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We argue that Witten’s loop mechanism for the right-handed Majorana neutrino mass generation
identified originally in the SOð10Þ grand unification context can be successfully adopted to the class of the
simplest flipped SUð5Þ models. In such a framework, the main drawback of the SOð10Þ prototype—in
particular, the generic tension among the gauge unification constraints and the absolute neutrino mass
scale—is alleviated, and a simple yet potentially realistic and testable scenario emerges.
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I. INTRODUCTION

The apparent absence of supersymmetry in the sub-TeV
domain indicated by the current LHC data reopens the
questionwhether the unprecedented smallness of the absolute
neutrino mass scale may be ascribed to a loop suppression
with the underlying dynamics in the TeV ballpark rather than
the traditional seesaw [1–6] picture featuring a very high
scale, typically far beyond our reach. Recently, there has been
a lot of activity in this directionwith, e.g., dedicated studies of
the Zee [7], Zee-Babu [8–10], and other models (cf. [11,12]
and references therein) focusing on their distinctive low-
energyphenomenology and, in particular, their potential to be
probed at the LHC and other facilities, see, e.g., [13–17].
With the upcoming generation of megaton-scale experi-

ments [18–20] dedicated, besides precision neutrino phys-
ics, to the search of perturbative baryon number violating
(BNV) processes such as proton decay, the same question
can be readdressed from the high-energy perspective. In
principle, there can be high-scale loop diagrams behind the
right-handed (RH) neutrino masses underpinning the see-
saw mechanism rather than a direct low-scale LL con-
traction, with possible imprints in the BNV physics.
Among such options, a prominent role is played by

Witten’s scheme [21] in the framework of the SOð10Þ

grand unification (GUT) where a pair of lepton-number
violating vacuum expectation values (VEVs) is tied to the
leptonic sector at two loops. Its main beauty consists in the
observation that the RH neutrino masses are generated at
the renormalizable level even in the simplest realization
of SOð10Þ with just the minimal scalar contents sufficient
for the desired spontaneous symmetry breaking (i.e.,
10⊕ 16⊕ 45, cf. [22] and references therein); hence, there
is in principle no need to invoke large scalar representations
for that sake.
In practice, however, Witten’s mechanism has never found

a clearly natural realization as a basis for a potentially
realistic model building. Among the possible reasons there
is, namely, the dichotomy between the gauge unification
constraints and the absolute size of Witten’s loop governed
by the position of the B − L breaking scale MB−L which is
required to be around the GUT-scale (MG), due to the ðα=πÞ2
suppression factor, in order to yield the “correct” seesaw
scaleMR ∼ ðα=πÞ2M2

B−L=MG in the 1013 GeV ballpark. On
one hand, this is exactly the situation encountered in
supersymmetric (SUSY) GUTs where the one-step breaking
picture characterized by a close proximity ofMB−L andMG
is essentially inevitable; at the same time, however, the low-
scale supersymmetry makes the F-type loops at the GUT
scale entirely academic due to the large cancellation
involved. On the other hand, non-SUSY GUTs generally
require MB−L ≪ MG in order to account for the gauge
unification constraints for which Witten’s mechanism yields
contribution much below the desired MR ∼ 1013 GeV.
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In this respect, the beginning of the 1980s, when the low-
energySUSYwasnot yetmainstreamand the lackof detailed
information about the standard model (SM) gauge coupling
evolution as well as the absolute light neutrino mass scale
obscured the issue with the too low Witten’s MR in non-
SUSY scenarios, was the only timewhen this business really
flourished.1 For a more recent attempt to implement such
ideas in a simple, yet potentially realistic scenario the
reader is deferred to, e.g., the works [23,24] where the split
supersymmetry scheme supports both MB−L ∼MG and
very heavy scalar superpartners for which, in turn, the
GUT-scale F-type Witten’s loop is not entirely canceled.
In this work we approach this conundrum from a

different perspective; in particular, we stick to the core
of Witten’s loop while relaxing, at the same time, the strict
gauge unification constraints. For that sake, we depart from
the canonical realization of Witten’s mechanism in a full-
fledged SOð10Þ GUT to its “bare-bone” version which, as
we point out, can be sensibly implemented within its
simpler cousin, namely, the flipped SUð5Þ [25–27].
Indeed, the strict full gauge unification constraints

inherent to the SOð10Þ GUTs are relaxed in such a scenario
[owing to the nonsimple structure of its SUð5Þ ⊗ Uð1Þ
gauge group] which, in turn, makes it possible to have the
rank-reducing vacuum expectation value (VEV) governing
Witten’s loop in the 1016 GeV ballpark even if the theory is
nonsupersymmetric.
The reason we are focusing just on the flipped SUð5Þ

framework is twofold: First, the baryon-number violating
observables such as the d ¼ 6 proton decay [28] may still
be used to constrain specific scenarios even if the under-
lying dynamics is as high as at 1016 GeV, as we will
comment upon in the following. This virtue is obviously
lost if one picks any of the “smaller” subgroups of SOð10Þ
such as Pati-Salam2 [29], let alone the number of left-right
symmetric (LR) settings based on the SUð3Þ ⊗ SUð2ÞL ⊗
SUð2ÞR ⊗ Uð1ÞB−L gauge symmetry. Second, the flipped
variant of SUð5Þ ⊗ Uð1Þ ⊂ SOð10Þ is the only one for
which a radiative generation of the RH neutrino masses
makes sense because in the standard SUð5Þ the RH
neutrinos are gauge singlets and as such they receive an
explicit singlet mass term.
Besides this, the flipped scenario has got other virtues:

the proton decay estimates3 may be under better control
than in the standard SUð5Þ because the leading theoretical
uncertainties in the GUT-scale calculation (namely, the
few-percent ambiguities in the GUT-scale matching of the

running gauge couplings due to the Planck-induced effects
[30–33]) are absent. Furthermore, the flipped scenario
offers better perspectives for a solution of the doublet-
triplet splitting problem (if desired; see, e.g., [34]) and,
unlike in the “standard” SUð5Þ, there is no monopole
problem in the flipped case either.
On top of that, the proposed scenario is in a certain sense

even simpler than the standard approach to the minimal4

renormalizable flipped SUð5Þ where the seesaw scale is
associated to the VEV of an extra scalar representation
transforming as a 50-dimensional four-index tensor under
SUð5Þ coupled to the fermionic 10 ⊗ 10 bilinear (see, e.g.,
[36]); indeed, such a large multiplet is not necessary in the
flipped SUð5Þ à la Witten; as we shall argue, the two
models can even be distinguished from each other if rich-
enough BNV physics is revealed at future facilities. In
particular, we observe several features in the typical ranges
predicted for the Γðp → π0eþÞ and Γðp → π0μþÞ partial
widths [as well as for those related by the isospin symmetry
such as Γðp → ηeþÞ etc.] that are trivially absent in the
model with 50H in the scalar sector. Remarkably enough,
this makes it even possible to obtain rather detailed
information about all kinematically allowed d ¼ 6 nucleon
decay channels in large portions of the parameter space
where the theory is stable and perturbative.
The work is organized as follows: In Sec. II, after a short

recapitulation of the salient features of the standard and
flipped SUð5Þ models and the generic predictions of the
partial proton decaywidths therein, we focus on theWitten’s
loop as a means to constrain the shape of the (single) unitary
matrix governing the proton decay channels into neutral
mesons in the flipped case. In Sec. III we perform a detailed
analysis of the simplest scenario in which a set of interesting
correlations among the different partial proton decay widths
to neutral mesons are revealed with their strengths governed
by the absolute size ofWitten’s diagram. In Sec. IV,we adopt
this kind of analysis to the minimal potentially realistic
scenario. Then we conclude.

II. SUð5Þ ⊗ Uð1Þ À LA WITTEN

Let us begin with the basics of the flipped SUð5Þ scheme
and a short account of the d ¼ 6 proton decay in the SUð5Þ-
based unifications focusing, namely, on the minimal
versions of the standard and flipped scenarios and the
potential to discriminate experimentally among them if
proton decay would be seen in the future.

A. The flipped SUð5Þ basics
The quantum numbers of the matter multiplets in the

SUð5Þ ⊗ Uð1ÞX extensions of the canonical SUð5Þ

1This can be seen at the citation counts of the original study
[21] as about 70% of its today’s total dates back to before 1985.

2Let us recall that proton decay in Pati-Salam requires a
conspiracy in the Higgs sector as it does not run solely through
the gauge interactions.

3For a nice discussion on how to use BNV observables to
distinguish between the standard and the flipped SUð5Þ see, e.g.,
[35].

4Minimality here refers to models without extra matter fields;
for an alternative approach including, for instance, extra singlet
fermions see, e.g., [37].
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framework are dictated (up to an overall normaliza-
tion factor) by the requirement of the gauge anomaly
cancellation:

5̄M ≡ ð5̄;−3Þ; 10M ≡ ð10;þ1Þ; 1M ≡ ð1;þ5Þ: (1)

Besides the “standard” SUð5Þ assignment there is a second
“flipped” embedding of the standard model (SM) hyper-
charge into the corresponding algebra, namely,

Y ¼ 1

5
ðX − T24Þ; (2)

where the SUð5Þ generator T24 is in this case understood to
conform the SM normalization (i.e., Y ¼ T24 and Q ¼
T3
L þ Y in the standard case). This swaps uc ↔ dc and

νc ↔ ec with respect to the standard SUð5Þ field identi-
fication and, hence, the RH neutrinos fall into 10M rather
than5 1M. This also means that a VEVof a scalar version of
ð10;þ1Þ (to be denoted by 10H) can spontaneously break
the SUð5Þ ⊗ Uð1ÞX gauge symmetry down to the SM.6

Besides that, the scheme benefits from several nice
features not entertained by the “standard” SUð5Þ scenario,
namely: (i) The Yukawa Lagrangian

L∋Y1010M10M5H þ Y 5̄10M5̄M5
�
H þ Y15̄M1M5H þ H:c:;

(3)

including the 5-dimensional scalar 5H ¼ ð5;−2Þ hosting
the SM Higgs doublet, yields Md ¼ MT

d , Me arbitrary and,
in particular, MD

ν ¼ MT
u , none of which is in a flagrant

conflict with the observed quark and lepton flavor structure
as it is the case for Md ¼ MT

e in the “standard” SUð5Þ.
(ii) The gauge unification is in a better shape than in the
“standard” SUð5Þ case because only the two non-Abelian
SM couplings are required to unify (which, indeed, they do
at around 1016 GeV, cf. Appendix C)—note that the SM
hypercharge is a “mixture” of the T24 and X charges (2)
and, thus, the SM coupling g0 obeys a nontrivial matching
condition including an unknown coupling gX associated to
the extra Uð1ÞX gauge sector. Hence, there is no need to
invoke the TeV-scale supersymmetry for the sake of the
gauge unification here as in the “standard” SUð5Þ case.
(iii) Remarkably, the issue with the out-of-control Planck-
scale induced shifts of the effective gauge couplings (and
thus induced large uncertainties in the MG determination
[30–33]) is absent at the leading order because there is no
way to couple the 10H as the carrier of the large-scale VEV
to the pair of the gauge field tensors Fμν. Thus, the

prospects of getting a reasonably good grip on the proton
lifetime in the flipped SUð5Þ are much better than in the
ordinary SUð5Þ model.
The main drawback of such a scenario is the fact that the

simplest “conservative” mechanism for generating a
Majorana mass term for the RH neutrinos at the tree level
requires an extra 50-dimensional scalar field 50H ≡
ð50;−2Þ whose large VEV in the 10M10M50H contraction
picks just the desired components.7 Obviously, one pays a
big price here (i.e., 100 real degrees of freedom which
further reduce the effective Planck scale [30,38–40]) and
there is not much insight into the neutrino mass generation
that this may provide (as, e.g., there is no grip on the flavor
structure). Hence, this approach is not optimal as it totally
ignores the bounty of the recent high-precision neutrino
data.

B. Proton decay in the standard and flipped SUð5Þ
Since the new dynamics associated to the rich extra gauge

and scalar degrees of freedom of the flipped SUð5Þ scenario
takes place at a very high scale the most promising observ-
ables it can find its imprints in are those related to the
perturbative baryon number violation, namely, proton decay.
To this end, the flipped version of the SUð5Þ unification

is in a better shape than its “standard” cousin as it provides
a relatively good grip [26,28] on the partial proton decay
widths to neutral mesons and charged leptons, whereas
there is usually very little one can say on general grounds
about these in the standard SUð5Þ where those are the
charged meson plus antineutrino channels which are
typically under better theoretical control. Needless to
say, this is very welcome as the observability of the
charged leptons in the large-volume liquid scintilator
[18]/water-Cherenkow [19]/liquid Argon [20] experiments
boosts the expected signal to background ratio and, hence,
provides a way better sensitivity (by as much as an order-
of-magnitude) in these channels than in those with the
unobserved final-state antineutrino.
Let us just note that this has to do, namely, with the

hypercharge of the heavy d ¼ 6 proton-decay-generating
gauge colored triplets which under the SM transform as
ð3; 2;− 5

6
Þ in the standard SUð5Þ case and as ð3; 2;þ 1

6
Þ in

the flipped SUð5Þ, respectively.8 As for the former, the
relevant d ¼ 6 effective BNVoperators are [28] of theOI ∝
ūcQēcQ and OII ∝ ūcQd̄cL type while for the latter these
are OIII ∝ d̄cQūcL and OIV ∝ d̄cQν̄cQ where “pairing” is
always between the first two and the last two fields
therein. Hence, the neutral mesonþ charged lepton de-
cays in the standard SUð5Þ receive contributions from
both OI and OII while it is only OIII that drives it in the5Recall that in the standard SUð5ÞQ, uc, and ec are in 10M, dc

and L in 5̄M, and νc in 1M.
6This is the observation in the core of the “missing partner”

doublet-triplet splitting mechanism (mainly relevant to super-
symmetry) that brought a lot of interest to the flipped SUð5Þ
scenario in the 1980s [34].

7As does h126Hi coupled to 16M16M in SOð10Þ.
8This is also reflected by the classical notation where the

SUð2Þ components of the former are called X and Y while for the
latter these are usually denoted by X0 and Y 0.
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flipped scenario.9 On the other hand, the situation is rather
symmetric in the charged mesonþ neutrino channels
which in both cases receive sizeable contributions from
only one type of a contraction [OII in SUð5Þ andOIII in its
flipped version]. Let us also note that the predictivity for
these channels is further boosted by the coherent summa-
tion over the (virtually unmeasurable) neutrino flavors;
hence, the inclusive decay widths to specific charged
mesons are typically driven by the elements of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. For in-
stance, in a wide class of simple SUð5Þ GUTs (namely,
those in which the up-type quark mass matrix is symmetric)
the p-decay widths to πþ and Kþ can be written as

Γðp → πþν̄Þ ¼ F1jðVCKMÞ11j2M;

Γðp → Kþν̄Þ ¼ ½F2jðVCKMÞ11j2 þ F3jðVCKMÞ12j2�M; (4)

where F1;2;3 are calculable numerical factors and M is a
universal dimensionful quantity governed by the parame-
ters of the underlying “microscopic” theory such as the
GUT scale, the gauge couplings, etc. This feature is yet
more pronounced in the simple flipped scenarios (namely,
those in which the down-type quark mass matrix is
symmetric10); there one even obtains a sharp prediction

Γðp → Kþν̄Þ ¼ 0 (5)

which is a clear smoking gun of the flipped SUð5Þ
unification. For more details an interested reader is deferred
to the dedicated analysis [35].
Coming back to the neutral meson channels in the

simplest flipped SUð5Þ scenarios (i.e., assuming symmetry
of the down quark mass matrix), the partial widths of our
main interest may be written in the form

Γðp → π0eþα Þ
Γðp → πþν̄Þ ¼ 1

2
jðVCKMÞ11j2jðVPMNSUνÞα1j2; (6)

Γðp → ηeþα Þ
Γðp → πþν̄Þ ¼

C2

C1

jðVCKMÞ11j2jðVPMNSUνÞα1j2; (7)

Γðp → K0eþα Þ
Γðp → πþν̄Þ ¼ C3

C1

jðVCKMÞ12j2jðVPMNSUνÞα1j2; (8)

where VPMNS stands for the Pontecorvo-Maki-Nakagawa-
Sakata leptonic mixing matrix and Uν is the unitary matrix

diagonalizing the light neutrino masses.11 Note that
VPMNSUν ¼ UL

e is the LHS diagonalization matrix in the
charged lepton sector [see Eq. (A9)]; we write it in such a
“baroque” way because VPMNS is measurable and, as will
become clear, Uν is constrained in the model under
consideration. The absolute scale in Eqs. (6)–(8) is set by

Γðp → πþν̄Þ ¼ C1

�
gG
MG

�
4

; (9)

where gG is the SUð5Þ gauge coupling and the numerical
factors

C1 ¼
mp

8πf2π
A2
Ljαj2ð1þDþ FÞ2; (10)

C2 ¼
ðm2

p −m2
ηÞ2

48πm3
pf2π

A2
Ljαj2ð1þD − 3FÞ2; (11)

C3 ¼
ðm2

p −m2
KÞ2

8πm3
pf2π

A2
Ljαj2

�
1þ mp

mB
ðD − FÞ

�
2

(12)

are obtained by chiral Lagrangian techniques, see [28]
(and references therein), [35] and Appendix A. From
Eqs. (6)–(8), the theory’s predictive power for the proton
decay to neutral mesons (especially for the “golden”
p → π0eþ channel), in particular, its tight correlation to
neutrino physics, is obvious as the only unknown entry in
Eqs. (5)–(8) is the unitary matrix Uν.
In what follows we shall exploit the extra constraints on

the lepton sector flavor structure emerging in the flipped
SUð5Þ model with Witten’s loop in order to obtain con-
straints on the admissible shapes of the Uν matrix and,
hence, get a grip on the complete set of proton decay
observables. Let us note that this is impossible in the models
in which the RH neutrino masses are generated in the
“standard” way (e.g., by means of an extra 50H) where, due
to the entirely new type of a contraction entering the lepton
sector Lagrangian, Uν typically remains unconstrained.

C. Witten’s mechanism in the flipped SU(5)

The main benefit of dealing with a unification which is
not “grand” (i.e., not based on a simple gauge group) is the
absence of the strict limits on the large-scale symmetry
breaking VEVs from an overall gauge coupling conver-
gence at around 1016 GeV. Indeed, unlike in the SOð10Þ
GUTs which typically require the rank-breaking VEV (e.g.,
that of 16- or 126-dimensional scalars) to be several orders
of magnitude below MG [43–46] and, hence, too low for

9In fact, OIV is almost always irrelevant as it yields a left-
handed antineutrino in the final state with typically (in the
classical seesaw picture) a very tiny projection on the light
neutrino mass eigenstates.

10This, in fact, is the prominent case when the flipped-SUð5Þ
proton decay is robust, i.e., cannot be rotated away, cf. [28,35,41];
for a more recent account of the same in a flipped-SUð5Þ scenario
featuring extra matter fields see, e.g., [42].

11Let us anticipate that Eqs. (6)–(8) are written in the basis in
which the up-type quark mass matrix is diagonal and real;
needless to say, the observables of our interest are all insensitive
to such a choice. For more details see Appendix B.
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Witten’s loop to account for the “natural” 1012−14 GeV RH
neutrino masses domain, no such issue is encountered in
the SUð5Þ ⊗ Uð1Þ scenario due to its less restrictive partial
unification pattern. In particular, only the non-Abelian SM
gauge couplings are supposed to converge toward MG
which, in turn, should be compatible with the current
proton lifetime limits; no other scale is needed.
Furthermore, the SUð5Þ ⊗ Uð1Þ-breaking VEV VG ≡
h10Hi is perfectly fit from the point of view of the gauge
structure of Witten’s type of a diagram in this scenario.

1. Witten’s loop structure

As in the original SOð10Þ case the gauge and loop
structure of the relevant graphs (cf., Fig. 1) conforms12 to
several basic requirements: (i) there should be two VG’s
sticking out of the diagram so that the correct “amount” of
the Uð1ÞX breaking is provided for the desired RH neutrino
Majorana mass term; (ii) the interactions experienced by
the fermionic current must mimic the 10M10M50H coupling
of the renormalizable models in which the RH neutrino
mass is generated at the tree level; (iii) only the minimal set
of scalars required for the spontaneous symmetry breaking
should be employed. Given that, the structure depicted in
Fig. 1 turns out to be the simplest option;13 indeed, 5 ⊗
24 ⊗ 24 (where 24 stands for the gauge fields) is the
minimum way to devise the desired 50. Note also that the
Uð1ÞX charge of the gauge 24G’s is zero and, thus, the two
units of X are delivered to the leptons via their Yukawa
interaction with 5H. We have checked by explicit calcu-
lation that, indeed, the gauge structure of the graph yields a
nonzero contribution for, and only for, the RH neutrino.

2. The right-handed neutrino mass matrix

Following the standard Feynman procedure the RH
neutrino mass matrix can be written in the form14

MM
ν ¼

�
1

16π2

�
2

g4GY10μ
h10Hi2
M2

G
×Oð1Þ; (13)

where gG is the (unified) gauge coupling corresponding to
that of the SUð5Þ part of the gauge group, μ is the
(dimensionful) trilinear scalar coupling among 10H’s and
5H, cf. Eq. (15), Y10 is the Yukawa coupling of 5H to the

matter bilinear 10M ⊗ 10M, cf. Eq. (3), h10Hi is the GUT-
symmetry-breaking VEV, MG denotes the GUT scale and,
finally, the Oð1Þ factor stands for the remainder of the
relevant expression. Besides the double loop-momentum
integration [up to the geometrical suppression factors that
have already been taken out in Eq. (13)] this may contain
other structures specific for a particular evaluation
method15 such as, e.g., unitary transformations among
the defining and the mass bases in different sectors. Note
also that the second power of MG in the denominator is
expected on dimensional grounds.
To proceed, we shall cluster g2G with the two powers of

VG and formally cancel this against the M2
G factor (follow-

ing the usual MG ∼ gGVG rule of thumb)

MM
ν ¼

�
1

16π2

�
2

g2GY10μK; (14)

where the possible inaccuracy of this has been concealed
into the definition of the (hitherto unknown) factor K. This,
in fact, is the best one can do until all the scalar potential
couplings are fixed; since, however, we do not embark on a
detailed analysis of the effective potential and its spectrum
underpinning any possible detailed account for the relevant
gauge unification constraints, all our results will be
eventually parametrized by the value of K. A qualified
guess of the size of the loop integral [47] (assuming no
random cancellations) puts this factor to the Oð10Þ ball-
park; hence, in what follows we shall consider K from
about 5 to about 50.
In the rest of this section we shall elaborate on Eq. (14);

although there are several undetermined factors there,
namely, Y10, μ, and K, the former two are subject to

FIG. 1. The gauge structure of Witten’s loop in the flipped
SUð5Þ scenario under consideration. Note that we display just
one representative out of several graphs that may be obtained
from the one above by permutations.

12Note that the quantum numbers of the submultiplets under
the SUð5Þ subgroup of SOð10Þ indicated in Witten’s original
work [21] are irrelevant here as the RH neutrinos in the flipped
scenario reside in 10 of SU(5) rather than in a singlet.

13Note that minimality in this context depends on the specific
construction of the perturbation expansion as, e.g., one diagram
in the broken phase approach with massive propagators corre-
sponds to a tower of graphs in the unbroken-phase theory when
the VEVs are included in the interaction Hamiltonian.

14Note that due to the symmetry of Y10 the algebraic structure
of the “permuted” graphs is the same as the one in Fig. 1 and,
hence, all contributions are covered by expression (13).

15Obviously, there are several equivalent approaches to the
evaluation of the momentum integrals involved in the Oð1Þ
factor: one can either work in the mass basis in which the
propagators are diagonal and the couplings contain the rotations
from the defining to the mass basis or vice versa; in principle, one
may even work in a massless theory with VEVs in the interaction
part of the Lagrangian.
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perturbative consistency constraints following from the
requirements of the SM vacuum stability and general
perturbativity which, together with the above-mentioned
bounds on K, impose rather strict limits on the absolute
scale of the RH neutrino masses.

3. Constraints from the SM vacuum stability

Here we attempt to identify the parameter-space domains
that may support a stable SM vacuum, i.e., those for which
there are no tachyons (i.e., no negative-sign eigenvalues of
the relevant scalar mass-squared matrix) in the spectrum.
Tree-level scalar potential.—Let us parametrize the tree-

level scalar potential as

V0 ¼
1

2
m2

10 Tr ð10†H10HÞ þm2
55

†
H5H

þ 1

8
ðμεijklm10ijH10klH5mH þ H:c:Þþ

þ 1

4
λ1½Tr ð10†H10HÞ�2 þ

1

4
λ2 Tr ð10†H10H10†H10HÞ

þ λ3ð5†H5HÞ2 þ
1

2
λ4 Tr ð10†H10HÞð5†H5HÞ

þ λ55
†
H10H10

†
H5H; (15)

where 10H and 5H are conveniently represented by a 5 × 5
complex antisymmetric matrix and a 5-component complex
column vector, respectively, and the normalization factors
in the interaction terms have been chosen such that they
ensure simplicity of the resulting Feynman rules and,
hence, of the results below. Note that we choose a basis
in which the GUT-scale VEV VG and the electroweak VEV
v are accommodated in the following components:

h1045i ¼ −h1054i ¼ VG; h54i ¼ v: (16)

The SM vacuum.—The SM vacuum stationarity con-
ditions read

VG½m2
10 þ V2

Gð2λ1 þ λ2Þ þ v2ðλ4 þ λ5Þ� ¼ 0;

v½m2
5 þ 2v2λ3 þ V2

Gðλ4 þ λ5Þ� ¼ 0: (17)

There are in general four solutions to this system, namely,

VG ¼ v ¼ 0∶SUð5Þ ⊗ Uð1Þ;
VG ≠ 0; v ¼ 0∶SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ;
VG ≠ 0; v ≠ 0∶SUð3Þ ⊗ Uð1Þ;
VG ¼ 0; v ≠ 0∶SUð4Þ ⊗ Uð1Þ;

with the preserved symmetry indicated on the right; the first
three then correspond to consecutive steps in the physically
relevant symmetry breaking chain.

The scalar masses.—As long as only the signs of the
scalar mass-squares are at stakes one can work in any basis.
Using the “real field” one, i.e., Ψ ¼ f10�ij; 10ij; 5�i ; 5ig, the
mass matrix M2 ≡ h∂2V=∂Ψ�∂Ψi evaluated in the SM
vacuum has the following system of eigenvalues (neglect-
ing all subleading terms):

m2
G1;…;16

¼ 0 (18)

m2
H ¼

�
4λ3 − 2ðλ4 þ λ5Þ2

2λ1 þ λ2

�
v2; (19)

m2
S ¼ 2ð2λ1 þ λ2ÞV2

G; (20)

m2
Δ1

¼ − 1

2
ðλ2 þ λ5ÞV2

G − 1

2
VG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − λ5Þ2V2

G þ 4μ2
q

;

m2
Δ2

¼ − 1

2
ðλ2 þ λ5ÞV2

G þ 1

2
VG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − λ5Þ2V2

G þ 4μ2
q

:

(21)

A few comments are worth making here:
(i) The 16 zeroes in Eq. (18) correspond to the Goldstone

bosons associated to the spontaneous breakdown of
the SUð5Þ ⊗ Uð1Þ symmetry to the SUð3Þc ⊗ Uð1ÞQ
of the low-energy QCD ⊗ QED,

(ii)mH is the mass of the SM Higgs boson. Let us note
that the recent ATLAS [48] and CMS [49] measure-
ments ofmH indicate that the running effective quartic
Higgs coupling at around MG, i.e., the parenthesis in
Eq. (19), should be close to vanishing, see, e.g., [50]
and references therein,

(iii)mS is the mass of the heavy singlet in 10H,
(iv) The remaining eigenvalues correspond to the leftover

mixture of the colored triplets with the SM quantum
numbers (3,1,−1=3) from 5H ⊕ 10H (6 real fields
corresponding to each eigenvalue).

Absence of tachyons.—Clearly, there are no tachyons in
the scalar spectrum as long as

2λ1 þ λ2 > 0; (22)

2λ3ð2λ1 þ λ2Þ > ðλ4 þ λ5Þ2; (23)

λ2 þ λ5 < 0; (24)

and, in particular,

jλ2 þ λ5jVG >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2 − λ5Þ2V2

G þ 4μ2
q

; (25)

which may be further simplified to μ2 < λ2λ5V2
G.

Combining this with (24) one further concludes that both
λ2 and λ5 must be negative. This also means that λ1 must be
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positive and obey 2λ1 > jλ2j and, at the same time λ3 must
be positive. To conclude, the μ factor in formula (14) is
subject to the constraint

jμj ≤
ffiffiffiffiffiffiffiffiffi
λ2λ5

p
VG (26)

in all parts of the parameter space that can, at the tree level,
support a (locally) stable SM vacuum.

4. Perturbativity constraints

Let us briefly discuss the extra constraints on the RHS of
Eq. (14) implied by the requirement of perturbativity of the
couplings therein. Since the graph in Fig. 1 emerges at the
GUT scale it is appropriate to interpret these couplings as
the running parameters evaluated at MG. Note that the
effective theory below this threshold is the pure SM and,
thus, one may use the known qualitative features of the
renormalization group evolution of the SM couplings to
assess their behavior over the whole domain from v to VG.
In general, one should assume that for all couplings

perturbativity is not violated atMG and belowMG the same
holds for the “leftover” parameters of the effective theory.
To that end, one should consider several terms in the
perturbative expansion of all amplitudes in the relevant
framework and make sure the (asymptotic) series thus
obtained does not exhibit pathological growth of higher-
order contributions (to a certain limit). This, in full
generality, is clearly a horrendous task so we shall as usual
adopt a very simplified approach. In particular, we shall
make use of the fact that the running of all dimensionless
couplings in the SM is rather mild so, in the first
approximation, it is justified to consider their values at
only one scale and assume the running effects will not
parametrically change them. Hence, in what follows we
shall assume that

jλij ≤ 4π ∀i (27)

for all the couplings in the scalar potential.

5. Resulting bounds on the Uν matrix

With this at hand one can finally derive the desired
constraints on the Uν matrix governing the proton decay
channels to neutral mesons (6)–(8). Indeed, using the
seesaw formula, one can trade MM

ν in Eq. (14) for the
physical light neutrino mass matrix mLL and the Dirac
part of the full 6 × 6 seesaw matrix16 MM

ν ¼
−MD

ν ðmLLÞ−1ðMD
ν ÞT which, due to the tight link between

MD
ν and the up-type quark mass matrix in the simplest

scenarios, MD
ν ¼ MT

u , yields MM
ν ¼ −MT

uðmLLÞ−1Mu.
Furthermore, the basis in the quark sector can always be
chosen such that the up-quark mass matrix is real and

diagonal (see Appendix B); at the same time, one can
diagonalize mLL ¼ UT

νDνUν and obtain

MM
ν ¼ −DuU

†
νD−1

ν U�
νDu: (28)

Combining this with formula (14) and implementing the
vacuum stability constraint (26) one obtains

jDuU
†
νD−1

ν U�
νDuj ≤

αG
64π3

ffiffiffiffiffiffiffiffiffi
λ2λ5

p
jY10jVGK; (29)

where we denoted αG ≡ g2G=4π. Finally, assuming
maxi;j∈f1;2;3gjðY10Þijj ¼ 1 and saturating the perturbativity
constraints (27) we have

max
i;j∈f1;2;3g

jðDuU
†
νD−1

ν U�
νDuÞijj ≤

αG
16π2

VGK; (30)

which provides a very conservative global limit on the
allowed form of Uν and, hence, on the proton decay partial
widths (6)–(8).

6. Unification constraints

Let us finish this preparatory section by discussing in
brief the constraints from the requirement of the conver-
gence of the running SUð3Þc and SUð2ÞL gauge couplings
at high energy which shall provide basic information about
the scales involved, in particular, the approximate value of
the VG parameter. Given (16), the SUð2ÞL doublet of the
proton-decay-mediating colored triplet gauge fields ðX0; Y 0Þ
has mass MG ¼ 1

2
gGVG while the mass of the heavy

Uð1ÞT24
⊗ Uð1ÞX gauge boson (i.e., the one orthogonal

to the surviving massless SM B-field associated to hyper-

charge) reads MB0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
5
g2G þ g2X

q
VG in the units in which

the Uð1ÞX generator is normalized as in Eqs. (1) and (2).
Let us note again that in the flipped scenario of our

interest theMG parameter corresponds to the scale at which
the ðX0; Y 0Þ are integrated into the theory in order to obey
the SUð3Þc and SUð2ÞL unification constraints. The spe-
cific location of this point and, thus, the absolute size of the
proton decay width, however, depends also on the position
of the other thresholds due to the extra scalars to be
integrated in at around MG, in particular, the SUð5Þ ⊗
Uð1ÞX=SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY Goldstone bosons
(18), the heavy singlet (20), and the heavy colored triplets
(21). Rather than going into further details here we defer a
dedicated analysis of the situation in Appendix C and, in
what follows, we shall stick to just a single reference scale
of MG ¼ 1016:5 GeV which corresponds to the lower limit
obtained therein. This, in turn, yields Γ−1ðp → πþν̄Þ of the
order of 1038:5 years, cf. Fig. 8. Remarkably enough, there
is also an upper limit of the order of 1042 years which,
however, is attained only in a “fine-tuned” region where the
inequality (26) is saturated.

16Needless to say, there are always at least three RH neutrinos
in the flipped SUð5Þ models.
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III. A SAMPLE MODEL ANALYSIS

In order to exploit formula (30), it is convenient to begin
with its thorough inspection which, as we shall see, will
provide a simple analytic information on the potentially
interesting regions of the parameter space which will,
subsequently, feed into the analysis of the BNV observ-
ables. Later on, we shall compare the analytics with results
of a dedicated numerical analysis.

A. Parameter space

1. CP conserving setup

For the sake of simplicity, we shall start with Uν real
orthogonal which shall be parametrized by three CKM-like
angles ω12, ω23, and ω13:

Uν ¼ U2-3ðω23ÞU1-3ðω13ÞU1-2ðω12Þ
where Ui–jðωijÞ stands for a rotation in the i-j plane by an
angle ωij, e.g.

U2–3ðω23Þ ¼

0
B@

1 0 0

0 cosω23 sinω23

0 − sinω23 cosω23

1
CA: (31)

Assuming normal neutrino hierarchy we parametrize the
(diagonal) neutrino mass matrixDν ¼ diagðm1; m2; m3Þ by
the (smallest) mass m1 of the mostly electronlike eigen-
state. The other two masses are then computed from the
oscillation parameters (Δm2

A ¼ 2.43 × 10−3 eV2, Δm2⊙ ¼
7.54 × 10−5 eV2 [51,52]) and, for the sake of this study, we
mostly ignore the uncertainties in these observables. Let us
note that for the inverted hierarchy the analysis is techni-
cally similar but physically less interesting, see below.
As long as the ratios of m−1

i ’s are all below mt=mc, i.e.,
for m1 ≳ 10−4 eV (which we shall assume in the simple
analysis below), the LHS of Eq. (30) is maximized for
ðDuU

†
νD−1

ν U�
νDuÞ33 ¼ m2

t ðU†
νD−1

ν U�
νÞ33. Hence, Eq. (30)

gets reduced to (using VG ¼ 2MG=gG)

ðU†
νD−1

ν U�
νÞ33 ≤ K

gG
32π3m2

t
× 1016:5 GeV ≈ K × 3 eV−1;

(32)

where we have taken17 gG ¼ 0.5. Besides that, one gets

ðU†
νD−1

ν U�
νÞ33 ¼

sin2ω13

m1

þ cos2ω13

�
sin2ω23

m2

þ cos2ω23

m3

�
;

(33)

which shows that the CKM-like parametrization of Uν is
very convenient because ω12 drops entirely from Eq. (33).

For further insight, let us consider the extreme cases first.
For ω13 ¼ ω23 ¼ 0 (and for arbitrary ω12) one has
ðU†

νD−1
ν U�

νÞ33 ¼ m−1
3 ; whereas for ω13 ¼ ω23 ¼ π

2
the same

equals tom−1
1 . Whilem−1

3 ranges from 11 eV−1 to 20 eV−1
for all m1’s lower than the current Planck and large-scale-
structure limit of about18 0.08 eV [53], m−1

1 may range in
principle from 12 eV−1 to infinity. This explains why the
latter setting may not be allowed by (32) if m1 and K are
small enough.
For the general case it is convenient to notice that the RHS

of Eq. (33) is a convex combination of the inverse neutrino
masses. Thus, for m−1

1 ≤ K × 3 eV−1 the inequality (32) is
satisfied trivially. This can be clearly seen in Fig. 2 where the
allowed parameter space is depicted: for m1 ≥ ð3KÞ−1 eV,
i.e., in the lower part of the plot, all ω23 and ω13 are are
allowed. On the other hand, if ðm−1

3 Þmin ≈ 11 eV−1 >
K × 3 eV−1, i.e., if K ≲ 4, (32) is never fulfilled.
There are two different regimes in the nontrivial region

m−1
1 ≥ K × 3 eV−1 ≥ m−1

3 : if m−1
1 ≥ K × 3 eV−1 ≥ m−1

2

then for small enough ω13 any ω23 is allowed. More
interestingly, for m−1

2 ≥ K × 3 eV−1 ≥ m−1
3 , the allowed

domain is confined to bounded regions around19

ω13 ¼ ω23 ¼ 0. This fully justifies the “chimneylike”
shape in Fig. 2 for m−1

1 ≥ K × 3 eV−1. It also follows that
the allowed region becomes wider in the ω23 direction as K
grows, see again Fig. 2. ForK above a certain critical value,
the chimney would be wide open in the ω23 direction.
This is also why the results are less interesting for the

inverted hierarchy—there the two heavier neutrino masses
are much closer to each other and, hence, the interesting
region where ω13 and ω23 are constrained turns out to be
too narrow.

2. CP violation

Second, let us discuss the case when Uν is an arbitrary
unitary matrix. In the CKM-like parametrization

Uν ¼ PLU2–3ðω23ÞU0
1–3ðω13; σÞU1–2ðω12ÞPR; (34)

where, as usual, PL ¼ diagðeiρ1 ; eiρ2 ; eiρ3Þ and PR ¼
diagð1; eiρ4 ; eiρ5Þ are pure phase matrices, U2–3ðω23Þ and
U1–2ðω12Þ are as above, cf. Eq. (31), and U0

1–3ðω13; σÞ
contains an extra Dirac-like phase σ analogous to the CP
phase in the CKM matrix:

U0
1–3ðω13; σÞ ¼

0
B@

cosω13 0 sinω13e−iσ

0 1 0

− sinω13eiσ 0 cosω13

1
CA:

It is clear that ρ4 and ρ5 drop from the jðVPMNSUνÞα1j
combination in the decay rates (6)–(8) and, hence, they do

17For further details see Appendix C.

18Note that this value corresponds to the Planckþ BAO limit
[54] quoted in [53], i.e.,

P
mν < 0.23 eV at 95% C.L.

19Note that the RHS of Eq. (33) is π-periodic.
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not need to be considered. Since the analytics gets too
complicated here let us just note that ρ1, ρ2, and ρ3 play a
very minor role in shaping the allowed parameter space
and, thus, the only important phase in the game is σ; for σ
close to maximal, the strict bounds on ω23 can be lost for
much lighter m1 than in the CP conserving case. As one
can see in Fig. 3, for significant σ’s the ω23 parameter is
typically out of control unless m1 is taken to be very tiny
[assuming again, for simplicity, the dominance of the 33
element of the RH neutrino mass matrix (28)].

B. Observables

Since there is no Uν in the partial proton decay widths to
charged meson and the rates (7)–(8) differ from (6) only by

calculable numerical factors let us focus here solely to
Γðp → π0lþÞ≡ Γl for l ¼ e, μ.
It is not difficult to see that if ω23 can be arbitrary (such

as in the lower parts of the allowed regions in Figs. 2 and 3)
there is no control over Γl. However, if both ω13 and ω23

are restricted, there may be an upper bound on
jðVPMNSUνÞ21j and, hence, on Γμ, while there is no such
feature observed in Γe. On the other hand, there is a strong
correlation among Γe and Γμ which is clearly visible in the
sum of the two decay rates; indeed, there is instead a lower
bound on Γe þ Γμ. Hence, in what follows we shall stick to
these two independent observables and note that very
similar features can be seen in the decay rates to K0 and
η related to these by the isospin symmetry.
To proceed, one also has to take into account that both Γμ

and Γe þ Γμ in general depend on ω12. Since, however,
these relations are linear one can derive analytic expres-
sions for “optimal” ω12’s in each case such that Γμ is
maximized and Γe þ Γμ is minimized for any given values
of ω13 and ω23. Focusing, for simplicity, on the CP
conserving case one has (V stands for the PMNS matrix)

tanωopt
12 ¼ V23 sinω23 −V22 cosω23

V21 cosω13 − sinω13ðV23 cosω23 þV22 sinω23Þ

for the maximal value of Γμ (given ω13 and ω23), whereas
Γe þ Γμ is (for given ω13 and ω23) minimized for

tanωopt
12 ¼ V33 sinω23−V32 cosω23

V31 cosω13− sinω13ðV33 cosω23þV32 sinω23Þ
:

FIG. 2. The shape of the allowed parameter space (ω23 and ω13

governing Uν on the horizontal axes and the minus log of the
lightest neutrino mass m1 on the vertical; note that m1 decreases
from bottom to top) in the CP conserving setting discussed in
Sec. III A for K ¼ 10 in the upper and K ¼ 30 in the lower panel,
respectively. The allowed points are all those in the interior of the
depicted structure. The straight cut in the lower part corresponds
to the current cosmology limit on the lightest neutrino massm1 ≲
8 × 10−2 eV [53], see the discussion in the text.

FIG. 3. The same as in Fig. 2 for the CP violating setting with
the “Dirac” phase in Uν set to σ ¼ π=2 and K ¼ 20. The net
effect of a nonzero σ is that ω23 remains unconstrained unless m1

is really tiny [for which case the dominance of the 33 element in
the RH neutrino mass formula (28) is assumed]. The effects of the
“outer” phases ofUν in the observables discussed in Sec. III A are
small so we conveniently fixed all of them to zero.
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In Fig. 4, the solid contours in the upper two panels
denote Γμ in units of 0.8 × 1

2
Γðp → πþν̄ÞjðVCKMÞ11j2 ∼

ð1038yÞ−1 (see Appendix C) evaluated at the point
fωopt

12 ðω23;ω13Þ;ω23;ω13g, i.e., at its upper limits for each
ω23 and ω13; similarly, the lower limits on Γe þ Γμ are
displayed in the lower panels (the color code is such that the
decay rates decrease in darker regions). At the same time,
the dashed lines are boundaries of the regions allowed by
(32) for different K’s, i.e., the “horizontal cuts” through
different “chimneys” such as those in Fig. 2 at a con-
stant m1.
Remarkably enough, if K is not overly large, there is a

global upper limit on Γμ, and a global lower limit on Γe þ
Γμ on the boundaries of the relevant allowed regions.
Sticking to the ð−π=2;þπ=2Þ interval for both ω13 and ω23,
which is fully justified by the symmetry properties of the
relevant formulas, the precise position of such a maximum
(minimum) could be found numerically or well approxi-
mated by taking ω13 ¼ 0 and the relevant ω23 on the
boundary:

cos2ω23 ¼
m−1

2 − 3K eV−1
m−1

2 −m−1
3

: (35)

This formula holds for both observables, i.e., for the
maximum of Γμ as well as for the minimum of Γe þ Γμ;

one just has to choose ω23 ∈ ð0; π=2Þ for the former and
ω23 ∈ ð−π=2; 0Þ for the latter, respectively.

C. Results

In what follows, we shall focus on a pair of observables
Xμ and Xeþμ defined conveniently as

Xμ ≡ Γðp → π0μþÞ
1
2
Γðp → πþν̄ÞjðVCKMÞ11j2

; (36)

Xeþμ ≡ Γðp → π0eþÞ þ Γðp → π0μþÞ
1
2
Γðp → πþν̄ÞjðVCKMÞ11j2

; (37)

their normalization (besides the trivial jðVCKMÞ11j2 piece) is
fully governed by the size of the Γðp → πþν̄Þ factor studied
in detail in Appendix C.

FIG. 4. Contour plots of the ω12-extremes (cf. Sec. III B) of the
partial widths Γðp → π0μþÞ (upper panels, decreasing with
darkening color) and Γðp → π0eþÞ þ Γðp → π0μþÞ (lower pan-
els) superimposed with the (dashed) boundaries of the regions
allowed by Eq. (32) evaluated for m1 ¼ 0.8 × 10−2 eV (left), and
m1 ¼ 0.8 × 10−3 eV (right), respectively. In all the plots the
innermost and outermost dashed contours correspond to K ¼ 7
and K ¼ 30, respectively.

FIG. 5 (color online). The global upper limits on Xμ (upper
plot) and the global lower limits on Xeþμ (lower plot), cf.
Eqs. (36) and (37), as functions of the lightest neutrino mass
(in the normal hierarchy case). The lowermost line on the upper
plot and the uppermost line on the lower plot correspond to
K ¼ 7, with every consecutive contour for K increased by 2. The
dots represent an independent numerical calculation of the same
decay rates for K ¼ 7with randomly chosen realUν’s; only those
points satisfying (30) are permitted. The hatched area corre-
sponds to m1 > 0.08 eV which is disfavored by cosmology [53].
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1. CP conserving case

If Uν is real and orthogonal, both analytic and numerical
analyses are tractable so it is interesting to see how these
compare. In the upper plot in Fig. 5, the solid lines indicate
the analytic upper bounds on Xμ for a set of different K’s
whereas the lower plots depict the corresponding lower
bounds on Xeþμ, respectively.
The points superimposed on both plots represent the results

of a numerical analysis. For that sake,m1 and the three CKM-
like angles ω12, ω23, and ω13 were chosen randomly and we
fixed K ¼ 7; only those points satisfying the inequality (30)
are allowed in the plot. We can see that, in spite of the simple
ω13 ¼ 0 assumption on the extremes of X’s, the analytic
curves fit fairly well with the numerics. The agreement is
slightly worse for largerm1 which, however, is the casewhen
the ω13 ¼ 0 approximation becomes rather rough.20

Concerning the physical interpretation of the results
there are several options of how to read Fig. 5 and similar
plots given in the next section. For instance, for a fixed K
(assuming, e.g., one can learn more about the high-scale
structure of the theory from a detailed renormalization
group analysis) a measurement of Xμ imposes a lower limit
on the mass of the lightest neutrino (e.g., K ¼ 7 and Xμ ∼
0.8 is possible if and only if m1 ≳ 10−2 eV, etc.)
Alternatively, for a given K and a measured value of m1

one gets a prediction for Xμ (for example, if K ¼ 7 and
m1 ∼ 10−2 eV then Xμ is required to be below about 0.8).
Obviously, a similar reasoning can be applied to Xeþμ.

2. CP violation

The numerical analysis for a complex Uν is far more
involved and, besides that, there is no simple analytics that
it can be easily compared to. We allowed the three CKM-
like angles and all the CP phases to vary arbitrarily within
their domains and also m1 was scanned randomly on the
logarithmic scale. For σ close to zero one obtains similar
features in Xμ and Xeþμ as in the CP conserving case

FIG. 6 (color online). The same as in Fig. 5 but for a complex
Uν and K ¼ 8. The “outer” phases ρ1, ρ2, and ρ3 (cf. Eq. (34)) are
varied randomly while the “Dirac” phase σ of Uν was fixed to
zero. It is clear that the effect of ρi ’s is very mild as the desired
features in the partial widths remain essentially intact.

FIG. 7 (color online). The same as in Fig. 6 but this time for
entirely random phases in Uν including σ. The effects in the
partial widths are smeared untilm1 ≲ 10−6 eV because, for larger
m1, the important constraints on ω23 from perturbativity and SM
vacuum stability are lost, see Fig. 3.

20It is clear from Fig. 4 that the approximation of reaching the
minimum at ω13 ¼ 0 is more accurate for smaller m1 (plots on
the right-hand side) where the allowed regions are very narrow in
the ω13 direction.
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regardless of the other three phases ρ1; ρ2; ρ3, see Fig. 6. If,
however, also σ is varied randomly, then both of these
effects can be seen only for tiny m1 ≲ 10−6 eV, cf. Fig. 7.
This, at least for the case of a dominant 33 element of the
RH neutrino mass formula (28), can be easily understood
from the shape of the allowed parameter space depicted on
Fig. 3—there is no restriction on ω23 for moderatem1 while
for m1 very tiny ω13 and ω23 are again restricted to a
bounded area.

IV. POTENTIALLY REALISTIC SCENARIOS

A careful reader certainly noticed that, up to now, we
have left aside the fact that in the most minimal model with
only a single 5H in the scalar sector the size of the Yukawa
matrix entering Witten’s loop is further constrained by the
need to reproduce the down-quark masses. Indeed, in such
a case

Y10 ∼
1ffiffiffi
2

p Md=v; (38)

which, barring renormalization group running, is at most of
the order ofmb=v ∼ 2%. Hence, in the very minimal model
Witten’s loop is further suppressed and the inequality (30)
cannot be satisfied unless K is extremely large. In this
respect, the perturbativity limits implemented in the dis-
cussion above are, strictly speaking, academic.
Another issue is the MM

ν ∝ Md correlation which,
regardless of the size of the proportionality factor, renders
the light neutrino spectrum too hierarchical. Indeed, for
mLL ∝ MT

uðMdÞ−1Mu which in the Md-diagonal basis
reads

mLL ∝ WRDuV 0
CKMðDdÞ−1V 0T

CKMDuWT
R

(provided V0
CKM is the “raw” form of the CKM matrix

including the five extra phases usually rotated away in the
SM context and WR is an unknown unitary matrix) one
typically gets m2∶m3 ∼ 0.001 while the data suggest this
ratio to be close to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2⊙=Δm2

A

p
∼ 0.1. Hence, a poten-

tially realistic generalization of the minimal scenario is
necessary together with a careful analysis of the possible
impacts of the extra multiplets it may contain on the results
obtained in the previous sections.
There are clearly many options on how to avoid the

unwanted suppression of Y10 and get a realistic RH
neutrino spectrum in more complicated models. One
may, for example, add extra21 vectorlike fermions that
may allow large Y10 by breaking the correlation (38), heavy
extra singlets, etc. However, in many cases the structure of

such a generalized scheme changes so much that some of
the vital ingredients of the previous analysis are lost.
In order to deal with this, let us first recapitulate the main

assumptions behind the central formula (30) underpinning
the emergence of all the features in the proton decay
channels into neutral mesons seen in Sec. III: First, the
down-type quark mass matrix Md was required to be
symmetric. This is not only crucial for the sharp prediction
(5) but, on more general grounds, also to avoid the option of
“rotating away” the d ¼ 6 gauge-driven proton decay from
the flipped SUð5Þ altogether, cf. [28,35,41]. Second, in
getting a grip on the LHS of Eq. (13) we made use of the
tightMD

ν ¼ MT
u correlation. Obviously, both these assump-

tions are endangered in case one embarks on indiscriminate
model building.

A. The model with a pair of scalar 5’s

Remarkably enough, the simplest conceivable generali-
zation of all, i.e., the model with an extra 5-dimensional
scalar (which resembles the two-Higgs-doublet extension
of the SM), renders the scheme perfectly realistic and, at the
same time, it leaves all the key prerequisites of the analysis
in Sec. III intact.

1. The Yukawa sector and flavor structure

Assuming both doublets in 5H ⊕ 50H do have nonzero
projections onto the light SM Higgs the extended Yukawa
Lagrangian

L∋Y1010M10M5H þ Y 0
1010M10M5

0
H þ Y 5̄10M5̄M5

�
H

þ Y 0̄
5
10M5̄M5

0
H
� þ Y15̄M1M5H þ Y 0

15̄M1M5
0
H þ H:c:

(39)

gives rise to the following set of sum rules for the effective
quark and lepton mass matrices

MD
ν ¼ MT

u ∝ Y 5̄v
�
5 þ Y 0̄

5
v�
50 ; (40)

Md ¼ MT
d ¼ Y10v5 þ Y 0

10v50 ; (41)

Me ¼ Y1v5 þ Y 0
1v50 arbitrary: (42)

Naïvely, one would say that adding three extra 3 × 3
Yukawa matrices (symmetric Y 0

10, arbitrary Y 0̄
5
, and Y 0

1)
the predictive power of the theory would be totally ruined.
However, from the perspective of the analysis in Secs. II
and III the only really important change is the presence of
Y 0
10; adding Y 0̄

5
and Y 0

1 does not worsen the predictive
power of the minimal setting at all because, for the former,
MD

ν ¼ MT
u is still maintained and, for the latter,Me remains

as theoretically unconstrained as before.
Indeed, the net effect of Y 0

10 is just the breakdown of the
unwantedMM

ν ∝ Md correlation due to an extra term in the
generalized version of formula (13):

21There does not seem to be any loop-induced effect in the
quark and/or charged lepton sectors of the original model that
may provide the desired departure from the MM

ν ∝ MD degen-
eracy; thus, extra degrees of freedom are necessary.
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MM
ν ¼

�
1

16π2

�
2

g4GðY10μþ Y 0
10μ

0Þ h10Hi
2

M2
G

×Oð1Þ: (43)

Here μ0 is the trilinear coupling of 50H to the pair of 10H ’s
analogous to the third term in formula (15); as long as μ0=μ
is different enough from v0=v one can fit all the down-quark
masses without any need for a suppression in Y10 and Y 0

10.
Given this, the whole analysis in Sec. III can be repeated

with the only difference that Eq. (26) becomes more
technically involved (but, conceptually, it remains the
same) and, with that, there is essentially just an extra
factor of 2 popping up on the RHS of the generalized
formula (30):

max
i;j∈f1;2;3g

jðDuU
†
νD−1

ν U�
νDuÞijj ≤

αG
8π2

VGK: (44)

Hence, all results of Sec. III can be, in first approximation,
adopted to the fully realistic case by a mere rescaling of the
K factor. For example, the allowed points depicted in Fig. 6
for K ¼ 8 in the basic model are allowed in the generalized
setting with K ¼ 4 and so on.

V. CONCLUSIONS AND OUTLOOK

In this work we point out that the radiative mechanism
for the RH neutrino mass generation, identified by E.
Witten in the early 1980s in the framework of the simplest
SOð10Þ grand unified models, can find its natural and
potentially realistic incarnation in the realm of the flipped
SUð5Þ theory. This, among other things, makes it possible
to resolve the long-lasting dichotomy between the gauge
unification constraints and the position of the B − L
breaking scale governing Witten’s graph: on one side,
the current limits on the absolute light neutrino mass
require MB−L to be close to the GUT scale which, on
the other hand, is problematic to devise in the nonsuper-
symmetric unifications and even useless in the SUSY case
where Witten’s loop is typically canceled. In this respect,
the relaxed unification constraints inherent to the flipped
SUð5Þ scheme allow not only for a natural and a very
simple implementation of this old idea but, at the same
time, for a rich enough GUT-scale phenomenology (such as
perturbative baryon number violation, i.e., proton decay) so
that the minimal model might be even testable at the near
future facilities.
In particular, we have studied the minimal renormaliz-

able flipped SUð5Þ model focusing on the partial proton
decay widths to neutral mesons that, in this framework, are
all governed by a single unitary matrixUν to which one gets
a grip through Witten’s loop. Needless to say, this is
impossible in the usual case when the tree-level RH
neutrino masses are generated by means of an extra 50-
dimensional scalar and/or extra matter fields due to the
general lack of constraints on the new couplings in such
models. Hence, there are two benefits to this approach: the

scalar sector of the theory does not require any multiplet
larger than the 10-dimensional two-index antisymmetric
tensor of SUð5Þ and, at the same time, one obtains a rather
detailed information about all d ¼ 6 proton decay channels
in terms of a single and possibly calculable parameter.
To this end, we performed a detailed analysis of the

correlations among the partial proton decay widths to π0

and either eþ or μþ in the final state and we observed strong
effects in the Γðp → π0μþÞ partial width (an upper bound)
and in Γðp → π0eþÞ þ Γðp → π0μþÞ (a lower bound)
across a significant portion of the parameter space allowed
by the perturbative consistency of the model, as long as
normal neutrino hierarchy is assumed and the Dirac-type
CP violation in the lepton sector is small. In other cases,
such effects are observable only if the lightest neutrino
mass is really tiny.
Concerning the strictness of the perturbativity and/or the

SM vacuum stability constraints governing the size of these
effects, there are several extra inputs that may, in principle,
make these features yet more robust and even decisive for
the future tests of the simplest models. If, for instance,
proton decay would be found in the near future (at LBNE
and/or Hyper-K) the implied upper limit on the unification
scale (which, obviously, requires a dedicated higher-loop
renormalization group analysis based on a detailed effective
potential study) would further constrain the high-scale
spectrum of the theory which, in turn, feeds into the
computation of Witten’s loop and, thus, the K factor; this,
in reality, may be subject to stronger constraints than those
discussed in Sec. II with clear implications for the relevant
partial widths. To this end, there are also other high-energy
signals that may be at least partially useful for this sake
such as the baryon asymmetry of the Universe; although the
Uν matrix drops from the “canonical” leading order
contribution to the CP asymmetry of the RH neutrino
decays in leptogenesis, the size of the effective Yukawa
couplings may still be constrained and, thus, also the K
factor. This, however, is beyond the scope of the current
study and will be elaborated on elsewhere.
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APPENDIX A: THE PROTON DECAY RATES

In this appendix we rederive some of the results of paper
[35] and rewrite them in our notation. The proton decay
partial widths to neutral mesons in the flipped SUð5Þmodel
read

Γðp → π0eþβ Þ ¼
C1

2
jcðeβ; dCÞj2; (A1)

Γðp → ηeþβ Þ ¼ C2jcðeβ; dCÞj2; (A2)

Γðp → K0eþβ Þ ¼ C3jcðeβ; sCÞj2; (A3)

with the constants C1; C2; C3 defined in (10)–(12). The
p-decay widths to charged mesons obey

Γðp → πþν̄Þ ¼ C1

X3
i¼1

jcðνi; d; dCÞj2; (A4)

Γðp → Kþν̄Þ ¼
X3
i¼1

jB4cðνi; d; sCÞ þ B5cðνi; s; dCÞj2;

(A5)

where

B4 ¼
m2

p −m2
K

2fπ
ffiffiffiffiffiffiffiffiffiffiffiffi
2πm3

p

q ALjαj
2mp

3mB
D;

B5 ¼
m2

p −m2
K

2fπ
ffiffiffiffiffiffiffiffiffiffiffiffi
2πm3

p

q ALjαj
�
1þ mp

3mB
ðDþ 3FÞ

�
;

can be obtained from the chiral Lagrangian. The flavor
structure of the basic contractions can be written like

cðeα; dCβ Þ ¼ k2ðUdðUL
u Þ†Þβ1ðUR

u ðUL
e Þ†Þ1α; (A6)

cðνl; dα; dCβ Þ ¼ k2ðUdU
†
dÞβαðUR

uU
†
νÞ1l: (A7)

Here k ¼ gG=MG and the unitary matrices Ud, U
R;L
u , Uν,

and UR;L
e provide the diagonalization of the quark and

lepton mass matrices:

mLL ¼ UT
νDνUν

Me ¼ ðUL
e ÞTDeUR

e

Md ¼ UT
dDdUd

Mu ¼ ðUL
u ÞTDuUR

u :

Note that Md and mLL are symmetric, hence, instead of a
biunitary, a single-unitary-matrix transformation can be
used to diagonalize each of them. In this notation

VCKM ∝ UL
uU

†
d (A8)

VPMNS ∝ UL
eU

†
ν (A9)

where the proportionality sign turns into equality once the
extra phases (unphysical from the SM perspective) are
stripped down. Hence, the flavor structure of the d ¼ 6
proton decay partial widths to neutral mesons and charged
leptons is governed by

jcðeα; dCβ Þj2 ¼ k4jðVCKMÞ1βj2jðUR
u ðUL

e Þ†Þ1αj2: (A10)

For a symmetric Md another important feature of the
flipped SUð5Þ scheme is recovered: cðνl; dα; dCβ Þ ∝ δαβ;
this implies Γðp → Kþν̄Þ ¼ 0. Moreover, consideringP

3
l¼1 jðUR

uU
†
νÞ1lj2 ¼ 1 one gets

Γðp → πþν̄Þ ¼ mp

8πf2π
A2
Ljαj2ð1þDþ FÞ2: (A11)

APPENDIX B: THE CHOICE OF
Mu-DIAGONAL BASIS

It is convenient to choose the basis in which Mu is
diagonal, i.e., UL

u ¼ UR
u ¼ 1. To justify this choice, we

have to prove that all the quantities of our interest are
independent of this choice. This concerns, in particular, the
CKM and PMNS matrices and the proton decay widths
(A1)–(A5), i.e., the coefficient (A10).
First, obviously, a transformation UL

u → UL
uV where V is

a unitary matrix must be compensated by a simultaneous
change Ud→UdV so that the CKM matrix (A8) remains
intact. Second, changingUR

u→UR
uW by a unitaryW requires

UL
e →UL

eW otherwise (A10) is not preserved. On top of
that, UR

u is related to Uν via seesaw mLL ¼ UT
νDνUν ¼

MT
uðMM

ν Þ−1Mu¼−ðUR
u ÞTDuUL

u ðMM
ν Þ−1ðUL

u ÞTDuUR
u ; hence

also Uν → UνW is induced. The transformations of UL
e and

Uν then act against each other so that also the PMNS matrix
(A9) remains unchanged. Thus, it is possible to choose
UL

u ¼ UR
u ¼ 1 without affecting any of the quantities dis-

cussed in Secs. II and III. In the Mu-diagonal basis the
coefficient (A10) reads

jcðeα; dCβ Þj2 ¼ k42jðVCKMÞ1βj2jðVPMNSUνÞα1j2: (B1)

APPENDIX C: SUð3Þc ⊗ SUð2ÞL
GAUGE UNIFICATION

In order to get any quantitative grip on the absolute scale
of the proton lifetime in the model(s) of interest, in
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particular, on Γðpþ → πþν̄Þ providing the overall normali-
zation of the results depicted in Figs. 5–7 one has to inspect
thoroughly the constraints emerging from the requirement
of the (partial) gauge coupling unification. Since the model
is not “grand” unified in the sense that only the non-
Abelian part of the SM gauge group is embedded into a
simple component of the high-energy gauge group, this
concerns only the convergence of the g3 and g couplings of
the SM. Besides the “initial condition” defined by the
values of αs and α2 ≡ g2=4π ¼ α=sin2θW at the MZ scale
and the relevant beta-functions the most important ingre-
dient of such analysis is the heavy gauge and scalar
spectrum shaping the evolution of αs and α2 in the vicinity
of MG [conveniently defined as the mass of the ðX0; Y 0Þ
gauge bosons] and, ultimately, their coalescence above the
last of the heavy thresholds.
As a reference setting let us start with the situation

corresponding to the very simplest approximation in which
all these heavy fields happen to live at a single scale (MG);
then, MG turns out to be at 1016:8 − 1017 GeV at one loop
where the uncertainty corresponds to the 3-σ band for
αsðMZÞ and it gets reduced to about 1016:6 − 1016:8 GeV at
two loops.
Needless to say, such a single-mass-scale assumption is

oversimplified as, in fact, the masses of the heavy colored
triplet scalars Δ1 and Δ2, cf. Eq. (21) and the masses of the
ðX0; Y 0Þ gauge bosons [to quote only those states that are
relevant here, i.e., SUð3Þc ⊗ SUð2ÞL nonsinglets] depend
on different sets of parameters and, hence, may differ
considerably; this, in particular, applies for Δ1 that may be
almost arbitrarily light if the inequality (26) gets saturated.
This, obviously, may lead to a significant change in the
“naı̈ve” estimate above.
In what follows, we shall focus on a simplified setting in

which λ2 ¼ λ5 ≡ λ reflecting the symmetry of the relevant
relations (21) and (26) under their exchange and fix
gG ¼ 0.5. Hence, the masses of Δ1, Δ2, and ðX0; Y 0Þ are
fully fixed given λ, μ, and VG. This also means that if one
fixes mΔ2

, λ, and μ, then mΔ1
and MG are fully determined

and the unification condition can be tested. In turn, it can be
used to get a correlation among the unification-compatible

values of, say, mΔ2
and MG; the resulting situation is

depicted in Fig. 8. The shape of the allowed regions therein
(in particular, the relatively shallow slope of the allowed
bands for a fixed proportionality factor x between μ and
λVG) is easily understood: the effect of integrating in the
ðX0; Y 0Þ gauge bosons (plus the relevant Goldstones in the
Feynman gauge) is much stronger than that of the two
colored scalars Δ1;2 (assuming x < 1, i.e., mΔ1

not para-
metrically smaller thanmΔ2

) and, hence, a small shift inMG
is enough to compensate even for significant changes
in mΔ1;2

.
To conclude, the (two-loop) unification constraints limit

the allowed domain of MG to the interval stretching from
approximately 1016:5 GeV attained in the bulk of the
parameter space up to about 1017:5 GeV if the fine-tuned
configurations with x ∼ 1 are considered.
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