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We report on a study of the finite-temperature QCD transition region for temperatures between 139 and
196 MeV, with a pion mass of 200 MeVand two space-time volumes: 243 × 8 and 323 × 8, where the larger
volume varies in linear size between 5.6 fm (at T ¼ 139 MeV) and 4.0 fm (at T ¼ 195 MeV). These results
are compared with the results of an earlier calculation using the same action and quark masses but a smaller,
163 × 8 volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation
suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the
SUð2ÞL × SUð2ÞR andUð1ÞA symmetries of the continuum. Results are reported for the chiral condensates,
connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudocritical
temperature, Tc, of approximately 165 MeV consistent with previous results and strong finite-volume
dependence below Tc. Clear evidence is seen for Uð1ÞA symmetry breaking above Tc which is
quantitatively explained by the measured density of near-zero modes in accordance with the dilute
instanton gas approximation.

DOI: 10.1103/PhysRevD.89.054514 PACS numbers: 11.15.Ha, 12.38.Gc

I. INTRODUCTION

The QCD phase transition, separating the low-temper-
ature phase in which the (approximate) SUð2ÞL × SUð2ÞR
symmetry of QCD with two light flavors is broken by the
vacuum and the high-temperature phase in which this
symmetry is restored, has been the subject of active
experimental and theoretical study for more than 30 years.
The present expectation is that this is a second-order
transition belonging to the Oð4Þ universality class when
the up and down quark masses are zero [1] and a possibly
rapid cross over for nonzero, physical light-quark mass.
However, the order of the transition may depend on the

degree to which the anomalousUð1ÞA symmetry is realized
in QCD. As pointed out in Ref. [1], if theUð1ÞA breaking is
significant near the phase transition, then the resulting four
massless degrees of freedom (π⃗ and σ) can support Oð4Þ
critical behavior at Tc, the location of the phase transition.
However, if anomalous breaking of the Uð1ÞA is small so
there are eight light degrees of freedom at Tc (π⃗, σ, δ⃗ and η)
then the chiral transition is expected to be first order,
although a second-order phase transition may still be
permitted with a different SUð2ÞL × SUð2ÞR=Uð2ÞV uni-
versality class as suggested in Refs. [2,3]. Thus, a thorough

study of the behavior of the anomalous Uð1ÞA symmetry
has essential consequences on the nature of the chiral phase
transition. (For a recent investigation of this question using
an effective Lagrangian approach see Ref. [4].)
In this paper we study the temperature region

139 MeV ≤ T ≤ 195 MeV using chiral, domain wall fer-
mions (DWF) with a lattice volume having a fixed time
extent of 8 in lattice units and a spatial volume of either 243

or 323. The temperature is varied by varying the inverse
gauge coupling β between 1.633 and 1.829 using the
Iwasaki gauge action combined with a dislocation sup-
pressing determinant ratio (DSDR) [5–8] to reduce the
effects of residual chiral symmetry breaking at these
relatively strong couplings. The light-quark mass is chosen
so that the pion mass is held fixed at a heavier-than-
physical 200 MeV value while the strange quark mass is set
to its physical value. This calculation extends previous
work [9] that used the same action and studied the same
quark masses and temperatures but used a smaller 163 × 8
volume.
While the QCD phase transition has been extensively

studied using the staggered formulation of lattice fermions,
calculations employing chiral fermions are more difficult
and less frequent [9–13]. However, in contrast to the
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staggered formulation in which finite lattice spacing effects
explicitly break the anomalousUð1ÞA symmetry and all but
one of the six SUð2ÞL × SUð2ÞR symmetry directions, the
DWF formulation accurately reproduces these symmetries.
At low temperatures one finds three degenerate light pions
and the Uð1ÞA current obeys an anomalous conservation
law identical to that in the continuum up to small,
controlled residual chiral symmetry breaking effects.
We will now briefly summarize our results. The dis-

connected chiral susceptibility χdisc shows a dramatic peak
as the temperature increases through the critical region.
This is the quantity of choice for locating the pseudocritical
temperature and showed a quite broad peak when studied
earlier on the 163 × 8 volume. The 243 and 323 results
presented here show a significant volume dependence with
the large shoulder just below Tc decreasing by between
30% and 50% as the volume is increased and the peak itself
moving to higher temperature and decreasing in height by
approximately 15%. The 243 and 323 volumes give similar
results. This behavior is predicted by finite size scaling in
Oð4Þ models in the presence of an external symmetry
breaking field [14] and could be anticipated from the first
comparison made with QCD data [15] and the recent work
of Braun et al. [16].
We investigate Uð1ÞA symmetry breaking above Tc by

examining the two Uð1ÞA symmetry breaking differences
χπ − χδ and χσ − χη. These vanish if Uð1ÞA symmetry is
realized and are clearly nonzero at T ¼ 177 MeV, although
they decrease quickly as T is increased above this value.
These two quantities are related by SUð2ÞL × SUð2ÞR
symmetry and are equal within errors for T ≥ 177 MeV.
We conclude that for temperatures at which SUð2ÞL ×
SUð2ÞR symmetry has been restored, Uð1ÞA symmetry
breaking is still present.
The Dirac eigenvalue spectra per unit space-time volume

seen on the 163 × 8 and 323 × 8 volumes are very similar.
However, the larger volume results are more accurate in the
region of small eigenvalues. We find that appropriately
convergent combinations of spectral integrals agree well
with the observed Green’s functions to which they are
related in continuum field theory. Of particular importance
is the agreement between a spectral integral and χπ − χδ.
For T ¼ 177 MeV we find a small cluster of near-zero
Dirac eigenvalues, such as are expected from the dilute
instanton gas approximation (DIGA) [17,18] and it is these
eigenvalues which, when included in the spectral formula,
reproduce the measured result for χπ − χδ. This relation
continues to hold, although within larger errors, at T ¼ 186

and 195 MeV. The number of these near-zero modes is
found to be proportional to the volume and their chiralities
show a mixture of positive and negative values per
configuration, as is expected in the DIGA. We conclude
that Uð1ÞA symmetry is broken in the region immediately
above Tc and this breaking is explained by the DIGA. No
additional mechanism is necessary.

In addition to these physics results, we also present two
technical improvements to the study of finite-temperature
phenomena using DWF. The first is an improved observ-
able representing the chiral condensate, hψ̄ lψ li. This new
quantity, the difference of light and strange quark chiral
susceptibilities, is equivalent in the continuum to the usual
difference of light and strange quark condensates but does
not contain the residual chiral symmetry breaking ambi-
guities present in the usual DWF evaluation of such a
difference. The second development is the recognition that
the quantities usually computed when evaluating suscep-
tibilities and computing residual DWF chiral symmetry
breaking, and hence fundamental to this and earlier
calculations, are related by an exact DWF Ward identity
and the demonstration that this relation is satisfied.
This paper is organized as follows. Section II briefly

describes the lattice formulation used, ensembles generated
and the input parameters chosen. In Sec. III, we introduce a
variety of observables that are associated with the
SUð2ÞL × SUð2ÞR and Uð1ÞA symmetries and review their
properties and the symmetry relations that connect them.
We present and discuss the results for these observables
over our 139–195 MeV temperature range. Section IV
gives results for the low-lying eigenvalue spectrum of the
Dirac operator and examines the relations between this
spectrum and various measures of the chiral condensate and
χπ − χδ. Finally in Sec. V, we summarize our results and
compare with earlier work.

II. ENSEMBLE DETAILS

In this calculation we extend the 163 × 8 results reported
in Ref. [9] to larger 243 × 8 and 323 × 8 volumes, keeping
all other parameters fixed. We therefore adopt the same
Iwasaki gauge action augmented with the DSDR [6–8] and
the DWF action with 2þ 1 flavors. With this choice of
action, we are able to simulate a relatively light pion mass
and to accurately respect the important continuum chiral
and Uð1ÞA symmetries.
Table I lists the basic parameters for these three sets of

ensembles. The first two sets of ensembles are new and
reported here for the first time, with space-time volumes of
323 × 8 and 243 × 8 respectively. The third set of ensem-
bles, with lattice volume 163 × 8, was studied extensively
in Ref. [9] and is listed here [with improved statistics at
T ¼ 195 MeV (run #21)] for comparison and later
reference.
The input light-quark masses are adjusted so that all the

ensembles lie on a line of constant physics with mπ ≈
200 MeV and the ratio ~ml= ~ms ¼ 0.088 is fixed to ensure a
kaon with physical mass. Here and later in the text, a tilde
indicates the total bare quark mass, given by the sum of the
input and the residual quark masses ~m ¼ minput þmres,
where the residual mass, mres is the small additive shift to
the input quark mass that results from the residual chiral
symmetry breaking with DWF with a finite extent Ls in the
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fifth dimension. A detailed description of the determination
of the line of constant physics can be found in Ref. [9].
Here we recalculate the pion masses at each temperature
from updated values of the residual mass computed on the
323 × 8 and 243 × 8 ensembles. As can be seen in column
nine of Table I, in all but one case these new values for mπ

lie within 3% of the target value of 200MeV. Determined as
it is here from the sum of input and residual light-quark
masses and the assumed linearity of m2

π on this sum, the
pion mass should be independent of the volume and
the difference of the calculated pion masses between
different volumes can be regarded as a measure of
systematic errors.
Because of the rapidly increasing residual mass with

decreasing temperature, for the two lowest temperature
ensembles (T ¼ 139 and 149MeV), we use a negative input
quark mass. While much larger negative input quark masses
are standard for Wilson fermion calculations, the use of
negativeminput is uncommon in aDWFcalculation and, as in
theWilson case, could potentially jeopardize the stability of
the evolution because of a singularity in the Dirac operator.
Fortunately, we observed no such “exceptional configura-
tions” in any of our evolutions. This use of a negative input
quark mass was tested in a study reported in Ref. [9] where
two streams at T ¼ 149 MeV with a 163 × 8 volume were
generated: onewithLs ¼ 32 and anegative input quarkmass
(run #15 in Table I) and a secondwithLs ¼ 48 and a positive
input quark mass (run #16 in Table I), adjusted to give the
samevalue of ~ml. Both ensembles gave consistent results for
all the quantitieswe computed, providing strong support that

our interpretation of ~ml and choice of negative input quark
mass is solid and correct.
The number of effective trajectories for each ensemble that

are used in the measurement reported later is also in the
rightmost column of Table I. For ensembles with volume
163 × 8 and 323 × 8, we discard the first 300 trajectories to
account for thermalization.However,becausewechanged the
evolution algorithm during the early stages of the generation
ofthe243 × 8ensembles,a largernumberofinitial trajectories
were discarded for those. For each ensemble a trajectory has a
length of one molecular dynamics time unit.
In order to increase the statistics, we have evolvedmultiple

streams for ensembles run #9 and run #10. Ensemble run #9 is
composed of 8 streams, two of which began from an ordered
start,anothertwofromadisorderedstartandtheremainingfour
were split from the previous four streams after thermalization.
Ensemble run #10 is composed of two streams, one beginning
fromanorderedand theother fromadisorderedconfiguration.
The multiple streams in each ensemble are pooled together
after removing an initial 300 trajectories from each stream
which began with an ordered or disordered start. For streams
that were split from a previously thermalized stream, the first
100 trajectories of that new stream are discarded to insure that
the new stream is not correlated with its parent.
We do not adopt a single set of units in this paper. When

dimensionful quantities are given in physical units, such as
MeV, the unit used will be specified. However, when
expressed in lattice units, often no explicit unit will be
written. Occasionally, for clarity or emphasis, explicit
powers of the lattice spacing will be shown, with the

TABLE I. Summary of input parameters (β, Nσ , Nτ, Ls, ml and ms) and the measured result for mres for each ensembles. Each is
assigned a label in the first column for later reference. The final Nequil

traj column lists the number of equilibrated trajectories that remain
after the imposition of the thermalization and decorrelation cuts described in the text.

# T (MeV) β Nσ Nτ Ls ml ms mres mπ (MeV) Nequil
traj

1 139(6) 1.633 32 8 48 −0.00136 0.0519 0.00657(2) 205(8) 2700
2 149(5) 1.671 32 8 32 −0.00189 0.0464 0.00653(2) 201(5) 2700
3 159(4) 1.707 32 8 32 0.000551 0.0449 0.00366(2) 200(3) 2643
4 164(4) 1.725 32 8 32 0.00138 0.0436 0.00277(1) 202(3) 2700
5 168(4) 1.740 32 8 32 0.00175 0.0427 0.00220(2) 200(2) 2708
6 177(4) 1.771 32 8 32 0.00232 0.0403 0.00135(1) 198(2) 2700
7 186(5) 1.801 32 8 32 0.00258 0.0379 0.00083(2) 197(3) 2729
8 195(6) 1.829 32 8 32 0.00265 0.0357 0.00049(1) 195(4) 3112
9 149(5) 1.671 24 8 32 −0.00189 0.0464 0.00659(6) 202(5) 4721
10 159(4) 1.707 24 8 32 0.000551 0.0449 0.00370(4) 200(3) 2265
11 168(4) 1.740 24 8 32 0.00175 0.0427 0.00216(3) 199(2) 2423
12 177(4) 1.771 24 8 32 0.00232 0.0403 0.00129(3) 197(2) 2892
13 186(5) 1.801 24 8 32 0.00258 0.0379 0.00084(3) 197(3) 3142
14 139(6) 1.633 16 8 48 −0.00136 0.0519 0.00588(39) 191(7) 2696
15 149(5) 1.671 16 8 32 −0.00189 0.0464 0.00643(9) 199(5) 5700
16 149(5) 1.671 16 8 48 0.00173 0.0500 0.00295(3) 202(5) 6700
17 159(4) 1.707 16 8 32 0.000551 0.0449 0.00377(11) 202(3) 3359
18 168(4) 1.740 16 8 32 0.00175 0.0427 0.00209(9) 197(2) 3043
19 177(4) 1.771 16 8 32 0.00232 0.0403 0.00132(6) 198(2) 3240
20 186(5) 1.801 16 8 32 0.00258 0.0379 0.00076(3) 195(3) 4415
21 195(6) 1.829 16 8 32 0.00265 0.0357 0.00047(1) 194(4) 8830
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power given by the length dimension of the quantity being
described.

III. CHIRAL OBSERVABLES

In this section we will discuss Green’s functions con-
structed from the eight scalar and pseudoscalar operators:
ψ̄ lψ l, ψ̄ lτ

iψ l, ψ̄ lγ
5ψ l, ψ̄ lτ

iγ5ψ l. Here ψ l is a doublet of up
and down quark fields and fτig1≤i≤3 the usual Pauli
matrices. These operators are related by the SUð2ÞL ×
SUð2ÞR chiral symmetry of QCD and the anomalously
broken Uð1ÞA symmetry. In Sec. III A we review the
relations among these eight operators and their Green’s
functions implied by the SUð2ÞL × SUð2ÞR and Uð1ÞA
symmetries, paying particular attention to the degree to
which these relations should hold at finite lattice spacing
for the DWF formulation.
In Sec. III B we present our numerical results, focusing

on those relations implied by SUð2Þ × SUð2Þ chiral sym-
metry and examining their dependence on temperature. In
the final subsection, Sec. III C, we examine the relations
implied by Uð1ÞA symmetry, including evidence for non-
zero anomalous, Uð1ÞA symmetry breaking above the
pseudocritical temperature Tc, a nonvanishing asymmetry
which disappears rapidly as the temperature increases
above Tc.

A. Preliminaries

In this section, we present a brief review of a variety of
chiral observables and the relations among them implied by
the SUð2ÞL × SUð2ÞR and Uð1ÞA symmetries. A more
detailed description can be found in Ref. [9].
The standard order parameter for the chiral phase

transition is the single-flavor, light-quark chiral condensate,

Σl ≡− 1

2
hψ̄ lψ li (1)

¼ 1

2

T
V
∂ lnZ
∂ml

(2)

¼ 1

N3
σNτ

hTrM−1
l i; (3)

where Ml is the single-flavor, light-quark Dirac matrix and
the brackets h…i in the bottom equation indicate an
average over gauge fields. However, this quantity contains
an ultraviolet divergent contribution that is proportional to
mq=a2 for the case of a lattice regularization. In order to
remove this ultraviolet divergence, it is standard to intro-
duce a subtracted chiral condensate constructed from a
weighted difference between the chiral condensates of the
light and strange quarks [19]:

Δl;s ¼ Σl − ~ml

~ms
Σs: (4)

Here Σs is defined using the strange quark Dirac matrix in a
manner analogous to Eq. (3). For domain wall fermions
there is a further difficulty associated with the short
distance contributions to Σq and the subtracted quantity
Δl;s. For a finite fifth dimensional extent, Ls < ∞, the
DWF chiral symmetry is only approximate and residual
chirally symmetry breaking effects appear. The largest such
effect is a small additive shift in the quark mass: the residual
mass mres mentioned above. Similar residual chiral break-
ing will appear in Σq and will be of order mres=a2 if we
express mres in physical units. However, since the detailed
mechanism which generates the residual mass is not
directly related to that which introduces the additive
constant into Σq, the subtraction coefficient α that would
be needed to remove both the mq=a2 and the Oðmres=a2Þ
terms in Σl − αΣs is not known.
Thus, the subtracted quantity Δl;s defined in Eq. (4) will

contain an unphysical, Oðmres=a2Þ constant which will
decrease the utility of Δl;s computed in a DWF simulation.
In particular, we cannot compare Δl;s with the same
difference of chiral condensates obtained from other lattice
fermion formulations. While this added unphysical con-
stant does not depend on temperature, it does depend
strongly on the gauge coupling g so the usual procedure of
varying the temperature by varying g at fixed Nτ will
induce an apparent temperature dependence in this unphys-
ical contribution to Δl;s. However, the definition of Δl;s
given in Eq. (4) (which differs from that used in the earlier
paper [9]) does have a useful property. As is discussed in
Sec. IV, this subtraction using for α the physical quark mass
ratio, α ¼ ~ml= ~ms will lead to a more convergent spectral
expression for Δl;s.
Results for the quantities Σl, Σs and Δl;s are given in

Table III. For each configuration used in the calculation, the
volume-averaged, chiral condensate is computed from the
right-hand side of Eq. (3), using 10Gaussian randomvolume
sources to estimate the trace. In Sec. III we will use the
Gell-Mann-Oakes-Renner (GMOR) relation to define an
improved, subtracted chiral condensate ~Δl;s, which contains
amuchsmallerunknowncorrectionandcanbecomparedwith
the results from other formulations of lattice fermions.
The chiral condensate Σl and the various subtracted

versions discussed above can be used to explore the
vacuum breaking of SUð2ÞL × SUð2ÞR and Uð1ÞA sym-
metry and their restoration (or partial restoration) as the
temperature is increased. However, much more information
can be obtained from the susceptibilities defined as
integrated correlation functions of the eight local operators,

σ ¼ ψ̄ lψ l (5)

δi ¼ ψ̄ lτ
iψ l (6)
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η ¼ iψ̄ lγ
5ψ l (7)

πi ¼ iψ̄ lτ
iγ5ψ l: (8)

Such susceptibilities are both much more sensitive to the
transition from the ordered to the disordered state and also
allow independent measures of SUð2ÞL × SUð2ÞR and
Uð1ÞA symmetry breaking. The operator quadruplets
ðσ; πiÞ and ðη; δiÞ each transform as an irreducible four-
dimensional representation of SUð2ÞL × SUð2ÞR. The four
pairs, ðσ; ηÞ, ðδi; πiÞ1≤i≤3 each transform the simple, two-
dimensional representation of Uð1ÞA. We then identify the
four distinct susceptibilities which are allowed by isospin
symmetry:

χσ ¼
1

2

Z
d4xhσðxÞσð0Þi (9)

χδ ¼
1

2

Z
d4xhδiðxÞδið0Þi (10)

χη ¼
1

2

Z
d4xhηðxÞηð0Þi (11)

χπ ¼
1

2

Z
d4xhπiðxÞπið0Þi; (12)

where the factor 1=2 has been introduced so that these
correspond to the single-flavor quantities that are typically
computed using lattice methods and no sum over the
repeated index i is intended. In light of the multiplet
structure defined above, the following relations are implied
by SUð2ÞL × SUð2ÞR and Uð1ÞA symmetry:

χσ ¼ χπ

χη ¼ χδ

�
SUð2ÞL × SUð2ÞR; (13)

χσ ¼ χη

χπ ¼ χδ

�
Uð1ÞA: (14)

These susceptibilities can be written in terms of the Dirac
operator Ml. For the correlators of the operators πi and δi,
which introduce nonzero isospin, only connected combi-
nations appear:

χπ ¼
1

N3
σNτ

Trhγ5M−1
l γ5M−1

l i (15)

χδ ¼ −
1

N3
σNτ

TrhM−1
l M−1

l i; (16)

where thenotation“Tr” indicatesa traceover spinorandcolor
indices as well as the space-time volume. The σ and η
susceptibilities are a combination of the connected parts
which appear in χδ and χπ respectively and a disconnected
part:

χσ ¼ χδ þ 2χdisc (17)

χη ¼ χπ − 2χ5;disc; (18)

where the disconnected parts χdisc and χ5;disc are given by

χdisc ¼
1

N3
σNτ

fhðTrM−1
l Þ2i − ðhTrM−1

l iÞ2g (19)

χ5;disc ¼
1

N3
σNτ

hðTrM−1
l γ5Þ2i: (20)

As is conventional, we have removed the truly disconnected
piece 2N3

sNτΣ2
l from the expression for χσ given in Eq. (17).

This extra term would appear if the right-hand side of the
definition given by Eq. (9) were completely evaluated. The
factor of 2 that appears in Eqs. (17) and (18) was mistakenly
omitted from the published version of Ref. [9] and arises
when these relations are written in terms of single-flavor
quantities. The signs of χdisc and χ5;disc have been chosen so
that each is positive.
We can combine Eqs. (13), (17) and (18) to obtain

relations between the Uð1ÞA symmetry breaking difference
χπ − χδ and χdisc and χ5;disc if SUð2ÞL × SUð2ÞR symmetry
is assumed:

χπ − χδ ¼ ðχπ − χσÞ þ ðχσ − χδÞ (21)

¼ 2χdisc (22)

¼ 2χ5;disc; (23)

where the second equation is true if the SUð2ÞL × SUð2ÞR
relation χπ ¼ χσ of Eq. (13) is valid while the third is
obtained by a similar manipulation and the second
SUð2ÞL × SUð2ÞR relation χδ ¼ χη.
The connected Green’s functions can be computed from

the lattice by integrating the two-point correlators from a
point source over the whole volume. This method was used
for the calculations on the 243 × 8 ensembles as well as our
earlier study of the 163 × 8 ensembles in [9]. On the 323 ×
8 ensembles and for the 163 × 8 results presented in this
report, we achieved a reduced statistical error by using
instead a random Z2 wall source. The disconnected parts
are calculated by averaging products of chiral condensates
where the stochastic evaluation of the trace appearing in
each factor is obtained from different stochastic sources.
The SUð2ÞL × SUð2ÞR relations given in Eq. (13) should

be valid in the continuum for T > Tc when SUð2ÞL ×
SUð2ÞR becomes an accurate symmetry. They should also
be true when T > Tc in a lattice formulation which
preserves chiral symmetry. However, for our DWF formu-
lation we should expect deviations arising from residual
chiral symmetry breaking. For low-energy quantities,
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mres should provide a good measure of this residual
chiral symmetry breaking, with effects that are well
described as arising simply from the total bare quark mass
~m ¼ ml þmres.
However, the four susceptibilities being discussed are not

simple long-distance quantities since the space-time integrals
that appear in their definitions include points where the two
local operators collide. In fact, the connected parts of the
susceptibilities contain quadratic divergences while the
disconnected parts diverge logarithmically. The presence
of quadratic divergences in the connected susceptibilities,
e.g. χπ and χδ, can be easily deduced from the Wilson
operator product expansion and dimensional arguments. The
product of two dimension-three fermion bilinears separated
by a space-time distance x should contain a constant
behaving as 1=x6 as x → 0. When integrated over space-
time to form the susceptibility, this 1=x6 term will give a
quadratic divergence. For the disconnected parts of the
susceptibilities, a similar dimensional argument applies.
However, the disconnected parts are constructed from the
product of two independent fermion loops, each evaluated as
a separate trace. For the case of scalar or pseudoscalar
susceptibilities, chiral symmetry requires that each trace be
proportional to ml so the product will behave as m2

l =x
4

leading to a logarithmic divergence multiplied by the very
small factor m2

l . Thus, if the continuum regulator respects
chiral symmetry, then the SUð2ÞL × SUð2ÞR and Uð1ÞA-
breaking differences χπ − χσ , χδ − χη, χπ − χδ and χη − χσ
will all contain only small, logarithmic singularities propor-
tional tom2

l lnðml=ΛÞ if evaluated in order-by-order in QCD
perturbation theory, where Λ is the continuum cutoff scale.
In our lattice-regulated domain wall theory, the residual

chiral symmetry breaking will result in these same
differences containing small unphysical pieces of order
m2

res. As in the case of the chiral condensate, mres does not
literally enter these differences but instead we expect that
m2

res will provide a reasonable estimate of their size. Note,
when expressed in physical unitsmres ∼ e−αLs=a so that our
estimate m2

res ∼ e−2αLs=a2 of a chiral symmetry breaking
difference remains quadratically divergent but is sup-
pressed by the same factor that makes m2

res small. (Here,
for simplicity, we assume that the residual chiral symmetry
breaking effects fall exponentially with increasing Ls, with
an exponent α, unrelated to the α used earlier in this
section.) For the purposes of this paper m2

res ∼ ð10 MeVÞ2,
a quantity that is negligible on the ðΛQCDÞ2 ≈ ð300 MeVÞ2
scale of the physical parts of the susceptibilities being
subtracted.
Finally we examine two additional identities that hold in

the continuum limit. The first is the relation between χ5;disc
and the topological susceptibility χtop. This relation begins
with the identity

Qtop ¼ mc
lTr

�
γ5

1

Ml

�
; (24)

which for the continuum theory will hold for each gauge
configuration. Here for clarity we have introduced the
quantity mc

l to represent the light-quark mass in the
continuum theory. This is easily understood by using a
sum over Dirac operator eigenvectors to evaluate the trace
and recognizing that the result is simply the number of
right- minus the number of left-handed zero modes [20]
which is equal toQtop by the Atiyah-Singer theorem. Recall
that

Qtop ¼
g2

32π2

Z
d4xFa

μνðxÞ ~Fa
μνðxÞ: (25)

Here ~Fμν ¼ 1
2

P
ρσϵμνρσFρσ where ϵμνρσ is the usual anti-

symmetric Levi-Civita tensor with ϵ1234 ¼ 1.
The desired identity:

χtop ¼ ðmc
l Þ2χ5;disc (26)

is simply the ensemble average of the square of Eq. (24).
This continuum equation should also relate DWF lattice
quantities provided the total bare quark mass ~m is used in
place of the continuum massmc

l . As was explored at length
in Ref. [9], this relation is badly violated for our lattice
calculation because at our relatively coarse lattice spacing
the quantity Qtop is difficult to compute directly. The right-
hand side of Eq. (26) appears to nicely define the
topological susceptibility giving the same answer even
when the light-quark quantity ~m2

l χ5;disc is replaced with the
corresponding strange quark quantity or the product of
strange and light-quark expressions. [Note the right-hand
side of Eq. (24) is expected to give the same result on a
given gauge configuration independent of the quark mass.]
For completeness χ5;disc=T2 and χtop=ð ~mlTcÞ2 are tabulated
in the two rightmost columns of Table III, where χtop is
computed using the procedure described in Ref. [9]. As can
be seen in Table III, their disagreement is substantial.
However, the fractional discrepancy does decrease with
increasing temperature (and decreasing lattice spacing) as
should be expected if this is a finite lattice spacing artifact.
We will not make further use of χtop.
The second identity is the usual Ward identity connect-

ing χπ and the chiral condensate. This can be derived in the
continuum for nonzero quark mass by evaluating the
following integrated divergence:

0 ¼
Z

d4x∂μh0jTðAaμðxÞπbð0ÞÞj0i (27)

¼
Z

d4xh0jTð−2mc
l iπ

aðxÞπbð0ÞÞj0i − 2ih0jσð0Þj0iδab;

(28)

where a and b are isospin indexes. Here the left term in the
second line comes from the divergence of the axial current,
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∂μAðxÞaμ, while the right term results from the equal-time
commutator that arises when the partial derivative with
respect to the time is brought inside the time-ordered
product. The result is the Gell-Mann-Oakes-Renner
relation [21]:

mc
l χπ ¼ Σl: (29)

While this relation should be true in a continuum theory
which has been regulated in a chirally symmetric way, both
the right- and left-hand sides of Eq. (29) contain quadratic
divergences as discussed earlier. Thus, we should not
expect this equation to be obeyed in our DWF theory
unless we take the limit of infinite Ls at finite a so that our
theory has an exact chiral symmetry.
However, this equation has two important uses. First, we

can repeat its derivation in our lattice theory using the
partially conserved, five-dimensional axial current Aaμ

constructed by Furman and Shamir [22] and the divergence
equation obeyed by Aaμ:

∂μAaμ ¼ −2imlπ
a þ 2Ja5q; (30)

where the definition of the “midpoint term” Ja5q can be
found in Ref. [23]. When used in the above derivation this
relation yields the lattice identity:

2mlχπ þ
Z

d4xh0jTðiJ5qðxÞaπað0ÞÞi ¼ 2Σl; (31)

for a ¼ 1, 2 and 3. In the usual application of Eq. (30), iJa5q
is replaced in Eq. (31) by mresπ

a which would provide a
DWF derivation of Eq. (29) in which the continuum light-
quark massmc

l is replaced by ~m ¼ ml þmres. However, the
low-energy relation iJa5q ≈mresπ

a cannot be used here
because short distances are involved. Nevertheless, we
can simply evaluate both sides of Eq. (31) in our lattice
calculation as a check of this discussion and find agreement
within errors. Our numerical results for the three quantities
which appear in Eq. (31) are tabulated in Table II for each
of the seven temperatures studied as well as the right- and
left-hand sides of Eq. (31) after a common factor of 2 has
been removed. We also plot in Fig. 1 both the left- and
right-hand sides of Eq. (31) as well ðml þmresÞχπ , as the
result of the naive use of the low-energy relation
iJa5q ≈mresπ

a. The left panel of Fig. 1 shows these
quantities for the light-quark case discussed here while
the right panel shows the same quantities computed using
the strange quark. In both Table II and Fig. 1, the mixed
susceptibility appearing in Eq. (31) is represented by Δf

mp

where

Δf
mp ¼

Z
d4xh0jTðiJðfÞ5q ðxÞπðfÞð0ÞÞi; (32)

TABLE II. The unrenormalized iso-vector pseudoscalar and mixed pseudoscalar/midpoint susceptibilities for the light and strange
quarks as well as the combinations ðmqχ

q
π þ Δq

mpÞ=T3 for q ¼ l; s, which appear in the Ward identity, Eq. (31). The Ward identity
requires the right and third-from-right columns to agree as well as agreement between the column second from the right above and the
fifth column from the left in Table III. Moving from top to bottom, the three sections in this table correspond to the volumes 323 × 8,
243 × 8 and 163 × 8.

# TðMeVÞ β χlπ=T2 χsπ=T2 Δl
mp=T3 Δs

mp=T3 mlχ
l
πþΔl

mp

T3

msχ
s
πþΔs

mp

T3 Σl=T3

1 139 1.633 313(2) 94.83(7) 13.34(8) 1.833(11) 9.94(6) 41.21(2) 10.07(4)
2 149 1.671 267(3) 93.15(7) 11.14(14) 1.939(10) 7.11(10) 36.52(3) 7.03(6)
3 159 1.707 214(3) 90.96(10) 4.77(7) 1.038(6) 5.71(9) 33.71(5) 5.80(6)
4 164 1.725 187(3) 89.57(12) 2.99(7) 0.757(5) 5.05(10) 32.00(5) 5.02(7)
5 168 1.740 161(3) 88.20(14) 1.91(6) 0.576(5) 4.16(11) 30.70(7) 4.16(8)
6 177 1.771 129(3) 85.64(11) 0.83(3) 0.329(2) 3.23(9) 27.94(3) 3.17(5)
7 186 1.801 100(2) 83.20(11) 0.33(1) 0.193(2) 2.39(6) 25.42(4) 2.46(4)
8 195 1.829 93(2) 80.81(9) 0.18(1) 0.118(1) 2.15(6) 23.20(2) 2.15(3)
9 149 1.671 270(13) 93.2(7) 11.6(7) 2.02(7) 7.5(5) 36.6(3) 7.10(6)
10 159 1.707 198(11) 90.6(6) 4.3(3) 1.05(4) 5.2(4) 33.6(3) 5.58(10)
11 168 1.740 164(8) 89.6(6) 1.96(15) 0.61(3) 4.3(3) 31.2(2) 4.40(10)
12 177 1.771 124(10) 85.7(5) 0.79(12) 0.33(2) 3.1(3) 28.0(2) 3.03(7)
13 186 1.801 99(3) 82.6(4) 0.31(2) 0.184(7) 2.35(8) 25.2(1) 2.58(6)
14 139 1.633 302(5) 95.0(2) 12.6(2) 1.825(21) 9.30(18) 41.26(8) 9.26(13)
15 149 1.671 247(5) 93.0(1) 10.1(2) 1.922(13) 6.34(14) 36.43(6) 6.26(12)
16 149 1.671 257(3) 93.6(1) 4.84(8) 0.815(7) 8.40(12) 38.24(6) 8.39(10)
17 159 1.707 189(5) 90.8(2) 4.09(16) 1.034(10) 4.92(19) 33.64(7) 5.25(17)
18 168 1.740 155(6) 88.3(2) 1.83(11) 0.573(7) 4.00(19) 30.73(8) 4.03(18)
19 177 1.771 127(7) 85.5(2) 0.80(7) 0.326(4) 3.15(19) 27.89(7) 3.16(15)
20 186 1.801 102(4) 83.5(2) 0.35(3) 0.196(3) 2.46(11) 25.50(6) 2.44(9)
21 195 1.829 91(2) 80.9(1) 0.17(1) 0.118(1) 2.10(5) 23.22(4) 2.10(5)
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where in this equation we construct the quark bilinears JðfÞ5q
and πðfÞ from a single flavor of quark specified by f ¼ l or
s and include only connected graphs, in which the quark
fields are contracted between J5q and π. In these tables and
figures and those which follow, when a combination of
quantities that were computed separately are combined,
such asmlχ

l
π þ Δl

mp, we will use the jackknife method with
data that has been averaged over bins of 50 configurations
to compute the error on the combined quantity so that the
effects of statistical correlations between the quantities
being combined are included. However, for simplicity, if a
computed renormalization factor, factor of a expressed in
physical units or factor of mres appears, these factors
usually have smaller errors than the quantities they multiply
and their fluctuations will be ignored.
A second use of Eq. (29) is to provide a method to

compute a more physical result for Δl;s in a DWF
calculation. Since no chiral limit has been taken in the
continuum derivation of Eq. (29), it will hold equally well if
applied to either strange or light quarks. If we use the
resulting equations for Σl and Σs to determine the weighted
difference Δl;s we obtain

Δl;s ¼ mc
l ðχπl − χπsÞ; (33)

where we use the symbol χπs to represent the “pion”
susceptibility that results if the light-quark mass is replaced
by that of the strange quark and add the subscript l to the
usual pion susceptibility for clarity. From the perspective of
the continuum theory both sides of Eq. (33) provide an
equally good value for the subtracted chiral condensate.
Neither quantity contains a quadratic divergence and the
much smaller logarithmic divergences present on both sides
are equal. For a DWF theory with residual chiral symmetry
breaking this equation does not hold and the left-hand side

Δl;s contains an unphysical additive constant Oðmres=a2Þ.
However, the right-hand side is much better defined with no
1=a2 term. Thus, we can use the right-hand side of Eq. (33)
to provide a more physical result forΔl;s which will contain
only a small, unphysical piece of order mlm2

s lnðmsaÞ.
Thus, we can define an improved value for Δl;s:

~Δl;s ¼ ~mlðχπl − χπsÞ; (34)

which we will use to compare with spectral formulas and
with the results for Δl;s from other lattice fermion
formulations.

B. Chiral symmetry restoration

In this section we present and discuss our numerical
results for the chiral condensate and for the disconnected
chiral susceptibility as a function of temperature. Figure 2
shows the Monte Carlo time histories of the light-quark
chiral condensate for seven of the temperatures studied.
The time evolutions for the 323 × 8 ensembles are dis-
played in the left panel and those from 243 × 8 in the right.
The evolutions of the light-quark condensates from both
sets of ensembles appear to follow the same trend. For the
lower temperature region (T ≤ 168 MeV), the light-quark
condensate fluctuates around its average value. However, as
temperature grows higher, the fluctuations can better be
described as upward spikes added to an otherwise flat
base line.
This behavior is typically seen in finite-temperature

DWF calculations and arises because above Tc the main
contribution to the chiral condensate comes from isolated,
near-zero modes [24]. These modes become increasingly
infrequent as the temperature is increased but, when
present, produce a noisy, nonzero chiral condensate. The
noise results from the relatively small space-time extent of

FIG. 1 (color online). The left panel shows the light-quark chiral condensate, Σl, and the sum of mlχπ and the mixed π − J5q=2
susceptibility to which it should be equal according to the Ward identity in Eq. (31). Also shown is ðml þmresÞχπ ≡ ~mlχπ which would
equal Σl ifmres were the only effect of residual chiral symmetry breaking. The right panel shows the same quantities computed using the
strange instead of the light quark. Similar agreement between the right- and left-hand sides of Eq. (31) is found for the 243 and 163

volumes, as can be seen from Table II.
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each zero mode which is therefore sampled in our stochas-
tic determination with relatively few random numbers.
Such behavior becomes most pronounced for T ≥

186 MeV in the 323 × 8 calculations. At T ¼ 177 MeV,
the 243 × 8 Monte Carlo time evolution shows this char-
acteristic plateau-spike structure more distinctly than does
the comparable 323 × 8 time history. This suggests a lower
pseudocritical transition temperature for the smaller vol-
ume or that the larger 323 volume supports a larger number
of such zero modes, reducing the size of the intervals when
none are present and the chiral condensate is nearly zero.

The ensemble averages of the light, subtracted and
strange chiral condensates are summarized in Table III.
The temperature dependence of the light and the subtracted
condensates is also illustrated in Fig. 3. As that figure
shows, results from 323 × 8 and 243 × 8 ensembles agree
well throughout the transition region, whereas those from
the 163 × 8 ensembles show an appreciable discrepancy for
T < 168 MeV, indicating a small but well-resolved finite-
volume effect.
A second measure of the restoration of SUð2ÞL ×

SUð2ÞR symmetry is the two differences χπ − χσ and

FIG. 2 (color online). Monte Carlo time histories of the light-quark chiral condensate Σl=T3 on the 323 × 8 (left) and 243 × 8 (right)
ensembles. (Only the longest streams from run #9 and #10 are displayed.) There is a vertical offset of 5 units between successive data
sets with the β ¼ 1.829 results unshifted. Note that the time evolution corresponding to β ¼ 1.725, 323 × 8 (run #4) behaves in a similar
manner to those of its neighboring ensembles, but is omitted from the graph to preserve a uniform separation between each ensemble.

TABLE III. The unrenormalized chiral condensates and disconnected chiral susceptibilities. The two rightmost columns should agree
according to Eq. (26). As discussed, we attribute their large difference to inaccuracy in the strong-coupling measurement of χtop. Moving
from top to bottom, the three sections correspond to the volumes 323 × 8, 243 × 8 and 163 × 8.

# T (MeV) β Σl=T3 Σs=T3 Δl;s=T3 χdisc=T2 χ5;disc=T2 χtop=ð ~mlTÞ2
1 139 1.633 10.07(4) 41.27(2) 6.40(4) 20(2) 118(7) 261(11)
2 149 1.671 7.03(6) 36.48(2) 3.84(5) 28(3) 94(8) 177(11)
3 159 1.707 5.80(6) 33.73(2) 2.83(6) 33(3) 70(8) 118(10)
4 164 1.725 5.02(7) 32.04(3) 2.16(7) 38(3) 49(4) 78(4)
5 168 1.740 4.16(8) 30.72(3) 1.46(7) 37(3) 38(5) 54(4)
6 177 1.771 3.17(5) 27.94(2) 0.71(5) 22(2) 24(3) 37(3)
7 186 1.801 2.46(4) 25.38(2) 0.22(4) 12(2) 10(2) 15(2)
8 195 1.829 2.15(3) 23.20(1) 0.14(3) 7(1) 10(1) 15(2)
9 148 1.671 7.10(6) 36.53(2) 3.90(6) 31(2) 89(5) 165(7)
10 159 1.707 5.58(10) 33.68(3) 2.66(10) 36(3) 64(6) 110(6)
11 168 1.740 4.40(10) 30.84(4) 1.69(10) 32(3) 47(6) 67(6)
12 177 1.771 3.03(7) 27.90(3) 0.57(7) 19(2) 21(3) 32(3)
13 186 1.801 2.58(6) 25.41(2) 0.34(6) 13(2) 14(2) 18(2)
14 139 1.633 9.26(13) 41.02(4) 5.61(12) 36(3) 113(7) 252(11)
15 149 1.671 6.26(12) 36.42(5) 3.07(12) 44(3) 89(6) 159(6)
16 149 1.671 8.39(10) 38.30(3) 5.00(10) 41(2) 90(6) 168(7)
17 159 1.707 5.25(17) 33.81(6) 2.27(16) 43(4) 55(6) 97(7)
18 168 1.740 4.03(18) 30.66(7) 1.33(18) 35(5) 37(5) 60(7)
19 177 1.771 3.16(15) 27.88(6) 0.71(15) 25(4) 24(4) 36(4)
20 186 1.801 2.44(9) 25.43(4) 0.20(9) 11(4) 9(3) 21(6)
21 195 1.829 2.10(5) 23.22(3) 0.09(5) 6(2) 6(2) 11(2)
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χη − χδ, following Eq. (13). These two SUð2ÞL×
SUð2ÞR-breaking differences are plotted in Fig. 4. The
quantity χπ − χσ shows the behavior that might be expected
from the temperature dependence of the chiral condensate
shown in Fig. 3. A large SUð2ÞL × SUð2ÞR-breaking
difference is seen for T ≤ 159 MeV which becomes zero
for T ≥ 168 MeV. The second difference χη − χδ is more
surprising, being essentially zero throughout our temper-
ature range. While we do not have a crisp explanation for
this unexpected SUð2ÞL × SUð2ÞR symmetry below Tc we
do expect this difference to vanish for T > Tc and to be
small relative to χπ − χσ for T < Tc since the large value of
χπ reflects the small pion mass while the δ, σ and η are all
expected to be relatively massive below Tc.
While the chiral condensate is the order parameter for the

chiral transition, its strong apparent temperature depend-
ence results from a combination of the finite-temperature
physics of interest and its dependence on the lattice scale as
a dimension-three operator. (This can be recognized by
noting that we often discuss the dimensionless quantity
Σl=T3 which will change significantly with temperature
simply because of the 1=T3 factor.) The location of the
pseudocritical temperature is much more easily seen by
examining the disconnected chiral susceptibility χdisc. This

has dimension 2 and so varies a little less strongly with the
lattice scale (which we are changing to vary T on our Nτ ¼
8 lattice) and shows a dramatic peak near the transition
which can be used to define the location of the pseudoc-
ritical temperature Tc. Numerical results for χdisc before
renormalization are presented in Table III. In order to allow
a comparison with results from the staggered formalism,
the susceptibilities should be normalized in the M̄S scheme
at 2 GeV. They can be obtained from the directly computed
lattice quantities using the relation:

χM̄S ¼
�

1

Zmf→M̄S

�
2

χbare: (35)

The renormalization factors Zmf→M̄S for each temperature
are listed in Table IV. These values for Zmf→M̄S were
obtained in Ref. [9] from the dependence of the pion mass,
expressed in physical units, on the input quark mass and the
known value of ~ml which corresponds to the physical value
of mπ [25].
The dependence of the renormalized χdisc on volume is

shown in the left panel of Fig. 5. At T ¼ 168 MeV and
above the disconnected chiral susceptibilities from all
volumes agree within errors. However, at lower

FIG. 3 (color online). Comparison of light-quark (upper), subtracted (lower left) and improved subtracted (lower right) chiral
condensates computed on different volumes. The 323 and 243 volumes agree reasonably well for all temperatures but are 5%–10% larger
than the corresponding values from the 163 volume for T < 168 MeV. The results appear to be volume independent for T ≥ 168 MeV.
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temperatures there isa largediscrepancybetweenthe163 × 8
and the 323 × 8 ensembles which becomes larger as tem-
perature decreases. Results from 243 × 8, fall in between,
although they tend to lie closer to the 323 × 8 points.
Since we are studying only a single value of Nτ and a

pion mass that is larger than physical by a factor of 1.5, it is
premature to draw a definite quantitative conclusion about
the pseudocritical transition temperature. However, a quali-
tative examination of the left panel in Fig. 5 suggests that a
peak in χdisc occurs for the 163 and 243 volumes at
approximately 160 MeV and that this peak position
increases to slightly above 165 MeV as the volume is
increased to 323.
The right panel of Fig. 5 compares the mπ ¼ 200 MeV,

323 × 8 DWF results for χdisc with those obtained from
staggered fermions using a 483 × 12 volume and the highly
improved staggered quark (HISQ) and a-squared tadpole
improved (ASQTAD) staggered actions with mπ ¼ 161
and 177 MeV respectively [26]. Again, the disconnected
chiral condensates are consistent among these three meth-
ods for T ≥ 175 MeV. However, the ASQTAD results lie

substantially below the DWF and HISQ results for temper-
atures at and below the transition region. The HISQ results
are in good agreement with the 323 × 8 DWF results.
However, this agreement appears to be coincidental, since
the HISQ results are obtained for a quoted pion mass of
161 MeV, significantly smaller than the 200 MeV pion
mass of the DWF ensembles. The expected strong depend-
ence of χdisc near Tc on the pion mass suggests that mπ ¼
160 MeV DWF results would lie above those found with
HISQ. The discrepancy between the DWF and ASQTAD
results and the expected discrepancy with comparable
HISQ results are likely explained by lattice discretization
errors associated with staggered taste symmetry breaking.

C. Uð1ÞA symmetry

We will now discuss the degree to which the anomalous
Uð1ÞA symmetry is restored above Tc by examining the
two implications of this symmetry for the four susceptibil-
ities given in Eq. (14): χπ ¼ χδ and χσ ¼ χη. The numerical
results for each of these four susceptibilities are

FIG. 4 (color online). The two SUð2ÞL × SUð2ÞR-breaking susceptibility differences χM̄S
π − χM̄S

σ and χM̄S
δ − χM̄S

η plotted as a function
of temperature for our three spatial volumes: 163, 243 and 323. For temperatures of 170 MeVand above these differences are consistent
with zero and the expected restoration of chiral symmetry above Tc. The quantity χπ − χσ becomes very large below Tc reflecting the
small mass of the pseudo-Goldstone π meson below Tc. In contrast, the second difference χη − χδ remains relatively small as the
temperature decreases below Tc, reflecting the relatively large masses of the δ and η mesons.
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summarized in Table IV as well as their Uð1ÞA-breaking
differences χπ − χδ and χσ − χη which we will often
abbreviate as Δπ;δ ¼ χπ − χδ and Δσ;η ¼ χσ − χη. The
integrated susceptibilities χπ and χδ are calculated from
the corresponding two point correlation functions by
summing the position of the sink over the entire space-
time volume. For the 243 × 8 ensembles, we use a single
point source located at (0, 0, 0, 0), while for the 163 × 8 and
323 × 8 ensembles, we use a random Z2 wall source located
on a fixed, three-dimensional spatial slice, xz ¼ 0.

These two Uð1ÞA-breaking differences are plotted in
Fig. 6. As can be seen, these diminish rapidly with
temperature but are many standard deviations from zero
even at the temperatures of 177 and 186 MeV, well above
Tc. We expect that the effect of explicit chiral symmetry
breaking, either from the nonzero input quark mass or finite
Ls, residual chiral symmetry breaking, on these differences
will be much smaller. Specifically, for T > Tc we might
estimate the contribution of explicit Uð1ÞA breaking to be
of order ~m2

l =T
2 ∼ ð0.004 � 8Þ2 ¼ 0.001 compared to

TABLE IV. Results for the four independent susceptibilities χπ , χδ, χσ and χη as well as the two pairs of differences, Δπ;σ ¼ χπ − χσ ,
Δη;δ ¼ χη − χδ and Δπ;δ ¼ χπ − χδ, Δσ;η ¼ χσ − χη which measure the degree of SUð2ÞL × SUð2ÞR and Uð1ÞA symmetry, respectively.
All of these susceptibilities are renormalized in the M̄Sðμ ¼ 2 GeVÞ scheme using the renormalization factor listed in the Zmf→M̄S
column. Moving from top to bottom, the three sections correspond to the volumes 323 × 8, 243 × 8 and 163 × 8.

# T (MeV) Zmf→M̄S χM̄S
π =T2 χM̄S

δ =T2 χM̄S
σ =T2 χM̄S

η =T2 ΔM̄S
π;σ=T2 ΔM̄S

η;δ =T
2 ΔM̄S

π;δ =T
2 ΔM̄S

σ;η =T2

1 139 1.47 144.7(7) 34.0(3) 53(2) 35(6) 92(2) 1(6) 111(1) 18(6)
2 149 1.49 120.1(1.3) 33.1(6) 58(2) 36(6) 62(3) 3(6) 87(2) 22(7)
3 159 1.51 94.0(1.1) 34.3(5) 63(3) 36(6) 31(3) 2(5) 60(2) 27(6)
4 164 1.52 80.8(1.3) 33.2(8) 66(3) 39(4) 15(3) 5(4) 48(2) 28(5)
5 168 1.53 68.7(1.4) 33.6(9) 65(3) 37(4) 4(3) 3(4) 35(2) 28(4)
6 177 1.55 53.8(1.3) 30.8(1.1) 49(2) 34(2) 5(3) 3(2) 23(2) 15(3)
7 186 1.57 40.6(8) 34.1(6) 44(1) 32(1) −4ð1Þ −2ð1Þ 6(1) 12(2)
8 195 1.58 37.2(9) 31.1(8) 37(1) 29(1) 0.4(1.4) −2ð2Þ 6(2) 8(2)
9 149 1.49 122(6) 32(2) 61(4) 38(9) 61(8) 6(10) 90(8) 23(10)
10 159 1.51 87(5) 37(2) 66(4) 31(7) 20(8) −6ð8Þ 50(6) 35(10)
11 168 1.53 70(3) 36(2) 64(3) 30(7) 6(6) −6ð7Þ 34(5) 34(9)
12 177 1.55 52(4) 31(3) 47(4) 34(4) 4(7) 3(7) 20(7) 13(8)
13 186 1.57 40(1) 34(1) 44(1) 29(2) −4ð2Þ −4ð2Þ 7(2) 15(3)
14 139 1.47 140(2) 33(2) 66(3) 34(7) 74(4) 1(6) 107(4) 32(8)
15 149 1.49 111(2) 33(2) 73(2) 38(6) 39(4) 5(5) 78(4) 35(7)
17 159 1.51 83(2) 38(2) 75(3) 35(4) 8(3) −3ð3Þ 45(4) 40(6)
18 168 1.53 66(3) 33(2) 64(4) 34(5) 3(4) 0.3(4.7) 33(4) 30(9)
19 177 1.55 53(3) 31(2) 51(2) 33(3) 2(3) 2(3) 22(5) 19(5)
20 186 1.57 41(1) 34(1) 43(2) 34(2) −1ð1Þ 0.1(1.3) 8(3) 9(4)
21 195 1.58 36(1) 32(1) 37(1) 31(1) −1ð1Þ −0.5ð8Þ 5(2) 6(2)

FIG. 5 (color online). The left panel compares χdisc computed using DWF on 323, 243 and 163 volumes. Significant volume
dependence can be seen between 323 and 163, while the 243 results agree with those from 323 within errors. The right panel compares
the 323, Nτ ¼ 8 DWF results for χdisc with those from staggered fermions on a 483 × 12 volume using both the ASQTAD and HISQ
actions [26]. In each case χdisc is renormalized in the M̄Sðμ ¼ 2 GeVÞ scheme.
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results between 3 and 7 shown in Table IV.1 Numerical
evidence for the absence of explicit chiral symmetry
breaking is provided by the near equality of the two
differences χπ − χδ and χσ − χη which are related by
SUð2ÞL × SUð2ÞR symmetry, a symmetry also explicitly
broken by ml and mres.
Strong evidence for the small size of possible explicit

chiral symmetry breaking also comes from the results for
χπ − χδ computed for the strange quark. It is the explicit
breaking of chiral symmetry by the valence propagators
which can create a nonanomalous signal for χπ − χδ. As can
be seen from Table V the results for χπ − χδ are smaller for
the strange than for the light quark. If the strange quark
results are interpreted as coming entirely from explicit
chiral symmetry breaking, the corresponding effects for the
light quarks should be reduced by a factor of

ð ~ml= ~msÞ2 ≈ 0.008. At T ¼ 179 MeV, this approach gives
explicit chiral symmetry breaking for the light-quark
quantity χπ − χδ of order 4.26 · 0.008 ¼ 0.034. This is
larger than the 0.001 estimate above but only a fraction
of a percent of the signal. Thus, we interpret the results for
χπ − χδ and χσ − χη shown in Table IV and Fig. 6 as clear
evidence for the anomalous breaking of Uð1ÞA symmetry
for T > Tc.

IV. LOW-LYING EIGENVALUE SPECTRUM

In Sec. III we studied the QCD transition region by
examining the temperature dependence of vacuum expect-
ation values and correlation functions whose behavior is
closely related to the SUð2ÞL × SUð2ÞR and Uð1ÞA sym-
metries that are restored, or partially restored, as the
temperature is increased through the transition region. In
this section we will examine a different quantity, the
spectrum of the light-quark Dirac operator, which is also
directly related to the violation of these symmetries. In the
first subsection, Sec. IV A, we review the basic formulas
relating the Dirac eigenvalue spectrum to other measures of
SUð2ÞL × SUð2ÞR and Uð1ÞA symmetry breaking in

FIG. 6 (color online). The two Uð1ÞA-violating susceptibility differences, χM̄S
π − χM̄S

δ and χM̄S
σ − χM̄S

η plotted as a function of
temperature for our three spatial volumes. As expected these quantities are very different below Tc. However, even for temperatures of
160 MeV and above these quantities differ from zero by many standard deviations, providing clear evidence for anomalous symmetry
breaking above Tc. The near equality of these two differences above Tc, which are related by SUð2ÞL × SUð2ÞR symmetry suggests that
the effects of explicit chiral symmetry breaking are much smaller (as expected) than this anomalous symmetry breaking.

1This assumed quadratic dependence on ~ml does not allow for
a possible combined effect of explicit chiral symmetry breaking
and the sort of nonanalytic behavior above Tc that we are trying
to study. We do not have sufficient numerical results to study such
effects which we view as “second order” since they require both
nonperturbative chiral breaking above Tc and ~ml ≠ 0.
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continuum field theory. In Sec. IV B we present the
distribution found for the 100 lowest Dirac eigenvalues
for each of the six temperatures studied between 150–
200 MeV on our largest, 323 × 8 volume. Finally in
Secs. IV C and IV D we make a quantitative connection
between this measured eigenvalue spectrum and the sub-
tracted chiral condensate Δl;s and the Uð1ÞA-breaking
susceptibility difference Δπ;δ ¼ χπ − χδ, respectively. As
is discussed in Sec. IV D, at temperatures just above Tc the
Dirac spectrum agrees well with the predictions of the
dilute instanton gas approximation and this approximation
provides a good quantitative description of the anomalous
Uð1ÞA symmetry breaking difference χπ − χδ seen in this
region.

A. Preliminaries

The most familiar relation between the Dirac spectrum
and an important QCD observable is the spectral expression
for the chiral condensate,

Σq ¼ −hψ̄ψiq ¼
Z

∞

0

dλρð ~ml; ~ms; λÞ
2 ~mq

~m2
q þ λ2

; q ¼ l; s:

(36)

Here we have used the symmetry ρðλÞ ¼ ρð−λÞ, limiting
the integral to non-negative values of λ and introducing the
compensating factor of 2 in the numerator. In the infinite
volume and chiral limits and applied to the light-quark
condensate, this equation becomes the well-known Banks-
Casher relation [27]:

− lim
~ml→0

lim
V→∞

hψ̄ψil ¼ lim
λ→0

lim
~ml→0

lim
V→∞

πρð ~ml; ~ms; λÞ: (37)

Therefore, if the eigenvalue density ρð ~m; λÞ is nonvanishing
in infinite volume at the origin, chiral symmetry will be
broken by a nonvanishing quark condensate.
While we have used the lattice variable ~mq to represent

the quark mass in this equation, it should be emphasized
that this is an equation derived in continuum field theory.
The equivalent expression, derived for DWF in a lattice
theory will be quite different. For example, a spectral
expression for Σq derived from an eigenmode expansion of
the DWF lattice propagator will involve wave functions for
the five-dimensional modes evaluated on and integrated
over the two s ¼ 0 and s ¼ Ls − 1, four-dimensional faces,
yielding an expression significantly more complex than that
given in Eq. (36) [23]. However, when appropriately
renormalized, the eigenvalue density ρð ~m; λÞ is a physical
quantity that can be computed using lattice methods [28].
Thus, as in Ref. [9], we compute the low-lying spectrum
ρlattðλÞ of the Hermitian DWF Dirac operator,
DH ¼ γ5R5DDWF, where R5 is the reflection operator in
the fifth dimension: s → Ls − 1 − s for the fifth-dimension
coordinate 0 ≤ s ≤ Ls − 1. We then use the β-dependent
renormalization factor Ztw→M̄S to transform ρlattðλÞ into M̄S
conventions:

ρðλÞ ¼ 1

Ztw→M̄S
ρlattðZtw→M̄SλÞ: (38)

As is discussed in Ref. [9] the renormalization factor
Ztw→M̄S is given by a product of the factor Ztw→mf

given

TABLE V. The same quantities as tabulated in Table IV but with the light quark replaced by the strange quark.

# T (MeV) χs;M̄S
π =T2 χs;M̄S

δ =T2 χs;M̄S
σ =T2 χs;M̄S

η =T2 Δs;M̄S
π;σ =T2 Δs;M̄S

η;δ =T2 Δs;M̄S
π;δ =T2 Δs;M̄S

σ;η =T2

1 139 43.89(3) 31.50(2) 33.7(2) 42.9(4) 10.1(2) 11.4(4) 12.39(5) −9.2ð4Þ
2 149 41.96(3) 31.70(3) 33.8(2) 41.6(3) 8.2(2) 9.9(3) 10.26(5) −7.9ð4Þ
3 159 39.89(4) 31.71(3) 34.8(4) 39.0(3) 5.1(4) 7.3(3) 8.18(7) −4.2ð4Þ
4 164 38.77(5) 31.74(4) 35.6(4) 38.1(4) 3.2(4) 6.4(4) 7.02(8) −2.6ð5Þ
5 168 37.68(6) 31.67(3) 35.3(4) 37.1(3) 2.4(4) 5.4(3) 6.00(9) −1.8ð5Þ
6 177 35.65(5) 31.39(2) 33.4(3) 35.1(3) 2.2(3) 3.7(4) 4.26(6) −1.7ð5Þ
7 186 33.75(5) 30.83(3) 32.7(3) 33.4(3) 1.1(3) 2.5(3) 2.93(6) −0.7ð3Þ
8 195 32.37(4) 30.46(2) 31.7(1) 32.2(2) 0.7(1) 1.7(2) 1.91(4) −0.5ð3Þ
9 149 42.0(3) 31.57(16) 34.0(5) 41.5(5) 7.9(6) 10.0(5) 10.4(4) −7.5ð7Þ
10 159 39.7(3) 31.82(12) 34.4(3) 39.0(5) 5.3(4) 7.2(6) 7.9(4) −4.6ð6Þ
11 168 38.3(3) 31.73(11) 33.9(4) 37.7(4) 4.3(6) 5.9(4) 6.5(3) −3.7ð6Þ
12 177 35.7(2) 31.45(9) 33.5(2) 35.5(4) 2.2(3) 4.1(4) 4.2(3) −2.0ð5Þ
13 186 33.5(1) 30.84(7) 32.3(2) 32.9(3) 1.2(2) 2.0(3) 2.7(2) −0.6ð4Þ
14 139 43.95(7) 31.52(5) 33.8(2) 43.6(3) 10.2(2) 11.5(3) 12.44(11) −9.3ð4Þ
15 149 41.87(6) 31.79(5) 34.8(3) 41.1(4) 7.1(3) 9.4(4) 10.08(9) −6.4ð5Þ
17 159 39.81(8) 31.72(6) 34.6(3) 39.7(3) 5.2(3) 8.0(3) 8.09(13) −5.1ð4Þ
18 168 37.72(10) 31.68(6) 34.7(4) 38.0(4) 3.0(4) 6.4(4) 6.04(14) −3.3ð5Þ
19 177 35.58(9) 31.41(6) 33.9(2) 35.6(3) 1.6(2) 4.2(3) 4.18(13) −1.7ð3Þ
20 186 33.86(8) 30.87(4) 32.7(1) 34.0(2) 1.2(2) 3.1(2) 2.99(10) −1.3ð3Þ
21 195 32.41(6) 30.48(3) 31.8(1) 32.2(3) 0.6(1) 1.7(3) 1.92(5) −0.3ð3Þ
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in Table IVof that reference and the factor Zmf→M̄S listed in
Table IV of the present paper.
Since in a lattice calculation the Banks-Casher limit of

infinite volume and vanishing quark mass cannot be easily
evaluated, we would like to use Eq. (37) for the case of
finite volume and nonzero quark mass. However, in that
case the integral over λ diverges quadratically. As a result,
this equation is dominated by the region of large λ where
the DWF lattice and continuum formalisms should not
agree and is well outside the limited range of the 100 lowest
eigenvalues which we have computed. However, much can
be learned from Eq. (37) if we use it to evaluate the
difference Δl;s, subtracting the light and strange quark
equations. This difference will be studied in Sec. IV C,
comparing the subtracted spectral integral with both the
simple difference of condensates, Δl;s and the improved
quantity ~Δl;s.
In a similar manner, the difference between the con-

nected pseudoscalar and scalar light-quark susceptibilities,
χπ − χδ, which serves as a good indicator of Uð1ÞA
symmetry breaking, can be expressed as a spectral integral
[29]:

Δπ;δ ≡ χπ − χδ ¼
Z

∞

0

dλρð ~ml; λÞ
4 ~m2

l

ð ~m2
l þ λ2Þ2 ; (39)

where again this is a continuum equation which requires
that all of the quantities which appear are renormalized in a
consistent scheme. In contrast to Eq. (37), this expression is
only logarithmically divergent and for our values of the
lattice spacing and quark masses, is dominated by the
region where λ is small—the region in which we have
measured the spectrum and in which the lattice and
continuum spectral functions should agree, except for
the usual Oða2Þ errors inherent in a calculation at nonzero
lattice spacing.
In order to distinguish and to better understand the

effects of different possible behaviors of ρð ~ml; λÞ we will
also make use of the small λ and small ~m parametrization
for ρð ~ml; λÞ,

ρð ~m; λÞ ¼ c0 ~m2δðλÞ þ c1jλj þ c2 ~mþ � � � ; (40)

appropriate for T ≥ Tc and introduced in Ref. [9]. Each
term provides an ansatz for a possible behavior of ρð ~ml; λÞ
and results in a different contribution to the susceptibility
difference. In particular, Δπ;δ will receive three correspond-
ing contributions:

Δπ;δ ≈ 2c0 þ 2c1 þ πc2 ≡ Δ0
π;δ þ Δ1

π;δ þ Δ2
π;δ: (41)

Once the eigenvalue density has been computed and fit to
the form assumed in Eq. (40), the resulting coefficients can
be used to calculate Δπ;δ and discover which of these three

behaviors gives the dominant contribution to the spectral
integral.
In addition to allowing a quantitative measure of the

relative importance of these three possible behaviors, the
use of the analytic expression in Eq. (40) also allows us to
potentially correct finite lattice spacing errors which may
be important for small λ in our DWF formulation with finite
Ls. Although much more accurate, the Hermitian DWF
spectrum, like the Wilson spectrum, does not have the
continuum form Λ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ~m2

p
where ~m ¼ ml þmres, at

least for finite volume, finite Ls and nonzero lattice
spacing. For eigenvalues Λ of DH on the order of mres,
i.e. Λ⪅10 MeV, we expect deviations from the continuum
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ~m2

p
form because of residual chiral symmetry

breaking. These effects do not occur if we use ρðλÞ given
by Eq. (40). In fact, comparing results obtained by direct
summation over the measured spectrum with those
obtained using Eq. (40) provides an estimate of the
importance of these finite lattice spacing errors.
Each of the three terms in Eq. (40) corresponds to

potentially interesting behavior. The λ-independent c2 ~m
term is expected to dominate the behavior below Tc and
should describe the Banks-Casher contribution to the chiral
condensate Σl. For T < Tc the factor of ~m should not
appear but has been introduced here because above Tc the
condensate should vanish in the limit ~m → 0. As can be
seen in Eq. (41), this c2 ~m term will result in Δl;s ≠ 0 and
anomalous symmetry breaking. Likewise, the linear c1 term
provides a possible mechanism for Uð1ÞA symmetry break-
ing above Tc. Both the c1 and c2 terms are sufficiently
regular as λ and ~m approach 0 that they do not result in an
explicit SUð2ÞL × SUð2ÞR symmetry breaking chiral con-
densate but have sufficient infrared singularity that the
presence of either does result in a nonzero value for χπ − χδ.
Thus, either term in ρðλÞ could describe the behavior we see
for T > Tc where Σl should vanish as ~ml → 0 but χπ − χδ is
nonzero. As we will see, neither term appears to be present
with a sufficient magnitude to describe χπ − χδ for T > Tc.
As is discussed below, the c0 term has the greatest

relevance. This term represents the Dirac spectrum that
results from the DIGA [18]. Asymptotic freedom implies
that at sufficiently high temperature, the QCD partition
function will be governed by weak-coupling phenomena.
These should include a “dilute gas” of instantons and
anti-instantons of radius ≈1=T and density ∝
~m2
l expf−8π2=g2ðTÞg decreasing with increasing temper-

ature, where gðTÞ is the running QCD coupling constant
evaluated at the energy scale T. The number of such
instantons and anti-instantons is proportional to the volume
and each will induce a near-zero mode in the Dirac
eigenvalue spectrum. (These eigenvalues will not be
exactly zero because of the overlap of the “zero”-mode
wave functions associated with neighboring instantons.)
The factor of ~m2 in the instanton density arises from the
fermion determinant for two light flavors of quarks. The
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contribution of such a dilute gas of instantons and anti-
instantons to the Dirac spectrum will be accurately
described by the c0 term in Eq. (40), at least for sufficiently
high temperatures. As can be seen from Eq. (41), such a
term will result in a nonzero value for the difference χπ − χδ
even in the chiral limit, ~ml → 0. The expected presence of
such effects leads to the phrase “effective restoration of
Uð1ÞA symmetry,” since these effects, which should appear
as T becomes very large, will lead to a possibly very small
but nonvanishing result of χπ − χδ.
As wewill demonstrate in Sec. IV Dwe find a significant

cluster of near-zero modes in the Dirac spectrum whose

number is proportional to the volume with the character-
istics expected from the DIGA. We conclude that the
nonzero value of χπ − χδ in the region just above Tc is
explained by the DIGA and that this is the dominant
mechanism for our observed, nonzero breaking of Uð1ÞA
just above Tc.

B. Eigenvalue distributions

To compute the Dirac eigenvalue spectrum, we follow
closely the method described in detail in Ref. [9]. The
lowest 100 eigenvalues fΛng1≤n≤100 of the Hermitian DWF

FIG. 7 (color online). The eigenvalue spectrum for T ¼ 149 − 195 MeV, expressed in the M̄S scheme at the scale μ ¼ 2 GeV. The
imaginary, “unphysical” eigenvalues are plotted as− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jΛ2 − ~m2
l j

p
. The spectra from the 323 × 8 ensembles are plotted as histograms and

fit with a linear (T ¼ 149 − 178 MeV) or a quadratic (T ¼ 186 − 195 MeV) function (blue dashed line). The spectrum from each of the
163 × 8 ensembles [9] is plotted as a black solid line.
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Dirac operator DH are calculated for each of ≈100
configurations for each of six ensembles ranging in temper-
ature between 149 and 195 MeV using the Kalkreuter-
Simma method [30]. The same fermion mass is used in the
Dirac operator as was used when the ensemble was
generated.
In the continuum, the eigenvalues Λn of the Hermitian

Dirac operator have the form �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ ~m2

l

q
and the eigen-

value density is conventionally expressed in terms of the
mass-independent eigenvalue λ. Here we will attempt to
follow the same practice. However, for the DWF Dirac
operator, the quark mass is not a simple additive constant
but is embedded within DDWF in a complex fashion. The

continuum form �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2n þ ~m2

l

q
is therefore not guaranteed

by the structure of DDWF but is expected to emerge in the
limit of infinite volume, infinite Ls or vanishing lattice
spacing a. Thus, in our circumstances, we will find some
eigenvalues Λn which are smaller than ~ml and for which

λn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
n − ~m2

l

q
will be imaginary. As in Ref. [9], when we

present a histogram showing ρðλÞ we include these imagi-
nary values in a separate histogram plotted at negative λ
with an imaginary value of λ added to a bin at −jλj. Plotted
in this way, these “unphysical” values of Λ are made visible
and their relative importance can be judged. We exploit the
symmetry between positive and negative values of λ and
associate each Λn with magnitude greater than ~ml with the

positive value λn ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
n − ~m2

l

q
.

Figure 7 shows the distributions, renormalized in the M̄S
scheme at the scale μ ¼ 2 GeV, determined from the
lowest 100 eigenvalues (λ) for six ensembles at temper-
atures from 149 to 195 MeV. The eigenvalue densities for
the 323 × 8 space-time volumes are plotted as solid histo-
grams, while the 163 × 8 results are plotted as black, solid
lines. The aforementioned imaginary, unphysical modes are

plotted as −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΛ2 − ~m2

l j
q

on the negative axis. The values

for the total mass of light and strange quarks, ~mM̄S
l and

~mM̄S
s , are indicated by vertical dashed lines, which give a

physical scale for the eigenvalue distribution. Since we
have determined only a fixed number of eigenvalues, the
spectral distributions will be distorted at their upper ends.
The third vertical dashed line in these plots, which appears
with various x coordinates, locates the smallest value for
λ100 found for each ensemble. The spectrum shown to the
left of this line will then be undistorted by our failure to
include larger eigenvalues in the figure.
Since the number of eigenmodes is proportional to the

space-time volume, a fixed number of the lowest modes
will become more concentrated at the lower end of the
spectrum as the volume increases. This phenomena can be
easily seen in Fig. 7 where the range of eigenvalues studied
decreases dramatically as the space-time volume is

increased from 163 × 8 to 323 × 8. However, while the
range of eigenvalues covered by the larger 323 × 8 volume
is reduced, this larger volume provides a better sampling
and more convincing view of the spectrum near zero, the
region of greatest interest.
For T ¼ 149 and 159 MeV, the eigenvalue distributions

can be characterized as a linear function with a non-
vanishing intercept for eigenvalues of order 10 MeV or
larger. Below 10 MeV the spectrum is distorted by a
combination of finite volume and residual chiral symmetry
breaking effects. The nonvanishing intercept, interpreted
through the Banks-Casher relation, is consistent with the
nonvanishing chiral condensate and vacuum chiral sym-
metry breaking observed at these temperatures which lie
below the pseudocritical temperature.
For T ¼ 168 MeV, the linear behavior continues to

be visible, but the intercept has essentially vanished,
suggesting that 168 MeV is close to the pseudocritical
temperature, consistent with the temperature dependence of
the SUð2ÞL × SUð2ÞR-breaking susceptibility difference
χπ − χσ shown in Fig. 4.
For T ¼ 177 MeV, a small peak in ρðλÞ near the origin

emerges as a cluster of near-zero modes. Such a cluster of
near-zero modes might result from the Atiyah-Singer
theorem and nonvanishing topological charge or from
the DIGA. As is discussed below, the volume dependence
of this peak and the distribution of the chirality of these
modes is consistent with the DIGA and inconsistent with
their arising from nonzero global topology. This small
eigenvalue region can be best seen in the expanded view
given in Fig. 8.
For T ¼ 186 and 195 MeV, this small peak survives

although it diminishes in size with increasing temper-
ature. In addition, the peak becomes increasingly sepa-
rated from the rest of the spectrum by a gap containing
few eigenvalues. As a result the remainder of the
spectrum, excluding this peak, can no longer be fit using
a linear function. A quadratic fit is possible at T ¼ 186
but an even higher power may be needed to describe the
195 MeV spectrum.

C. Subtracted chiral condensate

It is not difficult to see very approximate agreement
between the intercept of the spectral density at λ ¼ 0
(ignoring obvious distortions to the spectrum near λ ¼ 0)
and the measured value of Σl implied by the Banks-Casher
relation. However, a careful, quantitative test of Eq. (36)
must overcome two obstacles: both the finite-volume
suppression of ρðλÞ as λ → 0 and the quadratic divergence
present in Σq for nonzero quark mass. For a DWF
calculation such a test is further complicated by the
contributions of residual chiral symmetry breaking to Σq
and ρðλÞ for small λ. As suggested above, all of these
difficulties can be overcome. The first step is to consider the
subtracted chiral condensate, Δl;s defined in Eq. (4). If
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Eq. (36) is used to express Δl;s in terms of the spectral
density, we obtain the more convergent result:

Δl;s ¼
Z

∞

0

dλρðλÞ 2 ~mlð ~m2
s − ~m2

l Þ
ðλ2 þ ~m2

l Þðλ2 þ ~m2
sÞ
: (42)

While this expression still receives a contribution from
large eigenvalues, well above the group of low modes
studied here, this high-mode contribution is expected to be
of order mlm2

s lnðmsaÞ which is possibly 1% of the
ð250 MeVÞ3 value of the zero temperature chiral conden-
sate. Thus, we expect that for our present quark masses and
lattice spacing, we can evaluate the right-hand side of
Eq. (42) using our 100 low modes to at least a few percent
accuracy, at least for T ≤ Tc.
We can evaluate the integral in Eq. (42) using our

measured eigenvalues in two ways. First for each measured
configuration we can replace the integral over λ on the
right-hand side of Eq. (42) by a sum over the measured
eigenvalues. In addition we can express the integrand in
Eq. (42) in terms of the directly measured eigenvalues Λn
so that the uncertainties associated with those values of Λn
lying below ~ml are avoided. The resulting expression for
Δl;s becomes

Δms
l;s ¼ 1

N3
σNτ

�X100
n¼1

~mlð ~m2
s − ~m2

l Þ
Λ2
nðΛ2

n þ ~m2
s − ~m2

l Þ
�
; (43)

where h…i indicates an average over configurations and we
use the notation “ms” (mode sum) to identify the result
obtained from this summation over modes.
In the second approach to Eq. (42) we replace the

spectral density ρðλÞ by the fitted expression given in
Eq. (40) and then perform the integration over λ analyti-
cally with the result:

Δeig
l;s ≡ c0 ~ml þ c1 ~ml ln

�
~m2
s

~m2
l

�
þ c2π ~ml; (44)

where terms of order ~ml= ~ms have been neglected and the
label “eig” has been introduced to distinguish this expres-
sion from those resulting from the three other approaches to
the calculation of this quantity.
In Table VI we compare these two spectral methods for

computing Δl;s with the results from both the direct
subtraction of the measured condensates (which we con-
tinue to label as Δl;s) and the improved quantity ~Δl;s which
is less contaminated by residual DWF chiral symmetry

TABLE VI. Comparison of the unrenormalized results for Δl;s computed using four different methods at various temperatures and
values of Ls. The data in the 163 × 8; Ls ¼ 64 row results from a valence calculation performed on the Ls ¼ 48, β ¼ 1.671 (run #16)
ensemble. (While these quantities are all expressed in the scheme defined by the bare lattice mass,mq, this is not the scheme in which the
eigenvalues of the five-dimensional DWF Dirac operator are defined and renormalization using the factor Ztw→mf

defined in Ref. [9] has
been carried out.)

# T (MeV) Nσ Ls ~ml ~ms Δeig
l;s =T

3 Δms
l;s =T

3 Δl;s=T3 ~Δl;s=T3

15 149 16 32 0.00464 0.05293 6.72 6.00 3.07(12) 5.7(2)
16 149 16 48 0.00468 0.05295 6.85 5.65 5.00(10) 6.3(1)
16 149 16 64 0.00459 0.05289 � � � � � � 5.57(10) 6.2(1)
2 149 32 32 0.00464 0.05293 6.45 6.39 3.84(5) 6.4(1)
3 159 32 32 0.00421 0.04856 3.86 4.28 2.83(6) 4.2(1)
5 168 32 32 0.00395 0.04490 1.64 2.19 1.46(7) 2.3(1)
6 177 32 32 0.00367 0.04165 � � � 1.21 0.71(5) 1.3(1)
7 186 32 32 0.00341 0.03873 � � � 0.42 0.22(4) 0.46(5)
8 195 32 32 0.00314 0.03619 � � � 0.25 0.14(3) 0.30(6)

FIG. 8 (color online). (Left to right) The renormalized eigenvalue spectrum for T ¼ 177 − 195 MeV without the removal of the bare
quark mass. The statistics are likely insufficient for 186 MeV on the 163 × 8 ensemble; only 5 instances of “near-zero modes” are
collected.

MICHAEL I. BUCHOFF et al. PHYSICAL REVIEW D 89, 054514 (2014)

054514-18



breaking effects. As can be seen from the table, for the
temperatures at which the fit form given in Eq. (40)
provides a good description of the eigenvalue distribution,
139 MeV ≤ T ≤ 168 MeV, analytic integration of this
three-parameter function and the direct sum over the lowest
100 modes agree reasonably well. This supports the use of
the three-parameter function to provide an interpretation of
our results. This agreement also suggests that the region
jΛj⪅10 MeV, which is distorted in our computed Dirac
eigenvalue spectrum by finite-volume and residual chiral
symmetry breaking effects but treated in a fashion con-
sistent with infinite volume, continuum expectations by the
fitting function, does not play a large role in these results.
The difference between Δeig

l;s and Δms
l;s can serve as an

estimate for the systematic error in the fit coefficients, a
difference which at its largest is about 15%.
A second observation that can be drawn from the data in

Table VI is that the quantity ~Δl;s agrees reasonably well with
the result obtained directly from the Dirac spectrum over the
full temperature range. This suggests that a good represen-
tation for the chiral condensate can be obtained by perform-
ing the subtraction of light and strange quark Green’s
functions and that in the case of DWF it is best to use
the GMOR relation and subtract connected pseudoscalar
susceptibilities rather than the condensates themselves which
contain relatively large, uncontrolled residual chiral sym-
metry breaking effects. We would like to emphasize that our
use of the continuum spectral Eq. (40) combined with the
renormalized DWF spectrum makes strong assumptions
about the validity of continuum methods in our lattice
calculation at reasonably strong coupling. It is impressive
that on the larger 323 volume, where the statistical errors are
likely most reliable, Table VI shows agreement betweenΔms

l;s
and ~Δl;s consistently at the 1 sigma level, which in some
cases represent an accuracy of 4% or less.
Finally we examine the results at T ¼ 149 MeV where

multiple ensembles with different values of Ls are avail-
able, shown in the first four lines of Table VI. Here results
are shown for three values of Ls: 32, 48 and 64. As
expected, the simple difference Δl;s shows a very strong
dependence on Ls. While there should be substantial
cancellation between the large, continuumlike modes in
this difference, at the very highest energies this cancellation

will be distorted by residual chiral symmetry breaking
effects. The use of the factor ðml þmresÞ=ðms þmresÞ in
the subtracted strange condensate will not, in general, cause
these effects to cancel. However, this argument suggests
that as Ls increases and these residual chiral symmetry
breaking effects are suppressed, Δl;s should approach ~Δl;s,
behavior that can be seen in Table VI. Less consistent is the
apparent increase in the value of ~Δl;s=T3 with increasing Ls
seen on the 163 volume, where an increase by more than
two standard deviation from 5.7(2) to 6.2(1) is seen as Ls
grows from 32 to 64. Since ~Δl;s is supposed to already be
close to its Ls ¼ ∞ value such Ls dependence is not
expected and we attribute this discrepancy to the under
estimation of statistical errors for this small, 163 volume.

D. Near-zero modes and Uð1ÞA symmetry

We now turn to one of the central questions addressed in
this paper, the origin of the observed Uð1ÞA symmetry
breaking above Tc. We will focus on the quantity Δπ;δ ¼
χπ − χδ since this difference of susceptibilities can be
expressed in terms of the spectral density using Eq. (39).
Table VII shows this difference at six temperatures as
determined from the integrated connected Green’s func-
tions. This difference contains only a very small logarith-
mic singularity after multiplicative renormalization by
1=Z2

mf→M̄S in the continuum, ∼ðml þmresÞ2 lnmla, where
the sum ml þmres represents schematically the effects of
both the input quark mass and DWF residual chiral
symmetry breaking. This controlled high-energy behavior
is realized by the convergence of the integral in Eq. (39),
even when ρðλÞ increases linearly or quadratically with λ.
Therefore, in Table VII we also show the contributions to

the spectral integral in Eq. (39) of each of the three separate
ansätze in Eq. (40), given in Eq. (41). Some cells are left blank
because the corresponding behavior cannot be seen in the
spectral data. For example, at T ≤ 168 MeV, there is no
visible accumulation of near-zero modes that might be
described by a δðλÞ term in ρðλÞ. However, at T ≥
177 MeV and above we can count a number of near-zero
modes that form a small but visible peak in ρðλÞ near λ ¼ 0.
AssumingaPoissondistribution,we take the square rootof the
total number of these near-zero modes as a rough estimate of
errors for the corresponding contribution. Similarly the

TABLE VII. A comparison of Δπ;δ measured from the difference of correlation functions with the three contributions computed from
fitting the eigenvalue density to the expression in Eq. (40) and with the result Δms

π;δ obtained from the mode sum given in Eq. (45), for the
323 × 8 ensembles. All results are renormalized in the M̄Sðμ ¼ 2 GeVÞ scheme.

# T (MeV) β ~ml Ncfg Δ0
π;δ=T

2 Δ1
π;δ=T

2 Δ2
π;δ=T

2 Δms
π;δ=T

2 Δπ;δ=T2

2 149 1.671 0.00464 158 � � � 3.7(3) 76(2) 109 87(2)
3 159 1.707 0.00421 109 � � � 4.6(1) 42(1) 70 60(2)
5 168 1.740 0.00395 83 � � � 4.9(1) 11(1) 35 35(2)
6 177 1.771 0.00367 170 23(1) 5.0(1) � � � 25 23(2)
7 186 1.801 0.00341 171 8(1) � � � � � � 8 6(1)
8 195 1.829 0.00314 76 7(1) � � � � � � 6 6(2)
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constant contribution or intercept has vanished for T ≥
177 MeV and above T ¼ 177 MeV the linear term is also
difficult to determine and the eigenvalue density is dominated
by what appears to be quadratic behavior.
We can also determine the susceptibility difference Δπ;δ

by using a direct sum over modes as was done for Δl;s in
Eq. (43) and tabulated as Δms

l;s in Table VI. Examining the
continuum spectral equation (39), we can write an expres-
sion for Δπ;δ analogous to that in Eq. (43) for Δl;s:

Δms
π;δ ¼

1

N3
σNτ

�X100
n¼1

2 ~m2
l

Λ4
n

�
: (45)

The results from this mode sum are shown in the second
column from the right in Table VII where very good
agreement is seen with the explicit difference of correlation
functions. This substitution of our renormalized DWF
eigenvalue spectrum directly into the continuum equation
for Δπ;δ is a stringent test of that spectrum. The infrared
singular factor 1=Λ4

n appearing in Eq. (45) might have
shown large, unphysical fluctuations associated with con-
figuration-by-configuration fluctuations in residual chiral
symmetry breaking. In fact, it is possible that the larger
values shown in Table VII for Δms

π;δ relative to the actual
correlator differenceΔπ;δ at the two lowest temperatures are
a result of this effect. However, overall the agreement
between Δms

π;δ and Δπ;δ is remarkably good.
The separate contributions to Δπ;δ presented in Table VII

give a clear, quantitative description of how the contribu-
tion of each piece evolves as the temperature increases. For
T ≤ Tc, the constant, or Banks-Casher term, gives the
major contribution to Δπ;δ. In contrast, in the region above
the pseudocritical temperature, the delta-function term
dominates and its contribution alone agrees well with
the result from the difference of integrated correlators.
We conclude that the nonzero Uð1ÞA symmetry breaking
that we observe above Tc in the correlator difference χπ −
χδ results from this small cluster of near-zero modes which
can be seen in the spectral distributions shown in Fig. 7 for
T ¼ 177, 186 and 195 MeV and more easily in the
expanded plots in Fig. 8.
It is possible that these near-zero modes become exact

zero modes in the continuum limit and are a result of

nonzero global topology and the Atiyah-Singer theorem. If
this is the case, the number of these zero modes should
increase in proportion to

ffiffiffiffi
V

p
with increasing space-time

volume. Thus, for zero modes resulting from nonzero
global topology we expect the corresponding density per
space-time volume to be proportional to 1=

ffiffiffiffi
V

p
. Were such

exact zero modes the only contribution to Uð1ÞA symmetry
breaking then we would conclude that Uð1ÞA symmetry
will be restored in the limit of infinite volume.
However if we compare the results for 323 (solid red

histograms) and 163 (black lines) in the expanded view of
these peaks shown in Fig. 82 for T ¼ 177, 186 and
195 MeV, we easily see that the density is volume
independent, instead of shrinking by a factor of

ffiffiffi
8

p
as

the volume is increased from 163 to 323. Thus, the volume
dependence of these near-zero modes corresponds to what
is expected if they result from a relatively dilute gas of
instantons and anti-instantons whose number, and whose
corresponding near-zero modes, will grow proportional to
the volume.2

We have also examined the chirality of these near-zero
modes. In particular, if these modes are the result of
nonzero global topology, then, for a single configuration,
all these modes should be of the same chirality, that of the
global topological charge ν. If ν is positive then each of the
zero modes should be right handed and in our DWF case
have support primarily on the right-hand, s ¼ Ls − 1
boundary. If ν is negative then all modes should be left
handed and their wave functions should be largest on the
left-hand, s ¼ 0 boundary. In contrast, if these modes arise
from a dilute instanton gas, they are produced by a mixture
of instantons and anti-instantons and the chirality of each
mode should have an equal probability to be either positive
or negative within a single configuration.
We choose the T ¼ 177 MeV ensemble to study the

chirality of the near-zero modes since it has the most near-
zero modes among the three highest temperature ensem-
bles, where these modes are seen. We did not save the full
five-dimensional eigenfunctions when computing the low-
est 100 modes and have available only values for the
squared modulus of the five-dimensional wave function,
integrated over the left- and right-hand wall for each mode.
Therefore we define the chirality of the nth mode as

χn ¼
R
d4xΨ̄nðx; 0Þð1þ γ5ÞΨnðx; 0Þ −

R
d4xΨ̄nðx; Ls − 1Þð1 − γ5ÞΨðx; Ls − 1ÞR

d4xΨ̄nðx; 0Þð1þ γ5ÞΨðx; 0Þ þ R
d4xΨ̄nðx; Ls − 1Þð1 − γ5ÞΨðx; Ls − 1Þ ; (46)

which compensates for the fact that even for a chirality
eigenstate, the five-dimensional wave function will not be
localized solely on one of the four-dimensional walls but
will spread into the fifth dimension. If we examine the zero
modes, we find that some of them have chirality near zero.
This might be expected for a not-too-dilute instanton gas

where the two modes of a nearby instanton-anti-instanton
pair will mix so that neither have a definite chirality,

2Here we use the distributions of Λ instead of λ near the origin,
since it allows us to ignore the large relative fluctuations in these
small eigenvalues below ~ml.
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However, such behavior could also be the result of our
strong coupling and gauge configurations with changing
topology producing zero modes of uncertain chirality. As a
result we choose to examine only those near-zero modes
whose chirality is greater than 0.7 in magnitude. The effects
of this choice choice can be seen in Fig. 9 where we plot the
histogram of the near-zero modes for T ¼ 177, 186 and
195MeV. It appears that at these temperatures, almost all of
the near-zero modes are localized on one of the two four-
dimensional walls and thus have a chirality very close to
þ1 or−1. Our restriction that the magnitude of the chirality
is greater than 0.7 captures approximately 95% of the near-
zero modes. Figure 9 suggests that this concentration of
chirality at �1 increases with increasing temperature.
Determining whether this apparent trend is the result of
(i) limited statistics at the higher temperatures, (ii) increas-
ing spatial localization of the zero modes and therefore less
mixing as T increases or (iii) better defined gauge field
topology at weaker coupling requires further study.
Table VIII lists the number of configurations which have

N0 near-zero modes, Nþ of which have positive chirality.
Those modes included in the counts presented in Table VIII
must lie in the peak region (first four bins) shown in Fig. 8,
with Λ at or below approximately 12.5 MeV and with a

chirality of magnitude 0.7 or greater. A binomial distribu-
tion consistent with the DIGA describes the data in a more
convincing way than the bimodal distribution that would be
seen for the exact zero modes resulting from nonzero global
topology.
We conclude that the agreement between the value of

Δπ;δ measured from the difference of correlators and the
delta-function contribution Δ0

π;δ shown in Table VII implies
that the anomalous breaking of chiral symmetry for T > Tc
results from these near-zero modes. Further, the volume
dependence and chirality distribution of the modes making
up this delta-function contribution gives strong evidence
that the nonzero anomalous symmetry breaking found
above Tc is the result of a dilute gas of instantons and
anti-instantons and that no new mechanism of anomalous
symmetry breaking is needed.

V. CONCLUSIONS

We have extended earlier finite-temperature QCD studies
[9] from 163 × 8 to larger 243 × 8 and 323 × 8 volumes, all
performed using a 200MeV pion mass and the chiral, DWF
lattice action. Significant dependence on volume is seen for
both the chiral condensate, Σl, and the disconnected chiral
susceptibility, χdisc, for temperatures below Tc. Most
dramatic is the large decrease in χdisc below Tc as the
volume is increased from 163 to 243 and 323 which is
shown in the left panel of Fig. 5. Without data at one or
more additional values of the light-quark mass, we are
unable to make a proper comparison of this finite-volume
dependence with the predictions of Oð4Þ universality.
However, on a qualitative level this behavior is predicted
by finite-volume Oð4Þ scaling [14] and was anticipated by
the results given in Ref. [16]. Here a model calculation is
presented using renormalization group methods applied to
a theory including fundamental quarks, gluons and mesons.
Since the volume dependence of this theory should be
consistent with Oð4Þ universal behavior, the results in
Ref. [16] can be viewed as a prediction of Oð4Þ universal
finite-volume behavior which is now evident in our lattice
calculation. We expect to make a quantitative comparison

FIG. 9 (color online). (Left to right) The distribution of chiralities for the near-zero modes at the three temperatures
T ¼ 177, 186 and 195 MeV and the 323 × 8 volume. Here we only use modes lying in the first four histogram bins in Fig. 8 which
corresponds to Λ≲ 12.5 MeV.

TABLE VIII. The number of configurations found in the
177 MeV (run #6) ensemble with given values for the total
number (N0) of near-zero modes and total number (Nþ) of those
modes with positive chirality. We consider only modes with Λ ≤
12.5 MeV and a chirality whose magnitude exceeds 0.7. The
distribution is clearly different from the bimodal distribution
Nþ ¼ N0 or 0 expected if these near-zero modes were induced by
nonzero global topology and the Atiyah-Singer theorem.

Nþ ⃥ N0 0 1 2 3 4 5

N0 ¼ 1 40 29 � � � � � � � � � � � �
N0 ¼ 2 11 20 12 � � � � � � � � �
N0 ¼ 3 3 11 6 2 � � � � � �
N0 ¼ 4 0 1 2 1 0 � � �
N0 ¼ 5 0 2 0 0 0 0
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with finite-volumeOð4Þ scaling when the HotQCD 323 × 8
and 643 × 8, mπ ¼ 135 MeV data can be included in the
analysis.
A second result presented here is the observation of

nonvanishing Uð1ÞA symmetry breaking above Tc and its
quantitative connection to the density of near-zero Dirac
eigenvalues. The volume dependence of these near-zero
modes and the failure of their chiralities to be correlated per
configuration matches precisely the expectation of the
dilute instanton gas approximation. This might also be
called the dilute caloron gas approximation if we recognize
the finite-temperature distortions that are expected for
instantons at finite temperature whose space-time extent
approaches the length 1=T [31–35]. (For a thorough review
of the subject of instantons in QCD, including their effects
at finite temperature, see Ref. [36].) While more study of
the space-time structure of these zero modes is required to
completely establish this picture of Uð1ÞA symmetry
breaking, our results are all well explained by this
mechanism.
The possible Uð1ÞA symmetry breaking above Tc was

recently analyzed theoretically by Aoki, et al. using a
lattice regularization, based on overlap fermions [37]. We
also refer the reader to this paper for a discussion of and
references to earlier theoretical work on the question of
Uð1ÞA symmetry breaking above Tc and its relation to the
Dirac eigenvalue spectrum. Among the conclusions of
Ref. [37] is that χπ − χδ vanishes in the limit of infinite
volume and vanishing quark mass for T > Tc. We have
found a nonzero value for χπ − χδ on the smallest, 163

volume which becomes larger when the volume was
increased eightfold to 323. While we have examined only
a single quark mass, we believe that this mass is sufficiently
small as to be a good approximation to zero. We believe this
to be the case because the explicit SUð2ÞL × SUð2ÞR
symmetry breaking effect of the quark mass on the differ-
ence ðχπ − χδÞ − ðχσ − χηÞ is significantly smaller than the
scale of χπ − χδ. (We are now studying a second, smaller
mass to test this assertion.) However, our results and the
arguments presented in Ref. [37] can be made consistent if
those arguments are reversed to conclude that the analy-
ticity in ~m2

l assumed above Tc in Ref. [37] is not present.
There is also a potential conflict between our results and

the conclusions of a recent 2-flavor study of Cossu, et al.
[13] on a 163 × 8 volume using overlap fermions.
Reference [13] reaches the conclusion that there is a gap
in the Dirac eigenvalue spectrum and degeneracy between
the π and δ correlators above Tc. However, the numerical
evidence supporting their conclusion is strongest at rela-
tively high temperatures where our results also show few
small Dirac eigenvalues and small (but significant) results
for χπ − χδ. Given our larger volumes and our smaller light-
quark mass, which is fixed in physical units, it is possible
that the small effects which we are able to extract may not
be visible in this first overlap study.

Especially interesting is the failure of this overlap
calculation to see the small peaks in the Dirac spectrum
near λ ¼ 0 found in our DWF work. As is pointed out by
Cossu, et al., residual chiral symmetry breaking in a DWF
calculation does distort the small eigenvalue region.
However, while this distortion may shift individual eigen-
values by a few MeV, it is not expected to create near-zero
modes that are not present in the continuum theory. Our
detailed comparisons of the predictions of spectral formulas
with the improved chiral condensate suggest that the
averaged features of the Dirac spectrum, even for
λ ∼ 1 MeV, are accurate. We believe that this absence of
a near-zero mode peak in the overlap data has at least two
possible explanations. First since the size of these peaks is
very temperature dependent, even a 10% underestimate of
the energy scale for the overlap relative to the DWF
simulation could explain their absence in the former.
Second, the elimination of topology change in the overlap
simulation results in a nonergodic evolution algorithm
which may distort the thermal distribution of near-zero
modes, especially at weaker couplings and smaller dynami-
cal quark masses, in spite of the evidence to the contrary.
The study of 163, 243 and 323 volumes in this work gives

us a good understanding of the effects of finite volume and
a very interesting opportunity to compare with the pre-
dictions of Oð4Þ universality. By working at relatively
small light-quark mass on a line of constant physics
(mπ ¼ 200 MeV), we believe that the effects of explicit
chiral symmetry breaking present are small and that the
evidence for anomalous symmetry breaking just above
Tc ≈ 160 MeV is strong. This symmetry breaking
decreases rapidly as the temperature grows making the
signal difficult to see at our highest temperature, 196 MeV.
The study of the Dirac eigenvalue spectrum suggests that
this Uð1ÞA symmetry breaking results from near-zero
modes whose characteristics match well with those pre-
dicted by the dilute instanton gas approximation. However,
it is important to verify this picture by extending the
investigation to even smaller light-quark mass and larger
volumes. Calculations currently being carried out by the
HotQCD Collaboration on 323 × 8 and 643 × 8 volumes
with mπ ¼ 135 MeV should resolve these remaining
uncertainties.
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