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There has been much progress in the experimental measurement of the electric and magnetic
polarizabilities of the nucleon. Similarly, lattice QCD simulations have recently produced dynamical
QCD results for the magnetic polarizability of the neutron approaching the chiral regime. In order to
compare the lattice simulations with experiment, calculation of partial quenching and finite-volume effects
is required prior to an extrapolation in quark mass to the physical point. These dependencies are described
using chiral effective field theory. Corrections to the partial quenching effects associated with the sea-
quark-loop electric charges are estimated by modeling corrections to the pion cloud. These are compared to
the uncorrected lattice results. In addition, the behavior of the finite-volume corrections as a function of
pion mass is explored. Box sizes of approximately 7 fm are required to achieve a result within 5% of the
infinite-volume result at the physical pion mass. Avariety of extrapolations are shown at different box sizes,
providing a benchmark to guide future lattice QCD calculations of the magnetic polarizabilities. A
relatively precise value for the physical magnetic polarizability of the neutron is presented,
βn ¼ 1.93ð11Þstatð11Þsys × 10−4 fm3, which is in agreement with current experimental results.
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I. INTRODUCTION

The study of the electric and magnetic polarizabilities of
the nucleon is a topic of intense ongoing interest. Although
measurement of the sum of the polarizabilities from
Compton scattering has been achieved experimentally
for some time [1,2], a direct determination of the individual
electric and magnetic polarizabilities still presents a chal-
lenge, with uncertainties remaining large [3–6]. In the case
of the neutron, recent values of βn include 4.1� 2.0 [6],
3.7� 2.0 [7] and 2.7þ2.2

−2.4 [3,4], in units of 10−4 fm3.
Recent improvements in lattice QCD techniques in the

treatment of Landau levels [8] and the simulation of
uniform magnetic fields with improved boundary condi-
tions [9,10] offer new insights into the polarizabilities of the
nucleon. When comparing lattice results with experiment,
care must be taken in extrapolating the results to the chiral
limit while incorporating finite-volume effects. The latter
have been shown to be significant even at modern lattice
volumes [11–17].
Chiral perturbation theory (χPT) represents an important

tool for performing chiral extrapolations of lattice results to
the physical point. Though lattice simulations are now
approaching the chiral regime [18–25], multiple pion-mass
points must be used to constrain the parameters of the
extrapolation. These data sets typically extend outside the
chiral power-counting regime (PCR) of χPT. It has been
demonstrated that use of χPT outside its region of appli-
cability leads to incorrect results [26,27]. Therefore, an

extension of chiral effective field theory (χEFT) with
improved convergence properties will be used. The
approach incorporates a resummation of the higher-order
terms of the chiral expansion, while being exactly equiv-
alent to χPTwithin the power-counting regime [26,27]. The
size of the total contribution from the higher-order terms is
determined by a finite-valued energy scale which has been
linked to the intrinsic scale associated with the size of the
hadron under investigation [28,29].
In this paper, the focus is on the magnetic polarizability

of the neutron, and connect recent lattice QCD results from
the CSSM [9,10] to contemporary experimental results,
providing a sound comparison of theory and experiment.
The lattice QCD results are founded on the PACS-CS
configurations [19] made available via the International
Lattice Data Grid (ILDG) [30]. These dynamical QCD
results from the simulation are analyzed using χEFT. A
particular difficulty, addressed in this paper, is that the best
lattice QCD results have yet to incorporate the contribu-
tions from photon couplings to sea-quark loops comprising
the meson dressings of χEFT. Our choice of regularization
scheme facilitates the modeling of the corrections [31]
associated with these effects.
In the following sections, the methods of unquenching,

finite-volume corrections, and chiral extrapolations are
established, and a prediction for the magnetic polarizability
of the neutron is reported. This prediction is complemented
by a variety of finite-volume extrapolations at different box
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sizes, providing a benchmark to guide future lattice QCD
calculations of the magnetic polarizabilities.

II. LATTICE QCD

In calculating the magnetic polarizability in lattice QCD,
a background magnetic field B is introduced on the lattice
by multiplying each gauge link by a certain phase factor
[9,10,32–37]. In the weak-field limit, the resultant energy
shift of the nucleon is dependent on the magnetic moment
~μ, and the magnetic polarizability β, through

EðBÞ ¼ MN − ~μ · ~Bþ ejBj
2MN

− 2πβB2 þ OðB3Þ: (1)

The period boundary conditions restrict the possible
values of the magnetic field strength, based on the number
of lattice sites Nx and Ny in the x and y directions, leading
to the quantization condition

qBa2 ¼ 2πn
NxNy

; n ∈ Z; (2)

for a quark charge q.
The background field method is applied to the PACS-CS

configurations [19] obtained via the ILDG [30], which use
the 2þ 1 flavor improved clover fermion action and the
Iwasaki gauge action. The lattice results used in this
analysis are presented in Fig. 1, utilizing the Sommer
scale parameter [38], r0 ¼ 0.49 fm [9,10]. Note that all the
lattice points considered satisfy mπL > 4.45 such that the
use of finite-volume χEFT in analyzing these results is
appropriate.
In computing the polarizabilities, contributions from

photon couplings to disconnected sea-quark loops have

not yet been included. These need to be accounted for prior
to making a comparison with experimental results. In the
case of the neutron, partially quenched χEFT is used to
determine the appropriate chiral behavior of the polar-
izability in both the partially quenched scenario of the
lattice results and full QCD.
Other calculations of the magnetic polarizability of the

neutron [35,37] use a different approach. While the
linearization of the U(1) field breaks gauge invariance
[10], the main concern in this alternative data set is the use
of the Dirichlet boundary condition in a spatial direction
breaking the symmetry of the 3-torus, which may give rise
to significant systematic errors due to artifacts at the
boundary. Since finite-volume χEFT employs periodic
boundary conditions in all spatial directions, these lattice
results are not compatible with the formalism, and are
therefore not used in this investigation.

III. CHIRAL EFFECTIVE FIELD THEORY

The electric and magnetic polarizabilities α and β,
respectively, may be defined in terms of two independent
parameters, (A, B), obtained from expanding the Compton
tensor [1],

Tμνðp; qÞ ¼
Z

d4xeiq·xhNðpÞj TfJemμ ðxÞJemν ð0ÞgjNðpÞi:
(3)

They are defined as

αþ β ¼ −
e2m
2π

∂2AðsÞ
∂s2

����
s¼m2

; β ¼ −
e2

4πm
Bðs ¼ m2Þ:

(4)

The interaction vertices are sourced from the relevant
first-order interaction Lagrangian of heavy-baryon χPT,
which includes the Δ baryon transitions [39,40]

Lð1Þ;int
HBχPT ¼ i

gA
2fπ

Ψ̄vγ5σμνvντa∂μπaΨv

þ i
C

2fπ
Ψ̄vTaσμνΔν

v∂μπa þ H:c: (5)

Ta are the isospin doublet-quartet transition matrices. The
octet couplings D and F are derived from the experimental
value of gA, obeying the condition Dþ F ¼ gA and the
SUð6Þ symmetry relation F ¼ 2

3
D.

The calculation of the leading-order loop contributions
follows Refs. [31,41] and uses the heavy-baryon approxi-
mation. In the finite-range regularization approach, the
leading nonanalytic contribution to the chiral expansion
comes entirely from the diagram shown in Fig. 2, for the
above parametrization of βn (contributing to A2 from
Ref. [6]). Transitions to a Δ baryon at leading order are

FIG. 1 (color online). The magnetic polarizability of the
neutron βn, from 2þ 1 flavor lattice QCD simulations by the
CSSM [9,10]. The results are based on the PACS-CS configu-
rations [19] available via the ILDG [30].
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shown in Fig. 3. For a finite mass-splitting Δ, Fig. 3
contributes a log term rather than 1=mπ [41].
By performing the pole integration over k0 and taking the

forward scattering limit (q · q0 → 0), one obtains a three-
dimensional integral form that can easily be adapted to
estimate finite-volume corrections [28,42,43]

βðπNÞðm2
πÞ ¼

e2

4π

1

288π3f2π
χN

Z
d3k

~k2

ð~k2 þm2
πÞ3

; (6)

βðπΔÞðm2
πÞ ¼

e2

4π

1

288π3f2π
χΔ

Z
d3k

×
ω2
~k
Δð3ω~k þ ΔÞ þ ~k2ð8ω2

~k
þ 9ω~kΔþ 3Δ2Þ

8ω5
~k
ðω~k þ ΔÞ3 ;

(7)

where ω~k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

π

q
is the energy carried by the pion

with three-momentum ~k, Δ≡MΔ −MN ¼ 292 MeV, and
the pion decay constant is taken to be fπ ¼ 92:4 MeV. The
standard coefficients for full QCD are given by

χN ¼ 2g2A; (8)

χΔ ¼ 16

9
C2; (9)

with the coupling constants taking the values gA ¼ 1.267,
C ¼ −1.52. Modifications to the couplings to accommo-
date partial quenching effects are explained in Sec. III A.
The leading-order 1=mπ contribution to the magnetic

polarizability of the neutron has the established coefficient
[44–46]

βπNðm2
πÞ ¼

e2g2A
768π2f2π

1

mπ
≡ χ0

1

mπ
: (10)

The chiral expansion of the magnetic polarizability of the
neutron at this order is

βn ¼ χ0

mπ
þ c0 −

16

9Δ
χ0 logðmπ=μÞ þ OðmπÞ; (11)

where μ is an arbitrary mass scale associated with the
logarithm, henceforth set to 1 GeV.
Finite-volume effects are evaluated following the pre-

scription described in Refs. [11,28,29]. These are estimated
by evaluating the corrections associated with replacing the
continuum integrals of Eqs. (6) and (7) with finite sums
over the momenta available on the lattice. Using this
method, the finite-volume corrections are stable for large
values of the regularization scale and are numerically
equivalent to the algebraic approach described in
Refs. [47,48].
When applying χEFT to lattice QCD results, pion-mass

values extending outside the chiral power-counting regime
are typically considered, and use of standard χPT in this
region inevitably leads to a badly divergent chiral series
[26,27]. The identification of an intrinsic scale for the
regularization of loop integrals provides a robust method
for resumming the higher-order terms of the chiral expan-
sion and calculating the low-energy coefficients of χPT
[11,13,28,29].
In evaluating the loop integrals of the effective field

theory, a dipole regulator, u2ðk;ΛÞ ¼ ð1þ ~k2=Λ2Þ−4, is
introduced into the integrands to ensure only soft momenta
flow through the effective field theory degrees of freedom.
Through an examination of the flow of the low-energy
coefficients constrained by the lattice QCD results as the
regulator parameter, Λ is varied, and with an understanding
of the dependence of this flow on the range of pion masses
considered in the chiral expansion, one can identify a value
of Λ which provides low-energy coefficients independent
of the pion mass range considered, and are therefore
consistent with the low-energy coefficients of χPT in the
PCR [11,13,28,29,49].
A weighted average across studies of the leading-order

chiral coefficients of the nucleon mass [28,50] (using
PACS-CS results [19]), magnetic moment [11] and the
electric charge radius [13] (using QCDSF results [21])
leads to a regulator parameter of Λ̄scale ¼ 0.99ð27Þ GeV.
For the present case, the dipole regulator is introduced

into the integrands of Eqs. (6) and (7). In light of our
additional task of correcting for the partial quenching of the
lattice QCD simulations, the value Λ ¼ 0.80 GeV is
adopted [40,51–55], in agreement with the intrinsic scale
identified in previous studies [11,13,28,50]. This particular
regulator mass has been shown to define a pion cloud
contribution to masses [51], magnetic moments [52], and
charge radii [40], which enables one to model the correc-
tion to the pion cloud encountered in unquenching and to
reproduce experimental measurements. As explained in

FIG. 2. The leading-order pion loop contribution to the mag-
netic polarizability of the neutron.

FIG. 3. The leading-order pion loop contribution to the mag-
netic polarizability of the neutron, allowing transitions to nearby
and strongly coupled Δ baryons.
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Refs. [40,51–55], this particular choice of regulator param-
eter defines a neutron core contribution, which does not
differ significantly between partially quenched QCD and
full 2þ 1 flavor QCD. In making this connection, one
makes the model assumption that the core is insensitive to
sea-quark loop contributions.

A. Partially quenched chiral effective field theory

In this section, an independent calculation is presented
for the calculation of the loop coefficients for partially
quenched χPT. The approach is complementary to the
graded-symmetry approach selected by Detmold et al. [31]
and provides an alternative picture of the process based on
standard nuclear physics processes. In addition, the
unquenching procedure is outlined, which corrects the
lattice simulation results to full QCD.
The procedure for obtaining the partially quenched χPT

coefficients of nonanalytic terms follows that described in
Ref. [56]. First, one separates the contribution from each
quark-flow diagram into “valence-valence,” “valence-sea,”
and “sea-sea” contributions. These describe whether the
two photons couple to valence or sea quarks in the
intermediate states available in Figs. 2 and 3.
Starting with n → Nπ, and selecting the n → nπ0 chan-

nel, one writes out all the possible quark-flow diagrams,
prior to attaching external photons to the meson, as shown
in Fig. 4. Diagram 4(a) contains only valence quarks, and
therefore can only contribute to the valence-valence sector.
Diagrams 4(b) and (c) may contribute to all three sectors,
as one or both photons may be attached to the valence- or

sea-quark lines of the intermediate meson. These occur in
proportion to the quark charges.
While the neutrality of the π0 meson ensures the total

leading-order contribution is zero, this occurs through a
combination of valence-valence, valence-sea, and sea-sea
contributions, with the latter two omitted in the lattice QCD
simulations. For example, in the case of diagram 4(b), the
coupling of photons to either valence- or sea-quark lines
generates

χdiagðbÞ
nnπ0

∝ ðq2u þ 2quqū þ q2ūÞ; (12)

∝ ðqu þ qūÞ2 ¼ 0: (13)

The three terms in Eq. (12) contribute to valence-valence,
valence-sea and sea-sea, respectively. For quark charges
qu ¼ þ2=3, qū ¼ −2=3, clearly the total contribution from
n → nπ0 vanishes, as expected.
Setting electric charges aside, the SUð3Þ flavor coupling

for diagram 4(b) alone is obtained by temporarily replacing
the up-quark sea-quark-loop with a strange quark [56]. This
correctly isolates the quark-flow diagram only containing a
disconnected sea-quark-loop flow:

χdiagðbÞ
nnπ0

∝ χ2KþΣ− ¼ 2ðD − FÞ2: (14)

By repeating the above procedure for diagram 4(c), one
finds

χdiagðcÞ
nnπ0

∝ ðq2d þ 2qdqd̄ þ q2
d̄
Þ; (15)

∝ ðqd þ qd̄Þ2 ¼ 0; (16)

and

χdiagðcÞ
nnπ0

∝ χ2K0Σ0 þ χ2K0Λ

∝ ðD − FÞ2 þ 1

3
ðDþ 3FÞ2: (17)

As a result, one can now identify which components of the
n → nπ0 channel have a disconnected sea-quark loop in
the quark flow. Monitoring the quark charges that couple to
the photons enables one to identify the different valence-sea
and sea-sea quark sectors. Thus, the valence-sea and sea-
sea contributions can be calculated explicitly, as above.
Knowing the total coefficient from standard χPT, the
remainder represents the valence-valence contribution
including the connected quark flow of diagram 4ðaÞ.
One may also apply this procedure to the n → pπ− channel.
In order to obtain the total partially quenched result for

n → Nπ, one must also consider the unphysical process
n → n−πþ. This process does not occur in full QCD since
the propagation of negatively charged ddd neutronlike
states violates the Pauli exclusion principle. This is realized

FIG. 4. Example: the decomposition of the process n → nπ0

into its possible one-loop quark-flow diagrams. The configura-
tion of photon couplings to valence and sea quarks will determine
the coefficients of partially quenched χPT.
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in full QCD by a cancellation of the two quark-flow
diagrams associated with n → n−πþ. These diagrams are
obtained from Figs. 4(a) and 4(b), with the change of the
valence flavor labels d, d, u to u, d, d. While the sum of
these two diagrams vanishes, each one participates in the
leading-order nonanalytic coefficients of the magnetic
polarizability. An omission of photon couplings to the
disconnected sea-quark loop in the lattice QCD simulations
allows a nontrivial contribution. The cancellation no longer
takes place, and this must be taken into account when
fitting the lattice results.
The diagrammatic procedure may be repeated for

n → Δπ. A summary of the contributions in different
channels is shown in Table I for both octet and decuplet
transitions. In summary, the modifications to the loop
integrals of Eqs. (6) and (7) due to partial quenching in
the lattice QCD simulations are

χN → χpQN ¼ 2g2A − ðD − FÞ2 − 7

27
ðDþ 3FÞ2; (18)

χΔ → χpQΔ ¼ 16

9
C2 −

2

9
C2: (19)

Note that these coefficients are consistent with those
derived from the graded-symmetry approach (see Table I
of Ref. [31]).
Because the lattice simulations incorporate 2þ 1 flavors,

the kaon loops also require consideration. Given the
international attention devoted to learning the strangeness
contribution to the magnetic moment of the nucleon, it is
fascinating to perform a similar calculation [52] for the
magnetic polarizability. To achieve this, additional loop
integrals are considered with the same form as Eq. (7) but
with the pion replaced by the kaon and the mass splitting

associated with the increased mass of the hyperons in the
intermediate states.
Specifically, the symbol Δ in Eq. (7) represents the mass

splitting between the nucleon and either the Σ or the Σ�
baryon; taking the experimental charge-state averages,
mΣ ¼ 1.189 GeV and mΣ� ¼ 1.383 GeV. The kaon mass
is related to the pion mass via

m2
K ¼ m2

K;phys þ
1

2
ðm2

π −m2
π;physÞ: (20)

The coefficient for the partially strange quark contribution
to the neutron magnetic moment is obtained with the
modification of χΔ in Eq. (7),

χΔ → χpQKΣ ¼ 2ðD − FÞ2 − ðD − FÞ2 þ 1

27
ðDþ 3FÞ2

(21)

and

χΔ → χpQKΣ ¼ 4

9
C2 −

2

9
C2; (22)

where the first term on the right-hand side of these
equations is the full QCD contribution.
The strange sea-quark-loop contribution to the nucleon

magnetic polarizabilities can be obtained via

χΔ → χsKΣ ¼ 1

3
ðD − FÞ2 þ 1

27
ðDþ 3FÞ2 (23)

and

TABLE I. The relative contributions to the leading-order loop integrals of Figs. 2 and 3. The numerical value of the couplings can be
obtained by inserting the appropriate quark charges and noting χ2KþΣ− ¼ 2ðD − FÞ2, χ2K0Σ0 ¼ ðD − FÞ2, and χ2K0Λ ¼ ðDþ 3FÞ2=3 for
the octet intermediate states, and χ2KþΣ�− ¼ 4 C2=9 and χ2K0Σ�0 ¼ 2 C2=9 for decuplet intermediate states. The valence-valence sector can
be calculated by subtracting the two other sectors from the total result.

n → Nπ Total Valence-sea Sea-sea

n → nπ0 0 2quqūχ2KþΣ− þ 2qdqd̄ðχ2K0Σ0 þ χ2K0ΛÞ q2ūχ
2
KþΣ− þ q2

d̄
ðχ2K0Σ0 þ χ2K0ΛÞ

n → pπ− 2ðDþ FÞ2 2qdqūðχ2K0Σ0 þ χ2K0ΛÞ q2ūðχ2K0Σ0 þ χ2K0ΛÞ
n → n−πþ 0 2quqd̄χ

2
KþΣ− q2

d̄
χ2KþΣ−

n → ΣK
n → ðΣ0;ΛÞK0 0 2qdqs̄ðχ2K0Σ0 þ χ2K0ΛÞ q2s̄ðχ2K0Σ0 þ χ2K0ΛÞ
n → Σ−Kþ 2ðD − FÞ2 2quqs̄χ2KþΣ− q2s̄χ

2
KþΣ−

n → Δπ
n → Δ0π0 0 2quqūχ2KþΣ�− þ 2qdqd̄χ

2
K0Σ�0 q2ūχ

2
KþΣ�− þ q2

d̄
χ2K0Σ�0

n → Δþπ− 4
9
C2 2qdqūχ2K0Σ�0 q2ūχ

2
K0Σ�0

n → Δ−πþ 4
3
C2 2quqd̄χ

2
KþΣ�− q2

d̄
χ2KþΣ�−

n → Σ�K
n → Σ�0K0 0 2qdqs̄χ2K0Σ�0 q2s̄χ

2
K0Σ�0

n → Σ�−Kþ 4
9
C2 2quqs̄χ2KþΣ�− q2s̄χ

2
KþΣ�−
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χΔ → χsKΣ� ¼ 2

27
C2; (24)

where the square of the strange-quark charge factor of 1=9
is included in the coefficients.
In the next section, the lattice results are treated with

partially quenched χEFT, i.e. using the coefficients in
Eqs. (18), (19), (21), and (22). The full QCD coefficients
can be recovered by keeping only the first term on the right-
hand side of these equations. The effect of unquenching the
missing light-quark disconnected loop contributions is
investigated first, followed by a complete restoration of
sea-quark-loop contributions through the inclusion of
strange-quark-loop contributions in the kaon dressings.

IV. CHIRAL EXTRAPOLATION

The finite-volume correction and chiral extrapolation of
the magnetic polarizability of the neutron can now be
performed with the lattice simulation results of Ref. [10].
The 2þ 1 flavor simulation results are illustrated in Fig. 5
with a partially quenched finite-volume extrapolation
suitable for these lattice results.
The extrapolation includes a term linear in m2

π , with
coefficient a2 determined by a fit to the lattice results. The
fit value of a2 is small, at 6.5 × 10−7fm5. In illustrating the
extrapolation curve, the results for mπL < 3 are not shown,
and it is noted that the magnetic polarizability at the
physical point cannot be reached with a ð3 fmÞ3 volume.
Alternatively, one could apply the more conservative
constraint of mπL > 4 without changing the shapes of
the extrapolation curves, as all lattice points used satisfy
mπL > 4.45. In Figs. 5, 6 and 8, the preference is to
illustrate the results over a wider range.
Since the Sommer scale has been selected, the lattice

volume varies slightly across the four lattice points

available. However, the finite-volume corrections for large
pion-mass values are relatively small, as illustrated in an
example extrapolation for spatial length 3.0 fm, which
corresponds to the volume of the lightest point at
mπ ¼ 293 MeV. Differences between the results for the
varying volume and those for a 3.0 fm box at the higher
pion-mass points are very small and cannot be seen
in Fig. 5.
Chiral extrapolations for a range of finite volumes, and

the infinite volume, are shown in Fig. 6. This highlights the
manner in which the discretization of momenta to only
those available on the finite volume significantly sup-
presses the chiral dressings of the neutron. The anticipated
chiral curvature is significantly reduced on smaller lattice
volumes. As precision lattice results become available,
these curves can provide an important benchmark in
understanding the volume dependence of those results.
For volumes of ð4 fmÞ3 and larger, finite-volume cor-

rections are significant only for mπ < 300 MeV, but they
grow quickly in the chiral regime. Consequently, box sizes
as large as 7 fm are required to obtain an extrapolation
within 5% of the infinite-volume value at the physi-
cal point.
The effect of unquenching the disconnected loops by

replacing the meson dressings of partially quenched QCD
with those of full QCD is shown in Fig. 7 at infinite volume.
One constrains the analytic terms, a0 þ a2m2

π , of the chiral
expansion by fitting the partially quenched chiral expansion
to the partially quenched lattice simulation results corrected
to infinite volume. The black curve of Fig. 7 illustrates
this fit.
With the regulator parameter fixed to Λ ¼ 0.8 GeV, the

analytic terms model the invariant core contribution
[40,51–55] to the polarizability. One can then correct the
meson-cloud contribution by adding the valence-sea and
sea-sea-loop integrals. Figure 7 illustrates the important
effect of unquenching the light u and d sea-quark sector

FIG. 5 (color online). Extrapolation of the magnetic polar-
izability of the neutron βn at spatial length L ¼ 3.0 fm. The
lattice points satisfymπL > 3. The dot-dashed curves indicate the
error bar associated with the fit. The vertical dotted line indicates
the physical point.

FIG. 6 (color online). Extrapolation of the magnetic polar-
izability of the neutron, βn, for a variety of spatial lattice volumes,
and the infinite volume limit.
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contributions to the magnetic polarizability with the
magenta dashed curve. The final effect of fully unquench-
ing the results by also unquenching the strange sector
through the addition of kaon loops is illustrated by the red
dot-dashed curve.
The unquenched theory displays a significant increase in

the strength of the chiral-loop integrals, with the value at
the physical point sitting higher than in the partially
quenched case. At the physical point, the magnetic polar-
izability is only 1.66 × 10−4 fm3, whereas the full theory
provides 1.93 × 10−4 fm3, a 16% correction.
In contrast, unquenching the kaon loops has a very tiny

effect, with a percentage shift of approximately 0.16%.
This is significantly smaller than the effect of the strange-
quark contributions to the proton magnetic moment [52] of
0.55%. Isolating the strange-quark/sea-sea contribution via

Eqs. (23) and (24) provides a more closely related com-
parison of strange-sea-quark-loop contributions. In this
case, the strange-sea-quark-loop contribution to the
magnetic polarizability is 0.0023 × 10−4 fm3, a 0.12%
contribution.
A comparison of multiple finite-volume and infinite-

volume extrapolations for full QCD is shown in Fig. 8,
correcting for partial-quenching effects. These results thus
provide a benchmark to guide the interpretation of future
lattice QCD simulations including background field effects
in the disconnected sea-quark-loop sector.
The breakdown of the loop-integral contributions into

the valence-valence, valence-sea, and sea-sea contributions
is illustrated in Fig. 9 for the πN sector of Eq. (6) and
Fig. 10 for the πΔ sector of Eq. (7). The difference in the

FIG. 8 (color online). Extrapolation of the unquenched value of
βn for a variety of spatial lattice volumes, and the infinite volume
case, correcting for partial quenching effects. These results
provide a benchmark to guide the interpretation of future lattice
QCD simulations, including background field effects in the
disconnected sea-quark-loop sector.

FIG. 9 (color online). The contributions from separate photon-
quark coupling scenarios to the leading-order octet loop integral
of Eq. (6). In the valence-sea case where one photon couples to a
valence quark and the other couples to a sea quark, there is a large
positive contribution from n → K0Λ, and the overall valence-sea
result is positive.

FIG. 10 (color online). The contributions from separate photon-
quark coupling scenarios to the next-to-leading-order decuplet
loop integral of Eq. (7). In the valence-sea case, the negative
contribution from n → KþΣ� dominates, and the overall valence-
sea result is negative.

FIG. 7 (color online). A comparison of the extrapolations of the
magnetic polarizability of the neutron βn, upon including the
contributions of photon couplings to the disconnected u, d and s
quark loops, which were omitted in the lattice QCD simulations.
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sign of the valence-sea contribution between the two plots
is noteworthy, as it highlights an important difference
between the octet and decuplet processes. The quark-flow
diagrams corresponding to a neutral intermediate (n or Δ0)
are the same, and the valence-sea contribution from each is
negative due to the opposite charges of the qq̄ pairs.
However, in the case of the octet, the large contributions
from K0Λ-type coupling for the disconnected u-quark loop
in the n → pπ− channel dominate over the similar d-quark
loop in the neutral channel. The ū- and d-quark charges
multiply positively, and the valence-sea contribution is
positive. In the decuplet, there is no equivalent large
coupling, and the neutral channel, n → Δ0π0, dominates,
causing the valence-sea contribution to be negative.
The final infinite-volume full-QCD prediction for the

magnetic polarizability of the neutron is shown in Fig. 11,
with a value of βn ¼ 1.93ð11Þð11Þ × 10−4 fm3 at the
physical point. The quoted uncertainties represent both
the statistical error from constraining the fit parameters to
lattice QCD results and the systematic uncertainty from
variation of Λ over the range 0.7 ≤ Λ ≤ 0.9. In the plot, the
inner error bar represents the statistical uncertainty from the
fit only, and the outer error bar includes the systematic
uncertainty from the regulator parameter Λ added in
quadrature. Since the lattice results are obtained using a
single lattice-spacing, it is not possible to quantify an
uncertainty associated with taking the continuum limit.
However, the lattice calculations are performed using a
nonperturbatively improved clover-fermion action, and it is
therefore anticipated that the Oða2Þ corrections are small
relative to the uncertainties already addressed.
A comparison between our result and the experimental

data is shown in Fig. 12. In addition to the Particle Data

Group value [7], analyses of elastic photon-deuteron
scattering experiments by Grießhammer et al. [6] and
Kossert et al. [3,4] are included in the plot. For clarity
of comparison, an m2

π-axis offset is introduced among the
experimental points. Our result is in good agreement with
all three experimental measurements and presents an
interesting challenge for greater precision in the experi-
mental measurement. Such progress would similarly drive
further progress in lattice QCD simulations and chiral
effective field theory.

V. CONCLUSION

Dynamical lattice QCD simulation results for the mag-
netic polarizability of the neutron have only recently
become available [10]. The results are obtained at finite
volume, and only the quarks carrying the quantum numbers
of the hadron experience the background field. The
dynamical fermion loops of the QCD simulation are blind
to the external field. As such, it is timely to investigate the
physics required to relate these new partially quenched
simulation results to experiment.
Heavy baryon chiral effective field theory provides a

framework in which to perform this investigation. Methods
to correct for the finite volume of the spatial lattice volume
are well established and employed herein. Techniques to
unquench the sea-quark-loop contributions are also well
established [40,51–53], but their application to the mag-
netic polarizability herein is novel.
This work has made definitive progress in providing a

theoretical prediction for the magnetic polarizability of the
neutron. We find βn ¼ 1.93ð11Þstatð11Þsys × 10−4 fm3. The
prediction is founded on first-principles lattice QCD
simulations and incorporates effective field theory tech-
niques to correct for the finite volume of the lattice, account
for the disconnected sea-quark-loop contributions, and

FIG. 11 (color online). Our prediction for the pion-mass
dependence of the magnetic polarizability of the neutron, βn,
is illustrated by the solid and dashed curves, illustrating combined
statistical and systematic uncertainties. At the physical point, the
inner error bar represents the statistical uncertainty from the fit to
the lattice data, and the outer error bar adds the systematic
uncertainty from the meson-cloud parameter, Λ, in quadrature.

FIG. 12 (color online). The magnetic polarizability of the
neutron βn is compared with experimental results. Uncertainties
contain both statistical and systematic errors added in quadrature.
Experimental results from Grießhammer et al. [6], the PDG [7],
and Kossert et al. [3,4] are offset for clarity.
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connect to the light-quark masses of nature. The result
agrees with current experimental estimates and presents an
interesting challenge for greater precision in the experi-
mental measurement.
In performing the chiral extrapolations, the finite-volume

effects were quantified for a range of spatial lattice volumes
relevant to current and future lattice simulations. Both
partially quenched and full QCD results were addressed in
the finite-volume analysis. It was found that lattices of
approximately 7 fm on a side are required to obtain the
magnetic polarizability of the neutron to within 5% of the
infinite-volume value at the physical pion mass. These
finite-volume studies provide a benchmark for future lattice
QCD calculations and a guide to the interpretation of the
results.
Unquenching the disconnected loop contributions pro-

vides a significant increase in the chiral curvature of the
magnetic polarizability and a significantly larger prediction
at the physical point. Unquenching the u, d and s
disconnected-loop contributions resulted in a 16% increase
in the infinite-volume prediction. The contribution from
kaon loops is negligibly small, at 0.16%. This is smaller

than the 0.55% effect associated with strange-quark con-
tributions to a proton’s magnetic moment [52].
A more precise experimental measurement of the mag-

netic polarizabilities of the nucleon is clearly warranted.
Similarly, further investment in lattice QCD investigations
is of value. In the case of lattice QCD, the difficult problem
of Landau-level contributions to the correlation functions is
of interest, as is the need to directly incorporate sea-quark-
loop effects. Finally, higher-order terms of the chiral
expansion are valuable in evaluating the convergence of
the effective field theory.
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