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I. INTRODUCTION

In 1867 Lord Kelvin suggested [1] that elementary
particles can be knots. While his idea of knotted fluid vor-
tices in the aether as fundamental objects of nature was
revolutionary for his time, our present experimental knowl-
edge does not agree with this conjecture. Specifically, we
now know that knotted fluid vortices are unstable and
worse still, the aether does not exist. Nevertheless, the idea
is attractive for its simplicity of relating fundamental physi-
cal and mathematical objects, and it should not be dis-
carded out of hand before being tested on various other
physical systems. One such system where stable knotted
configurations may exist is quantum chromodynamics
(QCD), the subject of the present study.
Observations from many experiments can be interpreted

as signatures of unusual mesonic states, i.e., bosonic
hadrons that are not pure qq̄ [2]. Such states can be broadly
divided into the following types: (1) hybrids—bound states
of quarks and gluons, like qq̄G with quantum numbers
JPC ¼ 0−þ; 1−þ; 1−−; 2−þ;…; (2) exotics—for example,
four and six quark states, such as qqq̄ q̄ and qqqq̄ q̄ q̄
with quantum numbers JPC ¼ 0−−; 0þ−; 1−þ; 2þ−;…;
(3) glueballs— states with no valence quarks at all, com-
posed of pointlike or collective glue, e.g., string loops à la
Nielsen-Olesen [3], or closed flux tubes. [Even though
glueballs do not contain valence quarks, there are certainly
sea (virtual) quarks within a glueball.] Glueballs are among
the most studied and least understood classes of particles in
QCD [4]. Lattice calculations, QCD sum rules, electric flux
tube models, and constituent glue models lead to a consen-
sus that the lightest valence quark-free state is a glueball
with quantum numbers Jþþ ¼ 0þþ [5]. On the lattice, usu-
ally only a single glueball state below ∼2 GeV is consid-
ered, since all the excitations are expected to be above this

energy [6]; however, a full study of topological operators
responsible for knots and links on the lattice is computa-
tionally challenging at present and has not yet been carried
out. Nevertheless, studying such configurations would be
interesting and potentially important for a better under-
standing of QCD [7].
Although glueballs, and the f states they are associated

with, are one of the most widely discussed problems in
hadronic physics, and, while many glueball models have
been proposed [8], there is still no consensus of what con-
stitutes a glueball beyond its Jþþ quantum numbers. Here
we take an egalitarian approach. Specifically, we model
all Jþþ mesonic states, i.e., all fJ and f0J states listed by
the Particle Data Group (PDG) [2] (f states, for brevity),
as knotted or linked chromoelectric QCD flux tubes
[10]. Hence, we will use the term “glueball” loosely as a
shorthand for any Jþþ state in QCD.
Before presenting our model (which is an updated

version of [11]) let us first briefly review the history of
closed flux tubes in QCD and knotted solitons. Kelvin’s
ideas of knots as particles lay dormant for nearly a century,
but have been revived in the last forty years. One of the
earliest modern attempts to describe elementary particles
in terms of knots and links of quantized flux was made
in [12]. These objects can be thought of as solitons, and
an extensive survey of soliton solutions to various types
of quantum field theories, as well as reprints of many
classic papers, can be found in [13].
The idea that glueballs and pomerons can be closed

string loops goes back to the early days of string theory
[14,15] and that glueballs can be closed QCD flux tubes
[16] is nearly as old as QCD itself. Early work on closed
loop solitons, including closed Nielsen-Olesen vortex loops
[17], with respect to glueballs began in the 1970s, and
Rasetti and Regge had discussed knotted Nielsen-Olesen
vortex loops already in 1975 [18]. A model of toroidal flux
tubes in the Copenhagen vacuum was proposed to describe
glueballs [19] and a toroidal bag model of glueballs and
their excitation spectra was suggested in [20]. A nonlinear
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σ model with toroidal and knot configurations was inves-
tigated [21] where it was suggested that similar solitons
could exist in liquid crystals, 3He or in fundamental
theories. Further work along these lines can be found in
[22]. An interesting set of dual variables in SUð2Þ Yang-
Mills theory has been suggested [23], where the large
distance limit describes massive solitonic flux tubes
which close on themselves in stable knotlike configurations
and are natural candidates for describing glueballs. Related
work can be found in [24]. In addition, a connection
between a generalized Skyrme action and the Yang-Mills
action of QCD has been established in [25], where a knot
interpretation of glueballs was also suggested.
In 2002, two of us proposed that fJ states could be

modeled by tightly knotted/linked chromoelectric tubes
carrying quantized flux where the energy of a knot/link
is geometric and proportional to the length of the tubes
[11] and gave a one-parameter fit in good agreement with
the data. The numerically observed portion of the tight knot
spectrum is nondegenerate and the first known degeneracy
of the tight link length spectrum occurs at 6 components.
We also argued that any systems that supported knotted/
linked quantized flux would have this universal energy
spectrum up to scaling. For other related work see [26–29].
In 2003Faddeev et al. [30] identified a twisted unknotwith

the f0ð1500Þ, and the ηLð1410Þ as a parity doublet and they
predicted the lightestQCDknot, the trefoil,wouldbea state in
the 6.4 to 6.5 GeV region. Their spectrum is topological with
energy proportional to ðself-linking numberÞ3=4; hence, all
knots with a fixed self-linking number are degenerate in their
model.
The application of knotted flux tubes to a variety of other

systems has been proposed, including a condensate of 87Rb
atoms [31] and the neutrino mass spectrum [32]. Linked
strings have also been considered in the context of Z strings
[33]. Pairs of unknotted loops and their links have been
studied in σ models in [34].
In addition, confining flux and glueballs from the lattice

perspective is reviewed in [35] and there is a recent model
describing a QCD string as a chain of constituent gluons
bound by nearest neighbor interactions [36]. This model
has properties seen in lattice QCD, the 1=N expansion
and the quark model.
With this overview complete we can proceed with our

analysis.

II. MODEL

In [11] two of us argued how to generalize various
classical ideas from plasma physics to a semiclassical
model of knotted and linked configurations in QCD. To this
end, we first recall that Maxwell’s equations for an ideal
plasma imply that flux lines are locked into the plasma
flow. This means that if the flux lines are knotted or linked,
then the flux line topology is conserved as the flow evolves.
A classical consequence of conservation of topology is the

concept of helicity and its conservation in a plasma [37].
Helicity in this context corresponds to the degree of
Gaussian linking of QCD flux tubes. Keeping only the
helicity fixed, while allowing other topological changes
in flux lines, and minimizing the energy leads to the so-
called Taylor states [38] in plasma physics. Keeping flux
tube topology fixed leads to tight knots [39] in QCD.
The analogy we are drawing between knotted configu-

rations in QCD and flux lines in a Maxwell plasma is only
meant for arguing that helicity conservation can stabilize
knots and links. The analogy applies more closely to an
unconfined quark-gluon plasma, but we nevertheless think
it has some merit if not carried too far. The two most impor-
tant model assumptions (discussed in more detail below)
that take us beyond a Maxwell plasma are (i) the tubes carry
a single unit of quantized flux, which leads to a uniform
tube cross section, (ii) the flux is confined first and then
tightly knotted/linked. From these assumptions alone
we conclude that the mass spectrum of knots and links
is determined completely by their geometry. Solitons that
form in a QGP that are then confined, i.e., knotting first and
confinement later, would have a different spectrum.
The simplest configuration of linked flux tubes has the

form of a Hopf link (denoted 221) in which two unknots are
linked together in the simplest way such that the Gaussian
linking number is one. This is the tight Hopf link, in which
fixed diameter d flux tubes, carrying one flux quantum
each, have the shortest total length. The ratio of the total
length of the tubes to their diameter d is invariant for all
such tight Hopf links. We define the “knot energy” of
the tight configuration K as its dimensionless length lK ,

ε0ðKÞ ¼ lK=d;

where in this example K ¼ 221, so then ε0ð221Þ ¼
2ð2πdÞ=d ¼ 4π. By knot energy, mathematicians generally
mean some kind of repulsive electrostatic energy such as
O’Hara’s energy [40] or the Freedman-He-Wang [41]
“Möbius energy.” Our ε0ðKÞ is called the ropelength of
the configuration and the configurations which minimize
the ropelength are called “tight” or “ideal” knots [42];
see also [43]. For the Hopf link and a family of other simple
links, where the tight configuration is known, see [44]. As
expected, for the Hopf link this configuration consists of
two linked circles passing through each other’s centers.
The Hopf link is the simplest link, but there is an infinite

family of topologically different link types. Many of these
configurations have been tabulated by mathematicians
[45,46] and there are different topological invariants (such
as linking numbers) which distinguish them. However,
regardless of which invariants are used to identify the con-
figurations, the “frozen-in field” hypothesis implies that
tube topology is conserved. Hence, we conjecture that
the ground states of all systems of flux tubes, with any type
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of nontrivial linking, are the states with the shortest
length tubes.
Similar to linked flux tubes, we also consider self-linked

(knotted) flux tubes, where the associated tight knot states
and dimensionless knot lengths are analogously defined.
The simplest example of a nontrivially knotted flux tube
has the form of the trefoil knot 31. This configuration
has knot energy which has been numerically calculated
to be ε0ð31Þ ≈ 16:3715 [47]. Note that there are no known
analytic forms for the lengths of any tight knots or links
with nonplanar elements.
To begin the description of the model, we consider a

high energy hadron-hadron collision in the process of
rehadronization, where there are baryons, mesons, and
quantized fluxes confined to tubes. If the tubes are open,
with quarks and antiquarks at their ends, then they are
excited baryon or meson states. Our interest is in closed
tubes which can be self-linked (knotted) or linked with
each other. As a key part of our model, we identify all
the f states as knotted or linked QCD chromoelectric
flux tubes. The topological quantum numbers (or knot/
link type of the configuration) are what stabilizes the
knotted and linked configurations, so we assume that
nontopological (i.e., unknotted/unlinked) Jþþ closed
flux tube configurations are too unstable to have measur-
able widths. A configuration with tightly knotted or
linked flux tubes in the form of the knot or link K will
be called fðKÞ. Note that topological invariants in
QCD typically require instanton and Chern-Simons terms
for their full description [48], but we will not need these
subtleties here.
As argued above, nontrivial knotting and linking leads to

quasistable generalized minimum energy states. This
implies the following theorem.
Theorem 1. For a configuration with a topological

charge measured by the knotting or linking of flux tubes
of a constant radius (due to quantized flux, and therefore
of constant energy or mass per unit length), the generalized
minimum energy state is the one that minimizes εðKÞ and
therefore ties the knot or link with the shortest tube.
Clearly, the minimum energy corresponds to the

minimum dimensionless length of tube needed to support
the topology. Since the length and energy coincide up
to a rescaling, the proof proceeds trivially by inspection.
(Note that this proves a quantum analog of Moffatt’s
1985 conjecture that higher order linking leads to positive
lower bounds on configuration energy.) We will see
below that the approximation of a fixed energy per unit
length can be improved by an analysis of the effect of a
field rearrangement within a bent tube.
We conclude that the quantum case of tight flux tube

configurations is much simpler than the corresponding
classical case where one minimizes energy with a flux
constraint. However, the quantum case suggests that it
may be possible to sum or integrate any large number of

flux quanta to get the classical result for the generalized
minimum energy of a Gaussian-linked or higher order topo-
logical configuration. (Such a result would complete the
proof of Moffatt’s conjecture for the classical case.) This
is a side issue from our main purpose here that will be
explored elsewhere.
Let us now proceed with the further description of our

phenomenological model, which is similar to the model
in [11], but with some minor modifications. Pulling a
quark-antiquark (qq̄) pair apart in the QCD vacuum, a chro-
moelectric flux tube forms along a path connecting the
quark and antiquark. If the q is annihilated against the
q̄, or if it is annihilated by a q̄ in another qq̄ pair, where
the new q is in turn annihilated, etc., to close the path, then
a closed flux tube containing one flux quantum can form as
an unknot or a knot. A flux tube following such a curved
path could also, for instance, be due to multiple scattering
of the initial qq̄ pair before its mutual annihilation. If the
closed tube is a knot, or if it ends up being linked with
another closed tube, then such an object has at least one
nonzero topological quantum number, and this quantity
is what tends to stabilize the tight configuration, which
we either identify with one of the observed f states or
use to predict a new state. To allow hadronization to run
its course, we assume that the typical time scale needed
to reach a tight configuration is shorter than the typical life-
time of the hadron.
Since the publication of [11] in 2003, there has been

slow continuous physics progress in the refinement of
the f-states data as summarized by the PDG [2], with
smaller error bars from better statistics and a few new
states now listed in their summary tables. The change in
the f-state data that affects our model the most is the
PDG’s realignment of the mass of the σ, formerly called
the f0ð600Þ and now reassigned as the f0ð500Þ. While
there has been no new data since 2007, there has been
several new reanalyses of compilations of the existing
data. The 2010 PDG value of the f0ð600Þ mass was
reported to be in the range 400–1200 MeV and we
previously used 800� 400 MeV as our approximation.
Now the PDG is reporting a mass range for the f0ð500Þ
of 400–550 MeV. This is a drastic change since the range
has contracted by a factor of 5 and the central value has
dropped by over 300 MeV.
Contrary to the rather gradual physics progress, the

mathematical knowledge of tight knots has changed dra-
matically from what was used in [11] to what it is today
[52]. In 2003 the lengths of only a handful of tight knots
and nonplanar links were known, and some of those only to
an accuracy between 5% and 10%. Now we know the com-
plete length spectrum of the first several hundred tight
prime knots and nonplanar links with an accuracy that is
assumed to be in the 0.1%–1.0% range for most of this
spectrum. The lengths of the composite knots have recently
appeared [53]. We present new computations covering
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the final piece of the puzzle—ropelengths of composite
links—for the first time below. The current limitation on
knot energies needed for the model is due to the fact that
we are dealing with physical knots and links that can be
constricted or distorted (see below), thus increasing the
errors on the effective lengths. Even with this caveat, we
still can advantageously refit the Jþþ data by comparing
it with high accuracy tight knot and link data after adding
estimated errors, all of which is collected in Tables I
through IV below.

TABLE I. Comparison of the glueball mass spectrum and fit
energies for ε0ðKÞ less than ∼36. E1ðKÞ and E2ðKÞ are for
one- and two-parameter high f0ð1370Þ fits.
State Mass Ka ε0ðKÞb E1ðKÞc E2ðKÞc
f0ð500Þ 475� 75 221 12.571d 718 850
f0ð980Þ 990� 20 31 16.381 936 1026

421 20.011 1143 1195
f2ð1270Þ 1275:1� 1.2 221#2

2
1

20.853d 1192 1234
f1ð1285Þ 1282:1� 0.6 41 21.051 1203 1243
f0ð1370Þ 1350� 150 51 23.608 1349 1361
f1ð1420Þ 1426:4� 0.9 221#31 24.671 1410 1411
f2ð1430Þ ≈1430 52 24.745 1414 1414
f0ð1500Þ 1505� 6 521 24.893 1422 1421
f1ð1510Þ 1518� 5 633 25.181 1439 1434
f02ð1525Þ 1525� 5 621 27.146 1551 1525
f2ð1565Þ 1562� 13 727 27.760 1586 1554
f2ð1640Þ 1639� 6 ð221#221#221Þkc 28.133d 1608 1571

221#4
2
1

28.311 1618 1579
622 28.356 1620 1582
61 28.364 1621 1582

31#31 28.521 1630 1589
62 28.522 1630 1589

31#31m 28.537 1631 1590
221#41 28.742 1642 1599
728 28.886 1651 1606
631 28.914 1652 1607
63 28.929 1653 1608
632 29.006 1657 1612
623 29.057 1660 1614

ð221#221#221Þlc 29.133d 1665 1618
½f0ð1710Þ�1 ½1720� 6�1 837 30.297 1731 1672

819 30.502 1743 1681
71 30.715 1755 1691

½f0ð1710Þ�2 ½1720� 6�2 820 31.557 1803 1730
½f2ð1810Þ�1 ½1815� 12�1 221#51 31.908 1823 1746

73 31.975 1827 1749
8215 32.093 1834 1755
72 32.122 1836 1756
721 32.129 1836 1756
74 32.146 1837 1757

31#4
2
1

32.189 1839 1759
838 32.514 1858 1774
722 32.520 1858 1775
724 32.542 1860 1776

aNotation nlk means a link of l components with n crossings of
the kth type, see, e.g., [62]. K#K0 stands for the connected sum of
K and K0, and ðKÞm is the mirror image of K.

bAll values of the ropelength ε0ðKÞ are from [52], except for
composite links that were calculated separately but also with
Ridgerunner. The dimensionless length convention agrees with
[11] and is a factor of 2 smaller than that in [52].

cE1ðKÞ and E2ðKÞ are the values of the fitted mass
corresponding to the PDG or predicted mass obtained from
ε0ðKÞ for one- and two-parameter high f0ð1370Þ fits, respectively.dExact value: ε0ð221Þ ¼ 4π (Hopf link), ε0ð221#221Þ ¼ 6π þ 2
(chain of three links), ε0ðð221#221#221ÞkcÞ ¼ 8π þ 3 (key chain
link with three keys), ε0ðð221#221#221ÞlcÞ ¼ 8π þ 4 (linear chain
with four links).

TABLE II. Comparison of the glueball mass spectrum and fit
energies for ε0ðKÞ less than ∼36. E1ðKÞ and E2ðKÞ are for one-
and two-parameter high f0ð1370Þ fits.
State Mass Ka ε0ðKÞb E1ðKÞc E2ðKÞc

31#41 32.6361865 1780
75 32.6411865 1780

221#5
2
1

32.6591866 1781
723 32.6751867 1782

8310 32.7351871 1785
821 32.7711873 1786
77 32.8161875 1788
76 32.8571878 1790
725 32.8731878 1791
731 32.9111881 1793

221#2
2
1#31 32.9591883 1795

9249 33.0281887 1798
221#52 33.0411888 1799
9243 33.1341893 1803
726 33.1671895 1805
8216 33.2211898 1807

½f2ð1910Þ�1,
½f2ð1810Þ�2

½1903� 9�1,
½1815� 12�2

839 33.3591906 1813

842 33.7111926 1830
½f2ð1950Þ�1 ½1944� 12�1 9253 34.0081943 1844

821 34.2141955 1853
946 34.3191961 1858
9250 34.3501963 1859

9261 34.6891982 1875
942 34.7551986 1878
9247 35.0832005 1893

½f2ð1910Þ�2 ½1903� 9�2 9251 35.2762016 1902

aNotation nlk means a link of l components with n crossings of
the kth type, see, e.g., [62]. K#K0 stands for the connected sum of
K and K0, and ðKÞm is the mirror image of K.

bAll values of the ropelength ε0ðKÞ are from [52], except for
composite links that were calculated separately but also with
Ridgerunner. The dimensionless length convention agrees with
[11] and is a factor of 2 smaller than that in [52].

cE1ðKÞ and E2ðKÞ are the values of the fitted mass
corresponding to the PDG or predicted mass obtained from
ε0ðKÞ for one- and two-parameter high f0ð1370Þ fits, respectively.

dExact values: ε0ðð221#221#221#221ÞkcÞ ¼ 10π þ 4 (key chain link
with four keys).
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Let us summarize the model assumptions:
(1) There is a one-to-one correspondence between f

states and tightly knotted and linked chromoelectric

flux tubes.
(2) The flux is quantized with one flux quantum

per tube.
(3) Knotted and linked flux tubes are stabilized by

topological quantum numbers.
(4) The tube diameter is in the ∼0.1 fm range. (This cor-

responds to a string tension of approximately

400 MeV, which agrees with lattice estimates.)

TABLE III. Low f0ð1370Þ curvature-corrected fit: Comparison
of the glueball mass spectrum and fit energies for εðKÞ less than
∼32.

State Mass Ka εðKÞb E1ðKÞc

f0ð500Þ 475� 75 221 11.724 764
f0ð980Þ 990� 20 31 14.943 974
f0ð1370Þ 1350� 150 421 18.250 1189
f2ð1270Þ 1275:1� 1.2 41 19.411 1265
f1ð1285Þ 1282:1� 0.6 221#2

2
1

19.556 1274
f1ð1420Þ 1426:4� 0.9 51 21.559 1405
f2ð1430Þ ≈1430 221#31 22.697 1479
f0ð1500Þ 1505� 6 52 22.779 1484
f1ð1510Þ 1518� 5 521 22.866 1490
f02ð1525Þ 1525� 5 633 23.309 1519
f2ð1565Þ 1562� 13 621 24.854 1619
f2ð1640Þ 1639� 6 727 25.735 1677

622 25.924 1689
61 26.025 1696

221#4
2
1

26.046 1697
31#31m 26.135 1703
31#31 26.151 1704
62 26.158 1704

f0ð1710Þ 1720� 6 631 26.327 1715

ð221#221#221Þkc 26.449 1723

221#41 26.466 1724
63 26.567 1731
623 26.590 1733

728 26.720 1741

632 26.963 1757

ð221#221#221Þlc 27.449 1788
f2ð1810Þ 1815� 12 71 28.018 1826

837 28.152 1834
819 28.458 1854
73 29.025 1891
820 29.151 1899
721 29.231 1905
72 29.330 1911

221#51 29.339 1912
74 29.385 1915

31m#4
2
1

29.402 1916

8215 29.496 1922

31#4
2
1

29.536 1924
724 29.544 1925

aNotation nlk means a link of l components with n crossings of
kth type, see, e.g., [62]. K#K0 stands for the connected sum of K
and K0, and ðKÞm is the mirror image of K.

bAll values of the curvature-corrected knot energies εðKÞ are
modified from [52], except for composite links that were
calculated separately but also with Ridgerunner. The
dimensionless length convention agrees with [11] and is a
factor of 2 smaller than that in [52].

cE1ðKÞ is the value of the fitted mass corresponding to the
PDG or predicted mass obtained from εðKÞ.

TABLE IV. Comparison of the glueball mass spectrum and fit
energies for εðKÞ less than ∼32.

State Mass Ka εðKÞb E1ðKÞc

221#2
2
1#31A 29.682 1934

31#41 29.790 1941
75 29.806 1942

f2ð1950Þ 1944� 12 221#52 29.840 1944
723 29.873 1946
76 29.894 1948
722 29.895 1948

221#5
2
1m 29.929 1950

221#5
2
1

29.952 1952
838 29.957 1952
725 30.015 1956
821 30.017 1956
77 30.092 1961
731 30.112 1962
726 30.302 1974
9243 30.416 1982
8216 30.525 1989
839 30.571 1992
8310 30.605 1994

221#2
2
1#31B 30.611 1995
9249 30.839 2009
842 30.967 2018
821 31.214 2034
843 31.473 2051
946 31.513 2053
9250 31.521 2054
9253 31.776 2070
9261 31.909 2079
9247 31.916 2080
942 31.950 2082

aNotation nlk means a link of l components with n crossings of
kth type, see, e.g., [62]. K#K0 stands for the connected sum of K
and K0, and ðKÞm is the mirror image of K.

bAll values of the curvature-corrected knot energies εðKÞ are
modified from [52], except for composite links that were
calculated separately but also with Ridgerunner. The
dimensionless length convention agrees with [11] and is a
factor of 2 smaller than that in [52].

cE1ðKÞ is the value of the fitted mass corresponding to the
PDG or predicted mass obtained from εðKÞ.
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(5) The quantity J in an fJ or f0J state is the intrinsic
angular momentum of the associated knotted soli-
tonic solution of the QCD field equations.

(6) The relaxation to a tight state configuration (via
processes where no topology change is involved)
is faster than its decay rate (via processes with top-
ology change) for an f state, i.e., τrelax ≪ τdecay.

One modification from [11] is that we now assume J is
the intrinsic angular momentum rather than the rotational
angular momentum. We do this because the tube diameter
is now assumed to be smaller and hence the rotational
energy level spacing to be larger, ∼500 MeV, as opposed
to a few MeV for the thicker tubes assumed in [11]. The
other significant modification is that we correct the energy
due to tube curvature as discussed in the next section and
include estimated errors due to other physical corrections.
We begin by identifying tight knot and link lengths with

glueballs and/or predicted glueballs, where we include all f
states. The lightest candidate is the f0ð500Þ, which we
identify with the shortest knot or link, i.e., the Hopf link
221; the f0ð980Þ is identified with the next shortest knot
or link, in this case the trefoil knot 31, etc.
Our initial one-parameter fit of the data is shown in

Fig. 1. The slope is Λtube ¼ 57 MeV and χ2 ¼ 84. The
fit is poor mainly because of the constraint imposed by
the very small error bars on the masses of the f2ð1270Þ
and the f1ð1285Þ. We will now see how to improve the
fit when ideal tubes are replaced with physical tubes.
Note we are already assuming errors of 3% on the knot
lengths which anticipates this replacement.

III. CURVATURE CORRECTIONS

In the discussion so far we have assumed uniform flux
across the cross section of the tubes, but flux is not

necessarily uniform over the cross section of curved tubes.
This leads us to define a new energy functional for tubes
which we call the “flux tube energy.”
To motivate our definition, we consider the effect of

bending on the total energy of a field confined to a tube.
First, recall that the magnetic field of an ideal toroidal
solenoid with fixed flux falls like 1=ρ from the symmetry
axis. To see this, choose cylindrical coordinates ðz; ρ; αÞ as
shown in Fig. 2 and note that symmetry requires the field be
in the α direction. (For an elementary argument see [54].)
Here we will proceed via a variational argument which is a
simpler alternative.
We hold the flux Φ fixed and vary the field to find the

functional form of the energyW for a toroidal solenoid. The
general form of the energy is

W ¼ 1

2

Z
D
B2ρdzdρdα: (1)

The dzdρ integration runs over the cross section of the tube
D. Since B is independent of α, the α integration gives

W ¼ π

Z
D
B2ρdzdρ: (2)

The flux through D is

Φ ¼
Z
D
Bdzdρ: (3)

Now we want to vary W with respect to B while holding Φ
fixed. This is equivalent to considering

δðW − λΦÞ ¼ 0; (4)
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FIG. 1. Fit using uncorrected knot/link lengths: Fit of the fJ
states data to tight knot and link lengths (ropelengths). Errors
are shown for the states, but they are too small to be visible
for the lengths of tight knots and links, however we include a
3% error in the knot energies due to the fact that we are dealing
with physical knots and links. (See discussion in the text.)
Nonfitted knots and links are not shown.

FIG. 2. Cross section of a toroidal flux tube of minor radius
R1 and major radius R2. Both polar and cylindrical coordinates
are shown.

BUNIY et al. PHYSICAL REVIEW D 89, 054513 (2014)

054513-6



where λ is a Lagrange multiplier. For unit vector n normal
to the cross section, the variation of B gives

Z
D
ð2πBρ − λnÞ · δBdzdρ ¼ 0; (5)

which vanishes for arbitrary δB only if

BðρÞ ¼ λn
2πρ

: (6)

We find λ from the requirement Φ ¼ const, which gives

B ¼ Φ
ρI

; (7)

W ¼ πΦ2

I
; (8)

with

I ¼
Z
D

dzdρ
ρ

: (9)

To calculate the integral I over the cross section of a torus
of major radius R2 and minor radius R1, it is convenient
to introduce polar coordinates ðr; θÞ with the origin at
the center of disk D, plus a toroidal angle α; see Fig. 2.
The result of integration over D is

I ¼ 2π
h
R2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − R2

1

q i
; (10)

which leads to

WðR2Þ ¼
Φ2

2½R2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − R2

1

p
� : (11)

The analogous result for the cylinder of length 2πR2 is

W0ðR2Þ ¼
Φ2R2

R2
1

; (12)

and so the ratio

WðR2Þ
W0ðR2Þ

¼ ðR1=R2Þ2
2½1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðR1=R2Þ2
p

� ; (13)

the graph of which is plotted in Fig. 3, will define our new
energy.
Formally, for an embedded tube K of fixed radius R1 and

parametric centerline curve γðsÞ with curvature κðsÞ, we
define the flux tube energy εðKÞ by the integral

εðKÞ ¼ 1

2πR2
1

�
Lþ

Z
L

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2

1κ
2ðsÞ

q
ds

�
; (14)

where L ¼ R
γ ds is the length of the center line. [In numeri-

cal studies of tight knots and links, it is observed that the

integral in (14) is typically ∼
ffiffi
3

p
L

2
which translates into an

∼7% correction of the energy from the ropelength value.]
It would be an interesting project to numerically minimize
the flux tube energy for various knot and link types.
However, this is likely to be a somewhat challenging
project: minimizing functionals of curvature (a second
derivative of position) constrained by tube contact (a func-
tion of position) is quite difficult. Still, there has been recent
progress in the numerical modeling of elastic rods with self-
contact [55] which leads to us hope that these computations
may be tractable in the near future.
In the meantime, we have chosen to minimize the origi-

nal ε0ðKÞ energy numerically using Ridgerunner [52], and
then compute the εðKÞ energy for the ε0ðKÞ-minimizing
configurations on the grounds that the difference between
εðKÞ-minimizing and ε0ðKÞ-minimizing configurations are
likely to be small. In Fig. 4 we have histogrammed the
shortest 72 knots and links after curvature corrections have
been applied. In Fig. 5 we have histogrammed the currently

FIG. 3. The function WðR2Þ=W0ðR2Þ (solid curve) and its
approximation (dashed line) for R2=R1 ≫ 1 and R1 ¼ 1.

FIG. 4. Histogram of the magnitudes of the curvature correc-
tions to the first 72 knot and link lengths.
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available complete set of 945 curvature-corrected knots
and links.
We should remark that in some cases the curvature is

discontinuous, but the field is not. For example, the inner
loop of the chain of three elements (the 211#2

1
1) is shaped

like a race track—two straight sections connected by
two half circles. In a solenoid of this form the curvature
is discontinuous at the junctions, but if we move along
the field lines we find that the fields are already changing
before they reach the junctions since the windings are dif-
ferent in the regions beyond the junction and the field is
affected by the fringe fields in that region. Hence the fields
can be continuous through the junction.
As an example of a case with both length and curvature

corrections that can be calculated exactly [44], consider the
chain of three unknots 221#2

2
1 which has length 6π þ 2 ≈

20.8496 and has R2 ¼ 2R1 in curved regions and R2 →
∞ in straight sections. We find an overall corrected value

εð221#221Þ ¼
1

4ð2 − ffiffiffi
3

p Þ 6π þ 2 ≈ 0.933013ð6π þ 2Þ

≈ 19.4529: (15)

Note that all exactly calculable link lengths in our tables
are unique, but degeneracies can occur at longer lengths.
The first such examples are the links corresponding
to the E6 and D6 Dynkin diagrams. Both have the
length ε0ðE6Þ ¼ ε0ðD6Þ ¼ 12π þ 7 (which falls slightly
beyond the largest lengths included in our tables) and
both have the same curvature-corrected energy
εðE6Þ ¼ εðD6Þ ¼ 3π

ð2− ffiffi
3

p Þ þ 7. Other corrections should lift
this degeneracy.

IV. RESULTS

In our model, the chromoelectric fields [56] F0i are
confined to the knotted and linked tubes, each carrying
one quantum of conserved flux [57,58]. We consider a
stationary Lagrangian density

L ¼ 1

2
trF0iF0i − V; (16)

where, similar to the MIT bag model [59], we included the
possibility of a constant energy density V. To account for
conservation of the flux ΦE, we add to L the term

trλ½ΦE=ðπa2Þ − niF0i�; (17)

where ni is the normal vector to a section of the tube of
radius a and λ is a Lagrange multiplier. Varying the full
Lagrangian with respect to Aμ, we find

D0ðF0i − λniÞ ¼ 0; (18)

DiðF0i − λniÞ ¼ 0; (19)

which have the constant field solution

F0i ¼ ðΦE=πa2Þni: (20)

With this solution, the energy is positive and, to first
approximation, proportional to the length of the tube l
and thus the minimum of the energy is achieved by
shortening l (i.e., tightening the knot), subject to the
curvature correction discussed above and other corrections
discussed below.
We proceed to identify knotted and linked QCD flux

tubes, i.e., curvature-corrected physical flux tubes, with
glueballs and/or predicted glueballs, where we include all
f states. The lightest candidate is the f0ð500Þ, which we
identify with the shortest curvature-corrected knot or link,
i.e., the Hopf link 221; the f0ð980Þ is identified with the next
shortest knot or link, in this case the trefoil knot 31, etc. By
the fourth knot/link, the ordering begins to be reshuffled due
to the curvature corrections, see Tables I and III.
All knot and link lengths have been calculated for states

corresponding to energies well beyond 2 GeV. Above
∼2 GeV the number of knots and links grows rapidly,
and so the corresponding hadronic states should become
dense relative to their typical width. Hence we will confine
our investigations to knot lengths corresponding to all
known f states below ∼2 GeV.
Our detailed results are collected in Table I through IV,

where we list the masses and error bars for the f states
(other properties can be found in [2]) and our identifications
of these states with knots and links together with the cor-
responding knot and link lengths (see Tables I and II), cur-
vature-corrected lengths (see Tables III, IV, and V), and
fitted energies.
We will give two interpretations of the data. The first

possibility is with the f0ð1370Þ identified with the 51 knot
which results in a prediction of a new state near 1190 MeV
identified with the 421 link. The other possibility, which
gives our best fit, is to identify the fð1370Þ itself with

FIG. 5. Histogram of the magnitudes of the curvature correc-
tions to all 945 currently tabulated knot and link lengths.
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the 421 link to give a one-to-one matching of the first 12 fJ
states with the first 12 knots and links. We will discuss the
details of these options below.
For comparison purposes we have displayed results for

knot energies proportional to lengths (Tables I and II)
and also for the curvature-corrected knot energies, (see
Tables III, IV and V). Let us begin with the uncorrected
length case. In Fig. 1 we display a one-parameter least-
squares fit to the experimental data (below 1945 MeV)
for the mass spectrum of f states identified with knots
and links. The fit is

EðKÞ¼Λtubeε0ðKÞ; Λtube¼57:14�0.53MeV; (21)

where ε0ðKÞ is the dimensionless length of the knot or link
K as defined above. The fit (21) shows fair agreement with
our model. One measure of the quality of the fit is given by
the adjusted R squared, R2 ¼ 0.998. Since we have more
knots than f states, the relevance of R2 must be carefully
interpreted and not taken at face value, especially beyond
∼1700 MeV where the lack of particle data per knot
becomes pronounced.
Compared to our 2003 results [11], the f0ð500Þ now falls

well below the line of our fit and we pay a penalty in χ2.
The result is also partially responsible for the change in the
value of our fit parameter Λtube, compared to what we find
using the 2010 values for the f0ð600Þ. It will be interesting
to see if the new f0ð500Þ PDG numbers are stable. Since
they are extracted from partial wave analysis and multiply
subtracted dispersion relations, there are questions about

comparing with the mass values for other f states found
in invariant mass plots. There is also the important issue
of mixing with four quark and other resonances.
However, we are not in a position to comment further
on these matters with confidence except for the general
qualitative remark that in a flux tube model we could ex-
pect mixing with excited mesons if there is resonant
behavior of tube breaking (forming a qq̄ pair) and rejoining
(by annihilating the pair). Resonant breaking and rejoining
at two positions, or in two link tubes mixes with four quark
states, etc.
Next we consider the curvature-corrected case where the

one-parameter fit is shown in Fig. 6. The χ2 is substantially
improved over the uncorrected length case and drops to
χ2 ¼ 33 to a large extent due to the fact that the two most
restricting states, the fð1270Þ and the fð1285Þ, have been
brought in line with the rest of the fJ data by the curvature
corrections. Hence, we continue to consider only the cur-
vature-corrected length case for the remainder of this
section.
Figure 7 shows the locations of knots and links with no

corresponding f state; hence, it gives the locations of new
states predicted by the model. Our first new state is at
1190 MeV, corresponding to the 421 link. It is interesting
to consider the PDG entry for the state f2ð1270Þ. Of the
36 quoted experimental observations, all but one is within
three σ of the PDG average mass of 1275 MeV. The 5.5σ
outlier at ð1220� 10Þ MeV is from the process pp →
ppπþπ− in the experiment of Breakstone et al. [60],
and we suggest its identification with our predicted state
at ∼1190 MeV.
We further predict twelve states around ð1710� 20Þ MeV.

To justify such a proposal, one only needs to look at the
PDG entry for the state f0ð1710Þ to see a considerable
amount of tension in the data with a large number of incom-
patible mass measurements in this region. We interpret this
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FIG. 6. Fit using curvature-corrected lengths: High one-
parameter f0ð1370Þ fit of the fJ states data to the curvature-
corrected knot and link data. Errors are shown for the states,
and the 3% estimated from the text is shown for the knots and
links. Nonfitted knots and links are not shown in this figure.

TABLE V. High f0ð1370Þ curvature-corrected fit: Comparison
of the glueball mass spectrum and fit energies for εðKÞ less than
∼32. Except for the fð421Þ, this table contains only the fitted PDG
states. Predictions for other states can be gotten by multiplying
the knot energy by the appropriate value of Λtube.

State Mass K εðKÞ E1ðKÞ
f0ð500Þ 475� 75 221 11.724 763
f0ð980Þ 990� 20 31 14.943 972
fð421Þ 421 18.250 1187
f2ð1270Þ 1275:1� 1.2 41 19.411 1263
f1ð1285Þ 1282:1� 0.6 221#2

2
1

19.556 1272
f1ð1420Þ 1426:4� 0.9 51 21.559 1403
f0ð1500Þ 1505� 6 221#31 22.697 1477
f2ð1430Þ ≈1430 52 22.779 1482
f1ð1510Þ 1518� 5 521 22.866 1488
f02ð1525Þ 1525� 5 633 23.309 1516
f2ð1565Þ 1562� 13 621 24.854 1617
f2ð1640Þ 1639� 6 727 25.735 1674
f0ð1370Þ 1350� 150 622 25.924 1687
f0ð1710Þ 1720� 6 ð221#221#221Þkc 26.449 1721
f2ð1810Þ 1815� 12 71 28.018 1823
f2ð1910Þ 1903� 9 72 29.330 1908
f2ð1950Þ 1944� 12 221#52 29.840 1941
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as an indication of multiple Jþþ states near 1700 MeV that
need to be resolved, just as is suggested by our model; see
Tables I and III. Similar reasoning applies to the states in
the vicinity of f2ð1810Þ, f0ð1910Þ, and f2ð1950Þ where
there is also tension in the data. A global statistical analysis
of f-state data to establish a statistical significance of such
an interpretation should be carried out. Figure 8 gives both
the combined fit and predicted masses and is displayed for
convenience. Better HEP data will provide further tests of
the model and improve the high mass identification.
Even though the states become denser with energy, they

also become more and more difficult to produce, wider and
therefore less stable. We expect the production cross sec-
tion to depend on how complicated a knot/link is. This is a
somewhat vague statement, because to make it precise one
would need to know the probability of formation of a con-
figuration with certain values of the knot and link invari-
ants. While there has been some work on knot formation
[61], these are for random stick knots and so application

to QCD is premature. If calculations of this type could
be carried out in QCD, then they should provide guidance
for the production of favored versus disfavored knot/link
types. Once one has a set of favored production states, then
one could go on to predict the spectrum that would be vis-
ible above some cross-section limit, and this would be less
dense than the spectrum predicted in the manuscript. It
could also explain why some of the states we predict have
not been seen—their production cross section is too low in
experiments carried out to date, or they could also be too
wide to have been seen. (The calculation of decay widths of
knots and links is also an open problem as will be discussed
at length below.) As a general rule we would expect more
massive states to be wider and more difficult to produce.
Such results could provide guidance to experiments as they
would provide a set of effective selection rules.
We are now ready to discuss the second fit possibility.

Since the error on the f0ð1370Þ mass is rather large
(�150 MeV) it can be identified with several different
knots and links. However, the identifications of the other
f states, except for the f0ð500Þ, are much more constrained
due to the small errors on their masses and this in turn
restricts the identification of the f0ð1370Þ to two allowed
choices with reasonable χ2s. We call the case discussed
above the high fit, where we identify the f0ð1370Þ with
the 51 knot, and the low fit where we identify the
f0ð1370Þ with the 421 link. The high fit is the one that pre-
dicts a new state at ∼1190 MeV, while the low fit gives a
one-to-one match between the first 12 f states and the first
12 knots and links. The low fit gives a somewhat better χ2,
but the high fit gives an acceptable χ2 and could be required
if for instance the 1220 MeV state of [60] is confirmed,
making it necessary to free up a low energy knot/link to
identify with it. Since we have already presented the high
fit above, we now proceed to discuss the low fit.
The low fit leaves no gaps in the spectrum until we get

near 1700 MeV. See Figs. 9, 10, and 11. The χ2 is improved
and the fitted value of Λtube is similar to the high-fit case.
We find

EðKÞ ¼ ΛtubeεðKÞ; Λtube ¼ 65:16� 0.61 MeV: (22)

The low fit (22) is our best overall fit to the data. We have
tabulated the fitted energies for the first 72 knots and links,
identifying all f states of energy less than 2 GeV, hence
giving predictions of many new states at 1690 MeV
and above.
Now let us discuss the statistical significance of our

results. First, we have done a number of tests to determine
if our hypothesis that glueballs are knotted flux tubes is
likely to be correct. Let us begin with the well-known
Kolmogorov-Smirnov test, which tests distribution functions
F̂ðyÞ and FðyÞ by means of the quantity

sup
y
jF̂ðyÞ − FðyÞj;
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FIG. 7. Predictions using curvature-corrected lengths: The circles
are locations of knots and links that do not have corresponding
fJ states in Fig. 6. Hence these are the locations of states predicted
by the high f0ð1370Þ one-parameter fit of the model.
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FIG. 8. Curvature-corrected lengths: The combined set of mea-
sured and fitted states (dots with error bars) and predicted states
(circles) for the high f0ð1370Þ one-parameter fit.
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which in this case are the distribution functions of the
glueball masses and calculated knot and link lengths. The
resulting p value for the Kolmogorov-Smirnov test is

pKS ¼ 0.95; (23)

where we recall that p is bounded 0 ≤ p ≤ 1 and p < 0.01
implies poor correlation, 0.01 < p < 0.05 implies moderate
correlation, and 0.1 < p implies strong correlation. Hence,
the Kolmogorov-Smirnov test implies our model is in
excellent agreement with the data.
The Kolmogorov-Smirnov test is a measure of goodness

of fit. We summarize this and a number of other goodness-
of-fit tests as well as several variance tests in Table VI. All
show excellent agreement between model and data. Here
and below we give p values for the high-fit case. The
low-fit values are similar.

Another approach is to calculate the χ2 for the data set,
subject to the corrections of energy per unit length
differences and deformations from the ideal knot case.
We have argued that the minimum energy and minimum
length of knots do not necessarily coincide. While we
expect the average energy per unit length of a knot does
not strongly depend on knot type, there is still a small
correction due to this effect. In addition, the tubes can
be constricted due to being wrapped by another section
of the tube or distorted by wrapping tightly around another
section of tube (as a rope wrapped tightly around a post).
We can approximate such corrections and will consider a
typical example below.
We have calculated the change in energy of a pair of

linked flux tubes to provide an example of corrections
we should expect due to constriction, which in turn gives
a contribution to the expected error in using physical tubes
instead of tight mathematical tubes to model glueballs. The
example we consider is a cylindrical tube along the z axis
encircled by a toroidal tube lying in the xy plane at z ¼ 0.
We assume both tubes have a circular cross section with
that of the torus staying fixed, but that of the cylinder being
of reduced radius in the region of constriction,
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FIG. 9. Low f0ð1370Þ one-parameter fit with curvature-
corrected lengths: This is our best fit of the fJ states data to
the knot and link data. Errors are shown for the states, as is
the 3% error estimate of knot and link lengths. Nonfitted knots
and links are not shown.
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FIG. 10. Low f0ð1370Þ one-parameter fit for curvature-
corrected lengths: This figure shows the knots and links that
do not have corresponding fJ states in Fig. 9. Hence these are
the locations of states predicted by the model.
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FIG. 11. Low f0ð1370Þ one-parameter fit for curvature-
corrected lengths: This figure shows the combined set of mea-
sured and fitted states (dots with error bars) and predicted states
(circles).

TABLE VI. Statistical tests of the model. Recalling that p is
bounded 0 ≤ p ≤ 1 and p < 0.01 implies poor correlation,
0.01 < p < 0.05 implies moderate correlation, and 0.1 < p
implies strong correlation, we see that all these tests strongly
support the model.

Goodness-of-fit test p value Variance test p value

Pearson χ2 0.66 Brown-Forsythe 0.74
Kolmogorov-Smirnov 0.95 Fisher Ratio 0.69
Cramér–von Mises 0.96 Levene 0.74
Anderson-Darling 0.97 Siegel-Tukey 0.82
Kuiper 0.99
Watson U Square 0.90
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RðzÞ ¼ Rð0Þ þ R1 − ðR2
1 − z2Þ1=2; (24)

where

−zm ≤ z ≤ zm; zm ¼ ½R2
1 − R2ð0Þ�1=2; (25)

see Fig 12. We further assume both tubes carry the same
amount of flux and so set their undistorted radii equal,
R1 ¼ RðzmÞ. The torus would tighten until R2 ¼ R1, except
that it begins to encounter the cylindrical tube at R2 ¼ 2R1.
The torus energy

ΔW1 ¼ WðR2Þ −Wð2R1Þ; (26)

where the function W is defined in (3), falls as it tightens
and the energy in the cylindrical tube

ΔW2 ¼
Φ2

2

π

�
− zm
R2
2

þ
Z

zm

0

dz
R2ðzÞ

�
(27)

grows as it is constricted. Stability is reached by minimiz-
ing ΔW1 þ ΔW2 with respect to Rð0Þ; see Fig. 12.
We have estimated the constriction for the Hopf link of

two magnetic flux tubes and find a ∼30% correction over
the region of constriction, which translates into an overall
∼5% correction to the link energy, since about 15% of the
Hopf link is constricted. We expect distortion effects to be
similar. However, since all knots and links have similar
corrections that modify their total energies in the same
direction, we expect the spread in variation to be smaller
than the correction itself. Hence a δ ∼ 5% error on physical
knot energies versus tight knot energies is not unreason-
able. An actual QCD flux tube could be more rigid due
to confinement effects, so we can justify reducing the error
bars to something smaller. Even assuming QCD flux tubes

are substantially more rigid than magnetic flux tubes, we
still find an acceptable value for χ2. For example, letting
δQCD ¼ 3% we find the model is in reasonable agreement
with the data as seen in the figures for the fits.
In terms of the bag model [59], the interiors of flux tubes

of tight knots correspond to the interiors of bags. The flux
in the tube is supported by current sheets on the bag boun-
dary (surface of the tube). Knot complexity can be reduced
(or increased) by unknotting (knotting) operations [62,63].
In terms of flux tubes, these moves are equivalent to recon-
nection events [64]. Hence, a metastable glueball may
decay via reconnection. Once all topological charge is lost,
metastability is lost, and the decay proceeds to completion.
Two other glueball decay processes are flux tube or string
breaking [65–67] (this favors large decay widths for con-
figurations with long flux tube components) and quantum
fluctuations that unlink flux tubes (this would tend to
broaden states with short flux tube components).
Since the publication of [11], some minor quantitative

progress has been made in understanding knot flux tube
decay, but these results are still insufficient to go beyond
the qualitative observations made in [11]. However, we
pause here to discuss the present state of our understanding
of the decay of knots and links in order to clarify why
progress is difficult. We discuss the three processes
in order:
(1) Tube breaking: First consider tube breaking. When a

tube carrying a single flux quantum breaks, a section
of the tube disappears and is replaced by a qq̄ pair.
To calculate this process, one begins by following
Schwinger’s classical analysis of eþe− pair produc-
tion in a strong electric field, but now instead of an
infinite region of field we have a cylindrical region
and backreaction must be included. For a straight
tube, solutions involve parabolic cylinder functions
and Airy functions, but for most of the cases of
interest we have bent tubes, so we need curvature
corrections. Thus, to calculate the tube breaking
for a typical knot, we must integrate corrected local
breaking over the full length of the tube in the knot.
So far we have partial analytic results for the straight
tube case. The full calculation is challenging, and
will take a considerable amount of numerical work
to extend it to the full knot/link spectrum.

(2) Tunneling: Another path to decay is via quantum tun-
neling. Consider a tight Hopf link where the
tubes lie at right angles to each other. The tubes touch
along intersecting rings that run along their inner
radii. The tunneling takes place most efficiently along
the line that connects their centers of mass (other
paths are exponentially suppressed). The calculation
is complicated by the fact that extended objects are
tunneling, not particles as can be assumed in exam-
ples like nuclei decay. Knots will be even more dif-
ficult to deal with as their contact surfaces are

FIG. 12. Cross section of a toroidal flux tube of minor radius
R1 and major radius R2 constricting a cylindrical flux tube of
radius RðzÞ.
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complicated, and the tubes touch at a variety of
angles. In this case one would need to integrate over
the contact surface with proper weighting to take
angular effects into account. At present we are still
far from having reliable estimates of tunneling rates.

(3) Reconnection: Reconnection decays appear to be
more complicated than either string breaking or tun-
neling, since reconnection involves one or more
strings breaking with qq̄ pair production, then rear-
rangement of the tube positions and then finally tube
reconnection via qq̄ pair annihilation. Again, this
must be integrated over the knot. Hence we believe
it is necessary to fully understand string breaking
and aspects of production via qq̄ annihilation before
significant progress can be achieved on the realistic
reconnection calculations of flux tubes.

Let us make one final comment about the model. A more
conservative approach is to assume only the 0þþ states, i.e.,
the f0 states, correspond to knotted/linked flux tubes. In
that case there are only five states to fit and the result is
displayed in Fig. 13 for comparison, where the identified
states are

½f0ð500Þ; f0ð980Þ; f0ð1370Þ; f0ð1500Þ;
f0ð1710Þ�↔½221; 31; 51; 52; 62�: (28)

The predicted states in this case are shown in Fig. 14.
The slope is essentially unchanged, the R2 ¼ 0.998
value is roughly the same. The masses of the predicted
states can be easily gotten by rescaling the knot lengths
in the table with the new slope parameter Λtube ¼
ð65:50� 1.81Þ MeV. Note that the f0ð1370Þ has been
moved in the ordering to improve the fit. More data is
needed to distinguish between the fit of all fJ states and
the restricted f0 fit.

The χ2 ¼ 15.62 for the fit is not particularly good but it
only takes replacing the new f0ð500Þ values with the old
f0ð500Þmass and error bars to get χ2 ¼ 0.56. So if the new
f0ð500Þ mass is due to mixing and one could extract the
unmixed value for the pure gluonic state it is possible that
the fit would improve again.
If a sufficient number of fJ states are found, so that they

outnumber the total number of knots and links, then this
would be evidence to support the restricted fit (since all
short knots and links are presumed to be known).
However, this is not the case at present.

V. DISCUSSIONS AND CONCLUSIONS

We have considered hadronic collisions that produce
some number of baryons and mesons plus a gluonic state
in the form of a closed QCD flux tube (or a set of tubes).
From an initial state, the fields in the flux tubes quickly
relax to an equilibrium configuration, which is topologi-
cally equivalent to the initial state. (We assume topological
quantum numbers are conserved during this rapid process.)
The tube radius is set by the confinement scale, so to lowest
order the energy of the final state depends only on the top-
ology of the initial state and equals the length lK of the tube
times the average energy per unit length, or the dimension-
less knot or link length ε0ðKÞ times the energy scale param-
eter Λtube. While related to ΛQCD by constants of order
unity, Λtube can be more accurately determined (see above)
and hence could be a useful dimensionful parameter in
studying other properties of QCD, such as scattering and
hadronization processes. The relaxation proceeds through
the minimization of the field energy. This process occurs
via shrinking the tube length and the process halts to form
a tight knot or link. Flux conservation and energy minimi-
zation also force the fields to be homogeneous across
the tube cross sections for straight tube sections and the
fields fall like 1=ρ for curved sections as shown above.
We have estimated corrections to the simple energy-length
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FIG. 13. The f0 states data is fitted to the curvature-corrected
knot and link data. Errors are shown for the states and estimated
to be 3% for the knot/link energy. Nonfitted knots and links are
not shown.
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FIG. 14. The f0 states data is fitted to the curvature-corrected
knot and link data and only the predicted states (circles)
are shown.
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proportionality and have used them to correct and place
error bars on the physical knot lengths.
Details of knot excitations would be interesting to inves-

tigate, as would other quantum corrections, but at present
we do not have a reliable way to estimate these effects,
nor do we have a good way to calculate glueball decay
rates. However, we do expect high mass glueball produc-
tion to be suppressed because more complicated nontrivial
topological field configurations are statistically disfavored
and we also expect higher mass glueballs to be relatively
less stable.
On the lattice the glueball is associated with a plaquette

operator that, when operating on the vacuum, creates a
closed loop of chromoelectric flux [68]. This loop is a path
on a square lattice and the glueball mass should be propor-
tional to the length of the path. Using our assumption
that topologically trivial paths are too unstable to allow
measurable masses and assuming that we are studying
single flux tubes on the lattice (no links), the first stable
closed loop on the lattice will be the trefoil. The shortest
length for a trefoil on a square lattice is 24 lattice spacings
(24 tube diameters in dimensionless units), so, without
smoothing, the lattice should predict the lightest glueball
mass to be a factor of 24=εð31Þ larger than the value we
quote in the table, i.e.,

Elatticeð31Þ ∼
24

εð31Þ
Eð31Þ ∼ 1450 MeV: (29)

While this naive result is only a rough approximation, it
could be refined and does indicate that lattice calculations
of glueball masses can come out on the high side. It is also
an explanation of why our results differ from lattice
predictions.
In addition to not fitting naturally into the quark model

[69], glueballs have some other characteristic signatures,
including enhanced production via gluon rich channels
in the central rapidity region, branching fractions incompat-
ible with qq̄ decay, very weak coupling to γγ, and Okubo-
Zweig-Iizuka suppression. All the f states have some or all
of these properties. For instance, none have substantial
branching fractions to γγ. However, mixing with qq̄ isosca-
lar states can obscure some of these properties. All these
observations are in qualitative agreement with the model
presented here.
Our high-fit model predicts one new state at 1190 MeV,

twelve states concentrated near 1700 MeV, and a tower
of higher mass states with the next dense concentration
starting near 1900 MeV. The low-fit model makes similar
prediction except that there is no new state near 1200 MeV.
We have argued that there is sufficient tension in the exper-
imental data in these regions to allow the identification of
many more states with knots and links. A careful statistical
analysis of the data of all f regions to resolve hidden states
is needed. Recall we are assuming that J is intrinsic angular

momentum and not rotational angular momentum as we
assumed in [11].
As a variant example of the models we have been con-

sidering and as a comparison, we consider a two-parameter
fit to the fJ data where the origin is not fixed at zero glue-
ball mass and zero tube length. Fitting the non-curvature-
corrected length data to the glueball data gives a shallower
slope and an intercept at positive glueball mass; see Fig. 15.
While the χ2 is somewhat better than for the non-curvature-
corrected one-parameter fit, we do not have an interpreta-
tion of the nonzero intercept other than a zero length tubular
bag constant which seems rather unphysical. This problem
does not arise for either the high- or low-fit two-parameter
models with curvature-corrected lengths. As seen in Figs. 16
and 17 the intercepts in both these models are consistent
with zero. This result and in addition to the improved χ2

when we use the curvature-corrected knot lengths in the
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FIG. 15. Uncorrected lengths: Two-parameter fit of the fJ
states data to the knot and link data. Errors are shown for the
states, but they are too small to be visible for the knots and links.
However, a 3% knot length error is included for reasons discussed
in the text. Nonfitted knots and links are not shown.

FIG. 16. Two-parameter fit with curvature-corrected length:
Two-parameter low f0ð1370Þ fit of the fJ states data to the knot
and link data. Errors are shown for the f states, and a 3% error is
estimated for knot and link lengths. Nonfitted knots and links are
not shown.
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one-parameter fits gives us confidence that either our one-
parameter (i.e., the slope Λtube) high or one-parameter low
curvature-corrected fits are the sufficient and best choices
for a robust model.
We note that some of the states can be degenerate at low-

est order due to the symmetries of some knots and links.
The trefoil comes in two versions, left and right handed,
and there are two Hopf links, one with linking number
þ1 and one with linking number −1. Some prime knots
have a Z2 × Z2 symmetry leading to a potential fourfold
degeneracy. The cases of links and composites are even
more complicated, with a variety of higher degeneracies
possible [70]. How these degeneracies can be lifted at
higher order is a topic for future research, but let us make
a few comments here. Since many knots and links come in
more than one form, we can consider their mixings. For
example, the trefoil can be left handed 3L1 or right handed
3R1 . Since the trefoil can decay by changing a single cross-
ing, changing two crossings can take 3L1 to 3R1 . We have
identified the 31 with f0ð980Þ whose width is ∼50 MeV.
Assuming the decay is via reconnection or quantum tunnel-
ing, then we expect the 3L1 and 3R1 versions to mix at the
10−3 level by changing two crossings. This corresponds
to a ∼1 MeV level splitting and is undetected experimen-
tally. As the quantum state ψ31

¼ 1ffiffi
2

p ð3L1 − 3R1 Þ has self-
linking number SLðψ31

Þ ¼ 1 when properly normalized,
while ψ 0

31
¼ 1ffiffi

2
p ð3L1 þ 3R1 Þ has SLðψ31Þ ¼ 0, we would

expect the ψ 0
31

to be the more stable linear combination,

and the proper state to be identified with the f0ð980Þ.
Similar comments apply to all our identifications. Note that
the Hopf link comes in only one form, so it corresponds to
the single broad state f0ð500Þ. Mixing could potentially be
detected for other broad states where splitting could be a
few MeV, but only when they are identified with knots
or links that come in more than one type.
It would be trivial to extend our predictions to states

above 2 GeV. One just takes the knot of appropriate lengths
from [52] and scales them by the dimensionful parameter
Λtube from the fit. However, there is insufficient mesonic
data above 2 GeV to improve or constrain our fit. More
experimental data to test the model in this region would
be very welcome.
Knotted and linked magnetic fields configurations have

been discussed with respect to a number of plasma phe-
nomena including spheromaks [71], astrophysical [72]
and atmospheric [73] objects. Similar comments apply to
Bose-Einstein condensates [74] and various field theories.
The system we consider is intrinsically different since we
assume that in QCD we have confinement into tubes and
then the tubes get knotted and linked, as opposed to finding
knotted or linked fields that then may or may not get con-
fined. In our case we expect energy proportional to tube
length (with corrections as discussed in this paper), where
the later case not involving initial confinement would not
necessarily be expected to have a simple length-energy rela-
tionship. The energies and sizes of these classical solitons
are sometimes difficult to quantify since they depend on
parameters of the plasma, including temperature, pressure,
density, ionic content, etc. However, it was argued in [11]
that well-defined topological soliton energies can be
identified for vacuum QCD or any vacuum quantum-
flux-tube system. Hence we emphasize that in all systems
which support quantum flux tubes, including those occur-
ring in media, from the quark-gluon plasma to superconduc-
tors, the energy spectrum of knot and link solitons will be
universal up to a scaling for fixed values of parame-
ters [76,75].
To conclude, we have given two interpretations of the

f-state data with a model of knotted chromoelectric flux
tubes in QCD. The first possibility is where the fð1370Þ
is identified with the 51 knot which results in a prediction
of a new state around 1190 MeV which is identified with
the 421 link. The other possibility—which also gives our
best fit—is to identify the fð1370Þ with the 421 link to give
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FIG. 17. Two-parameter fit with curvature-corrected length:
Two-parameter high f0ð1370Þ fit of the fJ states data to the knot
and link data. Errors are shown for the f states and estimated for
the knots and links. Nonfitted knots and links are not shown.

TABLE VII. Fit parameters for the model at 95% C.L. We collect the results for the various choices of one- and two parameter fits so
raw length fits can be compared with curvature-corrected fits.

Fitting parameter 1p-length 2p-length 1p-cc-high 2p-cc-high 1p-cc-low 2p-cc-low

χ2 83.9 45.4 33.3 33.1 28.3 28.4
Λtube 57.14 � 0.53 46.36� 2.64 65.06� 0.61 63.83� 3.57 65.16� 0.61 64.34� 3.59
Intercept 0 267.11 � 69.55 0 28.74� 82.18 0 19.16� 82.51
R2 0.998 0.967 0.999 0.977 0.999 0.980
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a one-to-one matching of all the first twelve fJ states with
the first twelve knots and links. We have collected the
results for the various choices of one- and two parameter
fits in Table VII. Experiments could help to resolve which
of these two possibilities is the correct choice.
Finally, we should point out that there is a considerable

amount of tension in the fJ data, as indicate by the χ2s of
the individual states quoted by the PDG. We would not
expect our fits to be better than the fits of the data on which
they are based.
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Note added in proof.—Recently, we have become aware

of two related works. First, thin flux tubes have recently
shown up in another context. Bjorken et al. [77] have
recently used aligned thin flux tube scattering to explained
the correlations between particles with the similar azimu-
thal angle seen by the CMS Collaboration in very high-
multiplicity pp collisions [78,79]. In addition, Todorova
[80,81] has argued that a natural length scale of 68�
2 MeV arises when one studies the late stages of hadroni-
zation in the context where QCD strings have acquired a
helical structure as suggested by Andersson et al. [82].
This scale is remarkably close to our value Λtube ¼ 65.16�
0.61 MeV and we hope to explore the possible relationship
in the future.

APPENDIX

The understanding of the spectrum of hadrons began
with the quark model, which already had a long history
before the advent of QCD. String theory has its origins
in the attempt to understand strong interaction scattering
processes. Now it is clear that QCD is the correct theory
of the strong force, but this theory is notoriously difficult
to solve because it is strongly coupled at a large distance,
complicating the low energy region. However, it was real-
ized in the 1970s that a lattice approximation can, in prin-
ciple, go a long way in allowing us to obtain results in the
strong coupling region of the theory. Furthermore, one can
start with a lattice QCD Lagrangian and derive a combined
quark model and flux tube theory from first principles,

which contains the relevant properties of the old quark
model plus the stringlike behavior of flux tubes. There
is a vast amount of literature on this subject. The models
that were first studied in the nonrelativistic limit have
subsequently been extended to the relativistic case.
Many corrections have been included, and our under-
standing of the spectrum and interactions have improved
enormously over the years. However, issues remain. Our
model is an attempt to make sense of a controversial part
of the hadronic spectrum. There have been many states
identified with glueballs—i.e., states without valence
quarks. Sometimes they are modeled as closed flux tubes,
sometimes as bound states of gluons. Our model focuses
on extending the nonrelativistic tube sector of the full rela-
tivistic tube plus the quark theory derived from QCD. We
can form metastable states from knotting or linking tubes
if we assume they carry quantized flux and that all topo-
logical quantum numbers are conserved to lowest order, as
magnetic helicity is for an ideal plasma as mentioned
above. We emphasize that these states are formed from
first confining flux into tubes and then knotting them,
not in the reverse order. The ordering with confining first
gives the spectrum we derive, while knotting first gives a
solitonic spectrum more like one would expect in plasma
physics. For QCD, knotting without confinement could
apply to states in the quark-gluon plasma, but we will
not discuss that issue here.
The quark model has its origins in the study of current

algebra and symmetry principles in the early 1960s.
Important discussions and early papers and reviews can
be found in the reprint volumes by Gell-Mann and
Ne’eman [83] and Kokkedee [84]. As experimental data
had been collected, the quark model evolved and it was real-
ized that a good approximation of the hadronic spectrum
can be obtained from simple potential models.
Our purpose in this appendix is to review enough of the

history of the quark plus tube model to place our extension
of that model in context. Many of the general approaches of
earlyworks onquark potentials and tubes are still valid today.
Our philosophy is perhaps closest to Isgur and Paton’s

flux tube model [85,86] circa 1985, which they derived
heuristically from lattice QCD. At small length scales
(the weak coupling limit), they argue that the degrees of
freedom are the quarks and gluons, while at large distances
(strong coupling) the degrees of freedom become quarks
and tubes. Confinement is automatic in their model, as they
discuss. While we are focused on closed tubes, we suppose
it is part of the full strong coupling theory. That means we
fully agree with standard quark model results, but as in
Isgur and Paton, the naive quark model receives corrections
from the tube sector, e.g., a heavy qq̄ pair connected by an
unexcited tube is a ground state meson. Exciting d.o.f. of
the tube turns this state into a hybrid (a bound state of qq̄
and a gluon from the weak coupling perspective, which is
not a good approximation here).
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Gluon-tube duality: If we consider a glueball as a bound
state of gluons in the tube model (we will limit ourselves to
two gluons for this discussion), then between them is a
gluonic tube carrying the octet color [see Fig. 18]. We
can think of this tube as being composed of a pair of fun-
damental triplet color tubes. Let us assume that the stable
configuration is when the octet splits to this pair, as the
Casimir invariant analysis suggests; see Fig. 18.
Consideration of the stability of an octet tube is analogous
to the difference between type I and type II superconduc-
tors. In type I, multiquanta flux tubes are stable, while in
type II they split into unit quantum flux tubes. QCD multi-
flux tubes are known to be near the stability boundary. Now
let the gluons move together [see Fig. 18] on the tube and
annihilate. (See [87], [88] and [89] for related discussions.)
We are left with a closed fundamental loop of quantized
flux in Fig. 18. From our arguments in the text, a single
unknot of this type is unstable, but knotting the loop or link-
ing a pair of loops gives the configuration chromoelectric
helicity, and would tend to stabilize it.
This plasma analogy was included in the Introduction to

demonstrate that topologically conserved quantities can play
a part in stabilizing flux configurations, but it does not cap-
ture other important properties of QCD-like confinement.
Whether QCD flux tubes behave as type I or type II super-
conductors, the fact remains that if the QCD phase transition
has either superconducting property, then it is likely to have
some properties similar to an ideal plasma and to satisfy
helicity conservation at the classical level, with violations
coming from quantum processes like tunneling.
Let us return to the bound gluon pair case. Simple

potential models were introduced to study gg bound states
already by the early 1980s, although it was controversial
whether to treat the gluon as a massless [90] or a massive
particle [91–93], and this affected the degree of free-
dom counting. However, both interpretations attributed
an effective mass to the gluon due to confinement.
A potential of the form [90]

V0ðrÞ ¼ − 3αs
r

þ agr (A1)

was used for the massless gluon case, where αs is the cou-
pling strength from light quark potential models, and ag is

the coefficient (Regge slope) of the long-range force, i.e.,
the linear potential between the gluons. For the massive
case, the string part of the potential can be written [91]

VsðrÞ ¼ −2mð1 − e−r=r0Þ; (A2)

where m is the effective mass of the gluon, and the scale
r0 is set by the slope ag ¼ 2m

r0
. Solving the Schrödinger

equation with these potentials led to predictions of the
low-lying states.
As mentioned above, Isgur and Paton [85,86] developed

a rather complete quark and tube model from lattice QCD,
and studied potentials of the form

Vq
0ðrÞ ¼ − 4αs

3r
þ cþ br (A3)

for quarks that can be regulated at the origin by including
an additional term to give the full quark potential

Vq ¼ Vq
0ðrÞ þ

π

r
ð1 − e−f

ffiffi
b

p
rÞ; (A4)

where the parameter f provides the cutoff. Here c is an
effective bag constant, and the strong coupling is allowed
to run with r.
For gluons a similar form was studied

Vg ¼ 2πbrþ c0 þ γ

r
ð1 − e−f0

ffiffi
b

p
rÞ; (A5)

where γ and f0 are parameters. Notably, they take c0 ¼ 0 in
their analysis of low-lying states, which corresponds to the
absence of a bag constant in the gluonic potential. Three
gluon bound states were also studied in detail in [94,95].
Including relativistic effects improves the results of the

quark model [96,97]. Schrödinger equation potential mod-
els were replaced with the spinless Salpeter equation
[98,99]. Semirelativistic and relativistic models [100] with
KE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
have continued to be studied with stun-

ning results for mesons and suggestive results for glueballs
[101,102]. Other more field-theoretic approaches to the
low-lying glueball spectrum have been studied in the liter-
ature [103,104], but we will not discuss them here since our
model is more akin to the potential models.

(a) (b) (c) (d)

FIG. 18. Gluon bound state-closed tube complementarity: (a) Gluon pair bound by a color adjoint (octet) tube, (b) gluon pair
bound by a pair of fundamental color (triplet) tubes, (c) gluons can move along the triplet tubes, (d) gluons have annihilated to form
a closed triplet tube.
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An instructive full group-theoretic accounting of bound
states of two, three, and four gluons can be found in [105].
Single gluons bound to a static color source (gluelumps) are
also considered there. The conclusion is that 0þþ and 2þþ
are the lowest lying states, as expected. Given this result
and the bound gluon-closed tube duality mentioned above
justifies our identification of fJ states with closed tubes.
There are three f1 states included in our analysis, and
we assume they have intrinsic spin ¼ 1. If these three states
are not identified with knots/links, then we would predict
three more J even states at these locations.
Returning to the specifics of our model, we are consid-

ering only long (relative to their radius) closed tubes in their
ground state, so to a good approximation, we need only the
linear part of the potential. Taking

V ¼ c0 þ agr; (A6)

we then fit the fJ states as in the text and find c0 consistent
with zero, which agrees with the assumption in [86], for the
glueball case, and the slope parameter found by the fit in the
text. Our main new feature is that we fix a set of relative
lengths by the tight knot/link assumption, and then have
one parameter ag (or Λtube in the text) with which to fit
the data. Our results and model are fully compatible with
the relativistic quark model, but we are only interested in
the nonrelativistic sector, since the knots are not excited in
our discussion. (We also have additional assumptions

beyond those of the standard relativistic quark-tube model.)
However, we could consider such excitations, and then the
full relativistic model would come into play. Finally, let us
mention that from a quantum field theory perspective, the
operators we are most interested in are displayed in
Table VIII and they correspond to the energy stored in chro-
moelectric fields, if we ignore confining bag energy. But it
should be kept in mind that these are local operators and to
capture the nonlocal knot/link information we need to inte-
grate them over the closed tube length. In the present work
we have extended this analysis to curvature-corrected
lengths as described in the text.
What is new in our model is that tight knots and links

have not previously been studied in potential models,
nor have they been analyzed in lattice QCD. We hope
our work will inspire the lattice community to consider
such an undertaking, since we believe they could study
the stability of knots and links by keeping track of topologi-
cal invariance of configurations as they step through a
simulation.
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