
2

g0
1

g1

1.2 1.074 0.628 0.454 0.458 0.0196 0.523 1.0090
1.5 1.213 0.655 0.465 0.469 0.0210 0.503 1.0090

Scenario A (1.5) (0.684) (0.471) (0.476) (0.0219) (0.474) (1.0106)
2.0 1.330 0.676 0.473 0.477 0.0221 0.489 1.0084
3.0 1.395 0.689 0.478 0.481 0.0228 0.481 1.0074

(3.0) (0.744) (0.489) (0.495) (0.0246) (0.432) (1.0116)
1.2 0.881 0.582 0.436 0.431 −0.0254 0.560 0.989
1.6 0.975 0.609 0.447 0.442 −0.0275 0.539 0.988

Scenario B (1.108) (0.632) (0.453) (0.448) (−0.0286) (0.514) (0.989)
2.0 1.020 0.622 0.453 0.447 −0.0285 0.530 0.987
3.0 1.057 0.633 0.458 0.451 −0.0294 0.523 0.986

(1.368) (0.670) (0.466) (0.461) (−0.0312) (0.484) (0.989)

6In scenario B, the considerably larger values of the strong
gauge coupling at the EW scale can be obtained if we take into
account the low-energy threshold effects associated with the
presence of exotic states and superpartners of ordinary particles.
Nevertheless, even in this case the exact unification of gauge
couplings can be achieved only for α3ðMZÞ≲ 0.112. For
α3ðMZÞ≃ 0.118 the relative discrepancy of αiðMXÞ is about 10%.
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Here the trace is restricted to the states lighter than the
energy scale being considered. The complete E6 multiplets
do not contribute to the trace (12). Its nonzero value is
caused by the presence of the components of the incom-
plete 270l and ¯270l multiplets of the original E6 symmetry
which survive to low energy.
The mixing in the gauge kinetic part of the Lagrangian

(11) can be eliminated by a nonunitary transformation of
two Uð1Þ gauge fields [23]:

BY
μ ¼ B1μ − B2μ tan χ; BN

μ ¼ B2μ= cos χ: (13)

In the new basis of the gauge fields ðB1μ; B2μÞ, the
gauge kinetic part of the Lagrangian is diagonal, whereas

the covariant derivative can be written in a compact
form:

Dμ ¼ ∂μ − iQTGBμ…; (14)

where QT ¼ ðQY
i ; Q

N
i Þ, BT

μ ¼ ðB1μ; B2μÞ, and G is a 2 × 2
matrix of gauge couplings:

G ¼
�
g1 g11
0 g01

�
; g1 ¼ gY; g01 ¼ gN= cos χ;

g11 ¼ −gY tan χ: (15)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8
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(d)

FIG. 1 (color online). Two-loop RG flow of gauge couplings in the case of scenario A for

g1ðMXÞ ¼ g01ðMXÞ ¼ g2ðMXÞ ¼ g3ðMXÞ ¼ htðMXÞ ¼ λðMXÞ ¼ g0, g11ðMXÞ ¼ 0, and different values of g0: (a) evolution of g2
1
ðQÞ

g2
2
ðQÞ

versus g2ðQÞ from Q ¼ MX to the EW scale; (b) running of g2
2
ðQÞ

g2
3
ðQÞ versus g2ðQÞ from Q ¼ MX to the EW scale; (c) RG flow of g02

1
ðQÞ

g2
2
ðQÞ

versus g2ðQÞ from Q ¼ MX to the EW scale; (d) running of 10g11ðQÞ
g2ðQÞ versus g2ðQÞ from Q ¼ MX to the EW scale.
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In the expression for the covariant derivative (14), the
SUð3ÞC and SUð2ÞW gauge fields are omitted. In Eq. (15),
gY and gN are original Uð1ÞY and Uð1ÞN gauge couplings,
respectively, which are supposed to be equal at the scale
MX. In the considered approximation the gauge kinetic
mixing changes effectively the Uð1ÞN charges of the fields
to ~QN

i ¼ QN
i þQY

i δ, where δ ¼ g11=g01, while the Uð1ÞY
charges remain the same.
Using the matrix notation for the structure of Uð1Þ

interactions, one can write down the RG equations for the
Abelian couplings in a compact form [24]:

dG
dt

¼ −G × B;

B ¼ 1

ð4πÞ2
�
β1g21 2g1g01β11 þ 2g1g11β1
0 g021 β

0
1 þ 2g01g11β11 þ g211β1

�
: (16)

From Eqs. (16), one can see that, whereas the solution of
the one-loop RG equation for g1ðQÞ is still described by
Eq. (7), the running of couplings g01ðQÞ and g11ðQÞ obeys a
quite complicated system of differential equations. In
scenario A, β01 ¼ 47=5 and β11 ¼ −

ffiffiffi
6

p
=5 in the one-loop

approximation. In the case of scenario B, the one-loop β01
and β11 are 10.9 and β11 ¼ 3

ffiffiffi
6

p
=10, respectively.

In theE6 inspiredSUSYmodelswithanextraUð1ÞN factor,
the RG equations (16) have infrared stable fixed points:

g11
g01

¼ −
β11
β1

;
g21
g021

¼ β01
β1

−
�
β11
β1

�
2

: (17)

The solutions of the differential equations (16) approach the
fixed points (17) when the overall gauge coupling g0 and t
increase. Since in both scenariosβ1 ≃ β01 ≫ β11, thevalues of
the diagonal Uð1ÞY and Uð1ÞN gauge couplings are approx-
imately equal at low energies, whereas the of–diagonal gauge

coupling g11ðQÞ being set to zero at the GUT scale remains
rathersmallatanyscalebelowMX.Equation(17) indicates that
in the caseof scenarioAg1 tends tobe slightly less thang01 near
the fixed point while in scenario B g1 ≳ g01.
The two-loop RG flows of g021 =g

2
2 and g11=g2 are shown

in Figs. 1(c) and 1(d), respectively, where we set g01ðMXÞ ¼
g0 and g11ðMXÞ ¼ 0. Because g11ðQÞ ≪ giðQÞ and β11 is
relatively small as compared with the diagonal beta
functions, we neglect two-loop corrections to β11. Again,
we include only plots associated with scenario A, because
the corresponding plots look rather similar in both scenar-
ios. One can see that Figs. 1(a) and 1(c) are almost
identical. This is because g1ðQÞ≃ g01ðQÞ. The results
presented in Fig. 1 and Table III demonstrate that the
inclusion of the two-loop corrections does not change much
the position of the fixed points (17). In principle, the two-
loop corrections to β3, β2, β1, and β01 as well as the two-loop
RG flow of all gauge couplings depend on htðQÞ and λðQÞ.
However, this dependence is rather weak and can be
ignored in the first approximation [15]. Nevertheless, the
results presented in Table III and Fig. 1 are obtained for
htðMXÞ ¼ λðMXÞ ¼ g0. The evolution of the Yukawa
couplings will be considered in the next subsection.

B. The running of the Yukawa couplings
and the Higgs mass

Since the RG flow of gauge couplings in the E6 inspired
SUSY models with an extra Uð1ÞN factor implies that the
corresponding quasifixed points of RG equations are
reasonably close to the measured values of giðMZÞ, it is
worthwhile to examine the quasifixed point solutions for
the Yukawa couplings as well. The Yukawa couplings
appearing in the superpotential (6) obey the following two-
loop RG equations:

dλ
dt

¼ λ

ð4πÞ2
�
−4λ2 − 3h2t þ 3g22 þ

3

5
g21 þ

19

10
g021 −

1

ð4πÞ2
�
−10λ4 − 9λ2h2t − 9h4t þ λ2

�
6g22 þ

6

5
g21 þ

13

10
g021

�

þ h2t

�
16g23 þ

4

5
g21 −

3

10
g021

�
þ bλg42 þ cλg41 þ dλg041 þ 9

5
g22g

2
1 þ

39

20
g22g

02
1 þ 39

100
g21g

02
1

��
;

dht
dt

¼ ht
ð4πÞ2

�
−λ2 − 6h2t þ

16

3
g23 þ 3g22 þ

13

15
g21 þ

3

10
g021 −

1

ð4πÞ2
�
−3λ4 − 3λ2h2t − 22h4t þ

3

2
λ2g021 þ h2t ð16g23 þ 6g22 þ

6

5
g21

þ 3

10
g021 Þ þ ahtg

4
3 þ bhtg

4
2 þ chtg

4
1 þ dhtg

04
1 þ 8g23g

2
2 þ

136

45
g23g

2
1 þ

8

15
g23g

02
1 þ g22g

2
1 þ

3

4
g22g

02
1 þ 53

300
g21g

02
1

�
; (18)

where in the case of scenario A

aλ ¼ 0; bλ ¼
33

2
; cλ ¼

297

50
; dλ ¼

3933

200
;

aht ¼
128

9
; bht ¼

33

2
; cht ¼

3913

450
; dht ¼

573

200
; (19)

while in scenario B we have

aλ ¼ 0; bλ ¼
39

2
; cλ ¼

327

50
; dλ ¼

4503

200
;

aht ¼
176

9
; bht ¼

39

2
; cht ¼

4303

450
; dht ¼

663

200
: (20)
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In the right-hand side of Eq. (18), we neglect all Yukawa
couplings except λ and ht.
From Eq. (18), it follows that the evolution of λðQÞ and

htðQÞ depends on the values of the gauge couplings. In the
case of scenario A, we set g0 ¼ 1.5. As was pointed out in
the previous subsection, this value of the overall gauge
coupling leads to giðMZÞ which are very close to their
measured central values. In scenario B, we fix g0 ¼ 3,
because it results in the most phenomenologically accept-
able values of gauge couplings at low energies.
For the purposes of our RG studies, it is convenient to

introduce

ρt ¼
h2t
g23

; ρλ ¼
λ2

g23
: (21)

The allowed range of the parameter space in the ðρt; ρλÞ
plane is limited at the EW scale by the quasifixed (or Hill-
type effective) line. Outside this range, the solutions for
htðQÞ and λðQÞ develop a Landau pole below the scaleMX,
so that the perturbation theory becomes inapplicable. The
solutions of the RG equations (18) are gathered near this
line, when the Yukawa couplings at the GUT scale MX
increase. However, the allocation of the solutions for ρt and
ρλ at the EW scale along the Hill line is not uniform. The
main reason for this is that at large values of the Yukawa
couplings at the scale MX the corresponding solutions
are attracted not only to the Hill line but also to the invariant
(or infrared fixed) line. When t goes to zero, this line
approaches its asymptotic limit where ρt; ρλ ≫ 1 and
ρλ → ρt, which is a fixed point of the RG equations
for the Yukawa couplings in the gaugeless limit
(g1 ¼ g2 ¼ g3 ¼ g01 ¼ 0). The invariant line connects this
fixed point with the infrared stable fixed point. In scenario
A this fixed point is given by

ρλ ¼ 0; ρt ≃ 0.89: (22)

whereas in scenario B

ρλ ¼ 0; ρt ≃ 1.17: (23)

All solutions of the RG equations for ρt and ρλ are
concentrated near the infrared stable fixed point at very
low energies when t → ∞. The infrared fixed line is the RG
invariant solution. If the boundary values atQ ¼ Λ are such
that htðΛÞ and λðΛÞ belong to the fixed line, the evolution
of the Yukawa couplings proceeds further along this line
towards the infrared stable fixed point. With increasing of
the interval of the RG flow, the solutions of the differential
equations (18) are first attracted to the invariant line and
then close to or along this line towards the infrared fixed
point. Infrared fixed lines and surfaces, as well as their
properties, were studied in detail in [25].
As htðMXÞ and λðMXÞ grow, the region at the EW scale

in which the solutions of the RG equations for ρt and ρλ are

concentrated shrinks drastically. They are focused near the
intersection point of the invariant and quasifixed lines.
Hence this point can be considered as the quasifixed point
of the RG equations (18) [26]. In the two-loop approxi-
mation, the intersection points of the invariant and quasi-
fixed lines have the following coordinates in the ðρt; ρλÞ
plane:

ðAÞρt ¼ 1.16; ρλ ¼ 0.14; ðBÞρt ¼ 1.33;

ρλ ¼ 0.18:
(24)

in the cases of scenarios A and B, respectively. The
quasifixed points ([30]) correspond to htðMXÞ ¼
λðMXÞ≃ 3, i.e. ρλðMXÞ ¼ ρtðMXÞ, which is associated
with the fixed point of the RG equations for the Yukawa
couplings in the gaugeless limit. Equation (24) indicates
that turning the gauge couplings on induces a certain
hierarchy between htðQÞ and λðQÞ. Indeed, because
g3ðQÞ is substantially larger than other gauge couplings
at low energies, the top-quark Yukawa coupling tends to
dominate over λðQÞ.
The two-loop RG flows of ρtðQÞ and ρλðQÞ in the cases

of scenarios A and B are shown in Figs. 2(a) and 2(b). The
results of our analysis are also summarized in Table IV. In
Figs. 2(a) and 2(b), we plot the running ρλðQÞ versus ρtðQÞ
from Q ¼ MX to the EW scale for regular distribution of
boundary conditions for λðMXÞ and htðMXÞ at the GUT
scale. These plots demonstrate that the trajectories, which
represent different solutions of the two-loop RG equations,
are focused in a narrow region near the quasifixed points at
low energies. From Table IV, it follows that the relative
variations of htðMZÞ near the quasifixed point are rather
small, i.e. about 1%, when 1.5≲ htðMXÞ; λðMXÞ≲ 3. The
interval of variations of λðMZÞ is substantially wider. The
relative deviations of λðMZÞ can be as large as 20% when
htðMXÞ and λðMXÞ vary from 1.5 to 3. As one can see from
Fig. 2(a), in scenario A different trajectories also tend to
flow towards the invariant line that corresponds to
ρλðMXÞ ¼ ρtðMXÞ ¼ 4. This is less obvious in the case
of scenario B, since g0 ¼ 3 and the Yukawa couplings
htðMXÞ and λðMXÞ have to be either of the order of or even
smaller than the gauge ones to ensure the validity of the
perturbation theory. Thus, the gaugeless approximation is
inapplicable.
The convergence of htðQÞ to the quasifixed points (24)

allows one to predict the value of the top-quark Yukawa
coupling at the EW scale. Then, using the relation between
the running mass and Yukawa coupling of the t quark

mtðMtÞ ¼
htðMtÞffiffiffi

2
p v sin β; (25)

one can find the value of tan β that corresponds to the
quasifixed points (24). In Eq. (24), v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
¼

246 GeV, tan β ¼ v2=v1, while v2 and v1 are the VEVs
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TABLE IV. The values of the Yukawa couplings at the EW scale and the upper bounds on the lightest Higgs mass in scenarios A and
B. The values of htðMZÞ and λðMZÞ are calculated by using two-loop RG equations for g1ðMXÞ ¼ g01ðMXÞ ¼ g2ðMXÞ ¼ g3ðMXÞ ¼ g0,
g11ðMXÞ ¼ 0, and different values of htðMXÞ and λðMXÞ. The low-energy values of the Yukawa couplings are used for the calculation of
tan β, tree-level, and two-loop upper bounds on the mass of the lightest Higgs boson (mð0Þ

h1
and mð2Þ

h1
, respectively). We set

mtðMtÞ ¼ 163 GeV, MS ¼ 1200 GeV, and Xt ¼
ffiffiffi
6

p
MS.

g0 htðMXÞ λðMXÞ htðMZÞ λðMZÞ tan β mð0Þ
h1

(GeV) mð2Þ
h1

(GeV)

1.5 3.0 3.0 1.31 0.46 1.02 92.2 120.5
Scenario A 1.5 1.5 3.0 1.30 0.53 1.05 102.4 126.6

1.5 3.0 1.5 1.32 0.37 1.01 79.0 113.3
1.5 1.5 1.5 1.31 0.46 1.03 91.7 120.3
3.0 3.0 3.0 1.22 0.44 1.20 88.7 119.1

Scenario B 3.0 1.5 3.0 1.21 0.49 1.22 95.7 123.2
3.0 3.0 1.5 1.23 0.36 1.19 76.6 112.3
3.0 1.5 1.5 1.22 0.43 1.20 86.0 117.5

0 1 2 3 4
0

1

2

3

4

(a)

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

(b)

0 2 4 6 8
0

2

4

6

8

(c)

0 1 2 3 4
0

1

2

3

4

(d)

FIG. 2 (color online). (a) Two-loop RG flow of ρλ versus ρt in scenario A for g0 ¼ 1.5. (b) Two-loop RG flow of the Yukawa couplings
in the ρλ − ρt plane in scenario B for g0 ¼ 3. (c) Two-loop RG flow of ρλ versus ρt within the NMSSM for g0 ¼ 0.725. (d) Two-loop RG
flow of the Yukawa couplings in the ρλ − ρt plane within the NMSSM+ for g0 ¼ 1.5. In all cases, the energy scale Q is varied fromMX
to MZ. Different trajectories correspond to different initial conditions for λ and ht at the scale MX.
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that Higgs doubletsHu andHd develop. In our analysis, we
set mtðMtÞ≃ 163 GeV, which is rather close to the central
value that can be obtained by using the world average mass
of the top quark Mt ¼ 173.07� 0.52� 0.72 GeV (see
[22]) and the relationship between the t-quark pole (Mt)
and running [mtðQÞ] masses [27]

mtðMtÞ ¼ Mt

�
1 − 1.333

αsðMtÞ
π

− 9.125

�
αsðMtÞ

π

�
2
�
:

(26)

From Table IV, one can see that tan β ¼ 1.02–1.05 in
scenario A and tan β ¼ 1.19–1.22 in scenario B when
htðMXÞ and λðMXÞ vary from 1.5 to 3.
The spectrum of the Higgs bosons in the E6 inspired

SUSY models with an extra Uð1ÞN factor involves a set of
the neutral Higgs states. Like in the MSSM, one of the
neutral CP-even Higgs states, which manifests itself in the
interactions with gauge bosons and fermions as a SM-like
Higgs boson, is always light irrespective of the SUSY
breaking scale. In the leading approximation, the two-loop
upper bound on the mass of the lightest Higgs particle in
the E6 inspired SUSY models with extra Uð1ÞN symmetry
can be written as [3]

m2
h1

≤
�
λ2

2
v2sin22β þM2

Zcos
22β þ g021 v

2

�
~Q1cos2β

þ ~Q2sin2β
�

2
��

1 −
3h2t
8π2

l
�
þ 3h4t v2sin4β

8π2

×

�
1

2
Ut þ lþ 1

16π2

�
3

2
h2t − 8g23

�
ðUt þ lÞl

�
;

Ut ¼ 2
X2
t

M2
S

�
1 −

1

12

X2
t

M2
S

�
; l ¼ ln

�
M2

S

m2
t

�
; (27)

where ~Q1 and ~Q2 are effective Uð1ÞN charges of Hd and
Hu, respectively, Xt is a top squark mixing parameter,MS is
a SUSY breaking scale defined as m2

Q ¼ m2
U ¼ M2

S, and
m2

Q and m2
U are soft scalar masses of superpartners of the

left-handed and right-handed components, respectively, of
the t quark. Equation (27) is a simple generalization of the
approximate expressions for the upper bounds on the
lightest Higgs boson mass obtained in the MSSM [28]
and NMSSM [29]. At λ ¼ 0 and g01 ¼ 0, the right-hand side
of Eq. (27) coincides with the theoretical bound on the
lightest Higgs mass in the MSSM which does not exceed
the Z-boson mass (MZ ≃ 91.2 GeV) at the tree level [30].
Leading one-loop and two-loop corrections to mh1 increase
the upper bound on the lightest Higgs boson mass fromMZ
to 130 GeV (see [31] and references therein). In the MSSM
the approximate expression (27) leads to the value of the
lightest Higgs mass which is typically a few GeV lower
than the one which is computed by using the SUSPECT [32]
and FEYNHIGGS [33] packages.

In our analysis, we focus on the so-called maximal
mixing scenario, when Xt ¼

ffiffiffi
6

p
MS, that leads to the

maximal possible value of mh1 . We also set top squark
scalar masses to be equal to mQ ¼ mU ¼ MS ¼ 1200 GeV
that result in the reasonably light top squarks which are not
ruled by the LHC experiments. Then for each set of λðMZÞ
and tan β one can calculate the theoretical restriction on
mh1 . The analysis performed in [3] shows that in this case
the two-loop upper bound on the lightest Higgs mass
reaches its maximal value, i.e. 150–155 GeV, for tan β≃
1.5–2 when the low-energy value of the coupling λ can be
as large as 0.7–0.8. The results presented in Table IV
indicate that the quasifixed point solutions in scenarios A
and B correspond to substantially lower values of tan β and
λðMZÞ. Therefore the two-loop upper bound on the lightest
Higgs mass is also considerably lower than 155 GeV. On
the other hand, in order to get solutions which can be
consistent with the observation of the SM-like Higgs state
with mass around ∼125 GeV, the values of the coupling
λðMZÞ should be larger than g01ðMZÞ at least. From
Table IV, one can see that it is possible to find such
solutions in the vicinity of the quasifixed point in the case
of scenario A. In scenario B, the low-energy values of
λðMZÞ are typically smaller than the ones in scenario A, and
it seems to be rather problematic to find phenomenologi-
cally acceptable solutions near the corresponding quasi-
fixed point.
The requirement that λ≳ g01 at the EW scale leads to

extremely hierarchical structure of the Higgs spectrum [3].
Indeed, in this case the qualitative pattern of the Higgs
spectrum is rather similar to the one that arises in the
Peccei-Quinn symmetric NMSSM in which the heaviest
CP-even, CP-odd, and charged states are almost degener-
ate and much heavier than the lightest and second lightest
CP-even Higgs bosons [34,35]. Because the mass of the
second lightest CP-even Higgs state is set by the Z0 boson
mass (MZ0) [3], which should be heavier than 2 TeV, the
heaviest Higgs boson masses lie beyond the multi-TeV
range, and the mass matrix of the CP-even Higgs sector can
be diagonalized by using the perturbation theory [35,36].
Thus the phenomenologically viable quasifixed point
solutions in the E6 inspired SUSY models with extra
Uð1ÞN gauge symmetry imply that all Higgs states except
the lightest one are extremely heavy and cannot be
discovered at the LHC. In this limit the lightest CP-even
Higgs boson is the analogue of the SM Higgs field.
Extremely hierarchical structure of the Higgs spectrum
also implies that all phenomenologically viable quasifixed
point scenarios are quite fine-tuned.
It is useful to compare the results of our analysis of the

quasifixed point scenarios in the E6 inspired SUSY models
with the corresponding results in more simple SUSY
extensions of the SM like the NMSSM [37] and its
modifications [38]. In the NMSSM, the spectrum of the
MSSM is extended by one singlet superfield (for reviews
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see [39]). The term μðHdHuÞ in the superpotential is then
replaced by the coupling term λSHdHu. As in the E6

inspired SUSY models discussed above, the superfield S
acquires a nonzero VEV (hSi ¼ s=

ffiffiffi
2

p
), and an effective μ

term (μeff ¼ λs=
ffiffiffi
2

p
) is automatically generated. However,

the simplest model of this type possesses an extended
global SUð2Þ × ½Uð1Þ�2 symmetry7 that after its breakdown
leads to the appearance of the massless CP-odd scalar
particle in the Higgs boson spectrum which is a Peccei-
Quinn axion [40]. The common way to avoid the axion is to
introduce a term cubic in the new singlet superfield κ

3
S3 in

the superpotential that explicitly breaks an additional Uð1Þ
global symmetry. Here, to simplify our analysis of the RG
flow of the Yukawa couplings, we assume that κ is
negligibly small, while the extended global SUð2Þ ×
½Uð1Þ�2 symmetry is explicitly broken by some other
mechanism like in some modifications of the
NMSSM [38].
The approximate analytical expression (27) can be used

for the calculation of the upper bound on the lightest Higgs
mass mh1 in the NMSSM and its modifications if we set
g01 ¼ 0. From Eq. (27), it follows that for large λ, i.e.
λ >

ffiffiffi
2

p
MZ=v≃ 0.52, the theoretical restriction on mh1

attains its maximal value for tan β ∼ 1, which is larger
than the upper bound on the mass of the lightest Higgs
boson in the MSSM. As a consequence, for large low-
energy values of λ, the fine-tuning of the MSSM, which is
needed to ensure that this model is consistent with the 125–
126 GeV SM-like Higgs boson, can be ameliorated within
the NMSSM [41]. However, in the NMSSM λðMZÞ≃ 0.7
is the largest value in order not to spoil the validity of the
perturbation theory up to the scale MX. The inclusion of
extra 5þ 5̄-plets of matter enlarges the allowed range of λ
at low energies [12]. In this context we also explore here the
RG flow of the Yukawa couplings within the NMSSM with

three families of 5þ 5̄-plets of extra matter (NMSSM+)
[42,43] assuming again that the coupling κ is so small that it
can be ignored in the leading approximation.
The results of our numerical analysis of the two-loop RG

flow of the Yukawa couplings are presented in Figs. 2(c)
and 2(d) as well as in Table V. The complete set of the two-
loop RG equations that describe the running of the gauge
and Yukawa couplings from Q ¼ MX to the EW scale
within the NMSSM and NMSSM+ can be found in [42]. In
the case of the NMSSM we set g0 ¼ 0.725, whereas for the
analysis of the RG flow of htðQÞ and λðQÞ within the
NMSSM+ we fix g0 ¼ 1.5. These values of g0 lead to
giðMZÞ which are very close to the experimentally mea-
sured values of the SM gauge couplings at the EW scale.
Figures 2(c) and 2(d) demonstrate that different trajectories
associated with different solutions of the two-loop RG
equations tend to get attracted to the invariant line, that
corresponds to ρλ ≃ ρt at high energies, and focused in a
relatively narrow region at low energies. In the ðρt; ρλÞ
plane the intersection points of the invariant and quasifixed
line have the following coordinates:

ðCÞρt ¼ 0.80; ρλ ¼ 0.19;

ðDÞρt ¼ 1.15; ρλ ¼ 0.14 (28)

in the cases of the NMSSM and NMSSM+, respectively.
Naively, one can expect that the inclusion of extra 5þ 5̄-

plets of matter should lead to the larger values of the
Yukawa couplings at low energies. Indeed, as was men-
tioned before, extra multiplets of matter change the running
of the SM gauge couplings so that their values at the
intermediate scale rise when the number of new super-
multiplets increases. Since giðQÞ occurs in the right-hand
side of the RG equations with a negative sign, the growth of
the gauge couplings prevents the appearance of the Landau
pole in the evolution of the Yukawa couplings. It means that
in the NMSSM+ λðMZÞ and htðMZÞ are allowed to be
larger than in the NMSSM, so that the lightest Higgs boson

TABLE V. The values of the Yukawa couplings at the EW scale and the upper bounds on the lightest Higgs mass in the NMSSM and
NMSSM+. The values of htðMZÞ and λðMZÞ are calculated by using two-loop RG equations for g1ðMXÞ ¼ g2ðMXÞ ¼ g3ðMXÞ ¼ g0 and
different values of htðMXÞ and λðMXÞ. The low-energy values of the Yukawa couplings are used for the calculation of tan β, tree-level,
and two-loop upper bounds on the mass of the lightest Higgs boson (mð0Þ

h1
and mð2Þ

h1
, respectively). We set mtðMtÞ ¼ 163 GeV,

MS ¼ 1200 GeV, and Xt ¼
ffiffiffi
6

p
MS.

g0 htðMXÞ λðMXÞ htðMZÞ λðMZÞ tan β mð0Þ
h1

(GeV) mð2Þ
h1

(GeV)

0.725 3.0 3.0 1.10 0.54 1.60 93.4 122.5
NMSSM 0.725 1.5 3.0 1.06 0.62 1.90 102.8 128.9

0.725 3.0 1.5 1.12 0.43 1.52 77.8 113.2
0.725 1.5 1.5 1.08 0.53 1.73 92.2 121.9
1.5 3.0 3.0 1.31 0.45 1.02 78.3 113.0

NMSSM+ 1.5 1.5 3.0 1.29 0.51 1.05 88.5 118.5
1.5 3.0 1.5 1.32 0.35 1.01 61.3 105.0
1.5 1.5 1.5 1.30 0.43 1.03 74.2 111.0

7In the MSSM this global symmetry of the Lagrangian reduces
to the gauge one because of the μ term in the superpotential.
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in the NMSSM+ can be heavier than in the NMSSM and
MSSM. On the other hand, the results presented in Table V
and the coordinates of the quasifixed points (28) indicate
that the values of λðMZÞ near quasifixed point (D) tend to
be smaller than in the vicinity of quasifixed point (C). Thus,
for a fixed set of the Yukawa couplings at the GUT scale,
the theoretical restrictions on the mass of the SM-like Higgs
boson become even more stringent after the inclusion of
exotic supermultiplets of matter (see Table V). This
happens because htðQÞ renormalizes by means of strong
interactions while λðQÞ does not. Because of this, the top-
quark Yukawa coupling rises significantly (see Table V)
resulting in the decreasing of λðQÞ which prevails the
growth of this coupling caused by the larger values of
giðQÞ. While the increase of the top-quark Yukawa cou-
pling at the EW scale leads to the decreasing of tan β, that
pushes the lightest Higgs boson mass up, the decreasing of
λðMZÞ reduces the upper limit on mh1 . The results of the
numerical analysis collected in Table V show that for a
fixed set of htðMXÞ and λðMXÞ the last effect dominates. As
a consequence, the upper bound on mh1 in the vicinity of
quasifixed point (D) tend to be substantially smaller than
125 GeV, so that the corresponding quasifixed point
scenario in the NMSSM+ is basically ruled out. In the
NMSSM near quasifixed point (C) the low-energy values of
the top-quark Yukawa coupling are smaller, while λðMZÞ
and tan β are larger than the ones that correspond to the
quasifixed point scenarios (A), (B), and (D). As a result, it
seems to be possible to find in the vicinity of quasifixed
point (C) phenomenologically acceptable solutions with a
125–126 GeV SM-like Higgs boson.
As in quasifixed point scenarios (A) and (B), the relative

variations of htðMZÞ near quasifixed points (C) and (D) are
quite small, i.e. about 4% and 1%, respectively, when
htðMXÞ and λðMXÞ vary from 1.5 to 3 (see Table V). As
before, the relative deviations of λðMZÞ can be substantially
larger, i.e. about 10%–20% for the same interval of
variations of htðMXÞ and λðMXÞ. Moreover, the values
of the gauge and Yukawa couplings as well as tan β
associated with quasifixed points (A) and (D) are rather
close. At the same time, the upper bound on mh1 in the E6

inspired SUSY model with extra Uð1ÞN gauge symmetry is
considerably larger than in the NMSSM with three extra
pairs of 5þ 5̄ supermultiplets of matter because of the
Uð1ÞN D-term contribution to mh1 that increases the two-
loop theoretical restriction onmh1 by ∼7–8 GeV. Thus, this
relatively small contribution to the lightest Higgs mass
plays an important role, enabling us to find phenomeno-
logically acceptable solutions with a 125–126 GeV Higgs
mass near quasifixed point (A) in the case of scenario A.

IV. CONCLUSIONS

In this paper, we have explored the RG flow of the gauge
and Yukawa couplings within the E6 inspired SUSY
models with extra Uð1ÞN gauge symmetry under which

right-handed neutrinos have zero charge. In these models,
single discrete ~ZH

2 symmetry forbids the tree-level flavor-
changing transitions and the most dangerous baryon and
lepton number violating operators. Just below the GUT
scale, the matter content of these SUSY models includes
three copies of 27i-plets and a set of Ml and M̄l super-
multiplets from the incomplete 270l and 27

0
l representations

of E6. All supermultiplets Ml are even under the ~ZH
2

symmetry, whereas all matter superfields, that fill in
complete 27i-plets, are odd. The supermultiplets M̄l can
be either odd or even under the ~ZH

2 symmetry. In particular,
the set of supermultiplets Ml include either lepton SUð2ÞW
doublet L4 (scenario A) or color triplet down-type quark dc4
(scenario B) states to render the lightest exotic quark
unstable. In scenario A the exotic quarks are leptoquarks,
while scenario B implies that the exotic quarks are
diquarks.
Our numerical analysis revealed that the solutions of the

two-loop RG equations for the SUð2ÞW and Uð1ÞY gauge
couplings are focused in the infrared region near the
quasifixed points which are rather close to the measured
values of these couplings at the EW scale. On the other
hand, the convergence of the solutions for the strong gauge
coupling g3ðQÞ to the fixed point is rather weak, because
the corresponding one-loop beta function vanishes in
scenario A and remains quite small, i.e. β3 ¼ 1, in scenario
B. Nonetheless, we demonstrated that in the case of
scenario A the values of the overall gauge coupling g0
around 1.5 lead to giðMZÞ which are quite close to the
measured central values of these couplings at the EW scale
including the strong gauge coupling. In scenario B the low-
energy values of g3ðQÞ are always substantially smaller
than the experimentally measured central value of this
coupling. It means that the values of α3ðMZÞ, which are
reasonably close to its measured value, result in the
appearance of the Landau pole below the GUT scale,
spoiling the gauge coupling unification in this scenario.
Moreover, our analysis indicates that in this case the SM-

like Higgs state tends to be lighter than 125 GeV. Indeed,
we argued that the solutions of the two-loop RG equations
for the Yukawa couplings are concentrated near the
quasifixed points when htðMXÞ and λðMXÞ grow. In
scenarios A and B, these quasifixed points correspond to
the values of tan β around 1 and 1.2, respectively. Near the
quasifixed point, the low-energy values of the coupling λ
tend to be slightly larger in scenario A than in scenario B.
As a consequence, in the vicinity of the quasifixed point the
lightest Higgs state is allowed to be a few GeV heavier in
scenario A than in scenario B. Our estimations show that
for 1.5≲ htðMXÞ; λðMXÞ ≲ 3 the maximal value of the
lightest Higgs mass is just above 126 GeV in scenario A
and a few GeV lower than 125 GeV in scenario B. Thus it
seems to be rather problematic to find phenomenologically
acceptable solutions near the quasifixed point in the case of
scenario B.
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In this context it is worth noting that the absolute
maximum value of the lightest Higgs mass in the E6

inspired SUSYmodels with extraUð1ÞN symmetry is about
155 GeV [3], so that it is considerably larger than the upper
bounds on mh1 in the vicinity of the quasifixed points. This
absolute maximum value of mh1 is attained for tan β≃
1.5–2 that correspond to the substantially lower values of
htðMZÞ than the ones associated with the quasifixed point
scenarios. Since larger values of the top-quark Yukawa
coupling result in smaller λðMZÞ, the two-loop upper
bounds on mh1 near the quasifixed points are significantly
lower than 155 GeV. Besides, the solutions with a 125–
126 GeV SM-like Higgs boson can be obtained only if
λðMZÞ > g01ðMZÞ. Such solutions can be found in the
vicinity of the quasifixed point in the case of scenario
A. However, for λðMZÞ > g01ðMZÞ the Higgs spectrum has
very hierarchical structure, which implies that all Higgs
states except the lightest one cannot be discovered at the
LHC and the phenomenologically viable solutions asso-
ciated with the quasifixed point scenarios are very
fine-tuned.
Finally, we compared the results of our analysis of the

quasifixed point scenarios in the E6 inspired SUSY models
with the corresponding results in the NMSSM and
NMSSM+. The two-loop RG flow of the Yukawa cou-
plings within the NMSSM+ is very similar to the one in
scenario A. The low-energy values of the Yukawa cou-
plings and tan β associated with the quasifixed point
scenarios are very close in both models as well.
Nevertheless, because of the Uð1ÞN D-term contribution
tomh1 , the upper bound on the lightest Higgs boson mass is
larger in scenario A as compared with the NMSSM+. As a
result, in the NMSSM+ the theoretical restriction on mh1 in
the vicinity of the quasifixed point is lower than 120 GeV.
This does not rule out NMSSM+ but definitely disfavors

the corresponding scenario. In the NMSSM, the top-quark
Yukawa coupling is smaller, whereas λðMZÞ and tan β are
larger near the quasifixed point as compared with the
quasifixed point scenarios in the E6 inspired SUSY models
discussed here and NMSSM+. Therefore, the upper bound
on the mass of the lightest Higgs boson is less stringent and
can be almost as large as 130 GeV.
The results presented in this article show that it is not so

easy to get 125–126 GeV SM-like Higgs mass within the
nonminimal SUSY models mentioned above as one could
naively expect. In this context, it would be appropriate to
recall that in the MSSM large loop corrections are required
to raise the Higgs boson mass to 125 GeV. This can be
achieved only if top squarks are relatively heavy that leads
to some degree of fine-tuning. As follows from Tables 4
and 5, near the quasifixed points in the case of scenario A
and NMSSM the tree-level upper bound on the lightest
Higgs boson mass may be still 10 GeV larger than in the
MSSM, so that in order to match the 125–126 GeV Higgs
mass value the size of loop corrections can be smaller and
top squarks can be lighter in these cases as compared with
the ones in the minimal SUSY model.
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