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Two-color lattice QCD with N, = 4 staggered fermion degrees of freedom (no rooting trick is applied)
with equal electric charge ¢ is studied in a homogeneous magnetic background field B and at nonzero
temperature 7. In order to circumvent renormalization as a function of the bare coupling, we apply a fixed-
scale approach. We study the influence of the magnetic field on the critical temperature. At rather small
pseudoscalar meson mass [m, ~ 175 MeV ~ T.(B = 0)] we confirm a monotonic rise of the quark
condensate () with increasing magnetic field strength, i.e., magnetic catalysis, as long as one is staying
within the confinement or deconfinement phase. In the transition region we find indications for a
nonmonotonic behavior of T.(B) at low magnetic field strength (¢B < 0.8 GeV?) and a clear rise at
stronger magnetic field. The conjectured existence of a minimum value T.(B*) < T.(B = 0) would
leave a temperature window for a decrease of () with rising B (inverse magnetic catalysis) also in the

present model.
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I. INTRODUCTION

The interaction of strong magnetic fields with hadronic
matter has recently been widely discussed because of its
relevance to noncentral heavy-ion collisions. In such colli-
sions there are two lumps of spectators moving in opposite
directions. They give rise to a magnetic field perpendicular to
the reaction plane, which may be estimated from the
Lienard-Wiechert potentials of the moving spectators.
From these estimates it can be shown that the magnetic
field is so strong that its consequences cannot be studied
perturbatively. In fact, the field is estimated to have strength
eB ~ m2 ~ 10'8 Gauss at the Relativistic Heavy-Ion Collider
(RHIC) and at the Large Hadron Collider (LHC) at the time of
the formation of the fireball. The field strength falls for large
time ¢ at most as 1/7> and because of the effect of electrical
conductivity may reach a plateau [1-3]. Therefore, for a
longer time reaching from the formation of the fireball to the
final transition from quark-gluon to hadron matter, it may be a
reasonable approximation to assume a constant external field
exerting influence on the transition.

It has been known for a long time that the problem of a
relativistic particle with spin O or 1/2 in a constant external
magnetic field can be solved exactly [4—6]. With the help of
these solutions one can discuss the effect in the Nambu-
Jona-Lasinio [7] or in the chiral [8] model at zero temper-
ature. The general result is that the magnetic field induces
an increase of the chiral condensate. This was dubbed
magnetic catalysis in Ref. [9] and claimed to be essentially
model independent. For a recent review, see [10].
The model calculations have been extended to finite
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temperature in order to study the phase diagram of strongly
interacting matter in a constant magnetic field. In this case
there is no claim of model independence. The critical
temperature of the chiral phase transition rises in most
calculations [11]. There are also claims that the chiral and
the deconfinement phase transitions split, and the latter
decreases with the magnetic field strength [12].

Recently several groups have started to investigate the
problem through ab initio lattice simulations of QCD and
QCD-like theories in a constant external magnetic field.
There is no sign problem in contrast to e.g. the introduction
of a chemical potential in QCD. The pioneering work was
performed by M. Polikarpov and collaborators [13-16].
They carried out their calculations in quenched SU(2). In
our previous paper [17] we extended the calculations to
SU(2) with four flavors of dynamical fermions. The choice
of four flavors eliminates the need for rooting of the Kogut-
Susskind or staggered fermion action, the latter being still
under debate. One should notice that in this case we expect
a first-order finite temperature transition [18] in contrast to
the observed smooth crossover in the Ny =2 as well as
2 4 1 cases of full QCD at nonvanishing u-, d-quark mass.
In Ref. [17] we reported magnetic catalysis for all temper-
atures investigated. The deconfinement transition, which
we determined from the behavior of the Polyakov loop and
the various parts of the gluonic action, coincided within our
precision with the chiral transition. The transition temper-
ature increased with increasing magnetic field. However, in
our previous calculations the temperature dependence was
studied only by varying the bare coupling parameter f,
while the magnetic field strength as well as the fermion
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mass was fixed in lattice units. As a consequence the
physical field strength as well as the fermion mass was
increasing with the temperature. This disadvantage is
avoided in our present paper.

Two groups have performed simulations in full QCD in the
presence of a magnetic field ([19-21] and [22-26], see also
[27]). Both groups observe magnetic catalysis for temper-
atures in the confined phase. Near the phase transition only
the second group observes what they call inverse magnetic
catalysis; i.e., the chiral condensate and thus the transition
temperature decrease with increasing magnetic field strength
[22]. Itis still not completely clear whether the discrepancy is
explained by the different sets of quark masses used. In [20],
the case of two flavors is treated, and the parameters chosen
lead to a pion mass of approximately 200 MeV. In [22], the
parameters and the action used are the same as in [28],
namely 2 4 1 flavors with the parameters chosen to give the
physical mass to the Goldstone pion connected to the exact
lattice axial symmetry U(1). In both calculations, the fourth
root of the fermion determinants is taken to reduce the
number of flavors (also called tastes). This procedure is still
under debate. A nice recent review of the lattice results for
QCD and QCD-like theories in external fields can be found
in Ref. [29].

In this article we extend our calculations in [17] of the two-
color theory with four-flavor fermion degrees of freedom
with equal electric charges to a considerably smaller value of
the bare quark mass. In fact, now the ratio of the Goldstone
pion mass to the critical temperature is similar to the physical
case of QCD. Furthermore, we use the fixed-scale approach,
which means that the lattice spacing dependence of the
renormalization factors is irrelevant for our results. We
measure the various parts of the gluon action, the
Polyakov loop and the chiral condensate. With the help of
these measurements, we localize the finite temperature
transition and describe its dependence on the magnetic field
strength. Although our model is not QCD, the chiral proper-
ties are quite similar. Furthermore, investigations of the
dynamic SU(2) theory are of considerable interest because
they can be extended to finite chemical potential without a
sign problem. It is also easier to investigate the topologic
structure of the lattice gauge fields than in the SU(3) case.

In Sec. II, for completeness, we specify the action and
the order parameters, although they are the same as in our
previous calculation [17]. In Sec. III we describe the
simulation parameters and in Sec. IV the scale determi-
nation. Section V is devoted to a presentation of our finite
temperature results. Finally, in Sec. VI, we discuss the
results, compare with results of other groups, and present
our conclusions.

I1. SPECIFICATION OF THE ACTION AND
ORDER PARAMETERS

The theory, which we have chosen to investigate, is color
SU(2) with four fermion flavors. We want to study its
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behavior at finite temperature under the influence of a strong
external magnetic field. To this end we perform numerical
simulations in the lattice regularization, which are fully
nonperturbative also in the electromagnetic coupling to the
magnetic field. The details of the corresponding model on
the lattice are given in [17]. For completeness we present
again the main building blocks here.
We introduce a lattice of four-dimensional size

V=N, xN;. (1)

The sites are enumerated by n = (ny, n,, n3, ny), where the
n; are integers, n; =1,2,...,N, for i=1, 2, 3 and
ng=1,2,...,N,. The fourth direction is taken as the
Euclidean time direction. The lattice spacing is denoted
by a. The physical volume V and the temperature 7" of the
system are given by

V = (aN,)*, (2)
1
- aN,’ )

On the links n - n+ i we define group elements
U,(n) € SU(2), where u=1, 2, 3, 4. The boundary
conditions of the U fields are periodic. For the gauge part
of the action we choose the usual Wilson action,

Se =BVY P “)

u<v

where

Pu= (33 M- Uu). ©

with U, (n) denoting the uv-plaquette matrix attached to
the site n.

For the fermion part of the action, we use staggered
fermions, which are spinless Grassmann variables (n) and
w(n) being vectors in the fundamental representation of the
gauge group SU(2). The different flavor degrees of free-
dom are assumed to carry equal electric charges allowing
interaction with an external magnetic field. The boundary
conditions of the fermionic fields are periodic in the space
directions and antiperiodic in the time direction. In the
absence of a magnetic field, the fermionic part of the action
which we use becomes the usual staggered action,

Sp=a>y p(n)[D(n,n') + mas, Jy(n'),  (6)

nn'

where ma is the bare quark mass and
1
D(n, n,) = E Z”ﬂ(”)[Uﬂ (n>5n+y,n’ - U:l (I’l - ﬂ)‘sn—ﬂ,n’]'
/i

(N
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The arguments 7, n’ are integer 4-vectors denoting sites on
the lattice, and 7, (n) are the normal staggered sign factors,

m(n) =1,
M) = (D)2
=234 ®)

We introduce electromagnetic potentials in the fermion
action by new, commuting group elements on the links,
namely V,(n) = ¢ € U(1). As discussed in our earlier
work [17], a constant magnetic background field in the z =
3 direction going through all of the (x, y) = (1, 2) planes of
finite size N, x N, with a constant magnetic flux ¢ =
a’>qB through each plaquette can be realized as follows:

<

1\n

Va

e—ina/2 ("1 =12,...N,— 1)’

n)=em2 (ny=1.2,....N,—1),

)=
)=

NotDna/2,

<

V2 n Ng,n3,n4) _ez(f)(N +1)nl/2

(
(
I(Na nzan3,l’l4>_e i
(
(n)=V4(n)=1. ©

Vi(n)=
With periodic boundary conditions, the magnetic flux
becomes quantized in units of 27z/N2,

27Z'Nb
N2’

¢ = a*qB = N, € Z. (10)

Because the angle ¢ is periodic, there is an upper bound on
the flux ¢ < z. In practice, to avoid finite-size effects, we
restrict ourselves to ¢ < z/2. By inserting this into (10),
one obtains the condition

N, < N2/4. (11)

Thus, at finite temperature, @ (for gB > 0) is restricted to
the region

N, +/qB /1
—_—<—_— —N .
\/271’N <= < \/;N, (12)

o

Finally, we introduce the fields Vﬂ(Q) into the fermionic
action (7) by substituting

Uu(n) =V, (n)U,(n), (13)
Us(n) = Vi(n)Ui(n). (14)
The partition function is given by

o) = [ Tltantn

Note that the fields 6,(n) are not treated as dynamical
variables and that there is thus no corresponding dynamic
part of the action.

n)dU,(n))e~Se=5:  (15)
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To determine the lattice spacing, we calculate the
potential between heavy quarks on a zero-temperature
lattice at vanishing magnetic field. On the same lattice
we also measure the Goldstone pion mass. Details of these
calibration measurements are given in Sec. [V below.

To study the influence of an external magnetic field on
two-color QCD at finite temperature, we first look at the
anisotropy in the gluonic action by measuring the average
value (P,,) of the non-Abelian plaquette energies for the
different combinations of directions.

We further measure the following approximate order
parameters.

The chiral condensate, which is an exact order parameter
in the limit of vanishing quark mass, is given by

1o
V4 9(ma)

log(Z)

@ (py) = —

=31 (Tr(D + ma)™"). (16)

The factor 1/4 is inserted because we define (ww) per
flavor, and our theory has four flavors.

We compute also the average value of the Polyakov loop
(L), which is the order parameter for the deconfinement
transition in the limit of infinite quark mass (the pure gauge
theory),

1 I =
=53, Z s(v({L o rn ). o
ny=1

0 ny.ny.n3

It is important to notice that the mean values defined above
are bare quantities which should be renormalized when
comparing with continuum expectation values.

III. SIMULATION SETUP

In the present investigation we use the fixed-scale
approach; i.e., we keep f fixed and thereby the lattice
spacing a and vary the temperature by changing N,. More
precisely, we simulated the theory at # = 1.80 mainly with
lattice sizes 323 x N,, N, =4, 6, 8, 10 and with a lowest
mass value ma = 0.0025 taking each time at least three
values of the magnetic flux, N, = 0, 80, 200.

The simulation algorithm employed is the usual Hybrid
Monte Carlo method, updated in various respects in order
to increase efficiency [even-odd and mass preconditioning,
multiple time scales, Omelyan integrator, and written in
CUDA Fortran for the use on graphic processing units
(GPUs)]. The number of configurations (trajectories) gen-
erated in a simulation varied between 3000 and 5000. In
general, 250 configurations were discarded for initial
thermalization.

We measured the chiral condensate on every third
configuration, apart from N, = 6 and N, = 80, 200, where
we used every fifth configuration only, because in these
runs we are close to the transition temperature. The
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Polyakov loop and the plaquette variables were measured
on every configuration. The chiral condensate was evalu-
ated with the random source method. Thereby we used 100
Z, random sources per configuration. The integrated
autocorrelation times of all observables were taken into
account in the error analysis. It could be estimated to be
mostly well below 20 consecutive trajectories.

A zero-temperature simulation with zero magnetic field
was performed for the same = 1.80 and for the two mass
values ma = 0.0025, 0.01 on a lattice of size 323 x 48 in
order to estimate the lattice spacing and the pion mass. The
number of trajectories in this run was about 750, and the
first 200 were discarded. Measurements were performed
after every third trajectory.

IV. FIXING THE LATTICE SCALE

In order to determine the lattice spacing, we investigate
the potential between infinitely heavy quarks. We use the
Sommer parameter, defined in the continuum by the
equation

av
2727
Tl
0

= 1.65. (18)

On the lattice, we measure the potential using Wilson
loops. In order to increase the signal-to-noise ratio, hyper-
cubic blocking (HYP smearing) [30] with additional APE
smearing [31] (in the version used in [32]) was applied to
the gauge configurations before measurements were per-
formed. The potential V(I_é) as extracted from Wilson loops
is not spherically symmetric, in particular for small dis-
tances. Defining R as the distance in lattice units (r = Ra),
we introduce a more symmetric potential Vg(R) by [33,34]

wmzwwwcﬁ—qmﬁ, (19)

-

where G (R) is the free gluon propagator on the lattice. We
then make the Ansatz

0.9 '3
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A
A, —;2 + 6a?R.

Vs(R) (20)

The potential V(R) as well as the best fit is shown in Fig. 1
(left panel). The fit parameters are given in Table I. As the
two sides in Eq. (18) are dimensionless, the same equation
holds for the lattice distance R. Thus, assuming the form
(20) for the potential V in (18), we obtain

[1.65—A
ro/a:R0: 76612 2.

We are, of course, aware of the fact that we are
considering a fictitious world of two-color QCD with four
flavors of quarks with equal charges q. Nevertheless, the
scale determination provides a rough estimate of the
magnetic field strength for the various values of the flux
and the distance to the chiral limit.

By inserting the value ry = 0.468(4) fm [35], we obtain
the lattice spacing from a fit with the formula (21)

2

a=0.168(4) fm (22)
for ma = 0.0025 and an only slightly larger value for ma =
0.01 [17] (see Table III). Through variation of the fit range,
we estimate the systematic error of the lattice spacing to be
smaller than 10%.

To determine the Goldstone pion mass, we calculate the
corresponding correlator, which is given by

Cng) = ) |G(n.0)2, (23)

ny,nyp,n3

where G(n, 0) is the quark propagator on the lattice. We did
not apply any smearing in this case. Although there are in
principle benefits by using more complicated sources, we
found that simple point sources are sufficient in our case.
The effective mass

. fit x cosh-fit 0.24
08 corrected static potential —se— | . pion correlator «..x--- )
1 3 3
0.7 )X ¥y 0.22p%
& ¥y
0.6 X g 0.2
X ¥
= - % =
= 05 x = = 018
= x - % by X
2 0.4 ) % 3 X
T o Py = otp %
P X .., X X X
0.3 B Koy X P exyg T x ¥ s Xxxxxxx ¥y
X | Koy 0.14
0.2 L 0.1 Xegsed
0.1 el 0.12
0 0.1
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R t t

FIG. 1 (color online).

Potential of a static quark-antiquark pair (left), pion correlator (middle), and effective mass M (¢) (right) all

measured at # = 1.80 and bare quark mass am = 0.0025. The lattice size is 32* x 48. The dotted line in the left panel corresponds to a

fit, the parameters of which are given in Table L.
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TABLE I. Fit parameters in lattice units for the static potential V(E) according to Egs. (19) and (20) for two sets of parameters

considered in [17] and in this work. R, and R, define the fit range for the static potential in lattice units.
p am N, N, R, R, C A, A, oa® Lot
1.8 0.01 16 32 1.2 32 0.167(25) 0.265(38) 0.370(42) 0.169(8) 0.87
1.8 0.0025 32 48 1.2 3.0 0.083(21) 0.078(24) 0.152(21) 0.192(7) 1.16
1 C(ny) & = (Py). (27)

M, ng2+—-—) =log————— 24 i i
eff< 4 2> gC(n4 ey (24)

B} = |eijil (P Jj <k (28)

was analyzed to determine the range where the contribution
of higher states is negligible, corresponding to a plateau in
M (ny) (see the middle and right panels of Fig. 1).

In the plateau range we measure the Goldstone pion mass
from a fit to the correlator (23) of the form

Ca(1) =

where t = ny and E = m_a. We obtain a clear plateau in the
effective mass and a very good fit for #,,;, = 7, as can be
seen in Table II.

Inserting the value of a from (22) in the result for £
leads to

Co(efEt +6E(17N’)), (25)

m, = 175(4) MeV, (26)
for ma = 0.0025 which is, as expected from the phenom-
enologic rule m2 m,, about half the value obtained for
ma = 0.01 [17] (cf. Table III). As we see below, we now
have m, ~ T.(B = 0). Therefore, we expect that our results
are relevant to the physical case of QCD.

V. RESULTS

We start by discussing the influence of the temperature
and magnetic field on the different parts P,, of the gluonic
action. For convenience, we introduce similar variables as
in [25]:

TABLE II.

At B=T =0 they are all equal by symmetry. At B =
0,7 #0 they fall into two groups because the fourth
direction is not equivalent to the other ones:

E=8=8<B=8=58. (29)
Introducing a magnetic field in the third direction, for 7 #
0 the only symmetries left are rotations in the (1,2) plane.
We therefore may define

& =¢l, (30)
& =&61=¢&35, (31)
Bj = B3, (32)
B =B} =B3. (33)

In Fig. 2, we show the results for the four values of the
temperature 7' and each of them for the three values of the
magnetic field gB. We give T and ¢B in physical units
via Eq. (22).

We can see the following features from this figure. The
pattern of the splitting is the same as in our earlier article
[17] and is more recently found in full QCD [25],

Fit parameters in lattice units for the pion correlator C,(t) according to Eq. (25) for the two sets of simulation parameters

considered in [17] and in this work. The fit range for the pion correlator starts at lattice distance 7.

p am No N i Co E = am, Kot
1.8 0.01 16 32 6 1.01(3) 0.285(1) 0.023
1.8 0.0025 32 48 7 1.58(8) 0.149(3) 0.010
TABLE III. Results for the Sommer scale R, (in lattice units), the lattice spacing a, the pion mass m,, and the quantity \/¢B,,

characterizing the magnetic field strength for the largest number of flux units N} used for various setups of simulation parameters

considered in [17] and this work.

p am N, N, Ny Ry alfm] m,[MeV] V4B,,|GeV]
1.8 0.01 16 32 50 2.75(8) 0.170(5) 330(10) 1.29(4)
1.8 0.0025 32 48 200 2.78(6) 0.168(4) 175(4) 1.30(3)
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FIG. 2 (color online).
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Plaquette energies (P,,) versus temperature 7 = (a(f)N,)

120 140 160 180 200 220 240 260 280 300
T [MeV]

I without the magnetic field (left panel), with

gB = 0.67 GeV? (middle) and gB = 1.69 GeV? (right panel) for the different plaquette orientations. The lines are only to guide the eye.

Computations were done for f = 1.80, am = 0.0025, N, = 32.
Bj > B3 > & 2 & (34)

The difference 6, = B2 — &2 is proportional to a gluonic
contribution to the entropy density of the system (see e.g.
[36,37]). Although the latter is not an order parameter, it is
a good indicator for the transition into the deconfinement
phase. It increases as one gets deeper into the deconfine-
ment phase. In Fig. 2, we may compare the §, values at
fixed N, =6 [ie. T=195MeV 2 T.(B=0)] for the
three different ¢gB values represented in the three panels.
We find the relations &,(¢gB = 0.67 GeV?) >
5.(gB=0)>6,(gB=1.69 GeV?). We take this as a
first hint for a nonmonotonous behavior of the transition
temperature:  T,(¢gB=0.67GeV?)<T.(B=0)<T.(¢B=
1.69GeV?). We return to a discussion of plaquette observ-
ables as a function of ¢B at the end of this section.

In Fig. 3 (left), the expectation value of the unrenor-
malized Polyakov loop (L) is shown as a function of
the temperature. Our values N, = 10, 8, 6, 4 correspond
to temperature values 7, which are quite widely spaced.
Therefore, we cannot localize the transition, e.g., for B = 0,
very well. It happens around 7 = T. = 160 — 190 MeV.

0.3

® X

0.2 b

0.1 4

¢B [GeV?] = 1.69 ——x—
0.67 —o—i
L] 0 Ay

oF®

120 140 160 180 200 220 240 260 280 300
T [MeV)

FIG. 3 (color online).

This means that 7,.=m,, like in QCD. We observe
again an interesting pattern at 7 = 195 MeV (N, = 6),
namely that also the Polyakov loop does not behave
monotonously with the magnetic field (observed already
in Refs. [17,19]). We come back to that behavior later. We
are aware of the fact that a proper renormalization of the
Polyakov loop with respect to the N, dependence will
weaken the steep rise with 7. However, our main con-
clusions concerning the ¢gB dependence at fixed T values
remain unchanged.

In Fig. 3 (right), the unrenormalized chiral order param-
eter @’ (Yry) is shown versus T. We observe that for a fixed
nonvanishing quark mass it grows monotonously with the
magnetic field at least for the three lower temperature
values we have investigated. This could be interpreted as
compatible with an overall magnetic catalysis. However, at
T =195 MeV, i.e. slightly above T.(B = 0), we detect a
strong rise of the condensate between ¢gB = 0.67 GeV? and
our largest value 1.69 GeV?2, while between gB = 0 and
gB =0.67 GeV? only a small increase of (py) is
observed. This behavior shows that the system with rising
magnetic field strength remains in the chirally symmetric

0.14 b

0.12 b

0.1F © ) i

a®(yy)
f=}
2

qB [GeV?

oo

o=
~N©

0.06 [ b

0.04 b

S}
0.02 i

s

120 140 160 180 200 220 240 260 280 300

T [MeV)

Bare Polyakov loop (L) (left) and bare chiral condensate () (right) versus temperature 7 = (a(f)N,)™!

shown for three values of the magnetic field strength at f = 1.80, am = 0.0025 and lattice sizes 323 x N, N, =4,6, 8, 10.
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FIG. 4 (color online).
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Mass dependence of the bare chiral condensate (yy ). Data points are shown for N, = 8, i.e. T = 147 MeV (left

panel) and for N, = 6, i.e. T = 195 MeV (right panel), in each case for three values of the magnetic field. The simulations were done
with f# = 1.80 and spatial linear lattice extent N, = 16, except for the three smallest mass values am = 0.0025, 0.0050, 0.0075, where

N, =32, 24, 20, respectively, was chosen.

phase until it suddenly jumps back into the chirally broken
phase, when the magnetic field becomes strong enough.
This indicates that T.(B) is rising for sufficiently high
magnetic field strength. At weak magnetic fields, where we
saw indications for a lowering of the critical temperature,
the chiral condensate nevertheless does not decrease but
increases, although much slower than at lower temperatures
within the chirally broken phase.

We find this pattern confirmed in Fig. 4, where a* (y) is
shown as a function of the bare quark mass ma at two
temperatures, 7 = 147 and 195 MeV, respectively. One
may use these data to extrapolate a* (y) down to the chiral
limit. For T = 147 MeV (left panel), the system is clearly
in the chirally broken phase for all values of B, including
B = 0. At the higher temperature 7 = 195 MeV (right
panel), the condensate a* () nicely extrapolates to zero
for gB = 0 corresponding to the chirally restored phase. At
the intermediate value gB = 0.67 GeV?, there seems to be
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0.05 - i

0.045 | x

004 L L L L L L L L L
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FIG. 5 (color online).
with = 1.80, am = 0.0025 and lattice size 323 x 6.

achange of the regime at mass values below am = 0.01, such
thatthe systemis consistent with being in the chirally restored
phase also at this magnetic field strength. On the other hand,
for the strongest magnetic field strength 1.69 GeV?, the data
suggest a nonvanishing chiral condensate in the chiral limit.
Thus, we may conclude that at very strong magnetic fields the
transition temperature grows with B, while at fixed
T > T.(B=0), the chiral condensate is strongly rising,
when the system passes over to the chirally broken phase.
This is compatible with magnetic catalysis in agreement with
various models [10].

In order to study the situation in more detail, we have
made simulations at fixed 7 = 195 MeV (N, = 6) with a
few more values of N,,. The latter correspond to a range of
gB between 0 and 1.69 GeV2. We again measure the
expectation values of the Polyakov loop and the chiral
condensate. The results are shown in Fig. 5. There is a
sharp change, which might be related to a phase transition

0.14

0.12 | X i

0.08 B

a® ()

0 L L L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

qB [GeV?]

Polyakov loop (left panel) and chiral condensate (right panel) vs field strength gB at 7 = 195 MeV obtained
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FIG. 6 (color online). The difference of plaquette energies §, = Bi - Si (left panel) as well as the purely gluonic contribution As to
the interaction measure (right panel) versus field strength ¢gB at T = 195 MeV, as in Fig. 5.

in the range 0.7 GeV? < gB < 1.0 GeV? corresponding to
\V/qB/T ~4.5. This observation is again supporting a
magnetic catalysis phenomenon. For lower magnetic fields,
we observe a rise of the Polyakov loop with ¢B toward the
transition and only then a dropoff followed by a monoto-
nous decrease at larger field values [compare with our
previous comment to Fig. 3 (left)]. The rise at low magnetic
field values suggests that we are going deeper into the
deconfinement region, after which the transition brings us
back into the confinement or chirally broken phase. The
observation of the rise of the Polyakov loop at low
magnetic field values resembles the pattern discussed in
Refs. [26], where it was related to the inverse magnetic
catalysis phenomenon.

The reader should keep in mind that these data are all
obtained at fixed quark mass am = 0.0025. There the chiral
condensate (see the right panel of Fig. 5) rises also at a
weak field gB. However, in this deconfinement range,
which should be separated from the chirally broken phase
by a first-order transition, the chiral condensate is anyway
expected to vanish in the chiral limit. Therefore, the weak
monotonous rise of the chiral condensate with ¢B at the
given temperature T > T.(B = 0) does not mean that an
inverse magnetic catalysis cannot occur in our model at
sufficiently small quark mass.

In order to gain more information, let us come back to
the plaquette variables. In Fig. 6 (left), we show the
plaquette energy difference 6, = B3 — &3 as a function
of gB for the same temperature as in Fig. 5. Where we saw a
rise of the Polyakov loop with ¢B, we observe now also a
rise of the difference 0 , indicating again that we are going
deeper into the deconfinement phase. Contrary to that, J
decreases at larger ¢gB values, where we are driven by the
magnetic field into the confinement phase. Another observ-
able derived from the average plaquette variables is the
gluonic contribution to the subtracted interaction measure
defined as

As = (P)(T,B) — (P)(T.B = 0). (35)

where (P) includes the average overall plaquette orienta-
tions. We do not consider a factor given by the derivative of
the S function with respect to the lattice spacing because it
is irrelevant in our fixed-scale method. We have plotted As
versus ¢B in the right part of Fig. 6. At low values of ¢B,
we observe a small decrease, whereas at larger magnetic
field strength, As is rising. The decrease at low gB seems
also to be compatible with a similar observation discussed
in [25], where it was related to inverse magnetic catalysis.

Our observations above seem to indicate a decrease of T,
with rising but small gB. At large gB the transition
temperature 7', definitely rises as expected in the case of
magnetic catalysis. In Fig. 7, we conjecture a B — T phase
diagram, which might clarify the situation. In order to prove
it, further simulations at somewhat smaller temperatures
and/or smaller quark mass would be helpful. If it proves to
be true, then for the same am = 0.0025 or even lower mass,

T
chirally symm. phase
T.(B)
chirally broken phase
T*
T7.(0)
0 B

FIG. 7. Conjectured B-T phase diagram at fixed mass
am = 0.0025. The horizontal line indicates the path of simu-
lations at T = T, = 195 MeV, as in Figs. 5 and 6.
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one should find another path 7 = const. < 7.(B = 0), for
which at gB = 0 the system is in the confinement (chirally
broken) phase. With increasing gB one passes then the
chirally restored phase, i.e., the deconfinement or chiral
transition twice, and ends up again in the confinement
phase. Along such a path in the phase diagram the chiral
condensate should decrease with ¢B when entering the
chirally restored phase. This would mean the existence of
inverse magnetic catalysis also in two-color QCD.

Let us finally notice that in the recent papers [38,39]
similar scenarios as proposed here were obtained for the
cases Ny = 2 and Ny = 2 + 1, which differ from ours by a
smooth crossover behavior.

VI. CONCLUSIONS

In this article we have described an investigation of two-
color QCD at finite temperature in a constant external
magnetic field. We specialized to the case of four flavors of
equal charge ¢ implementing staggered fermions on the
lattice without employing the fourth root trick. We have
performed lattice simulations using a fixed-scale approach
so that we do not need to know the beta function and the
dependence of the renormalization constants on the bare
coupling constant. The simulations were carried out at a
lattice spacing a =~ 1/(67T.(0)), where T.(0) is the critical
temperature of the finite temperature transition at vanishing
magnetic field. Furthermore, we used a fixed bare quark
mass which is four times smaller than in our previous work
[17]. This means that now the Goldstone meson mass is
m, ~ T.(0) similar to the physical case of QCD. We have
also taken some data at larger quark masses to be able to
extrapolate to the chiral limit.

We find that at sufficiently large magnetic fields there is
magnetic catalysis; i.e., the chiral order parameter and the
critical temperature are increasing with increasing magnetic
field strength. This is in agreement with predictions by
many models. The result is, however, apparently different
from that of Ref. [22] close to the physical point of QCD,
where one finds inverse magnetic catalysis in the crossover
region; i.e., the chiral order parameter is not increasing
monotonically with the magnetic field strength, and as a
consequence, the transition temperature decreases.

In our case of two-color QCD with Ny =4 dynamic
fermion degrees of freedom, a real phase transition is
expected in contrast to a smooth crossover, and one may
therefore expect that the deconfinement and chiral transition
should coincide. Therefore, a priori an inverse magnetic
catalysis phenomenon could be absent. However, as we
showed, there are indications that for weak magnetic field
the critical temperature T'.(B) is decreasing with rising B. If
so, for fixed sufficiently small quark mass and fixed

PHYSICAL REVIEW D 89, 054512 (2014)

temperature 7 < T.(B = 0), we should be able to find a
trajectory in the phase diagram along which one passes from
the chirally broken phase with its large chiral condensate
through the chirally restored phase with a suppressed chiral
condensate again into the chirally broken phase at larger ¢ B
values. In this way we should observe a real inverse
magnetic catalysis replacing the crossover behavior
observed in QCD close to the physical point.

Since our theory is different from QCD, the behavior
does not have to be the same, but the response of the system
to a strong magnetic field should be to some extent model
independent for theories with similar chiral properties. We
note, however, that the magnetic field strength at which we
see a clear signal of magnetic catalysis is (to the extent one
can compare scales in different theories) larger than that
investigated in [22]. At a magnetic field strength similar to
those used in [22], our data are consistent with the
possibility of an inverse magnetic catalysis scenario in
the sense described above.

In [26], e.g., it is claimed that the inverse magnetic
catalysis is due to the coupling of the magnetic field to the
sea quarks. This also gives rise to an increase in the
Polyakov loop with the magnetic field strength, which is an
effect that we see in our calculations up to a critical
magnetic field. Going beyond the latter, the Polyakov loop
suddenly drops to a value near zero, and the system enters
the confined phase. This critical magnetic field is stronger
than that used in [22,26].

It would be very interesting to have results from QCD
calculations at stronger magnetic fields to see if the phase
diagram of [22] extends to the one we propose in Fig. 7 or if
the inverse magnetic catalysis persists for all values of the
magnetic field strength.

A further simulation of our model at a somewhat lower
temperature would be helpful to pinpoint the critical line in
the phase diagram. Investigations at different quark masses
ma would be important because the phase transition line is
expected to depend on the quark mass. Our calculations
should be also extended to smaller scales a in order to
extrapolate to the continuum limit.
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