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We present the determination of the interquark potential together with quark “kinetic mass”mQ from the
equal-time QQ̄ Bethe-Salpeter amplitude in lattice QCD. Our approach allows us to calculate spin-
dependent QQ̄ potentials, e.g., the spin-spin potential, as well. To investigate several systematic
uncertainties on such QQ̄ potentials, we carry out lattice QCD simulations using quenched gauge
configurations generated with the single plaquette gauge action with three different lattice spacings,
a ≈ 0.093, 0.068, and 0.047 fm, and two different physical volumes, L ≈ 2.2 and 3.0 fm. For heavy quarks,
we employ the relativistic heavy quark action, which can control large discretization errors introduced by
large quark mass mQ. The spin-independent central QQ̄ potential for the charmonium system yields the
“Coulomb plus linear” behavior with good scaling and small volume dependence. We explore the quark
mass dependence over the wide mass range from the charm to beyond the bottom region and then
demonstrate that the spin-independent central QQ̄ potential in the mQ → ∞ limit is fairly consistent with
the static QQ̄ potential obtained from Wilson loops. The spin-spin potential at finite quark mass provides a
repulsive interaction with a finite range, which becomes narrower as the quark mass increases. We also
discuss the applicability of the 1=mQ expansion approach for the spin-spin potential.
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I. INTRODUCTION

The dynamics of heavy quarks having much larger
masses than the QCD scale, ΛQCD, can be analyzed within
the formalism of nonrelativistic quantum mechanics. In
quark potential models, physical quantities such as mass
spectra and decay rates of heavy quarkonium states are
indeed calculated by solving the Schrödinger equation with
heavy “constituent quark mass” [1]. The so-called Cornell
potential is often adopted as an interquark potential
between a heavy quark (Q) and an antiquark (Q̄) [2].
The Cornell potential consists of a Coulomb part and a

linear part as

VðrÞ ¼ − 4

3

αs
r
þ σr; (1)

where αs is the strong coupling constant and σ denotes the
string tension [2]. The first term is generated by perturba-
tive one-gluon exchange, while the linearly rising potential
describes the phenomenology of confining quark inter-
actions. Indeed confining nature of QCD is a key ingredient
for understanding heavy quarkonium physics [2–6].
Spin-dependent potentials (spin-spin, tensor, and spin-

orbit terms) appear as relativistic corrections to the spin-
independent central potential in powers of the inverse of the

heavy quark mass mQ [7,8]. In potential models, their
functional forms are basically determined by perturbative
one-gluon exchange as the Fermi-Breit type potential [7,8].
For heavy quarkonia (mQ ¼ mQ̄), the spin-dependent
potentials are given by

Vspin-dep ¼
1

m2
Q

�
32παs
9

δðrÞSQ · SQ̄

þ 4αs
r3

�ðSQ · rÞðSQ̄ · rÞ
r2

− SQ · SQ̄

3

�

þ
�
2αs
r3

− σ

2r

�
L · S

�
; (2)

where S ¼ SQ þ SQ̄. Although there are many successes in
the conventional charmonium spectrum, many of the newly
discovered charmoniumlike mesons, named as “XYZ”
mesons, could not be simply explained by quark potential
models [9]. However, the phenomenological spin-
dependent potentials determined by the perturbative
method would have validity only at short distances and
also in the vicinity of the heavy quark mass limit. We thus
consider that properties of higher-mass charmonium states
predicated in quark potential models may suffer from large
uncertainties.
To make more accurate theoretical predictions in quark

potential models, the reliable interquark potential directly
derived from first principles QCD is highly desired. One of
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the major successes of lattice QCD is to qualitatively justify
the Coulomb plus linear potential by the static heavy quark
potential obtained from Wilson loops [10]. Indeed, the QQ̄
potential between an infinitely heavy quark and antiquark
has been precisely determined by lattice QCD in the past
few decades [10–15].
The relativistic corrections to the static potential are

classified in powers of 1=mQ within a framework called
potential nonrelativistic QCD (pNRQCD) [16]. The lattice
determination of the spin-dependent terms was carried out
within the quenched approximation in the 1980s [17–22]
and 1990s [23,24], and it has been extended to dynamical
QCD simulations [25,26]. However, these earlier studies
did not enable us to determine the functional forms of the
spin-dependent terms due to large statistical errors.
Recently, corrections of the leading and next-to-leading

order in the 1=mQ expansion to the staticQQ̄ potential have
been successfully calculated in quenched lattice QCD with
high accuracy by using the multilevel algorithm [27,28].
However, calculation of the realistic charmonium potential
in lattice QCD within Wilson loop formalism is still rather
difficult. The inverse of the charm quark mass would be
obviously far outside the validity region of the 1=mQ

expansion. Furthermore, a spin-spin potential determined
at Oð1=m2

QÞ [27,28], which provides an attractive inter-
action for the higher spin states, yields wrong mass
ordering among hyperfine multiplets. The higher-order
corrections beyond the next-to-leading order are required
to correctly describe the conventional heavy quarkonium
spectrum even for the bottom quarks with the QQ̄ poten-
tials obtained from this approach. In addition, practically,
the multilevel algorithm employed in Refs. [27,28] is not
easy to be implemented in dynamical lattice QCD
simulations.
Under these circumstances, we have proposed a novel

method to determine the interquark potential using lattice
QCD [29]. The interquark potential is defined by the equal-
time and Coulomb gauge Bethe-Salpeter (BS) amplitude
through an effective Schrödinger equation. This is a variant
of the method originally applied for the hadron-hadron
interaction [30,31] and enables us to determine both
spin-independent and spin-dependent interquark poten-
tials, at heavy but finite quark mass. These potentials
implicitly account for all orders of 1=mQ corrections
[29]. Furthermore, there is no restriction to dynamical
calculation within this method.
The purpose of this paper is to demonstrate the validity

of our method to calculate the interquark potential from the
BS amplitude. Therefore, we will present systematic
numerical studies of the QQ̄ potential with finite quark
masses such as its continuum limit, volume dependence,
and heavy quark limit. Once theQQ̄ potential is determined
from lattice QCD within our new method, there will be
many applications to heavy quarkonium and heavy-light
meson states. Indeed, an attempt to obtain the charmonium

spectrum using the lattice potential as theoretical inputs
will be presented in future publications [32].
This paper is organized as follows. In Sec. II, we briefly

review the methodology used in this paper to calculate the
spin-independent and spin-dependent QQ̄ potentials with
the finite quark mass in lattice QCD simulations. Section III
contains details of our Monte Carlo simulations and some
basic results. In Sec. IV, we show numerical results of the
quark kinetic mass mQ, the spin-independent central, and
spin-spin potentials. The spin-independent part of the
resulting QQ̄ potential exhibits a good scaling behavior
and small volume dependence. We also discuss several
systematic uncertainties on the interquark potentials
obtained from the BS amplitude. In Sec. V, to demonstrate
the feasibility of the new approach, we show that the
interquark potential calculated by the BS amplitude
smoothly approaches the static QQ̄ potential from
Wilson loops in the infinitely heavy quark limit. We also
discuss an issue on the spin-spin potential in the conven-
tional 1=mQ expansion approach. In Sec. VI, we summa-
rize and discuss all results and future perspectives.

II. FORMALISM

In this section, we will briefly review the new method
used here to calculate the interquark potential at finite
quark mass. Our method for a new determination of the
interquark potential in lattice QCD is based on the same
idea originally applied for the nuclear force [30,31], in
which the hadron-hadron potential is defined through the
equal-time BS amplitude [30,31,33–40]. Here, we call this
method a BS amplitude method. The quark kinetic mass
mQ, which is a key ingredient in the BS amplitude method
applied to the QQ̄ system, is simultaneously determined
through the large-distance behavior in the spin-dependent
part of the interquark potential with the help of the
measured hyperfine splitting energy of 1S states in heavy
quarkonia [29,41].

A. Equal-time QQ̄ BS wave function

A gauge-invariant definition of the equal-time QQ̄ BS
amplitude for quarkonium states is given by

ϕΓðrÞ ¼
X
x

h0jQ̄ðxÞΓMðx;xþ rÞQðxþ rÞjQQ̄; JPCi;

(3)

where r is the relative coordinate of two quarks at a certain
time slice and Γ is any of the 16 Dirac γ matrices [42,43]. A
summation over spatial coordinates x projects on a state
with zero total momentum.M is a path-ordered product of
gauge links. The r-dependent amplitude, ϕΓðrÞ, is here
called the BS wave function. In the Coulomb or Landau
gauge, the BS wave function can be simply evaluated with
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M ¼ 1.1 Hereafter, we consider this the Coulomb gauge
BS wave function [43].
The Coulomb gauge BS wave function can be extracted

from the four-point correlation function that is also sche-
matically depicted in Fig. 1,

GΓðr; t; tsÞ ¼
X
x;x0;y0

h0jQ̄ðx; tÞΓQðxþ r; tÞ

× ðQ̄ðx0; tsÞΓQðy0; tsÞÞ†j0i
¼

X
x

X
n

Anh0jQ̄ðxÞΓQðxþ rÞjnie−MΓ
nðt−tsÞ;

(4)

where the gauge field configurations are fixed to the
Coulomb gauge at both the source (ts) and sink (t)
locations. At the source location, both quark and antiquark
fields are separately averaged in space as wall sources. The
constant amplitude An is a matrix element defined as
An ¼

P
x0;y0 hnjðQ̄ðx0ÞΓQðy0ÞÞ†j0i. MΓ

n denotes a rest mass
of the nth quarkonium state jni in a given JPC channel.
Suppose that jt − tsj=a ≫ 1 is satisfied; the four-point
correlation function is dominated by the ground state as

GΓðr; t; tsÞ
t ≫ ts
⟶ A0ϕΓ;0ðrÞe−MΓ

0
ðt−tsÞ; (5)

where MΓ
0 is the rest mass of the ground state and the

r-dependent amplitude ϕΓ;0ðrÞ corresponds to the Coulomb
gauge BS wave function for the ground state. For instance,
when Γ is chosen to be γ5 for the pseudoscalar (PS) channel

ðJPC ¼ 0−þÞ and γi for the vector (V) channel ðJPC ¼ 1−−Þ
in the charm sector, MPS

0 and MV
0 correspond to the rest

masses of the ηc and J=ψ ground states, respectively. They
can be read off from the asymptotic large-time behavior of
the two-point correlation functions. Hereafter, we omit the
index 0 from ϕΓ;0ðrÞ and simply call it the BS wave
function.

B. Interquark potential defined from BS wave function

The BS wave function satisfies an effective Schrödinger
equation with a nonlocal and energy-independent inter-
quark potential U [30,45,46],

−∇2

2μ
ϕΓðrÞ þ

Z
dr0Uðr; r0ÞϕΓðr0Þ ¼ EΓϕΓðrÞ; (6)

where the reduced mass μ of the quarkonium (QQ̄) system
is given by a half of the quark kinetic massmQ. The energy
eigenvalue EΓ of the stationary Schrödinger equation is
supposed to be MΓ − 2mQ. If the relative quark velocity
v ¼ j∇=mQj is small as v ≪ 1, the nonlocal potential U
can generally expand in terms of the velocity v as

Uðr0; rÞ ¼ fVðrÞ þ VSðrÞSQ · SQ̄ þ VTðrÞS12
þ VLSðrÞL · SþOðv2Þgδðr0 − rÞ; (7)

where S12 ¼ ðSQ · r̂ÞðSQ̄ · r̂Þ − SQ · SQ̄=3 with r̂ ¼ r=r,
S ¼ SQ þ SQ̄ and L ¼ r × ð−i∇Þ [30]. Here, V, VS, VT,
and VLS represent the spin-independent central, spin-spin,
tensor, and spin-orbit potentials, respectively. Remark that
the energy dependence on the interquark potential appears
at Oðv2Þ. For an estimation of the Oðv2Þ corrections, it is
necessary to calculate the BS wave function of higher-lying
charmonium states, e.g., the 2S charmonium state. Such
study is beyond scope of the present paper [47].
The relativistic corrections to the kinetic term have been

estimated using the relativistic kinematics in Ref. [45].
Although the short-range behavior of the interquark
potential is slightly influenced by this modification,
it is indeed small for the heavy quarks such as the charm
quark. Therefore, we consider here the nonrelativistic
Schrödinger equation with spin-dependent corrections up
to Oðv2Þ.
In this paper, we focus only on the S-wave charmonium

states (ηc and J=ψ). We perform an appropriate projection
with respect to the discrete rotation as

ϕ
Aþ
1

Γ ðrÞ ¼ 1

24

X
R∈Oh

ϕΓðR−1rÞ; (8)

where R denotes 24 elements of the cubic point group Oh.
This projection provides the BS wave function projected in
the Aþ

1 representation. This projected BS wave function
corresponds to the S-wave in continuum theory at low

FIG. 1. A schematic illustration of the four-point correlation
function for the QQ̄ system. Solid lines indicate quark propa-
gators of a heavy quark and a heavy antiquark, located at x and
xþ r at sink, respectively. At the source (tS) and sink (t), the
gauge field configurations are fixed to the Coulomb gauge.

1For the gauge-invariant observables, lattice Gribov copies for
Coulomb and Landau gauge fixings only provide the gauge noise
effect because of the gauge fixing [44]. Indeed, as shown in
Ref. [45], the long-distance behavior of the heavy quarkonium
potentials calculated from the BS amplitude remains unchanged
in a gauge-invariant calculation.
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energy [48]. We simply denote the Aþ
1 projected BS wave

function by ϕΓðrÞ hereafter.
The stationary Schrödinger equation for the projected BS

wave function ϕΓðrÞ is reduced to

�
− ∇2

mQ
þ VðrÞ þ SQ · SQ̄VSðrÞ

�
ϕΓðrÞ ¼ EΓϕΓðrÞ: (9)

The spin operator SQ · SQ̄ can be easily replaced by
expectation values −3=4 and 1=4 for the PS and V
channels, respectively. We essentially follow here usual
nonrelativistic potential models, in which the J=ψ state is
assumed to be purely composed of the 1S wave function.
Within our method, this assumption can be verified by
evaluating the size of a mixing between 1S and 1D wave
functions in principle.
Both spin-independent and -dependent parts of the

central interquark potentials can be separately evaluated
through a linear combination of Eq. (9) for PS and V
channels as

VðrÞ ¼ Eave þ
1

mQ

�
3

4

∇2ϕVðrÞ
ϕVðrÞ

þ 1

4

∇2ϕPSðrÞ
ϕPSðrÞ

�
(10)

VSðrÞ ¼ Ehyp þ
1

mQ

�∇2ϕVðrÞ
ϕVðrÞ

− ∇2ϕPSðrÞ
ϕPSðrÞ

�
; (11)

where Eave ¼ Mave − 2mQ and Ehyp ¼ MV −MPS. The
mass Mave denotes the spin-averaged mass as
1
4
MPS þ 3

4
MV. The derivative ∇2 is defined by the discrete

Laplacian. For other spin-dependent potentials (the tensor
potential VT and the spin-orbit potential VLS), this
approach, in principle, enables us to access them by
considering P-wave quarkonium states such as the χc
(0þþ, 1þþ) and hc (1þ−) states, which must leave con-
tributions of VT and VLS to Eq. (9).

C. Quark kinetic mass in BS amplitude method

The definition of the interquark potentials in Eqs. (10)
and (11) involves unknown information of the quark mass
mQ that appears in the kinetic energy term of the effective
Schrödinger equation [Eqs. (6) or (9)]. This is an essential
issue on the BS amplitude method when we apply it to the
QQ̄ system. Needless to say, the original work, in which the
BS amplitude method was advocated and applied for
the nuclear force [30], does not share the same issue since
the single-nucleon mass can be measured by the standard
hadron spectroscopy.
In the initial attempt [45], the quark kinetic massmQ was

approximately evaluated by one-half of the vector quarko-
niummassMV=2. However, such an approximate treatment
is too crude to define a proper interquark potential, which
could be smoothly connected to the static QQ̄ potential

fromWilson loops in themQ → ∞ limit. Indeed, it is worth
noting that the Coulombic binding energy is of order ofmQ.
We may alternatively determine the quark mass from the
gauge-dependent pole mass, which can be measured by the
quark two-point function in the Landau gauge. In this case,
we are faced with a difference between the Coulomb and
Landau gauges. In Ref. [29], we solved this issue by
proposing a novel idea to determine the quark kinetic mass
mQ self-consistently within the BS amplitude approach. Let
us shortly review the new idea as follows in this subsection.
We start from the spin-spin potential given by Eq. (11).

The hyperfine splitting energy, Ehyp ¼ MV −MPS, appear-
ing in Eq. (11) can be measured by the standard hadron
spectroscopy. Under a simple but reasonable assumption,

lim
r→∞

VSðrÞ ¼ 0; (12)

which implies that there is no long-range correlation and no
irrelevant constant term in the spin-dependent potential.
Equation (11) is thus rewritten as

mQ ¼ lim
r→∞

−1
Ehyp

�∇2ϕVðrÞ
ϕVðrÞ

− ∇2ϕPSðrÞ
ϕPSðrÞ

�
: (13)

This suggests that the quark kinetic mass can be read off
from the long-distance asymptotic values of the difference
of quantum kinetic energies (the second derivative of the
BS wave function) in Vand PS channels. This idea has been
numerically tested, and the assumption of Eq. (12) is indeed
appropriate in QCD [29].
As a result, we can self-consistently determine both the

spin-independent potential VðrÞ and spin-spin potential
VSðrÞ and also the quark kinetic mass mQ within a single
set of four-point correlation functions GΓðr; t; tsÞ with
Γ ¼ PS and V.

III. LATTICE SETUP AND HEAVY
QUARKONIUM MASS

A. Quenched gauge ensembles

To understand the systematics of the BS amplitude
method, we first calculate the interquark potential for the
charmonium system in quenched lattice QCD simulations
using several ensembles (three different lattice spacings,
a ≈ 0.093, 0.068, and 0.047 fm, and two different physical
volumes, La ≈ 2.2 and 3.0 fm). The gauge configura-
tions are generated with the single plaquette gauge
action. All lattice spacings are set by the Sommer scale
r0 ¼ 0.5 fm [49].
Three smaller volume ensembles with fixed physical

volume (La ≈ 2.2 fm) are mainly employed to test a
scaling behavior toward the continuum limit: these are
the finer lattice ensembles (FI) on a 243 × 48 lattice at
β ¼ 6.47, the medium ones (ME) on a 323 × 64 lattice
at β ¼ 6.2, and the coarser ones (CO) on a 243 × 48 lattice
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at β ¼ 6.0. Supplementary data calculated on the larger
volume ensembles (LA) on a 323 × 48 lattice at β ¼ 6.0 are
used for a check of possible finite volume effects. The
number of configurations analyzed is Oð100–300Þ. The
gauge configurations are fixed to the Coulomb gauge for
calculations of the BS amplitude. Simulation parameters
and the number of sampled gauge configurations are
summarized in Table I.

B. Parameters of RHQ action

The heavy quark propagators are computed using the
relativistic heavy quark action (RHQ) that has five param-
eters κQ, ν, rs, cB, and cE [50]. The RHQ action used here is
a variant of the Fermilab approach and can control large
discretization errors introduced by large quark mass [51]
(see also Refs. [52–54]). The hopping parameter is chosen
to reproduce the experimental spin-averaged mass of 1S
charmonium states Mexp

ave ¼ 3.0678ð3Þ GeV [55] at each
lattice spacing. The five RHQ parameters are basically
determined by one-loop perturbative calculations [56]. The
parameter sets of the RHQ action in quenched simulations
at three lattice spacings are summarized in Table II.
We calculate quark propagators with a wall source.

Dirichlet boundary conditions are imposed for the time
direction. To investigate the energy-momentum dispersion
relation, we also employ a gauge-invariant Gaussian-
smeared source [57] for the standard two-point correlation
function with four finite momenta: ap ¼ 2π=L × ð1; 0; 0Þ,
(1,1,0), (1,1,1), and (2,0,0).

C. Effective mass from two-point function

The mass MΓ of the charmonium states (Γ ¼ PS and V)
is extracted by the two-point function. When a separation
between a quark and an antiquark at the sink is set to be

zero (r ¼ 0), the four-point correlation functions
GΓðr; t; tsÞ defined in Eq. (4) simply reduce the usual
two-point function GΓðt; tsÞ with a wall source. The
effective mass functions are then defined as

MΓðtÞ ¼ log
GΓðt; tsÞ

GΓðtþ 1; tsÞ
: (14)

Figure 2 shows the effective mass plots of the 1S
charmonium states (ηc and J=ψ), calculated on three
ensembles (FI, ME, CO). Each effective mass plot shows
a reasonable plateau. We estimate the ηc and J=ψ masses by
a constant fit to the plateaus over time ranges shown in
Table III. A correlation between masses measured at
various time slices is taken into account by using a
covariance matrix in the constant fit. A inversion of
covariance matrix is performed once for average and used
for each jackknife block. The statistical uncertainties
indicated by shaded bands in Fig. 2 are estimated by the
jackknife method.
In this paper, we use a single-elimination jackknife

procedure to estimate statistical errors of all measurements.

TABLE I. Simulation parameters of quenched ensembles.
Lattice spacing a indicates the approximate value with the
Sommer scale (r0 ¼ 0.5 fm) input. The table also lists the
number of gauge configurations to be analyzed.

Label L3 × T β a (fm) a−1 (GeV) La (fm) Statistics

FI 483 × 96 6.47 0.0469 4.2 2.3 100
ME 323 × 64 6.2 0.0677 2.9 2.2 150
CO 243 × 48 6.0 0.0931 2.1 2.2 300
LA 323 × 48 6.0 0.0931 2.1 3.0 150

TABLE II. The hopping parameter κQ and RHQ parameters (ν,
rs, cB, and cE) for the charm quark on all four ensembles.

Label β κQ ν rs cB cE

FI 6.47 0.11729 1.029 1.131 1.700 1.562
ME 6.2 0.11035 1.050 1.185 1.898 1.710
CO, LA 6.0 0.10072 1.088 1.273 2.194 1.932
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FIG. 2 (color online). Effective mass plots for the ηc (upper)
and J=ψ (lower). Three different symbols indicate results
obtained on the CO (circles), ME (squares), and FI (diamonds)
ensembles. The horizontal axis is plotted in units of a48, which is
the lattice spacing of the FI ensembles. Solid, dashed, and dotted
lines represent the fit results for effective mass calculated on the
CO, ME, and FI ensembles, respectively. Shaded bands denote fit
ranges and statistical errors estimated by the jackknife method.
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For all ensembles, we basically take similar fitting ranges
in the same units, indicated by shaded bands in Fig. 2. All
fit results are summarized in Table III. Also, values of spin-
averaged massMave and hyperfine splitting energy Ehyp are
quoted in Table III. Note that we simply neglect the
disconnected diagrams in calculations of both four-point
and two-point correlation functions for the ηc and J=ψ
states in our simulations.
We observe that on the FI ensembles, the data of four-

point and two-point correlation functions at different time
slices are highly correlated. This strong correlation between
the time slices becomes more pronounced when we
calculate the interquark potential from the BS wave
function. In the analysis of the interquark potential, we
have to somehow reduce the correlation, which makes the
covariance matrix singular, in order to get a reasonable
value of χ2=degrees of freedom (d.o.f.) during the fitting.
Therefore, we will use the data points at even-number time
slices for evaluation of the BS wave function on the FI
ensembles. Note that the effective mass for the FI ensem-
bles was evaluated only with an even number of time slices
to perform a consistent analysis (see Fig. 2, in which the FI
data points are appeared only at even-number time slices).
The spin-averaged masses measured on the ME and CO

(LA) ensembles slightly deviate from experimental data
(see Table III). This implies that our calibration for the
hopping parameters of the charm sector is not precise
enough. Then, strictly speaking, a systematic uncertainty
due to tuning the charm quark mass is larger than the
statistical one. However its accuracy is still enough to study
the interquark potential for the charmonium in these
quenched studies. As we will discuss later, although the
discrepancy among the spin-averaged masses given at three
lattice spacings is kept less than 1%, the resulting quark
kinetic masses are fairly consistent with each other, albeit
with rather large statistical errors.
For the hyperfine splitting energy, results obtained

from our quenched simulations reproduce only 65%–
70% of the experimental value Mexp

hyp ¼ 113.2ð7Þ MeV
(see also Ref. [41]).
Note that previous quenched calculations of the hyper-

fine splitting for heavy-light and heavy-heavy mesons have

generally been smaller than experiments [58]. It is a well-
known pathology in the quenched approximation.
As shown in Fig. 3, the data points exhibit a slight linear

dependence of the lattice spacing. We consider that the
lattice spacing dependence of the hyperfine splitting energy
is mainly caused by a remnant OðaÞ discretization error,
rather than the issues related to calibration of the precise
measurement at the charm quark mass, since our RHQ
action with one-loop perturbative coefficients does not fully
improve the leading discretization error. From this obser-
vation, we speculate that the discretization effect would be
non-negligible for the spin-spin potential, which is highly
sensitive to the hyperfine splitting energy by the definition
given in Eq. (11).
In the continuum theory, a relativistic particle, of

which the rest mass is m, moving with spatial momentum
p obeys the energy-momentum dispersion relation as
E2 ¼ m2 þ p2. However, in lattice QCD, the dispersion
relation deviates from the continuum one due to the
presence of lattice discretization corrections as

ðaEÞ2 ¼ ðamÞ2 þ c2effðapÞ2 þ c0japj4 þOða6Þ; (15)

where the spatial momentum is given by ap ¼ 2πn
L , n ∈ Z3

in a finite L3 box with periodic boundary conditions. A
coefficient c2eff appearing in the second term is the squared
effective speed of light. In the continuum limit a → 0, ceff

TABLE III. Fitted masses of 1S charmonium states, their spin-averaged masses, and hyperfine splitting energies obtained with the
same fit range on all four ensembles. Results are tabulated in units of GeV. The hopping parameter κ on each ensembles is chosen
approximately to reproduce the experimental spin-averaged mass of 1S charmonium states Mexp

ave ¼ 3.0678ð3Þ GeV [55]. Although the
spin-averaged masses given with insufficient tuning of the RHQ parameters disagree with each other beyond statistical precision, the
discrepancy among the masses calculated on different ensembles is kept less than one percent.

Label
Fit range ηc mass J=ψ mass Spin-averaged mass Hyperfine splitting energy

½tmin=a∶tmax=a� Mηc (GeV) χ2=d:o:f: MJ=ψ (GeV) χ2=d:o:f: Mave (GeV) Ehyp (GeV)

FI ½54∶72� 3.0121(14) 0.66 3.0861(22) 0.62 3.0676(20) 0.0741(11)
ME ½37∶50� 3.0188(10) 0.55 3.0980(18) 0.93 3.0783(15) 0.0773(11)
CO ½27∶36� 3.0126(8) 1.65 3.0923(13) 1.02 3.0724(11) 0.0795(8)
LA ½30∶39� 3.0120(8) 0.98 3.0907(13) 0.75 3.0710(10) 0.0790(8)
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FIG. 3 (color online). The lattice spacing dependence of
hyperfine splitting energies calculated on the FI, ME, and CO
ensembles. Results are shown in units of MeV as a function of
lattice spacing in units of fm.
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should be unity, and higher-order corrections vanish. If the
discretization effect due to finite lattice spacing is well
under control by using an improved action, c2eff is supposed
to remain approximately unity.
Figure 4 shows the energy-momentum dispersion rela-

tions for the ηc and J=ψ states and their spin-averaged one
on the CO ensembles as a typical example. Our data up to
spatial momenta of n2 ¼ 4 well reproduce the continuum
dispersion relation, and the resulting c2eff is consistent with
unity within error bars. The other ensembles also provide
similar results.

IV. DETERMINATION OF INTERQUARK
POTENTIAL

A. QQ̄ BS wave function

In Fig. 5, we show the reduced QQ̄ BS wave functions
uΓðrÞ ¼ r ~ϕΓðrÞ of 1S charmonium states (ηc and J=ψ
states), calculated on the FI ensembles. The normalized
QQ̄ BS wave function with the definition given in Eq. (3)
can be evaluated by the following ratio of four-point
correlation functions GΓðr; t; tsÞ at large Euclidean time:

~ϕΓðrÞ ¼
ϕΓðrÞP
rfϕΓðrÞg2

¼ lim
jt−tsj→∞

GΓðr; t; tsÞP
rfGΓðr; t; tsÞg2

: (16)

We take an average of this ratio with respect to the time
slice by fitting asymptotic values in the range, in which the
effective mass of the 1S charmonium states exhibits a clear
plateau behavior. Here, the normalized wave function
~ϕΓðrÞ satisfies the condition

P
~ϕ2
Γ ¼ 1. We use the reduced

wave function uΓðrÞ for displaying the spatial distribution
of the BS wave function. We focus on data points taken at r
vectors, which are multiples of three directions, (1,0,0) (on
axis), (1,1,0) (off axis I), and (1,1,1) (off axis II).

As shown in Fig. 5, the QQ̄ BS wave function projected
in the Aþ

1 representation, which corresponds to the S wave
in the continuum theory, is certainly isotropic as was
expected. In general, the breaking of rotational symmetry
is one of major artifacts associated with the discretization
error. However, there is no sufficient difference between the
QQ̄ BS wave functions calculated along three different
directions. It suggests that the discretization effect due to
finite lattice spacing would be considerably small. Indeed,
the QQ̄ BS wave function of the ηc state shows a good
scaling behavior as shown in Fig. 6. All data of the ηc wave
function obtained from three ensembles (LI, ME, and CO)
clearly fall onto a single curve. Nothing changes for the
J=ψ wave function.
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FIG. 4 (color online). Check of the energy-momentum dispersion relation E2ðp2Þ ¼ M2 þ c2effp
2 for the ηc (left), J=ψ (center), and

spin-averaged 1S state (right) calculated on the CO ensembles, as typical examples. By the linear fit to data points calculated with
various spatial momenta including zero momentum, the effective speed of light is obtained. Values of the squared effective speed of light
c2eff are quoted in each panel. Shaded bands indicate statistical uncertainties in the fitting, estimated by the jackknife method. For
comparison, the continuum dispersion relation (c2eff ¼ 1) is denoted as the dashed lines in each panel.
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FIG. 5 (color online). The QQ̄ BS wave functions of the ηc
(circles) and J=ψ (squares) states calculated using the FI
ensembles (a ≈ 0.047 fm), shown as a function of the spatial
distance r. The data points are taken at r vectors, which are
multiples of three directions, (1,0,0), (1,1,0), and (1,1,1). A
vertical solid line marks the position of a half of the lattice size
(La=2 ≈ 1.1 fm). The inset shows a magnified view of the wave
functions around r ≈ La=2, and filled symbols in the inset
represent the data points taken along the on-axis direction.
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Figures 5 and 6 show that the QQ̄ BS wave functions of
1S charmonium states vanish for r≳ 1 fm and eventually
fit into the lattice volume used here. Such localized wave
functions indicate that the 1S charmonium states are bound
states. Therefore, the finite volume effect on the interquark
potential is expected to be small, and the spatial extent of
the present lattice size (La ≈ 2.2 fm) is likely to be large
enough to study the 1S charmonium states. However, there
is still some caveat for the on-axis data. The vanishing point
r ∼ 1 fm is very close to a half of the spatial extent of the
present lattice size, which is depicted as a solid vertical line
in Figs. 5 and 6. A wraparound effect would be set in
the on-axis direction near the spatial boundary. In fact, the
on-axis data marginally deviate from the off-axis data at
around r ∼ 1 fm (see the inset of Fig. 5).

B. Discrete Laplacian operator

We next discuss choices of the discrete Laplacian
operator ∇2

lat, which is built in the definition of the
interquark potential. The discrete Laplacian operator on
lattice can be naively defined with nearest neighbor points
in the Cartesian coordinate system as below, called
x-Laplacian in this paper,

∇2
xϕΓðrÞ ¼

X
î¼x̂;ŷ;ẑ

1

a2
fϕΓðrþ îaÞ þ ϕΓðr − îaÞ − 2ϕΓðrÞg

¼ ∇2
contϕΓðrÞ þOða2Þ; (17)

where ∇2
cont is the continuum Laplacian operator. A

discretization error introduced by the discrete derivative
operator starts at Oða2Þ.
To clarify the systematic uncertainties of the discrete

Laplacian, we focus on the spin-averaged ratio

VðrÞ ¼ 3

4
∇2

latϕVðrÞ=ϕVðrÞ þ
1

4
∇2

latϕPSðrÞ=ϕPSðrÞ; (18)

which is associated with the spin-independent interquark
potential apart from the vertical scale and offset. This spin-
averaged ratio is suitable for understanding the systematic
uncertainty on the discrete Laplacian. Statistical and
systematic uncertainties of VðrÞ are relatively small due
to the absence of the quark kinetic mass, for which the
determination introduces large statistical fluctuation, in
comparison to the potential itself. In other words, this
spin-averaged ratio is independent of the definition of the
quark mass.
The upper panel of Fig. 7 shows the spin-averaged ratios

VðrÞ calculated with the x-Laplacian using the FI, ME, and
CO ensembles. Although the ratios in the upper panel of
Fig. 7 showmore or less the same scaling behavior as found
in the QQ̄ BS wave function, some multiple-valuedness,
which represents the rotational symmetry breaking, appears
at short distances and also at long distances. Near
the spatial boundary r≳ 0.9 fm, this unexpected sign of
the rotational symmetry breaking could be explained by the
finite volume effect. In practice, we naturally have a
difficulty to obtain reliable data at long distances because
the QQ̄ wave functions of the 1S charmonium state are
quickly dumped (Figs. 5 and 6) and the signal-to-noise ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

u
(r

)
[f

m
-1

/2
]

r  [fm]

FI
ME
CO

FIG. 6 (color online). TheQQ̄ BS wave functions of the ηc state
calculated on the FI, ME, and CO ensembles. A vertical solid line
marks the position of a half of the lattice size (La=2 ≈ 1.1 fm).
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FIG. 7 (color online). The spin-averaged ratios 3
4
∇2

latϕV=ϕV þ
1
4
∇2

latϕPS=ϕPS as functions of the spatial distance r, which are
calculated with the discrete x-Laplacian ∇2

x (upper) and discrete
r-Laplacian∇2

r (lower) operators. Three different symbols denote
results obtained from three different ensembles: the CO (circles),
ME (squares), and FI (diamonds) ensembles.
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turns out to be worse in the ratio ∇2ϕΓ=ϕΓ. However, we
have already seen in Fig. 5 that the on-axis data slightly
deviate from the off-axis data near the spatial boundary in
the BS wave function. Such a small finite size effect should
be inherited in the interquark potential.
On the other hand, the multivalued spin-averaged ratio

appearing in r≲ 0.3 fm is inconsistent with no sign of the
rotational symmetry breaking in the BS wave function.
This implies that the multiple-valuedness appearing near
the origin in the spin-averaged ratios is mainly stemming
from the discretization artifact of the Laplacian operator.
To reduce the possible discretization error at short

distances, we try to consider the discrete Laplacian operator
defined in the discrete polar coordinate, called r-Laplacian,

∇2
rϕΓðrÞ ¼

2

r
ϕΓðrþ ~aÞ − ϕΓðr − ~aÞ

2~a

þ ϕΓðrþ ~aÞ þ ϕΓðr − ~aÞ − 2ϕΓ

~a2

¼ 2

r
∂
∂rϕΓðrÞ þ

∂2

∂r2 ϕΓðrÞ þOð ~a2Þ; (19)

where r is the absolute value of the relative distance as
r ¼ jrj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and ~a is a distance between grid

points along differentiate directions. We compute the ratio
VðrÞ with the polar Laplacian in three directions, on axis,
off axis I, and off axis II, where the effective grid spacings
correspond to ~a ¼ a,

ffiffiffi
2

p
a,

ffiffiffi
3

p
a, respectively. Note here

that the discretization errors induced by ∇2
r in the off axis I

and II directions are two and three times as much as in the
on-axis direction, respectively.
In Eq. (19), we assume that the QQ̄ BS wave func-

tion ϕΓðrÞ depends only on the distance r, namely, ϕΓðrÞ
is isotropic. This is a reasonable assumption for the
data shown in Fig. 6. Small, but visible effects of rotational
symmetry breaking on ϕΓðrÞ are simply encoded into
discretization effects on the ratio VðrÞ. They must vanish
at the continuum limits a → 0 and infinite volume
limits L → ∞.
The derivative term of ∇2

latϕΓðrÞ evaluated with both
discrete Laplacian operators, ∇2

x and ∇2
r , must essentially

give the same answer in a → 0 and L → ∞.
The spin-averaged ratio VðrÞ calculated with ∇r is

shown in the lower panel of Fig. 7. A shape of the ratio
obtained with the polar Laplacian is highly improved to
satisfy the single-valuedness at short distances. Similar to
the QQ̄ BS wave function, the data points of the spin-
averaged ratio calculated on three different ensembles fall
onto a single curve at short distances. The rotational
symmetry is also effectively recovered.
These results suggest to us that the discrete polar

Laplacian operator is better than the naive one to evaluate
the interquark potential from the S-wave QQ̄ BS wave
function. On the other hand, the rotational symmetry

breaking observed at long distances due to the finite volume
is not cured, or rather is slightly enhanced. In this work, the
r-Laplacian operator ∇2

r is used for the second derivatives
∇2. Then, the subscript r on ∇2

r is omitted hereafter.

C. Time average

The ratios of ∇2
latϕΓ=ϕΓ at each spatial point r, shown in

Fig. 7, are actually evaluated by fitting the corresponding
ratios of ∇2

latGΓðr; tÞ=GΓðr; tÞ with respect to the time slice
in the range, for which the effective mass plot of the two-
point function shows the plateau. To resolve the strong
correlations between data at different time slices, we take
into account the full covariance matrix during the averaging
process over the time slice.
Figure 8 shows time dependence of the the spin-averaged

ratio VðrÞ ¼ 3
4
∇2ϕV=ϕV þ 1

4
∇2ϕPS=ϕPS and the difference

of ratios VSðrÞ ¼ ∇2ϕV=ϕV − ∇2ϕPS=ϕPS calculated
on the FI ensembles at charm quark mass as a typical
example. Both quantities are needed to calculate the spin-
independent central, spin-spin potentials, and quark kinetic
mass through Eqs. (10), (11), and (13), respectively. In
Fig. 8, they exhibit reasonably long plateaus, and the
asymptotic values at given r can be read off from them.
A fit over the plateau region including the covariance

matrix yields acceptable χ2=d:o:f: values (≲2.1). Solid
lines represent central values, and shaded bands denote
statistical errors estimated by the jackknife method. There
is no qualitative difference in the results obtained from the
other ensembles (ME, CO, and LA).

D. Quark kinetic mass

In this subsection, we present the determination of the
quark kinetic mass within the BS amplitude method.
A precise determination of the quark kinetic mass is
required for high-accuracy measurement of the interquark
potentials. In Fig. 9, we plot the difference divided by the
hyperfine splitting energy at charm quark mass as a
function of the spatial distance r. At a glance, the value
of −ð∇2ϕV=ϕV − ∇2ϕPS=ϕPSÞ=Ehyp, which appears on the
rhs of Eq. (13), certainly reaches a nonzero constant value
at large distances, and it turns out to be the value of the
quark mass mQ.
Practically, the quark mass mQ is obtained by a constant

fit to an asymptotic value over the range, where VSðrÞ
should vanish, taking into account the full covariance
matrix during the fitting process. In this study, such a
constant fit is individually performed to the three data sets
obtained from three directions: on axis, off axis I, and off
axis II. A difference of the quark masses obtained from the
different directions exposes the size of the possible finite
size effect. We will quote it as a systematic error on the
quark kinetic mass. We finally take an average of
the resulting masses over the three directions. The results
of the quark kinetic mass are summarized in Table IV and
also in Fig. 10.
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As we mentioned in Sec. IV B, the discretization error
introduced by the discrete Laplacian operator defined in
Eq. (19) along the off-axis I and II directions are expected
to be greater than that of the on-axis data. Indeed, we
cannot obtain a reasonable value of χ2=d:o:f: from the
constant fits onto the off-axis data for the CO and LA
ensembles, which are generated at the coarsest lattice
spacing (see Table IV). We also find that the lattice spacing
dependence of the quark kinetic mass determined from the
on-axis data is observed to be the smallest in Fig. 10. For
the CO and LA ensembles, we therefore prefer to use the

on-axis data solely in the analysis of the quark kinetic mass,
instead of the averaged value over three directions, in the
following discussion.
Final results on the quark kinetic mass calculated at the

three different lattice spacings (FI, ME, and CO ensembles)
show a good agreement with each other. The largest
difference among three results is only less than a few
percent. Although our calibration of the RHQ parameters is
not precise enough as described in Sec. III C, a good
scaling is again observed in the quark kinetic mass within
the current statistical precision.
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FIG. 8 (color online). The time slice dependence of the spin-averaged ratio VðrÞ (left) and the difference of ratios VSðrÞ (right) at
various distances over the range 0.05 fm ≤ r ≤ 0.89 fm, which are calculated on the FI ensembles at the charm quark mass as a typical
example.
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According to a direct comparison between results
obtained in two different lattice volumes (La ≈ 3.0 fm
and 2.2 fm) at the coarsest lattice spacing (CO and LA
ensembles), the systematic uncertainty due to the finite
volume effect is estimated at a few percent level.
We confirm that there is no significant volume effect
in our evaluation of the quark kinetic mass even for the
on-axis data.

E. Spin-independent interquark potential

Using the quark mass determined in the previous
subsection, we can calculate both the spin-independent
central and spin-spin potential obtained from a set of the
QQ̄ BS wave function ϕΓðrÞ with Γ ¼ PS and V, through
Eqs. (10) and (11). The BS wave functions ϕΓðrÞ are
defined only by the ground-state contributions of the
r-dependent amplitude GΓðr; tÞ. We determine the values
of interquark potentials VðrÞ and VSðrÞ by averaging over
the appropriate time-slice range (see Sec. IV C).

The upper panel of Fig. 11 shows all results of the
spin-independent potential VðrÞ at charm quark mass
that are calculated on three ensembles (FI, ME, and CO)
with fixed physical volume. For clarity of the figure, the
constant energy shift Eave, which corresponds to a value of
Mave − 2mQ < 0, is not subtracted in Fig. 11. As expected,
the resulting spin-independent central potential VðrÞ with
finite quark mass exhibits the linearly rising potential at
large distances and the Coulomb-like potential at short
distances.
In the upper panel of Fig. 11, the data points of the

interquark potentials measured at different lattice spacings
collapse on a single curve. This would indicate that
simulations at the gauge couplings β ¼ 6=g2 ¼ 6.0, 6.2,
and 6.47 are already in the asymptotic scaling region.
Moreover, we find the spin-independent central potential
determined from our method can maintain the rotational
symmetry accurately.
It is also worth noting that no adjustment parameter is

added for showing a good scaling of the interquark
potential calculated at various β. This fact is contrasted
with the case of the static QQ̄ potential given by Wilson
loops. For the Wilson loop results, the constant self-energy
contributions of infinitely heavy (static) color sources,
which will diverge in the continuum limit, must be
subtracted to demonstrate the scaling behavior.
The lower panel of Fig. 11 shows no visible finite-

volume effect on the spin-independent central potential
VðrÞ calculated at charm quark mass at least in the region of
r≲ 1 fm. This observation is simply due to the fact that the
S-wave BS wave function at charm quark mass safely fits
into even the smaller lattice volume (La ≈ 2.2 fm).
We simply adopt the Cornell potential parametrization

for fitting the data of VðrÞ as

VðrÞ ¼ −A
r
þ σrþ V0; (20)

with the Coulombic coefficient A, the string tension σ, and
a constant V0. The Cornell potential parametrization
describes well the spin-independent central potential even
at finite quark mass.
Although the charm quark mass region would be beyond

the radius of convergence for the systematic 1=mQ expan-
sion, the finite mQ corrections could be encoded into the
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FIG. 9 (color online). The determination of the quark kinetic
mass within the BS amplitude method. The values of
−ð∇2ϕV=ϕV − ∇2ϕPS=ϕPSÞ=Ehyp as a function of the spatial
distance r are shown in this figure. Circle, square, and diamond
symbols denote results calculated on the FI, ME, and CO
ensembles, respectively. The quark kinetic masses mQ are
evaluated from the long-distance asymptotic values of
−ð∇2ϕV=ϕV − ∇2ϕPS=ϕPSÞ=Ehyp. Horizontal solid (CO), dashed
(ME), and dotted (FI) lines indicate results of the quark kinetic
masses, which are determined by a weighted average of data
points in the range 0.6 fm ≲ r ≲ 1.0 fm as described in text.

TABLE IV. Summary of the quark kinetic masses determined along three different directions (on axis, off axis I, and off axis II) with
the fit range ½rmin= ~a∶rmas= ~a� for all four ensembles.

Direction (1,0,0), ~a ¼ a Direction (1,1,0), ~a ¼ ffiffiffi
2

p
a Direction (1,1,1), ~a ¼ ffiffiffi

3
p

a Average
Label Fit range mQ (GeV) χ2=d:o:f: Fit range mQ (GeV) χ2=d:o:f: Fit range mQ (GeV) χ2=d:o:f: mQ (GeV)

FI ½14∶20� 1.982(56) 1.11 ½10∶14� 1.997(52) 1.68 ½8∶11� 2.030(50) 1.62 2.013(43)
ME ½9∶14� 1.967(50) 0.60 ½7∶10� 1.990(60) 0.44 ½6∶8� 1.984(73) 0.34 1.980(55)
CO ½7∶10� 1.937(39) 0.63 ½5∶7� 1.874(34) 4.55 ½4∶5� 1.894(33) 7.13 1.902(32)
LA ½7∶13� 1.874(39) 0.86 ½5∶9� 1.917(37) 1.29 ½4∶7� 1.892(33) 4.12 1.895(32)
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Cornell potential parameters in this approach. Table V
presents the summary of the Cornell potential parameters.
All fits are performed individually for the three directions
(on axis, off axis I, and off axis II) over the range
0.19 fm≲ r≲ 0.84 fm. We minimize the χ2=d:o:f, taking
into account the covariance matrix. The resulting χ2=d:o:f
values are ranged from 0.7 to 3.8.

In Table V, all quoted values of the Cornell potential
parameters are obtained by taking an average over the three
directions. The first errors are statistical ones. For the
second errors, we estimate uncertainties of the choice of the
data from the three directions and take the maximal
difference from the average among the results of all three
directions. Therefore, the second errors are associated with
the violation of the rotational symmetry. The third and
fourth ones are systematic uncertainties originating from
the choice of minimum values (tmin and rmin) of the
temporal and spatial windows used in fitting procedures,
respectively.
In addition, we estimate a ratio of A=σ and the Sommer

parameter r0, which are also included in Table V. The
former is a quantity independent of the definition of the
quark mass. In other words, it is simply related to a gross
shape of the spin-independent central potential. The later is
a well-known phenomenological quantity defined by

r20 ¼
dVðrÞ
dr

����
r¼r0

¼ 1.65: (21)

Thus, r0 can be evaluated by the Cornell potential
parameters as

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.65 − A

σ

r
: (22)

Here, we give a few technical remarks on the systematic
uncertainties. The value of the string tension σ is deter-
mined by the long-range behavior of the potential.
However, the linear part in the Cornell potential para-
metrization is dominated in the region in which we have
data points. Thus, the resulting value of σ is relatively
insensitive to the choice of the fitting window ðrmin; rmaxÞ
and also the choice of the data set with respect to the
direction, compared to the Coulombic coefficient A.
A weak dependence of the latter suggests that a violation
of the rotational symmetry is found to be small in the long-
range part of the QQ̄ potential. On the other hand, as we
described above, the resulting value of A highly depends on
the choice of the direction in the fitting procedure.
Therefore, there is a large systematic uncertainty associated
with the rotational symmetry breaking. This indicates that
the short-range part of the QQ̄ potential is not yet fully
improved by reducing spatial discretization errors in the
discrete Laplacian operator as we proposed in Sec. IV B.
The fourth errors tabulated in Table Vare evaluated from

uncertainties due to the choice of time window in the
averaging process over the time slice. These are
the smallest errors among the other errors including the
statistical one. This is attributed to the fact that we have
taken a weighted average of data points in the very wide
range of time slices as was discussed in Sec. IV C. This
particularly contrasts with the conventional approach to
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FIG. 10 (color online). The quark kinetic mass calculated on all
four ensembles. Circle, square, and diamond symbols denote
results calculated in the on-axis, off-axis I, and off-axis II
directions, respectively. Their averaged values are indicated by
cross symbols.
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shows the fitting results of the Cornell potential form on the data
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calculate the static QQ̄ potential by Wilson loops or
Polyakov lines, in which the largest systematic uncertainty
is due to the selection of their temporal length.
Figure 12 displays the Cornell potential parameters

(A,
ffiffiffi
σ

p
, and V0), a ratio of A=σ, and the Sommer scale

r0, obtained from all four ensembles (FI, ME, CO, and LA)
for comparison. The inner and outer error bars are the
statistical and total errors. The total errors are given by the
sum of statistical and systematic errors in quadrature.
The resulting Cornell potential parameters calculated at
various β are consistent within their errors (see the results
of the FI, ME, and CO ensembles). On the other hand,
although the results of the CO and LA ensembles are

consistent within two standard deviations, there appears to
be a mild volume dependence on every parameter.
It is worth mentioning here that r0 is determined with

high accuracy and has no obvious dependence on the lattice
spacings and volumes. Then, r0 agrees well with the input
number of r0 ¼ 0.5 fm within errors. This is attributed to
the fact that the interquark potential at the range, in which
VðrÞ − Eave ≈ 0, is most precisely determined in the BS
amplitude method, while r0 is accidentally close to such a
region.

F. Spin-spin potential

We determine the spin-spin potential within the BS
amplitude method, through Eq. (11), similar to the spin-
independent central potential VðrÞ. Figure 13 displays the
spin-spin potential VSðrÞ calculated from the QQ̄ BS wave

TABLE V. Summary of the Cornell potential parameters (A,
ffiffiffi
σ

p
, and unsubtracted V0), a ratio of A=σ, and the Sommer parameter r0,

calculated on all four ensembles.

Label A
ffiffiffi
σ

p
(GeV) V0 − Eave (GeV) A=σ (GeV−2) r0 (fm)

FI 0.347(10)(28)(27)(15) 0.439(7)(7)(12)(1) −0.381ð15Þð25Þð37Þð2Þ 1.804(74)(207)(238)(66) 0.512(8)(3)(8)(4)
ME 0.390(13)(36)(25)(0) 0.438(8)(5)(5)(3) −0.356ð19Þð26Þð21Þð7Þ 2.036(101)(239)(175)(27) 0.505(10)(3)(1)(3)
CO 0.382(10)(20)(10)(2) 0.441(6)(5)(4)(3) −0.370ð14Þð26Þð12Þð5Þ 1.966(76)(132)(86)(15) 0.504(7)(2)(2)(4)
LA 0.442(11)(21)(27)(8) 0.428(6)(11)(6)(5) −0.324ð12Þð29Þð24Þð7Þ 2.418(81)(175)(578)(9) 0.507(8)(13)(2)(8)
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systematic errors are added in quadrature.
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function. First, the resulting potential is quickly dumped at
large distances and exhibits a repulsive interaction with a
finite range of r≲ 0.6 fm. This is different from a short-
range δ-function potential based on one-gluon exchange
like the Fermi-Breit interaction of QED. Second, repulsive
interaction is required by the charmonium spectroscopy, in
which the higher spin state in hyperfine multiplets receives
heavier mass. We should reminded the reader that the
Wilson loop approach fails to reproduce the correct
behavior of the spin-spin interaction even in the bottom
sector. The leading-order contribution of the spin-spin
potential classified in pNRQCD gives rise to a short-range
attractive interaction, which yields wrong mass ordering
among hyperfine multiplets [27].
As shown in the upper panel of Fig. 13, the discretization

artifacts are visible on the spin-spin potential at the short
distances, for which the scaling behavior is violated. This
contrasts the spin-independent central potential, for which a
good scaling behavior is observed even at the short dis-
tances. However, this observation is consistent with the fact
that the hyperfine splitting energies exhibit a slight but
systematic dependence of the lattice spacing (see Fig. 3). To
determine the spin-spin potential keeping systematics under
control, we will need simulations on finer lattices, or to
alternatively perform nonperturbative tuning of the RHQ
parameters and further improve the discrete Laplacian
operator.
On the other hand, as for the finite volume effect, there is

no significant difference between the spin-spin potentials
calculated from two different physical volumes (CO and
LA) as shown in the lower panel of Fig. 13. This is consistent
with the fact that the spin-spin potentialVSðrÞ ismeasured as
the short-range potential and the BS wave function at short
distances is insensitive to the spatial extent.

V. HEAVY QUARK MASS LIMIT OF
INTERQUARK POTENTIAL

In this section, we discuss an asymptotic behavior of
both the spin-independent central and spin-spin potentials
in the heavy quark mass limit mQ → ∞. We will first show
that the spin-independent central potential in the mQ → ∞
limit is fairly consistent with the conventional one obtained
from Wilson loops or Polyakov lines. For this purpose, we
examine the quark mass dependence of the potentials near
the infinitely heavy quark mass as much as possible.
To avoid further discretization errors induced by heavier

quark masses, we choose the finest lattice spacing ensem-
bles (FI) and perform additional simulations with extra five
hopping parameters, which corresponds to quark masses
heavier than in the charm quark sector. The inverse of
lattice spacing on the FI ensembles is about 4.2 GeV, which
is closest to the bottom mass. Therefore, we choose our
hopping parameters covering a wide mass range from the
charm to beyond the bottom region toward the heavy
quark limit.

At the second-heaviest quark mass (κQ ¼ 0.07619), we
obtain the spin-averaged 1S heavy quarkonium mass as
Mave ¼ 9.4462ð9Þ GeV, which is close to the experimental
one of the bottomonium. Thus, κQ ¼ 0.07619 is reserved
for the bottom quark mass. It is worth mentioning that the
hyperfine splitting energy calculated at the bottom quark
mass in our simulations reproduces only 40% of the
experimental value [55]. At each κQ, we again use the
one-loop perturbation theory to determine five RHQ
parameters following Ref. [56]. These RHQ parameters,
which are summarized with given values of κQ in Table VI,
marginally satisfy the condition of c2eff ¼ 1 for the 1S heavy
quarkonium states at all five quark masses within errors.

A. BS wave function

In Fig. 14, we first plot the reduced QQ̄ BS wave
functions of the pseudoscalar quarkonium calculated at
various quark masses. These wave functions are normalized
as to fulfill the condition

P
~ϕ2 ¼ 1. We again find the

isotropic behavior in the BS wave functions even at around
the bottom quark mass. The data points calculated from the
three directions basically collapse on a single curve.
Nothing changes for the vector quarkonium wave function.

TABLE VI. Summary of the RHQ parameters (ν, rs, cB, and
cE) and spin-averaged masses of the 1S heavy quarkonium state,
used in the simulation with the FI ensembles toward the infinitely
heavy quark limit.

κQ ν rs cB cE Mave (GeV)

Charm 0.11727 1.029 1.131 1.700 1.562 3.0676(20)
0.11198 1.041 1.165 1.749 1.581 3.9612(16)
0.10377 1.066 1.230 1.842 1.619 5.1925(13)
0.09004 1.124 1.364 2.033 1.708 7.2466(11)

Bottom 0.07619 1.211 1.543 2.388 1.839 9.4462(9)
0.05759 1.402 1.906 2.807 2.127 12.8013(8)
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FIG. 14 (color online). The reduced QQ̄ BS wave functions of
the pseudoscalar quarkonium state calculated using the FI ensem-
bles with six different quark masses covering the range from 2.0 to
7.7 GeV, shown as a function of the spatial distance of r. Avertical
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The wave function with a heavier quark mass is more
localized than the one with a lighter quark mass. Thus, the
finite volume effect on the interquark potential becomes not
serious at around the bottom quark mass. For the price one

has to pay, a number of accessible data points at long
distances gradually reduces for heavier quark mass. It is
worth reminding the reader that in the BS amplitude
method we cannot access the information of the interquark
potential outside of the localized wave function, where the
wave function approximately vanishes and a signal-to-
noise ratio in ∇2ϕΓ=ϕΓ gets worse.

B. Spin-independent interquark potential

Figure 15 displays the spin-independent central potential
(upper) and spin-spin potential (lower) calculated at several
quark masses within the BS amplitude method. In the upper
panel of Fig. 15, the constant energy shift Eave is not
subtracted the same as in Fig. 11. At first glance, the
“Coulomb plus confining potential” are observed over
range from the charm to the bottom quark mass. We
perform a fit of the potentials calculated at various quark
masses to a simple form of the Coulomb plus linear
potential, then obtain the Cornell potential parameters,
which are summarized in Table. VII. All fits are performed
over the range 3 ≤ r=a ≤ 7

ffiffiffi
3

p
by a correlated χ2 fit that

yields χ2=d:o:f: ¼ 2.1–6.6. The errors quoted in Table VII
are only statistical uncertainties, which are estimated by the
jackknife method.
In Fig. 16, we show the quark-mass dependence

of the ratio of A=σ (upper), the Coulombic coefficient A
(middle), and the squared-string tension

ffiffiffi
σ

p
(lower).

We also include values of the static QQ̄ potential
calculated from the Polyakov line correlator Pðr; tÞ as
reference values in the infinitely heavy quark limit. The
static QQ̄ potential is obtained by fitting a plateau of the
effective potential Veffðr; tÞ ¼ ln fPðr; tÞ=Pðr; tþ 1Þg
over range ½tmin; tmas� ¼ ½7∶10�. The Cornell potential
parameters can be obtained by applying the same fitting
procedure used in the case of the BS amplitude method. We
additionally include more accurate results given by Wilson
loops using the multilevel algorithm [27].
First, regardless of the definition of mQ, the ratio of A=σ

in the upper panel of Fig. 16 indicates that the interquark
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FIG. 15 (color online). The spin-independent central (upper)
and spin-spin (lower) potential calculated from the QQ̄ BS wave
function at finite quark masses covering the range from 2.0 to
7.7 GeV. In the upper panel, each curve represents the fitting
result of the Cornell potential form given in Eq. (20), and also the
constant energy shift Eave is not subtracted. The inset in the lower
panel shows a magnified view in the region of r ≲ 0.6 fm.

TABLE VII. Results of the quark kinetic mass mQ, the Cornell potential parameters A,
ffiffiffi
σ

p
, and the ratio A=σ, calculated on the FI

ensembles. Their extrapolated values in the mQ → ∞ limit using linear and quadratic fit forms are compared with our results given by
the Polyakov line correlator and also accurate results calculated with the multilevel algorithm [27].

κQ mQ (GeV) A
ffiffiffi
σ

p
(GeV) A=σ (GeV−2)

0.11727 2.00(5) 0.323(9) 0.447(6) 1.62(5)
0.11198 2.60(5) 0.297(6) 0.443(5) 1.51(4)
0.10377 3.36(6) 0.288(6) 0.439(5) 1.49(5)
0.09004 4.57(7) 0.279(5) 0.441(5) 1.43(4)
0.07619 5.80(7) 0.277(4) 0.445(5) 1.40(4)
0.05759 7.71(8) 0.277(4) 0.446(5) 1.39(4)
Linear fit ∞ 0.273(9) 0.454(11) 1.31(9)
Quadratic fit ∞ 0.285(11) 0.454(12) 1.40(9)
Static QQ̄ (Polyakov lines) 0.285(11) 0.467(6) 1.31(8)
Static QQ̄ (Ref. [27]) 0.281(5) 0.458(1) 1.34(2)
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potential calculated from the BS wave function smoothly
approaches the one obtained from Wilson loops in the
infinitely heavy quark limit. The extrapolation toward the
mQ → ∞ limit is consistent with the value obtained from
the static QQ̄ potentials. Here, we perform both linear
(solid line) and quadratic (dashed curve) fits with respect to
1=mQ to the three heaviest points and all six data points,
respectively. All fits take into account the correlations
among the different mass data in the correlated χ2 fit.
Resulting values of χ2=d:o:f range from 0.2 to 0.4 for the
linear fit and from 0.3 to 1.1 for the quadratic fit. Shaded
bands appeared in Fig. 16 indicate statistical errors, which
are estimated by the jackknife method.
Second, if we pay attention to the quark-mass depend-

ence of each of the Cornell potential parameters separately,
we observe that the Coulombic parameter A depends on the
quark mass significantly, while there is no appreciable
dependence of the quark mass on the string tension (see the
middle and lower panels in Fig. 16). The finite mQ
corrections seem to appear mainly in the short-range part
of the potential characterized by the Coulombic coefficient
A. At the charm quark mass, higher-order corrections, at

least the Oð1=m2
QÞ corrections, could be quite important to

describe the spin-independent central potential.
We finally evaluate the values of A and

ffiffiffi
σ

p
in the

infinitely heavy quark limit by both quadratic and linear fits
as shown in Fig. 16 and also the results are summarized in
Table VII. Extrapolated values in the mQ → ∞ limit are
consistent with those of the static QQ̄ potentials. We stress
that our method for determining the interquark potential
with the proper quark mass given in Eq. (13) is responsible
for the quark-mass dependence observed here.

C. Spin-spin potential

The quark-mass dependence of the spin-spin potential is
more pronounced in contrast to the spin-independent
central potential (see the lower panel of Fig. 15). As the
quark mass increases, a finite range of the spin-spin
interaction becomes narrower, and then the potential seems
to approach the δ-function potential, which would be
induced by one-gluon exchange. We may expect that the
spin-spin potential obtained in the BS amplitude method
has a correct behavior toward the mQ → ∞ limit.
The spin-dependent potential in pNRQCD appears as the

1=mQ corrections to the staticQQ̄ potential. However there
is a huge gap between our spin-spin potential at finite quark
mass and the one determined at Oð1=m2

QÞ within the
systematic 1=mQ expansion approach [27,28]. The former
exhibits the short-range repulsive interaction, while the
latter is similarly short ranged but turns out to have a slight
attractive interaction near the origin.
To resolve the issue of the qualitative difference between

two methods, we try to read off the corresponding leading
and also higher-order corrections in the 1=mQ expansion
from our spin-spin potential, in which all orders in the
1=mQ expansion are supposed to be nonperturbatively
encoded. We thus try to parametrize the spin-spin potential
calculated with the finite quark mass mQ in the guidance of
pNRQCD2 as

VSðmQ; rÞ ¼
1

m2
Q

�
Vð2Þ
S ðrÞ þ 1

mQ
Vð3Þ
S ðrÞ þ � � �

�
: (23)

In Refs. [27,28], the leading-order contribution of Vð2Þ
S ðrÞ is

precisely determined within the Wilson loop formalism
using the multilevel algorithm. As was already mentioned,
their spin-spin potential exhibits slight attractive interaction
near the origin.
In Fig. 17, we plot the spin-spin potential at fixed r as a

function of 1=mQ. At every r, we have carried out
correlated χ2 fits on all six data displayed in Fig. 17 by
using a polynomial form of 1=mQ, according to Eq. (23).
The mth coefficient of the polynomial expansion with
respect to 1=mQ can be identified as the potential value of
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FIG. 16 (color online). The quark-mass dependence of A=σ
(upper), A (middle), and

ffiffiffi
σ

p
(lower), shown as functions of

1=mQ. We perform the extrapolation toward themQ → ∞ limit of
A=σ, A, and σ with a simple polynomial function in 1=mQ. Solid
lines and dashed curves in each panel indicate the fitting results of
linear and quadratic forms, respectively. Shaded bands show
statistical fitting uncertainties estimated by the jackknife method.
The results of the static QQ̄ potential calculated by the Polyakov
line correlator and also the Wilson loop using the multilevel
algorithm [27] are also included as square and diamond symbols.

2Odd powers of 1=mQ could appear in the case of non-Abelian
gauge theory [59].
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Vðmþ1Þ
S ðrÞ at given r, corresponding to the correction term

at Oð1=mmþ1
Q Þ.3 The fit results are also displayed as solid

curves in Fig. 17. The stability of the fit results has been
tested against either the number of fitted data points or the

number of the polynomial terms. We find that the
polynomial terms up to the Oð1=m5

QÞ term are necessary
to describe the quark mass dependence of the spin-
spin potential, covering a whole range of 2.0 GeV ≤
mQ ≤ 7.7 GeV, due to the slow convergence of the
1=mQ expansion in the vicinity of the charm sector. Our
choice of the maximum polynomial term of Oð1=m5

QÞ in
the fitting form as Eq. (23) certainly yields acceptable
values of χ2=d:o:f (≲1) and the confidence level.
In Fig. 18, we compile all results of VðnÞ

S ðrÞ (up to
n ¼ 5), scaling with powers of 1=mn

Q, in order to analyze
the convergence behavior of the 1=mQ expansion at both
the bottom (upper) and charm (lower) quark masses. As
shown in the upper panel of Fig. 18, the Oð1=m2

QÞ
contribution (open circles) to the total spin-spin potential
exhibits an attractive interaction in the intermediate region
(0.1 fm≲ r≲ 0.3 fm), though it becomes exponentially
screened at the long distances. Surprisingly, the Oð1=m3

QÞ
contribution (open squares) is the largest contribution and
ensures the short-range repulsive interaction of the total
spin-spin potential.
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FIG. 17 (color online). The quark mass dependences of the
spin-spin potential VSðrÞ at fixed r as functions of 1=mmQ

. The
selected values of r are indicated in each panel. The vertical axis
is plotted in units of GeV. Solid curves correspond to fitting
results of the polynomial forms are given in Eq. (23).
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FIG. 18 (color online). The r dependence of the inverse quark
mass corrections VðnÞ

S ðrÞ=mn
Q on the spin-spin potential at the

bottom (upper) and charm (lower) quark masses. Filled circles
correspond to the spin-spin potential at Oð1=m2

QÞ calculated
within the Wilson loop formalism, together with their fit results
(solid curves) [27,28].

3The same analysis, in principle, can be applied to the spin-
independent central potential. The leading-order potential
Vð0ÞðrÞ, which corresponds to the QQ̄ potential in the mQ →
∞ limit, was obtained in this procedure. We have confirmed that
Vð0ÞðrÞ obtained in this analysis is fairly consistent with the static
QQ̄ potential calculated from the Polyakov line correlator.
However, the spin-independent central potential involves the
self-energy of a quark and antiquark pair, which is proportional to
mQ as

VðmQ; rÞ ¼ constant ×mQ þ Vð0ÞðrÞ þ 1

mQ
Vð1Þ
S ðrÞ þ � � � :

(24)

The presence of a term of OðmQÞ in addition to the polynomial
function of 1=mQ makes the fit relatively unstable, compared to
the case of the spin-spin potential. Unfortunately, we did not
observe the stability of the fit results even for the leading-order
correction of Oð1=mQÞ within the current statistics.
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Here, we remark on the short-range behavior found in
the Oð1=m2

QÞ contribution near the origin. At the short
distances (r≲ 0.1 fm), the sign of the spin-spin potential
changes from negative to positive. We will later explain the
reason why we do not take it seriously, and then we will
focus on results obtained in the region of r≳ 0.1 fm.
The solid curve represents the fit curve on the data

points (filled circles) taken from Refs. [27,28], scaled by
1=m2

Q with the bottom quark mass, mQ ¼ 5.80ð7Þ GeV.
The size of the attraction found in the Oð1=m2

QÞ contri-
bution is almost the same order of magnitude as that of the
spin-spin potential determined within the Wilson loop
formalism [27,28].
At this point, we may have a hint to fill out a gap between

our results of the spin-spin potential calculated in the BS
amplitude method and one calculated at Oð1=m2

QÞ within
the 1=mQ expansion scheme. According our analysis, the
next-to-leading order contribution of Oð1=m3

QÞ is not
negligible but rather a dominant contribution in the full
spin-spin potential. In other words, the issue of the spin-
spin potential in the 1=mQ expansion approach within the
Wilson loop formalism would be cured by the next-to-
leading-order contribution of Oð1=m3

QÞ. Furthermore,
although the sizes of the Oð1=m2

QÞ and Oð1=m3
QÞ con-

tributions are inverted in the sense of the systematic 1=mQ
expansion, the higher-order contributions are certainly
smaller than a sum of the two lowest contributions at
the bottom quark mass. Therefore, our analysis suggests
that the 1=mQ expansion scheme may have the convergence
behavior up to the bottom sector.
It is, however, not the case for the charm sector. In the

lower panel of Fig. 18, we plot the similar figures that are
scaled with the charm quark mass mQ ¼ 2.00ð5Þ GeV in
the scaling factor 1=mn

Q. The largest contribution is still the
Oð1=m3

QÞ contribution, while the size of higher-order
contributions becomes comparable to that of the
Oð1=m3

QÞ contribution. Obviously, the higher-order cor-
rections are much important rather than the leading-order
correction of Oð1=m2

QÞ at the charm quark mass.
Nevertheless, the signs of the higher-order contributions
clearly alternate between positive and negative. Remark
that the full spin-spin potential is certainly repulsive in a
whole range of r measured here. The higher-order con-
tributions of Oð1=m4

QÞ and Oð1=m5
QÞ are almost canceled

with each other, and then the Oð1=m3
QÞ contribution

approximately represents a whole nature of repulsion of
the full spin-spin potential.
These observations may indicate that the 1=mQ expan-

sion is no longer converged in the charm quark mass
region. In this sense, the new determination of the inter-
quark potential at finite quark mass within the BS ampli-
tude method is a powerful tool for exploring the
charmonium system. We can compute theoretical inputs
for modeling the reliable interquark potential from first
principles QCD and then provide new and valuable

information to especially the spin-dependent potentials
including the tensor and spin-orbit potentials in the quark
potential models.
Finally, we make a comment on the peculiar behavior

found in theOð1=m2
QÞ contribution near the origin. We first

recall that a residual discretization error that may not be
removed in the RHQ action is of order OððapÞ2ðamQÞÞ.
The inverse of lattice spacing for the FI ensembles used
here is about 4.2 GeV, which is not quite higher than the
bottom quark mass but rather is lower than our three
heaviest quark masses [mQ ¼ 4.57ð7Þ, 5.80(7), and 7.71
(8) GeV] in this study. Therefore, our data set of the
interquark potentials in principle suffers from the the
residual discretization error, which may not be serious in
simulations at the charm quark mass. In the analysis
discussed here, the data obtained at heavier quark masses
is obviously important. Therefore, the final results, which
highly rely on the heavy quark mass extrapolation, should
receive some influence of the residual discretization error,
which is not negligible in the short-distance region of
r≲ 1=p≲ aðamQÞ1=2 ∼ 0.1 fm. Therefore, in the above
discussions, we simply disregard the short-range behavior
that we should not take seriously.

VI. SUMMARY

We have performed systematic studies of the interquark
potential at finite quark mass in lattice QCD. In our method,
the QQ̄ potential is defined through the equal-time QQ̄
Bethe-Salpeter wave function, and also the quark kinetic
mass is self-consistently determined on the same footing.
The proper definition of the quark mass is essential for the
application of the BS amplitude method to the QQ̄ system.
The spin-independent and -dependent parts of interquark
potential together with the quark kinetic mass can be
calculated with a single set of four-point correlation
functions.
We have demonstrated the feasibility of our method by

using quenched lattice QCD simulations. To study several
systematic uncertainties on the interquark potential, our
simulations were performed on several gauge ensembles
generated in the quenched approximation at three different
lattice spacings, a ≈ 0.093, 0.068, and 0.047 fm, and two
different physical volumes, La ≈ 2.2 and 3.0 fm. The heavy
quark propagators were computed using the RHQ action
with the coefficients determined by one-loop perturbative
calculations. The hopping parameter was chosen to repro-
duce the experimental spin-averaged mass of the 1S
charmonium states.
In the BS amplitude method, there is a room for

optimizing the differential operator since the discrete
Laplacian operator is itself built in the definition of the
interquark potential. Through the simulations carried out at
three different lattice spacings, we first conclude that the
discrete Laplacian operator in the discrete polar coordinates
is more suitable than the naive one defined in the Cartesian
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coordinates to reduce the discretization artifacts on the
short-range behavior of the interquark potential. The
resultant spin-independent central potential in quenched
lattice QCD exhibits the linearly rising potential at large
distances and the Coulomb-like potential at short distances.
All results calculated at three different lattice spacings
nicely collapse on a single curve. In this sense, the
rotational symmetry is effectively recovered in the spin-
independent central potential calculated in the BS ampli-
tude method. We also confirm, through simulations on two
different physical volumes, that the finite volume effect on
the interquark potential is negligible if the BS wave
function safely fits into the lattice volume used for the
simulation.
We have additionally examined the quark mass depend-

ence of the interquark potential over a wide mass range
from the charm to beyond the bottom toward the infinitely
heavy quark limit, using the finest lattice spacing ensem-
bles (the inverse of lattice spacing is 1=a48 ≈ 4.2 GeV). We
then demonstrated that the spin-independent central poten-
tial in the mQ → ∞ limit is connected to the static
interquark obtained from Wilson loops and Polyakov lines
and find that the Oð1=m2

QÞ correction should be not
negligible on the short-range part of the spin-independent
central potential at around the charm quark mass.
The spin-spin potential at finite quark mass in quenched

lattice QCD provides not pointlike but finite-range repul-
sive interaction. The spin-spin potential determined in the
new method potentially accounts for all orders of 1=mQ
corrections and also shows the qualitative difference from
the slightly attractive spin-spin potential measured at
Oð1=m2

QÞ in pNRQCD. The repulsive feature of the
spin-spin interaction is phenomenologically required by
the observed mass-ordering found in hyperfine multiplets.
The issue on the spin-spin potential determined in the
1=mQ expansion approach may be resolved by what we
found in a detailed study of quark mass dependence on the
spin-spin potential calculated by the BS amplitude method.
We read off from our spin-spin potential, which may

encode all orders of the 1=mQ expansion, that the corre-
sponding Oð1=m2

QÞ correction exhibits the slight attraction
and then barely agrees with the Wilson loop results.

Furthermore, the most important contribution to the
spin-spin potential should be the Oð1=m3

QÞ correction,
which is responsible for the repulsive feature of the total
spin-spin potential, rather than the Oð1=m2

QÞ correction
even at the bottom quark mass.
We finally conclude that both the spin-independent

central and spin-spin potentials calculated at finite quark
mass in the BS amplitude method can reproduce known
results calculated within the Wilson loop formalism in the
infinitely heavy quark limit. Apparently the new method
demonstrated in this paper has the advantage of determin-
ing the proper QQ̄ potential in not only the bottom sectors
but also the charm sector.
From the viewpoint of phenomenology, greater knowl-

edge of the r dependence of the spin-dependent potentials
paves way for making more accurate theoretical predictions
about the higher-mass quarkonium states. Indeed, the r
dependence of the spin-spin potential calculated from first
principles QCD is significantly different from a repulsive
δ-function potential of the Fermi-Breit interaction, which is
widely adopted in quark potential models.
In this sense, a full set of the reliable spin-dependent

potentials derived from lattice QCD can provide new and
valuable information to the quark potential models. We
plan to develop our method to determine all spin-dependent
potentials including the tensor and spin-orbit forces. The
tensor one is especially required to quantify the size of a
mixing between 1S and 1D wave functions, which is
assumed to be negligible in the vector quarkonium states
in our current analysis. Such planning is now under way.
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