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We evaluate the ratio of the shear viscosity to the relaxation time of the shear current above but near the
critical temperature Tc in SU(3) gauge theory on the lattice. The ratio is related to Kubo’s canonical
correlation of the energy-momentum tensor in Euclidean space with the relaxation-time approximation and
an appropriate regularization. Using this relation, we evaluate the ratio on the lattice in Euclidean space. We
obtain the ratio with reasonable statistics for the range of temperature 1.5≲ T=Tc ≲ 4. We find that the
characteristic speed of the transverse plane wave propagating in a gluon medium vη is almost constant,
v2η ≃ 0.5, for T=Tc ≳ 1.5, which ensures the causality in this mode in second-order dissipative hydro-
dynamics.
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I. INTRODUCTION

One of the highlights at the Relativistic Heavy Ion
Collider (RHIC) is the success of relativistic hydrodynamic
models for the description of the space-time evolution of
the quark-gluon matter and final-state observables in high-
energy heavy ion collisions [1–3]. This revealed that the
quark-gluon matter is a strongly correlated system. The
LHC has also provided new experimental results of ultra-
relativistic heavy ion collisions. As a whole, the transverse-
momentum dependence of the elliptic flow observed at the
LHC is similar to that at the RHIC [4]. This result implies
that the hydrodynamic description of the quark-gluon
matter at the LHC is as good as that at the RHIC.
Recently the importance of dissipative effects in the

hydrodynamic models has been recognized [5–7]. The
simplest relativistic dissipative hydrodynamics is the first-
order theory [8,9], which in the nonrelativistic limit reduces
to Navier-Stokes theory. The first-order theory, however, is
plagued with the problem of acausality and instability [10].
One of the strategies to evade these problems is to extend
the theory to the second order with respect to the dissipative
currents. In the second-order theory, however, there appear
many phenomenological parameters as second-order trans-
port coefficients in addition to the first-order ones. These
transport coefficients cannot be determined within the
framework of hydrodynamics. Ab initio calculations based
on microscopic theory, i.e., QCD in our case, are required
to constrain the parameters in dissipative hydrodynamic
models.
Since the temperature range realized at the RHIC and

LHC is not within the reach of perturbative QCD, we need
to employ nonperturbative approaches to investigate the
transport properties of hot QCD matter created at the RHIC
and LHC. At present, lattice QCD simulation is the only
systematic way to calculate physical quantities in such
a nonperturbative region. There are several pioneering
studies that analyzed transport coefficients on the lattice

[11–15]. These studies used Green-Kubo formulas, which
relate the transport coefficients to the low-energy behavior
of the corresponding spectral functions. In this method,
one needs to extract the spectral functions from Euclidean
correlators obtained in lattice QCD simulations. This
step is, however, nontrivial, because it is an ill-posed
problem [16].
In this paper, we focus on the ratio of the shear viscosity

to the relaxation time of the shear current. In Refs. [17,18],
it was argued that the ratio is related to a static fluctuation
of the energy-momentum tensor by rewriting the Green-
Kubo formula for classical systems with the relaxation-time
approximation. We extend their arguments to treat quantum
systems and present a relation that relates the ratio to
Kubo’s canonical correlation of the energy-momentum
tensors. The relation enables us to relate transport proper-
ties of the medium to Euclidean observables on the lattice
directly without analyzing the spectral functions. Whereas
the ratio itself is not a transport coefficient, its determi-
nation reduces the number of free parameters in hydro-
dynamic equations.
The canonical correlation of the energy-momentum

tensor, which is related to the ratio in this relation, however,
is ultraviolet divergent. We thus need to regularize the
canonical correlation to obtain a physical quantity. We
remove the divergence by a vacuum subtraction. In addition
to this prescription, it is argued that one must take care of
the contact terms which exist in the canonical correlation in
Euclidean space. The canonical correlation is affected by
these terms. We will see later that this contribution should
be removed in the analysis to obtain the transport property
separately from the vacuum subtraction.
The structure of this paper is as follows. In Sec. II we

review Israel-Stewart theory [19], which is one of the
second-order theories of dissipative hydrodynamics. We
show how to introduce the relaxation times of the dis-
sipative currents in the theory. In Sec. III we relate the ratio
to Kubo’s canonical correlation of the energy-momentum
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tensors with the relaxation-time approximation for quan-
tum field theory. In Sec. IV we discuss how to remove the
unphysical contributions existing in the canonical correla-
tion on the lattice. We then present numerical results of
SU(3) lattice gauge simulations in Sec. V. The last section
is devoted to conclusions and discussion.

II. ISRAEL-STEWART THEORY AND
RELAXATION TIME

In this section, we give a brief review of Israel-Stewart
(IS) theory and the role of relaxation times in this theory.
Hydrodynamics consists of equations of motion for con-
served currents. The only conserved current in pure gauge
theory is the energy-momentum tensor Tμν, for which the
conservation law reads

∂μTμν ¼ 0: (1)

In the dissipative hydrodynamics, the energy-momentum
tensor is decomposed as

Tμν ¼ ϵuμuν − ðPþ ΠÞðgμν − uμuνÞ þ πμν; (2)

where ϵ and P are the energy density and the pressure in
equilibrium, respectively, and Π and πμν are the dissipative
currents of bulk and shear channels, respectively. The
metric gμν is defined by gμν ¼ diagðþ;−;−;−Þ. Since
pure gauge theory does not have conserved currents except
for Tμν, the natural choice of the flow vector uμ is that in the
energy frame [9], where uμ is proportional to the energy
flow with the normalization uμuμ ¼ 1.
In second-order theory, Π and πμν are regarded as

dynamical variables, and additional equations of motion
for these variables are introduced besides Eq. (1). One of
the arguments to obtain these equations is a phenomeno-
logical one proposed in Ref. [19]. In this derivation, the
evolution equations are obtained as a consequence of the
second law of thermodynamics [19–21],

∂μsμ ≥ 0; (3)

where sμ ¼ suμ, with s being the entropy density in the
local rest frame. By choosing the entropy density to be
the equilibrium one, s ¼ seq, and assuming linearity in the
relation between the dissipative currents and the thermo-
dynamic forces, we obtain the first-order theory with
Eq. (3). To extend the theory to second order, it is assumed
that the entropy density near equilibrium is given by a
function of Π and πμν, and that it is analytic near
equilibrium, Π ¼ πμν ¼ 0 [19]. The entropy density near
equilibrium is then given by the Taylor expansion with
respect to Π and πμν. Up to the second order, it reads

s≡ seq − 1

2T
ðβ0Π2 þ β2πμνπ

μνÞ; (4)

where β0 and β2 are phenomenological parameters. The
second law of thermodynamics, Eq. (3), with Eq. (4) leads
to a set of evolution equations, which are referred to as IS
equations. In the shear channel, for example, the evolution
equation reads

π
:
μν ¼ − 1

τπ
½πμν þ α�; (5)

where π
:
μν ¼ uρ∂ρπμν is the derivative along the temporal

direction in the local rest frame and α denotes contributions
that vanish in a uniform medium.
The evolution equation (5) implies that the temporal

correlator of the spatial average of the shear current,

π̄μνðtÞ ¼
1

V

Z
V
d3xπμνðt; x⃗Þ; (6)

behaves as

hπ̄μνðtÞπ̄μνð0Þi≃ e−t=τπ hπ̄μνð0Þπ̄μνð0Þi; (7)

where V is the volume of the system. Since πμν damps with
a time scale τπ in a uniform medium, τπ is called the
relaxation time of the shear current. τπ is related to β2 in
Eq. (4) as

τπ ¼ 2ηβ2; (8)

where η is the shear viscosity [19]. The corresponding first-
order equation is obtained by taking the limit τπ → 0 in
Eq. (5). Similarly the evolution equation in the bulk
channel includes the relaxation time of the bulk current
τΠ, which is related to β0 in Eq. (4) as τΠ ¼ ζβ0 with the
bulk viscosity ζ. We note that π̄μνðtÞ in Eq. (7) should be
regarded as a classical variable in hydrodynamical equa-
tions. We will extend this equation to quantum correlators
in Sec. III.
The second-order theory can become causal because the

relaxation times make the hydrodynamic equations hyper-
bolic. The wave-front speed (characteristic speed) of the
transverse plane wave vη in the IS theory is given by [21]

v2η ¼
η

τπðϵþ PÞ ¼
η

τπTs
: (9)

For causality to be satisfied, the causality condition v2η ≤ 1
is required.

III. RATIO OF SHEAR VISCOSITY TO
RELAXATION TIME

A. Relaxation-time approximation

We now relate the ratio η=τπ to Kubo’s canonical
correlation of Tμν in Euclidean space. The original idea
of the following discussion was proposed within the
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framework of classical theory in Refs. [17,18]. We modify
their arguments to treat quantum systems.
We start from the Green-Kubo formula for the shear

viscosity,

η ¼ V
ℏ

Z
∞

0

dt
Z

ℏ=T

0

dλhπ̄12ð−iλÞπ̄12ðtÞi; (10)

where hOi ¼ Tr½e−H=TO�=Tr½e−H=T � is the statistical aver-
age in equilibrium, with H being the Hamiltonian. Here we
set Boltzmann’s constant kB ¼ 1. In order to modify this
formula as a feasible one for lattice simulations, we assume
that, in analogy with Eq. (7), the correlator of π̄12 damps
exponentially with real time,

Z
∞

0

dt
Z

ℏ=T

0

dλhπ̄12ð−iλÞπ̄12ðtÞi

≃
Z

∞

0

dt
Z

ℏ=T

0

dλe−t=τπ hπ̄12ð−iλÞπ̄12ð0Þireg; (11)

for t > 0. On the right-hand side of Eq. (11), we labeled the
statistical average with a subscript “reg,” since the λ integral
of the Euclidean correlator hπ̄12ð−iλÞπ̄12ð0Þi is ultraviolet
divergent and ill-defined as we will see later. In order to
make Eq. (11) meaningful, therefore, an appropriate
regularization of the right-hand side has to be introduced.
Moreover, hπ̄12ð−iλÞπ̄12ð0Þi has a delta function at λ ¼ 0,
i.e., the contact term. In the next section we show that
the contribution of this term must be removed from the
Euclidean correlator. We postpone the discussion on the
details of these issues to the next section, and for
the moment assume that the right-hand side of Eq. (11)
can be defined appropriately.
In this study, we refer to Eq. (11) as the relaxation-time

approximation, owing to its analogy to the standard
approximation in nonequilibrium statistical mechanics,
hOðtÞOð0Þi≃ e−t=τhOð0Þ2i. Note, however, that in
Eq. (11) the correlator between operators separated by
complex time is involved, while the standard relaxation-
time approximation is for real-time separation. Since the
correlator in Eq. (11) should reduce to Eq. (7) for the range
of t where the second-order hydrodynamics is applicable,
the time scale appearing in the exponential function in
Eq. (11) is identified as the relaxation time τπ in Eq. (5).
With Eqs. (10) and (11), we obtain

η≃ V
ℏ

Z
∞

0

dte−t=τπ
Z

ℏ=T

0

dλhπ̄12ð−iλÞπ̄12ð0Þireg
¼ V

ℏ
τπ

Z
ℏ=T

0

dλhπ̄12ð−iλÞπ̄12ð0Þireg: (12)

In the local rest frame of the medium, one can replace
π̄12 by the spatial component of the energy-momentum
tensor T̄12. Equation (12) then means that the ratio η=τπ is
given by

η

τπ
¼ V

T
h ~T2

12ireg

≡ V
ℏ

Z
ℏ=T

0

dλhT̄12ð−iλÞT̄12ð0Þireg: (13)

Here h ~A2i denotes the imaginary time average of
Kubo’s canonical correlation for the spatial averages of
an operator A,

h ~A2i≡ T
ℏ

Z
ℏ=T

0

dλhĀðλÞĀð0Þi: (14)

Equation (13) shows that the shear viscosity to relaxation
time ratio is related to Kubo’s canonical correlation of T̄12

with an appropriate regularization. The same argument is
applicable to the bulk channel, which leads to a formula to
represent the ratio ζ=τΠ with diagonal components of Tμν.
We note that Eq. (13) is also derived by the projection-
operator method [22].

B. Classical limit

In the classical limit ℏ=T → 0, one can replace the
integral

R ℏ=T
0 dλ with ℏ=T in Eq. (12). Equation (13) then

reduces to

η

τπ
¼ V

T
hT̄2

12i: (15)

η=τπ is, therefore, given by the static fluctuation of T̄12 in
the classical limit. Equation (15) is the formula derived in
Refs. [17,18]. Here we understand that appropriate sub-
tractions, which will be described below, are carried out
in Eq. (15).
In classical systems, Eq. (15) is also derived by using

Einstein’s principle and the entropy density in the IS theory
(4) [17,18]. According to Einstein’s principle, the proba-
bility distribution PðxÞ of a state variable x in equilibrium is
given by PðxÞ ∼ eSðxÞ, where SðxÞ is the nonequilibrium
entropy in a volume V. If one identifies the IS entropy (4) to
be that in Einstein’s principle, the probability distribution
for a state variable π̄12 in equilibrium in V is given by

Pπðπ̄12Þ ∼ exp

�
−V
T
β2π̄

2
12

�
: (16)

With this distribution function, the fluctuation of π̄12 in the
rest frame of the medium is calculated to be

hπ̄212i ¼
R
dπ̄12π̄212Pπðπ̄12ÞR
dπ̄12Pπðπ̄12Þ

¼ T
2β2V

¼ ηT
τπV

; (17)

which is identical to Eq. (15) with π̄12 ¼ T̄12.
It should, however, be noted that Einstein’s principle is

not applicable to systems where quantum fluctuations of
the state variable x are not negligible [23]. In quantum
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mechanics, when a state variable x does not commute with
the Hamiltonian, x and the energy cannot be determined
simultaneously. This means that the entropy cannot be
defined as a function of nonconserving state variables in
quantum systems. Einstein’s principle therefore can be
utilized only when the uncertainty to determine x together
with the total energy is sufficiently small.

IV. REGULARIZATION

A. Operator product expansion

In this section, we discuss the regularization introduced
in Eq. (11). From now on we set ℏ ¼ 1. As already
mentioned in the last section, the canonical correlation
h ~T2

12ireg in Eq. (13) is not identical to the naive definition

h ~T2
12i ¼

T
V

Z
d4xhT12ðxÞT12ð0Þi; (18)

with x ¼ ð−iλ; x⃗Þ, for two reasons. First, the integral in
Eq. (18) is ultraviolet divergent because of the short-
distance behavior of the Euclidean correlator of T12.
Second, while the Euclidean correlator includes contact
terms, which are proportional to the δ function, this term
should be subtracted in Eq. (11), as discussed below. Since
both of these effects are related to the short-distance
behavior of the Euclidean correlator hT12ðxÞT12ð0Þi, we
take advantage of the operator product expansion (OPE) to
investigate them.
The product of T12 at short distance behaves as

T12ðxÞT12ð0Þ≃ CT
1

x8
þ CμνTμνð0Þδð4ÞðxÞ þ � � � ; (19)

where CT and Cμν are c-number Wilson coefficients, which
are determined perturbatively. For dimensional reasons, the
first term on the right-hand side of Eq. (19) is proportional
to x−8 and leads to the ultraviolet divergence of Eq. (18)
unless CT ¼ 0. This term, however, does not have medium
effects and it does not affect the long-distance behavior
responsible for hydrodynamics. Therefore the divergence is
not related to the hydrodynamical behavior of the matter
and should be removed from Eq. (18) when discussing its
transport properties. This removal is simply accomplished
by the vacuum subtraction, defined by the difference
between the correlators at finite temperature and zero
temperature,Z

d4xhT12ðxÞT12ð0Þi0 ≡
Z

d4xhT12ðxÞT12ð0ÞiT

−
Z

d4xhT12ðxÞT12ð0ÞiT¼0:

(20)

The next terms of the OPE in Eq. (19) are proportional to
dimension-four operators, which are components of Tμν in

pure gauge theory. These terms are the contact terms, which
are proportional to δð4ÞðxÞ and shown in Eq. (19). As
discussed in the next subsection, the integral in the Green-
Kubo formula (10) does not contain the contribution from
the contact terms. The contribution thus should also be
subtracted in Eq. (13), which is derived from the Green-
Kubo formula. Note that the contact terms cannot be
removed by the vacuum subtraction, because the statistical
average of the contact terms is proportional to hTμνi, which
depends on the temperature. By taking these effects into
account, one finally finds that the canonical correlation in
Eq. (13) is given by

Z
d4xhT12ðxÞT12ð0Þireg ≡

Z
d4xhT12ðxÞT12ð0Þi0

− ðcontact termsÞ: (21)

For the dimensional reason, the terms with a higher
dimensional operator than four in Eq. (19) (shown by
the dots) do not yield an ultraviolet divergence and are not
singular.
The coefficients of contact terms are most conveniently

evaluated by taking the high-frequency limit of the corre-
lator with zero spatial momentum and by making use of the
Riemann-Lebesgue lemma. In the leading-order OPE result
[24–26], they are given by

CμνhTμνi0 ¼ G0ðq4 → ∞; q⃗ ¼ 0⃗Þ

¼ 1

2
hT44 − T33i0 þ

1

6
hF2i0; (22)

where G0ðq4; q⃗Þ ¼
R
d4xeiðq4τ−q⃗·x⃗ÞhT12ðxÞT12ð0Þi0 and

hF2i ¼ hFa
μνFa

μνi is the gluon condensate.
From Eqs. (21) and (22), we obtain the ratio

η

τπ
¼

Z
d4xhT12ðxÞT12ð0Þi0 − CμνhTμνi0

¼ V
T
h ~T2

12i0 þ
1

2
ðϵþ PÞ − 1

6
hF2i0: (23)

The right-hand side of Eq. (23) consists of the canonical
correlation of Tμν and the thermodynamic quantities, both
of which can be calculated on the lattice.

B. Contact terms in the Green-Kubo formula

We investigate here the contribution of the contact terms
to the Green-Kubo formula (10), and show that these terms
do not contribute to the integral in Eq. (10). From Eq. (19),
the sum of the contact terms in Euclidean space is given by

gð−iλ; x⃗Þ≡ CμνhTμνi0δð4ÞðxÞ: (24)

To evaluate the contribution of the contact terms to
Eq. (10), we perform the analytic continuation λ→ λþ it
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in Eq. (24). In order to obtain the analytic continuation of
the δ function to complex arguments, we utilize the Poisson
equation in four-dimensional space,

δð4ÞðxÞ ¼ − 1

2π2
∂2

1

x2
; (25)

where ∂2 ¼ ∂2
λ þ ∂2

1 þ ∂2
2 þ ∂2

3 and x2 ¼ λ2 þ x21þ
x22 þ x23. The contact term is then rewritten as

gð−iλ; x⃗Þ ¼ − 1

2π2
CμνhTμνi0∂2

1

x2 þ ϵ
; (26)

where we added an infinitesimal quantity ϵ > 0 to regu-
larize the singularity at x2 ¼ 0. Before the analytic con-
tinuation, we carry out the differentiation and the spatial
integration of 1=ðx2 þ ϵÞ,

Z
d3x∂2

1

x2 þ ϵ
¼ − 2π2ϵ

ðλ2 þ ϵÞ3=2 ; (27)

where we have used the formula

Z
dr

r2

ðr2 þ cÞ3

¼ − r
4ðr2 þ cÞ2 þ

r
8cðr2 þ cÞ þ

1

8c

Z
dr

r2 þ c
: (28)

Performing the analytic continuation λ → λþ it, the
contact term becomes

gðt − iλ; ϵÞ ¼ CμνhTμνi0
ϵ

fðλþ itÞ2 þ ϵg3=2 : (29)

To evaluate the contribution of this term to the Green-Kubo
formula, we perform the temporal integrals of gðt − iλ; ϵÞ,

����
Z

∞

0

dt
Z 1

T

0

dλgðt − iλ; ϵÞ
����

¼
����CμνhTμνi0

Z
∞

0

dt
Z 1

Tþit

0þit
dz

ϵ

ðz2 þ ϵÞ3=2
����

→ 0 ðϵ → 0Þ; (30)

with z ¼ λþ it.
In this way, one concludes that the contact terms (24) do

not contribute to the Green-Kubo formula, and as a result
they do not affect the ratio η=τπ . On the other hand, the
canonical correlation (18) measured on the lattice involves
their contribution. Therefore the contribution should be
removed as in Eq. (23) in numerical analyses.

V. LATTICE MEASUREMENTS

A. Formulation on the lattice

In this section, we analyze the ratio η=τπ on the lattice by
evaluating the three observables on the right-hand side
of Eq. (23).
We have performed the lattice simulations for SU(3) pure

gauge theory with the standard Wilson gauge action. In
Table I we list the lattice parameters used in the present
study. To investigate the lattice spacing and spatial volume
dependencies, simulations have been carried out on four
isotropic lattices of spatial volume N3

σ. The lattice spacing,
a, in Table I for each β is determined by the string tensionffiffiffi
σ

p ¼ 460 MeV and the parametrization of a
ffiffiffi
σ

p
in

Ref. [27]. All observables discussed in the next subsection,
however, are dimensionless and do not depend on this
physical scale. We use Tc=

ffiffiffi
σ

p ¼ 0.63 [28,29] and normal-
ize T by Tc. The temporal length aNτ ¼ 1=T of each lattice
corresponds to the range of temperature 0.5≲ T=Tc ≲ 4,
which covers those realized in heavy ion collisions at the
RHIC and LHC. Gauge configurations were updated by the
heatbath and overrelaxation algorithms. We have generated
300 000–2000 000 configurations for each parameter.
Statistical errors were estimated by the jackknife method
with bin sizes up to 1000. To perform the vacuum
subtraction, we regarded the lattice with the largest Nτ

for each β to be the vacuum one and subtracted the
expectation value on this lattice from the one at each
Nτ. In fact, the lattice with the largest Nτ for each β
corresponds to a temperature well below Tc, where medium
effects on the expectation value are well suppressed.
To calculate the first and second terms in Eq. (23), we

employed the traceless definition of the energy-momentum
tensor,

Tμν ¼ 2Tr

�
FμρFνρ − 1

4
δμνFρσFρσ

�
; (31)

with the field strength Fμν on the lattice defined by the
clover type plaquette. This definition conforms to the parity
of the spatial coordinate. In non-Abelian gauge theory, the
diagonal components of Tμν are modified due to the trace
anomaly. Since the first term in Eq. (23) consists of only an
off-diagonal component of Tμν, the definition Eq. (31) does

TABLE I. Simulation parameters. Nσ and Nτ are the numbers
of the lattice sites in the spatial and temporal directions,
respectively. a and Lσ are the lattice spacing and spatial
lattice size, respectively.

β ¼ 6=g2 Nσ Nτ a [fm] Lσ [fm]

6.499 32 4, 6, 8, 32 0.046 1.5
6.205 32 4, 6, 8, 32 0.068 2.2
6.000 32 4, 6, 8, 16 0.094 3.0
6.000 16 4, 6, 8, 16 0.094 1.5
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not affect the validity of the result for this term. The trace
anomaly also cancels out in the calculation of the second
term between ε and P.
On the lattice, due to the discretized translation sym-

metry the energy-momentum tensor receives a renormal-
ization factor Z compared to the operator in the continuum

limit, TðcontÞ
μν ¼ ZTðlatÞ

μν . Assuming that the finite lattice

spacing effects in hTðlatÞ
μν i0 are expressed solely in this

form with a β-dependent renormalization factor ZðβÞ, it is
determined so as to satisfy the thermodynamic relation
[30]. For the traceless part of the energy-momentum tensor
(31), this procedure is nicely accomplished with the

relation ϵþP¼ZðβÞðhTðlatÞ
33 i0−hTðlatÞ

44 i0Þ, where the left-
hand side is the thermodynamic quantity after the con-
tinuum extrapolation [29,31]. To determine Z for each β,
we used Nτ ¼ 6 data as a representative case. The operator
on the lattice can also receive additive renormalization,

TðcontÞ
μν ¼ ZðβÞTðlatÞ

μν þ CðβÞδμν, where the tensor structure
of the second term is constrained by Euclidean symmetry.
The existence of C, however, does not affect h ~T2

12i0 and
ϵþ P in Eq. (23) because the former does not depend on C
and in the latter C is canceled out.
The gluon condensate hF2i0 in Eq. (23) has been

measured from the gauge action using the relation

hF2i0
T4

¼ N4
τT

dβ
dT

SG0 ¼ −6N4
τa

dg−2
da

SG0 ; (32)

where SG0 is the lattice gauge action constructed from the
standard plaquette. For the values of adg−2=da, we have
used those determined in Ref. [29].

B. Numerical results

In Fig. 1, we show the temperature dependence of each
term on the right-hand side of Eq. (23), h ~T2

12i0, ðϵþ PÞ=2,
and hF2i0=6. In these plots, we show the results without the
correction of the renormalization factor ZðβÞ discussed in
the previous subsection. Figure 1(a) shows that the canoni-
cal correlation h ~T2

12i0 takes negative values for β ¼ 6.000 at
all T values analyzed. On the finer lattices with β ¼ 6.499
and 6.205, the negative values are also observed for
Nτ ¼ 4, which corresponds to the highest temperature
for each β. For Nτ ≥ 6, the statistical error is large and
the expectation values are consistent with zero within
statistics.
The thermodynamic quantities presented in the lower

two panels of Fig. 1 are determined with good statistics. We
have checked that the numerical results in Fig. 1(c) are
consistent with the previous analyses [29,31]. The finite
spatial volume effect on these results is estimated by
comparing numerical results on the two lattices with
different spatial dimensions Lσ with the same β ¼ 6.000.
Figure 1 shows that the spatial volume dependence is
almost negligible except in the vicinity of Tc. In the middle

panel of Fig. 1, the value of ðϵþ PÞ=2T4 evaluated with the
thermodynamic relation after the continuum extrapolation
[31] is also shown. The figure shows that our result slightly
underestimates the thermodynamic quantity. This differ-
ence can be absorbed by introducing the renormalization
factor ZðβÞ discussed above, which is taken into account in
the following numerical analysis. Our numerical result
shows that the value of ZðβÞ is in the range 1.3≲ ZðβÞ ≲
1.5 for the values of β we used.
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FIG. 1 (color online). Temperature dependencies of three terms
in Eq. (23). (a) Kubo’s canonical correlation with the vacuum
subtraction h ~T2

12i0. (b) The second term, ðϵþ PÞ=2 ¼
ðhT33i0 − hT44i0Þ=2. The results qualitatively reproduce the
result of the QCD equation of state in the literature. (c) The
third term, the gluon condensate hF2i0=6 determined by
the conventional approach with the standard plaquette.
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FIG. 2 (color online). Temperature dependence of the shear
viscosity to relaxation time ratio η=τπ . The contributions from
vacuum and contact terms are subtracted at each temperature.
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In Fig. 2, we show the temperature dependence of the
ratio η=τπ given by Eq. (23). From the figure, one sees that
the ratio η=τπ shows a rapid increase in the vicinity of Tc.
The results in Fig. 1 show that this behavior of η=τπ is
dominated by the second term in Eq. (23). Figure 2 also
shows that the results of η=τπ with all sets of configurations
coincide within the statistical error, which indicates that the
lattice spacing dependence is well suppressed in the present
result. Comparing the two results with β ¼ 6.000, we
observe that the spatial volume dependence is also small.
In Fig. 3, we show the temperature dependence of v2η
determined by Eq. (9). While the effect of ZðβÞ is taken into
account in this plot, the effect is smaller than the statistical
errors. The figure shows that v2η takes almost constant
values around v2η ≃ 0.5, for 1.5≲ T=Tc ≲ 4. This result
indicates that the causality condition is satisfied in the
second-order hydrodynamics for this mode in this range of
the temperature. The statistical error, however, increases as
the temperature approaches Tc from above.
It is of interest to compare the present result on v2η with

those obtained in various models. Grad’s 14-moment
approximation predicts v2η ≃ 1=6 in the high-energy limit
[19], and the AdS/CFT correspondence v2η ¼ 1=2ð2 −
ln 2Þ≃ 0.36 [32,33]. The projection-operator method for
a pion gas provides v2η ¼ P=ðεþ PÞ≃ 0.25 near Tc [22].
The measured values of v2η in our lattice gauge simulation
are higher than any of the other theoretical predictions.
Finally, let us consider the implication of our results on

the magnitude of the relaxation time τπ . It has been
conjectured that the shear viscosity to entropy density ratio
η=s has the universal lower bound 1=4π, which is the value
obtained by the AdS/CFT correspondence [34]. On the
other hand, it has been suggested by the comparison
between the results of viscous hydrodynamic models and
the experiments at the RHIC and LHC that η=s is less than

∼5× the lower bound above Tc [5,6]. If one substitutes
these values in Eq (9) and uses v2η ≃ 0.5, the relaxation time
τπ is roughly estimated to be τπ ≃Oð10−2Þ −Oð10−1Þ fm
in the temperature range. It is notable that this value of τπ is
significantly shorter than the typical timescale in relativistic
heavy ion collisions [1–3]. Introducing τπ into hydro-
dynamic simulations would lead to little effect on the
result. We also note that the value of τπ estimated above is
almost ten times smaller than the result for τπ in the pion
gas below Tc [21]. This is another indication that the
deconfined phase above Tc is a strongly interacting system.

VI. CONCLUSION

In this paper, we evaluated the ratio of the shear viscosity
to the relaxation time of the shear current, η=τπ , for the
range of temperature 0.5≲ T=Tc ≲ 4 with a SU(3) lattice
gauge simulation. The ratio is related to the canonical
correlation of T12. The canonical correlation, however, is
ultraviolet divergent. By studying the short-distance behav-
ior with the operator product expansion, we found that the
canonical correlation receives contributions from the vac-
uum and temperature-dependent contact terms in Euclidean
space and that they need to be subtracted. Using the
relation, we obtained the temperature dependence of
η=τπ in SU(3) lattice gauge theory. Thus, the number of
the free parameters in relativistic dissipative hydrodynamic
models has been reduced by the first-principle calculation
for the first time in this analysis.
We also investigated the temperature dependence of the

characteristic speed of the transverse mode v2η in the same
temperature range. We found that v2η in the hot gluonic
medium takes v2η ≃ 0.5 at T=Tc ≳ 1.5. This result indicates
that there is no causality problem in the propagation of the
transverse mode in the Israel-Stewart theory of second-
order hydrodynamics.
The same analysis performed in this work is applicable

to the bulk channel. By repeating the same procedure as in
Secs. III and IV, one obtains the ratio of the bulk viscosity
to the corresponding relaxation time of the bulk current
ζ=τΠ from Kubo’s canonical correlation of the diagonal
components of Tμν. This study is currently in progress.
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