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Using numerical stochastic perturbation theory, we determine the first 35 infinite volume coefficients of
the perturbative expansion in powers of the strong-coupling constant α of the plaquette in SU(3)
gluodynamics. These coefficients are obtained in lattice regularization with the standard Wilson gauge
action. The onset of the dominance of the dimension-four renormalon associated to the gluon condensate is
clearly observed. We determine the normalization of the corresponding singularity in the Borel plane and
convert this into the MS scheme. We also comment on the impact of the renormalon on nonperturbative
determinations of the gluon condensate.
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I. INTRODUCTION

Perturbative expansions,
Pnmax

n¼0 anα
nþ1, in powers of the

coupling parameter α of four-dimensional non-Abelian
gauge theories are expected to be divergent as nmax→∞.
The structure of the operator product expansion (OPE)
determines particular patterns of asymptotic divergence that
are usually named renormalons [1].
In three recent articles [2–4], we presented compelling

evidence for the existence of the leading renormalon
associated to the (dimension-one) pole mass of heavy
quark effective theory (or potential nonrelativistic QCD),
as expected from the standard OPE [5,6]. This was
achieved by expanding the energy of a static source in
a lattice scheme to Oðα20Þ using numerical stochastic
perturbation theory (NSPT) [7,8]. For a review of NSPT,
see Ref. [9]. As a by-product, the normalization of this
singularity in the Borel plane was obtained and converted
into the modified minimal subtraction (MS) scheme.
The situation regarding the renormalon associated with

the (dimension-four) gluon condensate [10] is less well
settled. This condensate determines the leading nonpertur-
bative correction, e.g., to the QCD Adler function, or, in
lattice regularization, to the plaquette. Previously, diagram-
matic [11,12] and several high-order NSPT computations
[13–17] of the plaquette have been carried out in lattice
regularization, with conflicting conclusions regarding the

convergence properties and the position of the leading
singularity in the Borel plane.
The position and normalization of this singularity and

the value of the gluon condensate are not only topics of
theoretical debate but also impact important questions of
particle physics phenomenology. For instance, precision
determinations of the strong-coupling constant αs from
τ-meson decays rely on perturbative series that are also
sensitive to the gluon condensate renormalon [18,19]. The
same applies to computations of partial decay rates of a
Higgs particle into heavy quark-antiquark pairs, see, e.g.,
Ref. [20]. From the theoretical side, high-order perturbative
series in quantummechanical systems [21,22] and quantum
field theories [23–25] have recently been studied in the
framework of resurgent trans-series. The relevance of this
promising work to renormalons in QCD has yet to be
elucidated.
The order in α at which the renormalon dominates the

asymptotic behavior of the perturbative series is propor-
tional to the dimension of the associated operator. In our
recent investigation of an infrared renormalon associated to
a dimension-one operator [2,3], the onset of the asymptotic
behavior in the (Wilson) lattice scheme was observed at
orders ∼7 − 9 in α. Hence, in the case of the dimension-
four gluon condensate, the order of the expansion necessary
to enable detection of the corresponding renormalon needs
to be multiplied by a factor of approximately 4. Previous
computations of the plaquette in the Wilson lattice scheme,
however, have only been carried out up to Oðα20Þ in the
strong-coupling constant [17]. In this case no volume was
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larger than 124. For volumes of 244 points previous results
only exist up to Oðα10Þ [15], and for 324 up to Oðα3Þ [26].
A controlled study of the asymptotic behavior of the

series and of the normalization of the renormalon is
required to determine the gluon condensate and its intrinsic
ambiguity. This application and its phenomenological
impact will be discussed in a forthcoming paper. Here
we concentrate on the technical details of our simulations
and, in particular, on the determination of the infinite
volume coefficients to Oðα35Þ from NSPT simulations of
finite volumes of up to 404 sites. In spite of several
optimizations, the computer time and memory require-
ments were considerable. For instance, the storage of two
copies of a 404 lattice to order α30 alone requires about
170 Gbytes of main memory, clearly necessitating the use
of parallel systems.
This article is organized as follows. In Sec. II we

introduce our notation, the action, the lattice volumes,
and the simulation methods used. In Sec. III we discuss the
dependence of the coefficients of the perturbative series of
the plaquette on the volume and boundary conditions. In
Sec. IV we extrapolate these coefficients to infinite volume.
Finally, in Sec. V we compare these infinite volume results
against renormalon-based expectations for their high-order
behavior, determine the normalization of the gluon con-
densate renormalon, and discuss the impact of its value on
nonperturbative determinations of the gluon condensate
itself, before we conclude.

II. SIMULATION DETAILS

We introduce some of our notations and list the simu-
lated lattice volumes. We also explain how we account for
errors associated to finite Langevin time steps and quali-
tatively survey the volume dependence of our results. We
refer to Ref. [3] for a more detailed account of the
theoretical and numerical methods used, their implemen-
tation, and tests.

A. Notation and simulated volumes

We study hypercubic Euclidean spacetime lattices ΛE
with a lattice spacing a and N4 sites labeled by x ¼
am ∈ ΛE, m¼ðmμÞ¼ðm1;m2;m3;m4Þ, mμ¼0;…;N−1.
We realize linear dimensions N ≤ 40, twisted boundary
conditions (TBC) [27] in all three spatial directions
μ ¼ 1; 2; 3, and periodic boundary conditions in time μ ¼
4 as, e.g., detailed in Ref. [3].
We employ the standard Wilson gauge action

S ¼ β
X
x∈ΛE
μ>ν

Px;μν

¼
Z

d4x
X
μ;ν;c

1

4
Gc

μνðxÞGc
μνðxÞ × ½1þOða2Þ�; (1)

where β ¼ 6=g2 ¼ 3=ð2παÞ and α ¼ g2=ð4πÞ≡ αða−1Þ is
the bare lattice coupling. c ¼ 1;…; 8 is the adjoint color
index and

Px;μν ¼ 1 −
1

6
TrðUx;μν þ U†

x;μνÞ: (2)

Ux;μν denotes the oriented product of four link variables

Ux;μ ¼ P exp
�
ig
Z

xþaμ̂

x
dx0μAμðx0Þ

�

≈ eigaAμ½xþða=2Þμ̂� ∈ SUð3Þ (3)

enclosing the elementary square (plaquette) with corner
positions x, xþ aμ̂, xþ aðμ̂þ ν̂Þ, and xþ aν̂. P denotes
path ordering and Aμ ¼ Ac

μtc as usual. Note that, using the
above normalization convention for the action, the gluonic
field strength tensor reads

Gμν ¼ −
i
g
½Dμ; Dν� ¼ ∂μAν − ∂νAμ þ ig½Aμ; Aν�: (4)

We define the vacuum expectation value of a generic
operator B of engineering dimension zero as

hBi≡ hΩjBjΩi ¼ 1

Z

Z
½dUx;μ�e−S½U�B½U�; (5)

with the partition function Z ¼ R ½dUx;μ�e−S½U� and measure
½dUx;μ� ¼

Q
x∈ΛE;μdUx;μ. jΩi denotes the vacuum state. hBi

will depend on the lattice extent Na and spacing a. The
coefficients bn of its perturbative expansion

hBipertðNÞ≡ 1

Z

Z
½dUx;μ�e−S½U�B½U�

����
NSPT

¼
X
n≥0

bnðNÞαnþ1 (6)

are obtained by Taylor expanding the link variables Ux;μ of
Eq. (3) in powers of g before averaging over the gauge
configurations by means of a Langevin simulation with a
time step ϵ > 0 (NSPT) [7–9].
In Eq. (6) we have made explicit that the coefficients bn

are functions of the linear lattice size N. However, we
emphasize that the bnðNÞ do not depend on the lattice
spacing a: the above integration is over the dimensionless
link variablesUx;μ and a can be absorbed into the definition
of the AμðxÞ fields of Eq. (3).
The integration over the gauge variables in Eq. (6) is

finite for all nonzero modes but divergent for the zero
modes (see, for instance, the discussion in Ref. [28]).
Perturbation theory in lattice regularization with TBC
eliminates zero modes [29,30], yielding finite, well-defined
results for the coefficients bn. This is not the case for
periodic boundary conditions (PBC) where zero modes are
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usually subtracted “by hand” to give finite results. We will
see in Secs. III C and III D that this causes some problems.
We define

Px ¼
1

6

X
μ>ν

Px;μν ¼ a4
πα

9

1

4
Gc

μνðxÞGc
μνðxÞ þOða6Þ: (7)

The average plaquette

hPi ¼ hP0i ¼
1

N4

X
x∈ΛE

hPxi (8)

does not depend on the spacetime point, due to translational
invariance of expectation values, and hence we drop its
position index. In this article we compute its expansion
coefficients pnðNÞ,

hPipertðNÞ ¼
X
n≥0

pnðNÞαnþ1; (9)

for the volumes and up to the maximal orders in α displayed
in Table I. Due to increases of statistical errors and
autocorrelation times at very high orders, we decided to
restrict ourselves to nmax þ 1 ≤ 35 in our final analysis.

B. Simulations and extrapolation to a vanishing
Langevin time step

In our simulation the second-order integrator introduced
in Ref. [31] and detailed in Ref. [3] is employed. We use
stochastic gauge fixing to avoid runaway trajectories, see,
e.g., Ref. [9], and thermalize each order j − 1, before
“switching on” the next order j ≤ n. After the thermal-
ization phase, “measurements” are taken and analyzed
following Ref. [32] for the treatment of (auto)correlations.
Due to issues of numerical stability and the expense of

generating a sufficiently large number of effectively sta-
tistically independent measurements, the time step ϵ cannot
be taken arbitrarily small. We carry out most simulations at
ϵ ¼ 0.05. However, we investigate the Oðϵ2Þ discretization

errors by additionally simulating ϵ ¼ 0.04 and 0.06 on the
N ¼ 4; 6; 8; 10; 16, and 28 lattices to the maximal order in
α stated in Table I.
We show the ϵ2 → 0 extrapolation of the N ¼ 28 data in

Fig. 1 for the example of odd orders nþ 1. For orders
nþ 1 ≤ 15 no statistically significant slopes can be
detected and the ϵ ¼ 0.05 results are in perfect agreement
within errors with the ϵ → 0 extrapolations. [One notable
exception is the Oðα2Þ data, not depicted here.] For higher
orders the nonvanishing size of ϵ introduces errors, which
we estimate in the following way. From theN ¼ 28 data we
compute the relative difference between the value of a
coefficient pn obtained at the finite value ϵ ¼ 0.05 and the
extrapolated result:

dn ¼
����1 − pnðϵ ¼ 0Þ

pnðϵ ¼ 0.05Þ
����: (10)

For all the volumes and orders where no ϵ → 0 extrapo-
lation was carried out, we use dnpn as the estimate of the
uncertainty due to the nonzero time step. We then add dnpn
to the respective statistical error of pn obtained at ϵ ¼ 0.05
in quadrature. For the coefficients pnðNÞ where the ϵ
extrapolation has been carried out, we use the extrapolated
value pnðN; ϵ ¼ 0Þ and the associated error of the ϵ
extrapolation instead.
Figures 2 and 3 show the impact of the ϵ-extrapolation

error on p0;1;19ðNÞ. In the upper panel of Fig. 2 we
normalize the data to the analytically known value
p0ð∞Þ ¼ p0ðNÞ ¼ 4π=3. We observe perfect agreement
with this expectation. The ϵ-extrapolation errors dominate
for large volumes where the statistical errors are small. This
is a general tendency for all orders n, but more pronounced
for large n values, see Fig. 3. In the lower panel of Fig. 2 we
normalize the data to the known value p1ð∞Þ. This plot
further illustrates the quality of the ϵ extrapolation and that
our error estimates are reasonable. Note that in this case a
nonzero slope of the ϵ2 extrapolation was detected. For all
but one of the volumes for which the extrapolation in ϵ2

was performed (N ¼ 6; 8; 10; 16; 28) we find perfect agree-
ment within small errors with the infinite volume result.
Only for N ¼ 4 are finite size effects significant. We also
see how our procedure to estimate the ϵ-extrapolation error
(based on the deviation at N ¼ 28) correctly captures the
systematics for all the volumes for which we could not
perform an ϵ extrapolation.
Since the gauge action and the algorithm are local in

spacetime and Langevin time one may expect the ϵ2 slopes
to become independent of N for sufficiently large lattice
extents N, with 1=N2 corrections that will depend on the
order of the expansion. Indeed, this expectation seems to be
supported by our data, see Fig. 2, where the shifts between
the ϵ ¼ 0.05 and extrapolated data are similar in sign and
magnitude for all volumes. However, in the present article
we try to inject as little prejudice as possible into the

TABLE I. Maximal order of the plaquette expansion and
respective linear lattice extent N. In total, we have considered
21 different volumes. Volumes for which ϵ → 0 extrapolations in
the Langevin time step were carried out are labeled by bracketed
bold superscripts that indicate the maximal order to which ϵ ¼ 0
results are available. For the remaining lattices only a single value
ϵ ¼ 0.05 was realized.

Order N

Oðα5Þ 11, 13
Oðα20Þ 14
Oðα30Þ 12, 40
Oðα35Þ 3, 4ð5Þ, 5, 6ð12Þ, 9, 10ð12Þ, 28ð35Þ, 30
Oðα40Þ 7, 8ð12Þ, 16ð12Þ, 18, 20, 22, 24, 32
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FIG. 1 (color online). Time step extrapolations of pnðN ¼ 28; ϵÞ=pnðN ¼ 28; 0.05Þ. Boxed numbers refer to the order in α:
nþ 1 ¼ 1; 3;…; 35. The leftmost symbols are the extrapolated values.
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analysis. Therefore, we follow the more conservative
approach outlined above and abstain from using this
information in the ϵ extrapolation.

C. Qualitative survey of PBC and TBC results

In our simulations we realize TBC. Numerically, these
boundary conditions have the advantage of reduced

statistical fluctuations and smaller autocorrelation times,
due to the complete absence of zero momentum modes.
Moreover, at small orders, these boundary conditions
reduce finite size effects, and—as we shall see below—
we can theoretically control TBC volume effects much
better than PBC ones.
As detailed in Ref. [3], in addition to the TBC

simulations presented here, for testing purposes and to
enable comparison with literature values, we also per-
formed simulations employing PBC. These PBC runs
however were limited to small volumes and orders.
Therefore, we will resort to literature values to enable a
comparison between PBC and TBC. In Ref. [17] PBC
results up toOðα20Þwere presented for N ¼ 4; 6; 8; 12. Up
to Oðα10Þ these can be combined with earlier N ¼ 8 and
N ¼ 24 results [15], and up to Oðα3Þ with N ¼ 32
results [26].
In Fig. 4, we compare the volume dependence of the

PBC data from the literature with our TBC results for the
examples of p4, p9, and p14. The horizontal bands denote
the infinite volume extrapolations and their errors obtained
as will be described in Sec. IV below and displayed in the
last column of Table IV. These are independent of the
boundary conditions and should be the same, irrespective
of using PBC or TBC. The PBC data appear to somewhat
overshoot the infinite volume values. It is not clear whether
this behavior can be attributed to a nonmonotonous volume
dependence or to a less well-controlled ϵ → 0 extrapolation
of the PBC data, which were obtained using the unim-
proved OðϵÞ Euler integration scheme. It is clear from the
comparison that the TBC volume dependence is much
reduced relative to the PBC case. However, at large orders
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FIG. 2 (color online). The coefficients p0ðNÞ (upper panel) and
p1ðNÞ (lower panel) for different linear lattice extents N,
normalized with respect to the infinite volume expectations from
diagrammatic perturbation theory. Circles denote the final values
obtained either by increasing the respective errors (empty circles)
or by extrapolating to ϵ ¼ 0 (full circles) as detailed in the text.
Squares correspond to the values obtained at the fixed time step
ϵ ¼ 0.05. For clarity the symbols have been shifted horizontally
by different offsets.
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FIG. 3 (color online). The coefficient p19ðNÞ versus the linear
lattice size N. The full circle denotes the ϵ ¼ 0 extrapolated
result, which at this order is only available for N ¼ 28. Open
circles are the “final” values obtained by increasing the errors as
detailed in the text, squares are the results obtained at a fixed time
step ϵ ¼ 0.05. The symbols have been shifted horizontally to
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FIG. 4 (color online). The coefficients p4;9;14ðNÞ as functions
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bands are the infinite volume extrapolated values, see the last
column of Table IV.
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also the TBC data start to show a significant dependence on
N. In the next section, we will discuss theoretical expect-
ations on the volume dependence both for TBC and
for PBC.

III. FINITE VOLUME CORRECTIONS

In this section we determine the structure of the volume
dependence of the coefficients pnðNÞ in the limit of large
N. For simplicity we assume fixed aspect ratios between
different directions, so that the finite volume effects can
only depend on one parameter, N. More specifically, we
simulate and consider symmetric lattice volumes.
Together with the symmetry of the action, measure, and
observable under the interchange a↔ − a, this implies
that the coefficients pnðNÞ of Eq. (9) are functions of N2

only:

pnðNÞ ¼ pn −
hnðNÞ
N2

−
fnðNÞ
N4

−
gnðNÞ
N6

þO
�

1

N8

�
: (11)

In the following, we will distinguish between TBC
and PBC. Below we discuss theoretical expectations for
the two types of boundary conditions, before we
confront the numerical PBC data, where finite volume
effects are more easily detectable, with different
parametrizations.

A. Perturbative OPE with TBC

There are no zero modes using TBC (see, for instance
Refs. [29,30]) and perturbation theory is characterized by
two distinct scales: 1=a and 1=ðNaÞ≡ 1=l. In this context,
the N dependence of hnðNÞ, fnðNÞ, and gnðNÞ appears as
the ratio of these two scales, a=ðNaÞ, and perturbation
theory predicts that it is logarithmic:

hnðNÞ ¼
Xn
i¼0

hðiÞn lniðNÞ; fnðNÞ ¼
Xn
i¼0

fðiÞn lniðNÞ;

gnðNÞ ¼
Xn
i¼0

gðiÞn lniðNÞ: (12)

We are interested in the large-N (i.e. infinite volume)
limit. In this situation

1

a
≫

1

Na
; (13)

and it makes sense to factorize the contributions of the
different scales within the OPE framework.1 The hard

modes of scale ∼1=a determine the Wilson coefficients,
whereas the soft modes of scale ∼1=l can be described by
expectation values of local gauge invariant operators. Due
to the absence of such operators of dimension two, there
can be no 1=N2 ¼ a2=l2 terms, i.e. hn ¼ 0 in Eq. (11). The
1=N4 term, i.e. fnðNÞ, is also fixed to a large extent by the
OPE. The renormalization group invariant definition of the
gluon condensate

hOGi ¼ −
2

β0

�
Ω
���� βðαÞα

Gc
μνGc

μν

����Ω
�

¼
�
Ω
����½1þOðαÞ� α

π
Gc

μνGc
μν

����Ω
�

(14)

is the only local gauge invariant expectation value of
an operator of dimension a−4. In the purely perturbative
case discussed here, it only depends on the soft scale 1=l,
i.e. on the lattice size. On dimensional grounds, the
perturbative gluon condensate hOGisoft is proportional to
1=l4 ¼ 1=ðNaÞ4, and the logarithmic l dependence is
encoded in αðl−1Þ. Therefore,

π2

36
a4hOGisoft ¼ −

1

N4

X
n≥0

fnαnþ1ððNaÞ−1Þ; (15)

and the perturbative expansion of the plaquette on a
finite volume of N4 sites can be written as2

hPipertðNÞ ¼ PpertðαÞh1i þ
π2

36
CGðαÞa4hOGisoft þO

�
1

N6

�
;

(16)

where

PpertðαÞ ¼
X
n≥0

pnα
nþ1 (17)

and pn are the infinite volume coefficients that we are
interested in. The constant prefactor π2=36 is chosen such
that the Wilson coefficient, which only depends on α, is
normalized to unity for α ¼ 0. It can be expanded as
follows:

CGðαÞ ¼ 1þ
X
k≥0

ckαkþ1: (18)

1There are rigorous theorems proving the validity of the OPE
within finite-order perturbation theory for renormalizable theo-
ries [33].

2On the lattice the continuum O(4) symmetry is broken down
to the hypercubic subgroup H(4). The corrections due to this
however are of size ða2=l2Þ=N4 ¼ 1=N6 and will only show up
in the next order of the OPE. In particular this means that more
than one matrix element of dimension six needs to be considered.
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Combining the above three equations gives

hPipertðNÞ ¼
X
n≥0

�
pn −

fnðNÞ
N4

�
αnþ1

¼
X
n≥0

pnα
nþ1 −

1

N4

�
1þ

X
k≥0

ckαkþ1ða−1Þ
�

×
X
n≥0

fnαnþ1ððNaÞ−1Þ þO
�

1

N6

�
; (19)

where ultimately we are interested in the pn. Comparing the

above expression with Eq. (12), we obtain fðiÞn as poly-
nomials of fj and ck:

f0ðNÞ ¼ f0; (20)

f1ðNÞ ¼ ðf1 þ c0f0Þ þ f0
β0
2π

lnðNÞ; (21)

f2ðNÞ ¼ ðf2 þ c0f1 þ c1f0Þ

þ
�
ð2f1 þ c0f0Þ

β0
2π

þ f0
β1
8π2

�
lnðNÞ

þ f0

�
β0
2π

�
2

ln2ðNÞ; (22)

fnðNÞ ¼ ðfn þ c0fn−1 þ � � � þ cn−2f1 þ cn−1f0Þ

þ
�
½nfn−1 þ ðn − 1Þc0fn−2 þ ðn − 2Þc1fn−3

þ � � � þ cn−2f0�
β0
2π

þ � � �
	
lnðNÞ þ � � � : (23)

The β-function coefficients and the logarithms above are
obtained by expanding αððNaÞ−1Þ within Eq. (19) in terms
of α ¼ αða−1Þ using the renormalization group, where we
define the QCD β function as

βðαðμÞÞ ¼ dαðμÞ
d ln μ

¼ −2α
�
β0

αðμÞ
4π

þ β1

�
αðμÞ
4π

�
2

þ � � �
�
;

(24)

where

β0 ¼ 11; β1 ¼ 102; βMS
2 ¼ 2857

2
;

βlatt2 ¼ −6299.8999ð6Þ; βMS
3 ≈ 29243.0;

βlatt3 ¼ −1.16ð12Þ × 106: (25)

βMS
3 was calculated in Ref. [34] where the previous results on

β0, β1, and βMS
2 are referenced. In the lattice scheme only βlatt2

has been computed diagrammatically [35–37]. The value for
βlatt3 that we quote [4] was obtained by calculating the

normalization of the heavy quark pole mass renormalon and
then assuming the corresponding MS-scheme expansion to
follow its asymptotic behavior from orders α4s onwards.
Similar estimates, βlatt3 ≈ −1.37 × 106 up to βlatt3 ≈ −1.55 ×
106 were found in Ref. [38] using a very different method.
Note that the coefficients fðiÞn within Eq. (12) for i > 0

are entirely determined by fj and βj with j < n and ck with
k < n − 1. Equations (19–23) are the most general para-
metrization of the 1=N4 effects for any lattice action
using TBC.
Using the above conventions, the trace anomaly of the

energy-momentum tensor reads

hΩjTμμð0ÞjΩi ¼
�
Ω
���� βðαÞ4α

Gc
μνð0ÞGc

μνð0Þ
����Ω

�

¼ −
β0
8
hOGi; (26)

which in turn equals the expectation value of the
Lagrangian density times βðαÞ=α. In this paper we employ
the Wilson action, for which the discretized Lagrangian is
exactly proportional to the plaquette P, see Eq. (7), so that
the above relation—in this case between the plaquette and
a4hOGi—holds up to Oða6Þ corrections. This fixes the
Wilson coefficient exactly [39,40]:

CGðαÞ ¼ 1þ
X
k≥0

ckαkþ1

¼ −
β0α

2

2πβðαÞ

¼ 1 −
β1
β0

α

4π
þ β21 − β0β2

β20

�
α

4π

�
2

−
β31 − 2β0β1β2 þ β20β3

β30

�
α

4π

�
3

þOðα4Þ: (27)

Note that CGðαÞ is scheme dependent not only through α,
but also explicitly, due to its dependence on the higher
β-function coefficients β2 etc. The ck depend on the βi with
i ≤ kþ 1 via Eq. (27).
Finally, we consider 1=N6 effects. At this order the

number of terms and thus fit parameters grow quite rapidly.
Therefore, we do not attempt a complete study of the 1=N6

corrections, but aim at achieving a qualitative understanding
of the corresponding structure. The philosophy is the same
as above: we have to carry out the OPE program to the next
order. This means that we have to consider all gauge
invariant local operators of dimension six that are singlets
under the hypercubic subgroup H(4) of O(4).3 Three such
operators exist [41], one of which can be eliminated via the

3The matrix elements depend only on momentum scales much
smaller than 1=a. This is the reason we can use continuum
notations for the matrix elements. The physics associated to the
scale 1=a is encoded in the Wilson coefficients.
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equations of motion for on-shell quantities. We consider the
O(4) invariant hO6i ¼ hgG3i as one such example but in
principle a second matrix element needs to be added.O6 has
a nontrivial anomalous dimension complicating the loga-
rithmic corrections. The contribution of this term will be

δhPipertðNÞ ∼ 1

N6

�
1þ

X
k≥0

cð6Þk αkþ1ða−1Þ
�

× exp

�Z
αððNaÞ−1Þ

αða−1Þ

dα0

α0
ðγ0 þ γ1α

0 þ � � �Þ
�

×
X
n≥0

gnαnþ1ððNaÞ−1Þ: (28)

γ0, the one-loop anomalous dimension of O6, is known [42]
but not the higher orders in the scheme we use. The above
structure results in three new unknown parameters for each
additional power of α: one additional cð6Þk value for the
Wilson coefficient, one higher-order anomalous dimension
coefficient γj, and an additional gn value from the expansion
of hO6isoft.
Besides the OPE of the plaquette expectation value, we

also have to perform the OPE of the lattice action, to obtain
an effective action where only soft modes remain dynamical:

S ¼ 1

4

Z
d4xG2ðxÞ þ a2C6ða−1Þ

Z
d4xgG3ðxÞ þ � � � :

(29)

The dimension-six operators here are the same as those
considered above, since the symmetries are the same. Again
we focus on O6, which produces the following additional
contribution to PpertðNÞ:

~δhPipertðNÞ ∼ a6C6ða−1Þ
Z

d4yhT fG2ð0Þ; O6ðyÞgisoft

∼
1

N6

�
1þ

X
k≥0

~cð6Þk αkþ1ða−1Þ
�

× exp

�Z
αððNaÞ−1Þ

α

dα0

α0
ðγ0 þ γ1α

0 þ � � �Þ
�

×
X
n≥0

~gnαnþ1ððNaÞ−1Þ: (30)

The anomalous dimension is the same as that in Eq. (28), as
the operator is the same. Since we employ the plaquette
action, also the Wilson coefficient is identical to that in
Eq. (28) (~cð6Þk ¼ cð6Þk ) and differences between the soft
matrix elements can be absorbed into Eq. (28), redefining
gn þ ~gn↦gn. Therefore, no additional parameters are
required. The same arguments also apply to the second
independent operator of dimension six.4 Overall, at

Oð1=N6Þ we expect a total of six new parameters per order
in α, which exceeds our fitting capabilities. Therefore,
we do not attempt a more systematic study of the 1=N6

effects.

B. Nonperturbative OPE with TBC

Since in NSPT we Taylor expand in powers of g before
averaging over the gauge variables, no mass gap is
generated dynamically. It is interesting though to discuss
in what particular setting our results can be related to
nonperturbative results obtained by Monte Carlo lattice
simulations. In this case an additional scale ΛQCD ∼
1=ae−2π=ðβ0αÞ is generated dynamically. However, we can
always tune N and α such that

1

a
≫

1

Na
¼ 1

l
≫ ΛQCD: (31)

In this small-volume situation we encounter a double
expansion in powers of a=l and aΛQCD [or
ðlΛQCDÞða=lÞ]. The construction of the OPE is completely
analogous to that of Sec. III A above and we obtain5

hPiMC ¼ 1

Z

Z
½dUx;μ�e−S½U�P½U�

����
MC

¼ PpertðαÞh1i þ
π2

36
CGðαÞa4hOGiMC þOða6Þ: (32)

In the last equality we have factored out the hard scale, 1=a,
from the scales 1=ðNaÞ and ΛQCD, which are encoded in
hOGiMC. Exploiting the rightmost inequality of Eq. (31),
we can expand hOGiMC as follows:

hOGiMC ¼ hOGisoft½1þOðΛ2
QCDl

2Þ�: (33)

Hence, a nonperturbative small-volume simulation6 would
yield the same expression as NSPT, up to nonperturbative
corrections that can be made arbitrarily small by reducing a
and therefore l ¼ Na, keeping N fixed. In other words,
pNSPT
n ðNÞ ¼ pMC

n ðNÞ up to nonperturbative corrections.
We can also consider the limit

1

a
≫ ΛQCD ≫

1

Na
: (34)

This is the standard situation realized in nonperturbative
lattice simulations. Again the OPE can be constructed as in

4Note that this second dimension-six operator is not invariant
under O(4) spacetime rotations [41].

5In the last equality, we approximate the Wilson coefficients by
their perturbative expansions, neglecting the possibility of non-
perturbative contributions associated to the hard scale 1=a. These
would be suppressed by factors ∼ expð−2π=αÞ and therefore
would be subleading relative to the gluon condensate.

6Also in this case one encounters technical problems that are
resolved using TBC, see Ref. [43].
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Sec. III A and Eq. (32) also holds. The difference is that
now

hOGiMC ¼ hOGiNP
�
1þO

�
1

Λ2
QCDl

2

��
; (35)

where hOGiNP ∼ Λ4
QCD is the so-called nonperturbative

gluon condensate introduced in Ref. [10].
Finally, we reemphasize that Eq. (32) holds, irrespective

of ordering the scales according to Eq. (31) or to Eq. (34).
We further remark that the relation Eq. (27) for the Wilson
coefficient CG for the plaquette action also holds when
nonperturbative effects are included.

C. Perturbative and nonperturbative OPEs with PBC

In the case of PBC one encounters constant, i.e. zero,
modes. The effects associated to these are nonperturbative
in nature. They can be interpreted as introducing an extra
scale g1=2=ðNaÞ, besides the perturbative scales 1=a and
1=ðNaÞ. Therefore, with PBC, irrespective of how small
the coupling is, there are nonperturbative effects associated
with these modes,7 which will invalidate the perturbative
OPE of the plaquette with PBC. The violations of the
perturbative OPE will decrease with 1=N4 because the
relative measure of the zero mode contributions becomes
suppressed by this factor for large volumes. These effects
are then of the same order as those associated with hOGisoft.
Both contributions will undergo mixing and invalidate the
parametrization of the finite size effects Eqs. (19)–(23).
The OðαÞ zero mode contribution has been explicitly

computed in Ref. [29]. Generalizing this derivation to
higher orders in α becomes extremely complicated. In
particular one has to disentangle the contributions of the
different scales. Since it is not clear how to properly
account for the zero modes, in practice they are omitted
in diagrammatic PBC calculations or subtracted in NSPT
computations. In particular, the literature results of
pPBC
n ðNÞ that we use here do not include these contribu-

tions. Therefore, these literature values do not correspond
to any physical situation, except in the infinite volume limit
where zero modes can be neglected. In other words, the
coefficients pPBC

n ðNÞ cannot be obtained from a fit to
nonperturbative data (with infinite precision) of the pla-
quette computed in the situation

1

a
≫

1

Na
≫

g1=2

Na
≫ ΛQCD: (36)

This means that one cannot apply the standard OPE and the
finite size behavior of the pPBC

n ðNÞ is less well constrained
than in the TBC case. However, the leading-order correc-
tions will still scale as 1=N4, and they will be

logarithmically modulated. Given precise data and large
volumes, this may still suffice to extrapolate high-order
coefficients pnðNÞ to infinite N.

D. Phenomenological fits to PBC data

In order to confirm the validity of the interpolating
function and the perturbative OPE structure discussed
above, we perform a series of tests using the PBC data.
In particular we investigate numerically whether any 1=N2

effects, which are incompatible with the expected OPE
structure, may nevertheless be present in the data or in
diagrammatic lattice perturbation theory.
We start by studying the low-order coefficients obtained

using diagrammatic lattice perturbation theory. At OðαÞ
exact results can be derived both for PBC and for TBC:8

pTBC
0 ðNÞ ¼ 4

3
π; pPBC

0 ðNÞ ¼ 4

3
π

�
1 −

1

N4

�
: (37)

One consequence of using TBC instead of PBC is that the
one-loop behavior is flat: pTBC

0 ðNÞ ¼ pð∞Þ≡ p0. In Fig. 2
we compared our TBC p0ðNÞ data with the analytical value
and found agreement within errors down to the smallest
lattice volume, so finite volume effects are truly absent at
leading order.
The Oðα2Þ infinite volume coefficient was first com-

puted in Ref. [11] and with increased precision in Ref. [44].
We have recomputed it using the formulas of this last
reference together with the very precise lattice integrals of
Ref. [35], obtaining

p1 ¼ 5.355009398ð6Þ: (38)

In order to study the N dependence we have also computed
pPBC
1 ðNÞ for N ≤ 64 and high precision, using the formulas

given in Ref. [45]. From this analysis we conclude that to
this order there are no 1=N2 effects and we obtain

pPBC
1 ðNÞ ≈ p1 −

1

N4
½3.3 lnðNÞ þ 13.4� − 18

N6
; (39)

where we have fixed the p1 value to Eq. (38).
Comparing Eqs. (39) and (37) with Eq. (21), we observe

that the coefficient of lnðNÞ does not comply with the OPE
(3.3 ≠ β0f0 ¼ 22=3). This difference illustrates that we
cannot use the OPE with PBC after subtracting the zero
modes. The zero modes contribute to the OðαÞ constant as
well as to the logarithmic and constant terms at Oðα2Þ [at
higher orders the contribution could be more complicated,
due to the g1=2=ðNaÞ scale]:

7As with TBC, we could also admit ΛQCD into our consid-
erations as long as the hierarchy Eq. (36) is satisfied.

8We remark again that the PBC result is obtained omitting the
zero mode contribution.
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δpzero mode
1 ðNÞ ¼ 1

N4
½a lnðNÞ þ b� þO

�
1

N6

�
: (40)

This term was partially subtracted by omitting zero
momentum contributions to the lattice sums. In any case,
at present nothing about the coefficients a or b is known.
Based on this diagrammatic perturbation theory analysis for
PBC we conclude that there are no 1=N2 effects at OðαÞ or
at Oðα2Þ. We remark that there are indications9 that these
may also be absent at Oðα3Þ, for which the infinite volume
coefficient was first computed in Ref. [12] and with
increased precision in Ref. [44]:

p2 ¼ 27.1983ð9Þ: (41)

We now turn to the NSPT PBC data. These cover orders
up to α20. We have seen in Sec. II C (see Fig. 4) that the
dependence on 1=N is much more pronounced with PBC
than with TBC. While this additionally complicates the
infinite volume extrapolation of PBC results, it allows us to
identify the power scaling of the leading 1=N correction
with higher numerical significance than for TBC.
We attempt several fits to PBC N ≥ 4 data, assuming the

leading term to be of the form pn − fnðNÞ=Nd with
d ¼ 2; 4; 6, where we allow for two different parametriza-
tions of fnðNÞ: fnðNÞ ¼ const ¼ fn (no run), and fnðNÞ as
given in Eqs. (20)–(23) (run), setting cn ¼ 0. In each of
these parametrizations we encounter two fit parameters, pn
and fn, per order of the expansion. The resulting reduced χ2

values χ2red ≡ χ2=NDF (as a measure of the quality of the
respective fits) are shown in the second and third columns
of Table II. The numbers indicate that the parametrizations
work best for d ∼ 4. Higher and, most notably, lower values
of d are clearly ruled out by the data, irrespective of
including a running into the fnðNÞ or not. We also see that
for d ¼ 4 the data prefer “running” to “no running.”10

However, we have neglected the Wilson coefficient of
the gluon condensate (the ck), ignored the (unknown) effect
of the subtracted zero modes, and most of the literature data

are available only for rather small N (¼ 4; 6; 8, and 12).
Therefore, it is not surprising that the value χ2red ≈ 4.2 in the
best “running” d ¼ 4 case is still unsatisfactory. The
number of parameters needed to incorporate these effects
into the parametrization will quickly explode with the
order, turning a model-independent fit to PBC data impos-
sible for any realistic number of volumes.
We conclude that no 1=N2 terms exist and that some sort

of running of the 1=N4 term is required to describe the PBC
data. We take this as a confirmation of the theoretical
arguments presented in Sec. III A.

IV. INFINITE VOLUME COEFFICIENTS

In this section we determine the infinite volume coef-
ficients pn defined in Eq. (11), for 0 < n ≤ 34. For n ¼ 0,
we use the exact result p0 ¼ 4π=3. Our default fit function
for pnðNÞ is [see also Eq. (19)]

pnðNÞ ¼ pn −
fnðNÞ
N4

; (42)

where the fnðNÞ are defined in Eqs. (20)–(23). pnðNÞ
depends on the fit parameters pn, fj with j ≤ n, and ck,
with k ≤ n − 1. We know from diagrammatic calculations
that f0 ¼ 0. Since f0 ¼ 0, c33 does not appear in the fit. We
will also set c32 ¼ 0, as this coefficient cannot be para-
metrically distinguished from f34. For the β-function
coefficients that appear in our fit function, we will set
β0, β1, and β2 to their known values Eq. (25) (note that β2
depends on the scheme) and βi ¼ 0 for i ≥ 3. We also fix c0
and c1 to their known values of Eq. (27) (c1 is scheme
dependent too). Therefore, our default fit function depends
on a total of 34 pn coefficients, 34 fn coefficients, and 30
cn coefficients. This function with 98 free parameters
should describe all 35 orders of perturbation theory on
the volumes listed in Table I for any N bigger than a small-
volume cutoff ν ≤ N. Fifteen different volumes will con-
tribute to our primary fit described below.
The combined dependence on fj and ck introduces

strong correlations between different orders, which we
take into account by simultaneously fitting all pnðNÞ for
0 < n ≤ 34. Unlike in Ref. [3], we cannot, in a first sweep,
fit each new pnðNÞ independently with two new fit
parameters fn and cn−1, keeping the fj and ck values that
were obtained at previous orders k < j < n fixed and,
subsequently, run the fit to convergence. The reason is that
the ck nonlinearly couple different orders, which consid-
erably complicates the fitting procedure. Particularly prob-
lematic is the introduction of the ck for small values of k,
which makes finding stable solutions quite difficult (with a
large region of the parameter space of ck and fj producing
small variations of χ2red). This is so because the para-
metrization cannot easily distinguish between, for instance,
c0f33αða−1Þα34ððNaÞ−1Þ and f34α35ððNaÞ−1Þ, as the

TABLE II. Exploratory fits to PBC data and the resulting χ2red as
a measure of the fit quality. All fits have two parameters per order
n. The finite size correction is fnðNÞ=Nd. The second column is
for fnðNÞ with renormalization group running while the third
column is for constant fnðNÞ ¼ fn.

Power d χ2red (run) χ2red (no run)

2 63.40 20.19
4 4.24 7.45
6 11.01 22.79

9We thank H. Panagopoulos for this comment.
10The necessity of a logarithm was also clearly established in

the diagrammatic p1ðNÞ result Eq. (39).
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running of these two terms is very similar. This problem is
alleviated because we know c0 and c1 analytically.
Fortunately, as we increase the order k of ck the running
of different products ckfn−kαnða−1Þαn−kþ1ððNaÞ−1Þ
becomes more and more distinguishable.
Using the setup described above, we fit to subsets of data

constrained by N ≥ ν, and vary ν. We display some of these
results in Table III and use them to explore the validity
range of Eq. (42). Our “thermometer” for this will be to
obtain acceptable χ2red values and agreement with p1 and p2

from diagrammatic lattice perturbation theory. We find that
including small volumes improves the quality of the fit
down to a cutoff ν ¼ 9. For smaller values of ν the χ2red
values rapidly increase. This we interpret as becoming
sensitive to higher-order finite volume effects that are not

accounted for in our parametrization. Therefore, we take
the results from the ν ¼ 9 fit, which uses 365 data points, as
our central values.11

We now estimate the systematic12 errors. They are due
to our incomplete parametrization of the finite volume
corrections, since we have set higher β-function coef-
ficients to zero within the 1=N4 terms. Moreover, we
have ignored 1=N6- and higher-order finite volume
corrections.

TABLE III. χ2red and pn for different values of ν using the fit function Eq. (42). The n ¼ 0 values were fixed to the exact result. The
diagrammatic expectations are p1 ¼ 5.355009398ð6Þ and p2 ¼ 27.1983ð9Þ.
ν 13 11 9 7

χ2red 0.826107 0.768641 0.700803 0.863024
p0 4π=3 4π=3 4π=3 4π=3
p1 5.35606(66) 5.35539(25) 5.35522(13) 5.35509(12)
p2=10 2.71947(22) 2.71978(14) 2.719761 (94) 2.719752(81)
p3=102 1.80963(13) 1.809690(92) 1.809718(73) 1.809747(64)
p4=103 1.38319(23) 1.38324(14) 1.383242(90) 1.383285(75)
p5=104 1.15170(53) 1.15189(42) 1.15184(26) 1.15186(12)
p6=105 1.01632(63) 1.01650(52) 1.01678(35) 1.01670(16)
p7=105 9.3553(64) 9.3572(54) 9.3605(40) 9.3621(21)
p8=106 8.8936(53) 8.8949(44) 8.8971(35) 8.9025(23)
p9=107 8.6745(43) 8.6752(39) 8.6803(29) 8.6858(27)
p10=108 8.6358(74) 8.6370(67) 8.6441(53) 8.6532(45)
p11=109 8.744(14) 8.745(12) 8.7568(97) 8.7706(74)
p12=1010 8.977(25) 8.979(20) 8.993(16) 9.003(14)
p13=1011 9.331(38) 9.331(30) 9.350(23) 9.366(19)
p14=1012 9.805(54) 9.796(43) 9.827(33) 9.847(28)
p15=1014 1.0397(78) 1.0382(63) 1.0423(46) 1.0448(39)
p16=1015 1.111(12) 1.110(10) 1.1143(69) 1.1173(57)
p17=1016 1.196(19) 1.194(16) 1.201(10) 1.2041(84)
p18=1017 1.294(29) 1.294(26) 1.303(15) 1.307(12)
p19=1018 1.409(44) 1.416(39) 1.421(22) 1.426(18)
p20=1019 1.544(64) 1.554(57) 1.562(32) 1.567(25)
p21=1020 1.704(93) 1.723(82) 1.727(44) 1.731(35)
p22=1021 1.89(13) 1.93(12) 1.924(61) 1.922(48)
p23=1022 2.11(19) 2.20(16) 2.160(84) 2.143(69)
p24=1023 2.38(28) 2.54(23) 2.45(12) 2.40(10)
p25=1024 2.76(40) 3.02(33) 2.82(18) 2.71(15)
p26=1025 3.31(58) 3.71(50) 3.32(28) 3.10(24)
p27=1026 4.14(85) 4.79(87) 4.04(46) 3.60(40)
p28=1027 5.4(13) 6.6(17) 5.15(82) 4.32(67)
p29=1028 7.6(22) 9.6(33) 7.0(15) 5.5(11)
p30=1030 1.20(43) 1.55(67) 1.04(29) 0.76(21)
p31=1031 1.90(84) 2.5(13) 1.64(55) 1.15(38)
p32=1032 3.1(17) 4.3(26) 2.7(11) 1.90(70)
p33=1033 5.2(33) 7.3(52) 4.8(20) 3.3(14)
p34=1034 9.1(65) 13(10) 8.8(40) 6.4(27)

11We attribute the fact that χ2red < 1 to our possibly overcon-
servative error estimation for the pnðNÞ data.

12This means, systematic uncertainties other than those of the
finite Langevin step size discussed in Sec. II B above, which are
already included into our “statistical” errors.
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We determine the Oð1=N4Þ truncation uncertainties in
two ways. First we consider the differences between the
central values of the ν ¼ 9 and ν ¼ 7 fits shown in
Table III. The other possibility we explore is varying the
parametrization to check the robustness of our results. In
principle, the leading parametric uncertainty originates
from the omission of the higher-order β-function coef-
ficients: β3, β4, etc., which affect the log-structure of the
1=N4 corrections. Therefore, we perform alternative fits
either eliminating β2 (we also set β2 ¼ 0 in c1) or
incorporating βlatt3 [quoted in Eq. (25)] into our fits.
For the first case the outcome is given in the third column
of Table IV. We observe that the shifts are much smaller
than the statistical errors or the differences between the
ν ¼ 9 and ν ¼ 7 results. Including βlatt3 means including
the associated lnðNÞ running and fixing c2 to its value
Eq. (27). We display this result in the second column of

Table IV. The shifts of the pn are well below the
statistical errors, even at high orders. It is worth mention-
ing that the bulk of the changes is produced by fixing c1
or c2 to the values Eq. (27), while the different running is
a subleading effect. This explains why fixing β2 ¼ 0 had
little impact on the pn values: the ck (k > 1) were kept as
fit parameters. Since the differences between truncating at
β1, β2, or β3 order (see Table IV) can clearly be
neglected, we take the differences between the results
of the ν ¼ 9 and ν ¼ 7 fits displayed in Table III as our
systematic uncertainties and add these in quadrature to
the statistical errors of our parameters from the primary
ν ¼ 9 fit. The final results are shown in the last column
of Table IV. All results from fits with acceptable χ2red
values that we performed, including those displayed in
the two tables, perfectly agree within errors with these
final results.

TABLE IV. The same as Table III. ν ¼ 9, except for the first column: adding the 1=N6 term [Eq. (43)] and setting ν ¼ 8. Second
column: including βlatt3 of Eq. (25). Third column: setting βlatt2 ¼ 0. Last column: result of Table III, including systematic errors.

1=N6 β3 ≠ 0 β2 ¼ 0 Final result

χ2red 0.671138 0.70238 0.70026
p0 4π=3 4π=3 4π=3 4π=3
p1 5.35559(23) 5.35522(13) 5.35522(13) 5.35522(18)
p2=10 2.71974(14) 2.719762(94) 2.719761(94) 2.719761(95)
p3=102 1.80966(10) 1.809719(73) 1.809718(73) 1.809718(78)
p4=103 1.38317(15) 1.383248(90) 1.383244(90) 1.38324(10)
p5=104 1.15152(45) 1.15164(11) 1.15184(26) 1.15184(26)
p6=105 1.01617(55) 1.01694(32) 1.01677(35) 1.01678(36)
p7=105 9.3553(55) 9.3620(38) 9.3604(40) 9.3605(43)
p8=106 8.8924(44) 8.8978(34) 8.8970(35) 8.8971(65)
p9=107 8.6729(34) 8.6800(27) 8.6803(29) 8.6803(62)
p10=108 8.6331(61) 8.6425(50) 8.6440(53) 8.644(11)
p11=109 8.741(11) 8.759(10) 8.7565(97) 8.757(17)
p12=1010 8.980(19) 8.998(15) 8.992(16) 8.993(19)
p13=1011 9.339(30) 9.355(22) 9.350(23) 9.350(28)
p14=1012 9.819(45) 9.833(31) 9.827(33) 9.827(38)
p15=1014 1.0424(65) 1.0427(45) 1.0422(47) 1.0423(53)
p16=1015 1.1162(95) 1.1150(64) 1.1143(69) 1.1143(75)
p17=1016 1.204(14) 1.2024(91) 1.201(10) 1.201(11)
p18=1017 1.309(20) 1.305(13) 1.303(15) 1.303(16)
p19=1018 1.433(28) 1.424(20) 1.421(22) 1.421(23)
p20=1019 1.579(39) 1.565(28) 1.562(32) 1.562(32)
p21=1020 1.745(56) 1.727(41) 1.727(45) 1.727(44)
p22=1021 1.955(81) 1.921(56) 1.924(62) 1.924(61)
p23=1022 2.21(12) 2.155(77) 2.160(86) 2.160(86)
p24=1023 2.55(19) 2.44(11) 2.45(12) 2.45(13)
p25=1024 3.02(31) 2.80(16) 2.83(18) 2.82(21)
p26=1025 3.71(50) 3.26(23) 3.33(28) 3.32(35)
p27=1026 4.78(84) 3.92(37) 4.06(47) 4.04(63)
p28=1027 6.6(15) 4.92(63) 5.19(83) 5.15(12)
p29=1028 9.7(26) 6.6(11) 7.1(15) 7.0(22)
p30=1030 1.57(47) 9.6(21) 1.05(29) 1.04(40)
p31=1031 2.60(87) 1.49(40) 1.66(56) 1.64(74)
p32=1032 4.4(16) 2.46(76) 2.8(11) 2.7(13)
p33=1033 7.6(30) 4.2(15) 4.9(21) 4.8(25)
p34=1034 13.6(55) 7.7(29) 9.0(41) 8.8(46)
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The above error analysis is quite similar to the one we
did for the expansion of the Polyakov line in Ref. [3]. In
that case the systematic errors were dominant, and could
mainly be attributed to omitting higher β-function coef-
ficients. For the plaquette expansion the situation is quite
different: the systematic uncertainties are of the same size
as the statistical errors and are not dominated by the impact
of omitting higher β-function coefficients.
The main parametric uncertainty in our case is 1=N6

effects. Their significance should rapidly diminish as the
volume cutoff ν is increased. Therefore, the systematic errors
estimated above by varying ν should also account for the
truncation of the parametrization at Oð1=N4Þ. We will now
check this assumption by adding 1=N6 corrections. As
discussed in Sec. III A, we cannot include the most general
Oð1=N6Þ expression compatible with the OPE, which would
require six additional parameters for each order of the
expansion. Instead, we add the following simplified term:

δhPipertðNÞ ∼ 1

N6

X
n≥0

gnαnþ1ððNaÞ−1Þ: (43)

This is expected to be the main contribution according to the
renormalon analysis of Sec. V below. This term introduces
one new fit parameter per order of the perturbative expansion
and additional correlations between different orders through
the running of αððNaÞ−1Þ. We perform this fit for different
values of ν and display the result obtained for ν ¼ 8, which
produced the smallest χ2red value, in the first column of
Table IV. The differences between the central values of this
and our primary fit may be taken as estimates of the
systematic errors associated to the truncation of the para-
metrization at Oð1=N4Þ. We find these differences compa-
rable in size to those between the results of the ν ¼ 9 and
ν ¼ 7 fits, without the 1=N6 correction.
In Fig. 5 we compare the NSPT finite volume data with

different fit functions for a few representative cases.13 We
plot our primary fit function Eq. (42) with ν ¼ 9 and with
ν ¼ 7, and the fit function including the 1=N6 effect
Eq. (43) with ν ¼ 8. We also show our final results for
the infinite volume coefficients pn (last column of
Table IV), as well as the results from the fit including
the 1=N6 effects (first column of Table IV). From these
figures the change of the curvature of the fit function due to
the running of αððNaÞ−1Þ, that becomes more pronounced
as we increase the order n, is apparent. The increase in
curvature is expected from the asymptotic renormalon
analysis, see Sec. V below. We remark that the differences
between our larger lattices, i.e. 40 ≥ N ≥ 24, and the values
extrapolated to N ¼ ∞ are much smaller here than they

were in the case of the Polyakov line [3] where we went up
to Nð¼ NSÞ ¼ 16.
We now determine the infinite volume pn=ðnpn−1Þ

ratios. These can be obtained from the same fits, since
we have also computed the correlation matrices. The results
for different values of ν using our default fit function are
displayed in Table V. We find strong correlations between
the errors of consecutive expansion coefficients. Due to
these correlations, the infinite volume pn=ðnpn−1Þ ratios
are more precise than the coefficients themselves. We
compute the central values and the errors of the ratios in
the same way as we did for the coefficients. We show the
results for the different variations of the fit function we
discussed above in Table VI. Again in the last column we
display our final numbers. For the coefficients pn the
statistical and systematic errors were of similar magnitudes.
In the case of the ratios the total errors are dominated by
statistics. The systematics cancel to a large extent and also
the relative statistical uncertainties are somewhat reduced,
due to the above-mentioned correlations between sub-
sequent orders.
Whereas we could determine the coefficients pn and

their ratios with reasonable accuracy, this is not the case for
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FIG. 5 (color online). The TBC coefficients p19;24;29;34ðNÞ as
functions of 1=N. The solid line represents the fit function
Eq. (42) with ν ¼ 9, the dotted line Eq. (42) with ν ¼ 7, and the
dashed line Eq. (42) plus the 1=N6 term Eq. (43) with ν ¼ 8. We
also show (squares at 1=N ¼ 0) our infinite volume extrapola-
tions (last column of Table IV), as well as (circles) the infinite
volume extrapolations including the 1=N6 term (first column of
Table IV).

13We plot the data as a function of 1=N rather than of 1=N4, to
enhance the legibility. Otherwise all N ≥ 24 points would clutter
in the very left of the figure.
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the 1=N4 correction coefficients fn and cn: these become
compatible with zero within errors (albeit with central
values significantly bigger than the pn). However, these
parameters need to be included and their correlations are
important to achieve acceptable fit qualities.

V. ASYMPTOTIC BEHAVIOR OF THE
EXPANSION COEFFICIENTS

In this section we confront the infinite volume coeffi-
cients pn obtained in Sec. IV with their large-n dependence
expected from the renormalon picture. We start by present-
ing our theoretical expectations. Then we compare these
against the numerical data, extract the normalization of the
leading renormalon, and compare this with other determi-
nations. We conclude estimating the intrinsic ambiguity of
truncated perturbative series.

A. Renormalon analysis of the plaquette

The renormalon-associated large-n dependence of the
coefficients pn means the perturbative expansion of the
plaquette is asymptotically divergent and its summation
ambiguous. This ambiguity is not arbitrary but such that it
can be absorbed by higher-dimensional terms of the OPE,
in our case by the gluon condensate hOGi (of dimension
d ¼ 4) times its Wilson coefficient CG [see Eq. (32)].
This fixes the large-n dependence of the pn. Successive
contributions to the sum pnα

nþ1 should decrease for
increasing orders n down to a minimum contribution for
n0 ∼ 1=ðadβ0Þ, where ad ¼ β0=ð2πdÞ (for a more detailed
discussion see Sec. V D below). After this order the
series starts to diverge. Assuming the ambiguity of the
sum to be of the order of the minimum term we have
pn0α

n0þ1 ∼ exp½−1=ðadαÞ� ∼ Λd
QCDa

d, which can be
absorbed redefining the gluon condensate.

TABLE V. Ratios pn=ðnpn−1Þ for different values of ν using the fit function Eq. (42), in analogy to Table III. The expectations from
diagrammatic perturbation theory are p1=p0 ¼ 1.278414323ð14Þ and p2=ð2p1Þ ¼ 2.53952ð9Þ.
ν 13 11 9 7

p1=p0 1.27867(16) 1.278506(60) 1.278464(31) 1.278434(28)
p2=ð2p1Þ 2.53869(36) 2.53929(17) 2.53936(11) 2.539406(95)
p3=ð3p2Þ 2.21811(22) 2.21794(15) 2.21799(11) 2.21803(10)
p4=ð4p3Þ 1.91087(34) 1.91088(21) 1.91085(14) 1.91088(12)
p5=ð5p4Þ 1.66528(81) 1.66549(62) 1.66542(38) 1.66540(20)
p6=ð6p5Þ 1.4708(11) 1.47078(98) 1.47125(69) 1.47110(29)
p7=ð7p6Þ 1.3150(12) 1.3150(10) 1.31514(75) 1.31547(35)
p8=ð8p7Þ 1.18831(96) 1.18824(86) 1.18811(64) 1.18865(35)
p9=ð9p8Þ 1.08374(74) 1.08367(69) 1.08404(52) 1.08406(42)
p10=ð10p9Þ 0.99555(90) 0.99559(82) 0.99583(65) 0.99624(59)
p11=ð11p10Þ 0.9204(15) 0.9205(14) 0.9209(11) 0.92142(87)
p12=ð12p11Þ 0.8555(26) 0.8556(21) 0.8558(17) 0.8554(14)
p13=ð13p12Þ 0.7996(34) 0.7993(27) 0.7998(22) 0.8002(19)
p14=ð14p13Þ 0.7505(41) 0.7499(33) 0.7507(26) 0.7510(23)
p15=ð15p14Þ 0.7069(49) 0.7065(40) 0.7071(31) 0.7074(28)
p16=ð16p15Þ 0.6679(60) 0.6680(50) 0.6682(37) 0.6684(33)
p17=ð17p16Þ 0.6330(73) 0.6331(62) 0.6339(44) 0.6339(40)
p18=ð18p17Þ 0.6015(86) 0.6020(74) 0.6028(52) 0.6029(47)
p19=ð19p18Þ 0.573(10) 0.5758(88) 0.5742(61) 0.5743(54)
p20=ð20p19Þ 0.548(13) 0.549(10) 0.5495(70) 0.5495(62)
p21=ð21p20Þ 0.526(15) 0.528(11) 0.5263(78) 0.5260(70)
p22=ð22p21Þ 0.504(17) 0.510(13) 0.5063(87) 0.5049(79)
p23=ð23p22Þ 0.485(19) 0.495(14) 0.4883(97) 0.4847(90)
p24=ð24p23Þ 0.470(21) 0.482(16) 0.473(11) 0.467(11)
p25=ð25p24Þ 0.463(25) 0.475(20) 0.461(14) 0.452(13)
p26=ð26p25Þ 0.462(28) 0.473(27) 0.453(17) 0.440(16)
p27=ð27p26Þ 0.462(33) 0.478(38) 0.450(22) 0.430(20)
p28=ð28p27Þ 0.468(39) 0.489(49) 0.456(28) 0.429(26)
p29=ð29p28Þ 0.485(49) 0.505(59) 0.471(34) 0.438(32)
p30=ð30p29Þ 0.523(61) 0.537(61) 0.492(39) 0.459(38)
p31=ð31p30Þ 0.512(63) 0.527(60) 0.509(37) 0.489(37)
p32=ð32p31Þ 0.513(62) 0.528(57) 0.522(34) 0.517(33)
p33=ð33p32Þ 0.503(65) 0.519(57) 0.527(31) 0.535(31)
p34=ð34p33Þ 0.518(56) 0.530(46) 0.540(24) 0.566(26)
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For notational convenience we introduce the following
parametrization of the integrated inverse β function:

Λ ¼ μ exp

�
−
�

2π

β0αðμÞ
þ b ln

�
1

2

β0αðμÞ
2π

�

þ
X
j≥1

sjð−bÞj
�
β0αðμÞ
2π

�
j
�	

(44)

with14

b ¼ β1
2β20

; s1 ¼
β21 − β0β2
4bβ40

;

s2 ¼
β31 − 2β0β1β2 þ β20β3

16b2β60
:

(45)

Note that the expansion coefficients ck defined in Eq. (27)
are related to the above constants for the case of the Wilson
action:

c0 ¼ −b
β0
2π

; c1 ¼ s1b
�
β0
2π

�
2

;

c2 ¼ −2s2b2
�
β0
2π

�
3

:

(46)

The best way to quantify the asymptotic behavior of the
perturbative series is by performing its Borel transform:

B½Ppert�≡
X∞
n¼0

pn

n!

�
4π

β0
u

�
n
: (47)

The Borel transform of the expansion of the plaquette will
have a singularity, due to the dimension-four gluon con-
densate, at u ¼ d=2 ¼ 2:

B½Ppert� ¼ NP
1

ð1 − 2u=dÞ1þdb

�
1þ b1

�
1 −

2u
d

�

þ b2
db

db − 1

�
1 −

2u
d

�
2

þ � � �
�
; (48)

where (the second equalities apply to the Wilson action
case)

b1 ¼ ds1 þ
2πc0
β0b

¼ ds1 − 1; (49)

b2 ¼
4π2c1
β20b

2
þ ds1

�
ds1
2

þ 2πc0
β0b

�
− ds2

¼ ds1

�
ds1
2

− 1þ 1

db

�
− ds2: (50)

We skip the detailed derivation, which is quite standard
(see, e.g., Ref. [46]), and directly state the result of the
Borel integral for large orders n:

pn ¼n→∞NP

�
β0
2πd

�
n Γðnþ 1þ dbÞ

Γð1þ dbÞ
�
1þ db

nþ db
b1

þ ðdbÞ2
ðnþ dbÞðnþ db − 1Þ b2 þO

�
1

n3

�	
: (51)

Note that the parameters b1 and b2 that describe the leading
preasymptotic corrections depend on the expansion coef-
ficients c0 and c1 defined in Eq. (27), of the Wilson
coefficient of the gluon condensate.
In the lattice scheme the numerical values read15

platt
n ¼n→∞Nlatt

P

�
β0
2πd

�
nΓðnþ1þdbÞ

Γð1þdbÞ ×

�
1þ20.08931…

nþdb

þ 505�33

ðnþdbÞðnþdb−1ÞþO
�
1

n3

�	
: (52)

We observe that the preasymptotic corrections are quite
large, suggesting that high orders n > 20 are required to
reach the asymptotic regime. Regarding this, it is illus-
trative to show the corresponding expansion in the MS
scheme:

pMS
n ¼n→∞NMS

P

�
β0
2πd

�
n Γðnþ 1þ dbÞ

Γð1þ dbÞ ×

�
1 −

3.13653…
nþ db

−
1.1005…

ðnþ dbÞðnþ db − 1Þ þO
�
1

n3

�	
: (53)

In this case the 1=n corrections are much smaller, sug-
gesting the asymptotic regime to be reached at much lower
orders in the MS scheme (as was seen in Ref. [3] for the
expansion of the energy of a static source).
Note that NP dictates the strength of the renormalon

behavior of any quantity where the first nonperturbative
effect is proportional to the gluon condensate. Only the
preasymptotic effects will depend on the observable in
question, due to different Wilson coefficients. This moti-
vates us to define

NG ¼ 36

π2
NP; (54)

which is normalized in the same way as the gluon
condensate.
hPi is a well-defined observable: it can be unambigu-

ously computed in nonperturbative lattice simulations.
Only after performing its OPE, renormalon ambiguities
show up. They appear within individual terms of the OPE

14Note that the s2 we used in Ref. [3] equals bðs21=2 −
s2Þ=ðb − 1Þ defined here.

15The error of theOð1=n2Þ coefficient is due to the uncertainty
of βlatt3 , see Eq. (25).
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expansion but have to cancel in the complete sum.
Equation (51) incorporates the leading renormalon behav-
ior of Ppert, associated to the dimension-four (u ¼ 2) matrix
element. Dimension-six (u ¼ 3) and higher-order matrix
elements in the OPE will result in additional subleading
renormalon contributions to Ppert. These, however, are
exponentially suppressed in n, relative to the leading
renormalon, and can be neglected.
More delicate, and of higher practical relevance, is the

possible renormalon cancellation between dimension-four
and -six matrix elements. This corresponds to a renormalon
of dimension 6 − 4 ¼ 2 and implies that CGðαÞ may have a
renormalon itself to achieve this cancellation. From the
Borel plane point of view, we would then have

B½CG� ∼
1

1 − u
: (55)

Since the plaquette a−4P is a trivial multiple of the
Wilson gauge action Lagrange density, it can be related to
the trace anomaly:

a4hT latt
μμ i ¼

9βðαÞ
πα2

P: (56)

This equality can be used to define the β function in the
lattice scheme and this in turn allowed us to relate the
Wilson coefficient of the gluon condensate CG to the β
function in Eq. (27). Since each ck coefficient contains a
term proportional to βlattkþ1, the perturbative β function will
have a dimension-two infrared ambiguity, corresponding
to a renormalon at u ¼ 1. This can also be seen directly
starting from the expectation value of the trace of the
energy-momentum tensor Eq. (26): with the Wilson gauge
action this equals hT latt

μμ i up to a2hO6i-type corrections.
Defining the β function through the trace anomaly
Eq. (26) then results in the high-order behavior of the
coefficients βi to be determined by a dimension-two
renormalon. Note that this does not imply that expansions
of observables in terms of αða−1Þ are affected by this
singularity. However, running α to a different scale will
result in a u ¼ 1 divergent behavior. This should not come
as a surprise since also in nonperturbative lattice simu-
lations masses etc. are subject to Oða2Λ2

QCDÞ corrections
under changes of the lattice scale a. Note that the above
arguments are specific for the plaquette and the lattice
scheme. We would not expect the MS scheme β function
to receive renormalon contributions.
We could be worried about the existence of ultraviolet

renormalons in the perturbative expansion of the pla-
quette, which we have neglected in the above discussion.
However, we do not see any indication of alternating signs
in the expansion of the plaquette. Theoretically, this
absence of ultraviolet renormalons is expected since these
can only appear when integrating over momenta much
bigger than the scale of α. In our case this scale is 1=a,
which is close to the maximum possible momentum

ffiffiffi
4

p
π=a that can be realized on a four-dimensional lattice:

due to the hard cutoff perturbative expansions are ultra-
violet finite.
Renormalons are not the only possible sources of

divergences. However, other singularities, e.g., due to
tunneling instabilities are further removed from the origin
of the Borel plane. For instance, instanton contributions are
suppressed by factors ∼ expð−2π=αÞ for the case of TBC
on symmetric lattices [47,48] and, therefore, can only
appear at u ≥ β0=2 ≫ 2.
Finally, for the ratios Eq. (51) implies

pn

npn−1
¼ β0

2πd

�
1þ db

n
þ dbð1 − ds1Þ

n2

þ db½1 − 3ds1 þ d2bðs1 þ 2s2Þ�
n3

þO
�
1

n4

�	
:

(57)

The 1=n2- and 1=n3-correction terms depend on the
coefficients c0 and c1, which we eliminated from the above
equation via Eq. (46) [see also Eqs. (49) and (50)]. We
remark that Eq. (57) is a prediction, without any free
parameters, since NP cancels from the ratio.

B. Comparison to the numerical data

The infinite volume extrapolation of the pnðNÞ made
in Sec. IV only used the OPE structure of the finite size
effects. No assumption was made about the divergent
behavior of the perturbative series. We now compare the
extrapolated pn data with the renormalon-based expect-
ations at large orders n. We also determine the nor-
malization of the leading renormalon of the plaquette
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FIG. 6 (color online). The ratios pn=ðnpn−1Þ compared with the
prediction Eq. (57) for the LO, NLO, NNLO, and NNNLO of
the 1=n expansion. Only the “N ¼ ∞” extrapolation includes the
systematic uncertainties. We also show finite volume data for
N ¼ 28, and the result from the alternative N → ∞ extrapolation
including 1=N6 corrections. The symbols have been shifted
slightly horizontally.
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NP (and the associated one of the gluon condensate
NG ¼ ð36=π2ÞNP) and convert this into the MS
scheme.
In Fig. 6 we compare our infinite volume pn=ðnpn−1Þ

ratios summarized in the last column of Table VI, to
Eq. (57), truncating at different orders in the 1=n expan-
sion. As expected from the numerical values displayed in
Eq. (52), we see quite substantial differences between the
leading order (LO), next-to-leading order (NLO), next-to-
next-to-leading order (NNLO), and next-to-next-to-next-to-
leading order (NNNLO) curves. Therefore, in our Wilson
lattice scheme, we can only hope to detect the asymptotic
behavior for orders n≳ 20. Indeed, the data are in agree-
ment with the expectations for orders n ≥ 24. For the
highest three orders (n ≥ 32) the data are somewhat above
the expectation. However, these points are highly correlated
and at the very limit of what was achievable for us, so we
will not overinterpret this behavior.

In conclusion, the pn=ðnpn−1Þ ratios for n≳ 24 clearly
indicate the existence of a renormalon at u ¼ 2. The
coefficients pn are certainly diverging and their asymptotic
behavior is clearly inconsistent with other parametrizations,
e.g., a singularity at u ¼ 1. Unfortunately, we do not have
enough precision to quantitatively investigate subleading
1=n effects.
Next, we investigate the behavior of the finite size

effects. We expect the expansion coefficients of hOGisoft,
i.e. the fn of Eq. (15), to be governed by a dimension-four
(u ¼ 2) renormalon due to its mixing with the Wilson
coefficient of the unity operator, i.e. Ppert. On a lattice with
a fixed finite extent N the divergence of the fn will, at very
high orders, result in an exponentiation of the associated
logarithms, effectively canceling the 1=N4 suppression and
the divergence of the pn. This will then, in the absence of
nonperturbative terms, result in a convergent expansion of
hPipertðNÞ. Therefore, finite size effects are expected to

TABLE VI. Ratios pn=ðnpn−1Þ for different fits. For details see the caption of Table IV. In the last column we display the final values
including their statistical and systematic errors.

1=N6 β3 ≠ 0 β2 ¼ 0 Final result

p1=p0 1.278554(54) 1.278464(31) 1.278464(31) 1.278464(43)
p2=ð2p1Þ 2.53916(17) 2.53936(11) 2.53936(11) 2.53936(12)
p3=ð3p2Þ 2.21793(15) 2.21799(11) 2.21799(11) 2.21799(12)
p4=ð4p3Þ 1.91081(22) 1.91086(14) 1.91086(14) 1.91085(15)
p5=ð5p4Þ 1.66504(67) 1.66512(18) 1.66542(39) 1.66542(38)
p6=ð6p5Þ 1.47077(99) 1.47174(48) 1.47123(69) 1.47125(70)
p7=ð7p6Þ 1.3151(10) 1.31515(73) 1.31515(76) 1.31514(82)
p8=ð8p7Þ 1.18827(81) 1.18802(63) 1.18812(64) 1.18811(83)
p9=ð9p8Þ 1.08368(58) 1.08391(46) 1.08404(52) 1.08404(52)
p10=ð10p9Þ 0.99541(74) 0.99568(62) 0.99582(65) 0.99583(77)
p11=ð11p10Þ 0.9205(13) 0.9214(12) 0.9209(11) 0.9209(12)
p12=ð12p11Þ 0.8560(19) 0.8561(17) 0.8558(17) 0.8558(17)
p13=ð13p12Þ 0.8000(25) 0.7997(22) 0.7998(22) 0.7998(22)
p14=ð14p13Þ 0.7510(30) 0.7508(26) 0.7507(26) 0.7507(26)
p15=ð15p14Þ 0.7077(36) 0.7069(31) 0.7071(31) 0.7071(31)
p16=ð16p15Þ 0.6692(43) 0.6683(37) 0.6682(37) 0.6682(37)
p17=ð17p16Þ 0.6346(51) 0.6343(44) 0.6338(44) 0.6339(44)
p18=ð18p17Þ 0.6039(61) 0.6029(52) 0.6027(52) 0.6028(52)
p19=ð19p18Þ 0.5761(72) 0.5743(61) 0.5742(61) 0.5742(61)
p20=ð20p19Þ 0.5509(85) 0.5494(70) 0.5495(70) 0.5495(70)
p21=ð21p20Þ 0.5277(98) 0.5257(79) 0.5264(78) 0.5263(78)
p22=ð22p21Þ 0.508(11) 0.5056(87) 0.5064(87) 0.5063(88)
p23=ð23p22Þ 0.492(14) 0.4876(96) 0.4883(97) 0.488(10)
p24=ð24p23Þ 0.480(16) 0.471(11) 0.473(11) 0.473(12)
p25=ð25p24Þ 0.474(20) 0.459(13) 0.461(14) 0.461(16)
p26=ð26p25Þ 0.473(24) 0.449(15) 0.453(17) 0.453(22)
p27=ð27p26Þ 0.478(28) 0.445(19) 0.451(22) 0.450(30)
p28=ð28p27Þ 0.490(32) 0.449(24) 0.457(29) 0.456(39)
p29=ð29p28Þ 0.510(33) 0.463(29) 0.472(34) 0.471(47)
p30=ð30p29Þ 0.537(33) 0.484(34) 0.494(39) 0.492(51)
p31=ð31p30Þ 0.536(29) 0.502(33) 0.511(37) 0.509(42)
p32=ð32p31Þ 0.531(25) 0.515(29) 0.524(34) 0.522(34)
p33=ð33p32Þ 0.522(25) 0.521(28) 0.529(31) 0.527(32)
p34=ð34p33Þ 0.523(22) 0.537(23) 0.542(24) 0.540(35)
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become big for n≳ 24. To illustrate this, we also display
the finite volume N ¼ 28 data in Fig. 6. Indeed, for n≳ 24,
differences between the N ¼ 28 data and the N ¼ ∞
extrapolation become visible. This is discussed in detail
in Ref. [3] for the case of the expansion of the static energy.
In Eq. (76) of this reference β0 needs to be replaced by
β0=d, effectively quadrupling the order n where this effect
becomes relevant, and elnNS=NS replaced by e4 lnN=N4

accordingly. This behavior also results in a more pro-
nounced curvature of the fit function at large N values due
to the running of αððNaÞ−1Þ, as we increase the order n (see
Fig. 5). Nevertheless, for the plaquette, these running
effects get obscured by the u ¼ 1 renormalon of the
Wilson coefficient CG, since the ck saturate towards the
asymptotic behavior at lower orders than the fn and then
diverge more rapidly [ck ∼ kβ0=ð4πÞck−1 rather than
fn ∼ nβ0=ð8πÞfn−1]. However, in this asymptotic regime
the 1=N6 coefficients gn are also expected to diverge, the
associated logarithms to exponentiate and to cancel against
the ck=N4 and pn contributions.
Our fits are consistent with the above picture. We expect

that our primary fit, which does not incorporate Oð1=N6Þ
terms, only provides an effective parametrization of 1=N4

and 1=N6 renormalon-associated effects. We first observe
that setting the Wilson coefficient CG to 1, i.e. ck ¼ 0, we
cannot simultaneously account for the u ¼ 2 renormalon of
the fn parameters and for the effects of the u ¼ 1 renor-
malon on the ck parameters. Within our primary fit we
observe the central values of the parameters fn and ck to
grow much faster towards high orders than the pn coef-
ficients. This is consistent with the existence of a u ¼ 1
renormalon since, in the absence of 1=N6 terms, cancella-
tions have to take place between combinations of fn and ck
terms. In any case, we remark that the individual coefficients
all carry large relative errors of Oð1Þ. Therefore, these
statements are qualitative in nature rather than quantitative.
A reliable determination of the ck and fn coefficients (and
of their expected divergences) requires a full Oð1=N6Þ
analysis, with six additional fit parameters per order of the
expansion, which is beyond our reach. Instead, we partially
included the leading Oð1=N6Þ logarithms into our fits
according to Eq. (43). As a result, the growth of the ck
coefficients becomes more consistent with a u ¼ 1 renor-
malon. Also the gn values are observed to grow much faster
towards high orders than the pn coefficients. The coef-
ficients fn are comparatively smaller in size than the cn and
gn but larger than the corresponding pn. Also in this case, all
the finite size coefficients carry large relative errors ofOð1Þ,
making this discussion, at most, qualitative.
Fortunately, for the coefficients pn the 1=N6 effects are

only subleading and, as can be read off from Table IV,
their values change very little when adding some of these
higher-order effects. The errors of our infinite volume
coefficients pn in the last column of Table IV already
incorporate these systematics. We illustrate this by

including the extrapolation to infinite N, incorporating
a 1=N6 term (first column of Table VI), into Fig. 6. The
errors displayed in this case are only statistical.
It is worth mentioning that in the case of the static energy

studied in Refs. [2–4] the Wilson coefficient of the leading
(in this case d ¼ 1) finite volume correction was exactly 1.
Consequently, there were no ambiguities that had to be
absorbed by even higher-dimensional operators. Therefore,
the above complication was not encountered and we were
not only able to reliably determine the infinite volume
expansion coefficients but also the coefficients of the 1=N
finite volume correction term.

C. Determination of NP

To obtain the normalization NP we divide the coeffi-
cients displayed in Table IV by Eq. (51) truncated at
different orders in 1=ðnþ dbÞ labeled as [for consistency
with Eq. (57) and Fig. 6] NLO, NNLO, and NNNLO,
respectively. For large n values these ratios should tend to
constants, allowing us to extract NP. This is depicted in
Fig. 7. We observe the three data sets are compatible with
constant values for n≳ 24.16 In Fig. 7 we also observe that
truncating Eq. (51) at different orders in 1=ðnþ dbÞ
produces large corrections. Fortunately enough, however,
they follow a convergent pattern, with smaller differences
between the NNLO and NNNLO curves than between the
NLO and NNLO curves. We also note that in the range
25 ≤ n ≤ 30, where we regard the prediction as most
reliable, the inclusion of higher-order 1=n effects results
in a flatter dependence on n.
We take the value of the NNNLO evaluation for n ¼ 26,

where it exhibits a very mild maximum, as our central
value. For n < 25 we may not have reached the asymptotic
behavior whereas for n > 30 the results become less
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FIG. 7 (color online). NP determined from the coefficients pn
via Eq. (51) truncated at NLO, NNLO, and NNNLO. The green
box marks our final result quoted in Eq. (58). The data are slightly
adjusted horizontally.

16In the case of the static energy we obtained an extremely
clear plateau within small errors [2–4]. Unfortunately, in the
present case the errors grow quite rapidly for n≳ 30.
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meaningful, due to the exploding errors. The uncertainty of
the determination of NP is dominated by the preasymptotic
effects, which are large in the lattice scheme. We use the
difference between the NNNLO and NNLO determinations
at n ¼ 26 as an estimate for even higher-order effects and
add this in quadrature to the (comparatively small) error of
the NNNLO prediction:17

Nlatt
P ¼ 42ð17Þ × 104; Nlatt

G ¼ 1.54ð63Þ × 106;

NMS
P ¼ 0.61ð25Þ; NMS

G ¼ 2.24ð92Þ: (58)

For the last two equalities we have used the exact identity

NMS
P ¼ Nlatt

P Λ4
latt=Λ

4

MS
; (59)

where [35,49] ΛMS ≈ 28.809338139488Λlatt. Note that the
normalization of the plaquette renormalon in the MS
scheme is of Oð1Þ, as it is the case for the renormalon
of the heavy quark pole mass [cf. Eq. (105) of Ref. [3], or
Eq. (11) of Ref. [4]].
We have also explored alternative methods to determine

NP. One is using the relation

NP ¼ B½Ppert�ðuÞð1 − 2u=dÞ1þbdju¼2
(60)

to compute NP as a perturbative expansion in u [50].
However, this did not work, which may not be surprising
since the singularity is located at u ¼ 2, very far away from
the origin. One may also consider a conformal mapping to
move the singularity closer to the origin. Again, we do not
obtain the expected plateau behavior for the orders of the
expansion that we have at our disposal. This is consistent
with the analysis made in Ref. [3], where this method
became compatible with the asymptotic expectation only at
much higher orders (compare Fig. 12 with Fig. 14 of this
reference) than the method we outlined and employed
above. In Ref. [3] we were able to go to orders ðnþ 1Þ=d ≤
20 rather than ðnþ 1Þ=d ≤ 35=4 and ultimately found
agreement between the two determinations.
We now compare Eq. (58) with previous estimates

available in the literature. The large-β0 result can be found,
for instance, in Refs. [46,51]:

NMS
P;large−β0 ¼

e10=3

24π
≈ 0.37178: (61)

This is 40% smaller than our central value but within errors
still consistent with our result NMS

P ¼ 0.61ð25Þ.18 There

also exist estimates from the perturbative expansion of the
Adler function. In Ref. [18] the first four orders were used
to fit the expected leading renormalon singularities in the
Borel plane (see also the discussion in Ref. [52]). The result
was NMS

P ≈ 0.02 for nf ¼ 3. For the case of nf ¼ 0, which
corresponds to our setting, this model yields [53] NMS

P ≈
0.04 (note the strong dependence on nf). In Ref. [54] the
value 0.01 was obtained using the conformally mapped
version of Eq. (60) for the Adler function. We remark that
using the method of Ref. [54] we were not able to obtain the
renormalon normalization with our Oðα35Þ perturbative
expansion. While these numbers differ quite substantially
from each other, all of them are significantly smaller than
our determination. We believe that the main difficulty with
these analyses is that the perturbative expansion of the
Adler function is not known to sufficiently high orders to
probe the u ¼ 2 renormalon. Also in our case, see Fig. 7,
lower orders would have given smaller numbers. While it
should not be necessary to go up to n > 20 to detect the
renormalon in the MS scheme, also in this case orders 4
times higher than for the heavy quark pole mass renorma-
lon at u ¼ 1=2 probably are necessary.

D. Partial sum and minimal term

In the regime where the coefficients pn are dominated by
the renormalon behavior, we can determine the order n0
that corresponds to the minimal term of the perturbative
series from the analytical expectation Eq. (51). Minimizing
pnα

nþ1 results in

ðn0 þ dbÞ β0α
2πd

¼ exp

�
−

1

2ðn0 þ dbÞ þO
�

1

ðn0 þ dbÞ2
�	

:

(62)

This then gives the minimal term

pn0α
n0þ1 ¼ 2πd1=2þdb

2dbΓð1þ dbÞ

×
ffiffiffiffiffi
α

β0

r
NP exp

�
−
2πd
β0α

��
β0α

4π

�
−db

½1þOðαÞ�

≈
2πd1=2þdb

2dbΓð1þ dbÞ
ffiffiffiffiffi
α

β0

r
ðΛaÞ4: (63)

While the perturbative series is divergent, truncating it at
the order nmax ≃ n0ðαÞ,19

SPðαÞ ¼
Xnmax

n¼0

pnα
nþ1; (64)

results in a finite sum (this is equivalent to a particular
scheme to subtract the renormalon).

17Any other value within the range 25 ≤ n ≤ 30 agrees with
Eq. (58) within the error. This is a reflection of strong correlations
between the data.

18Note though that a different definition of the Borel transform
∼ ~NP=ða − 2ua=dÞ1þdb � � � in Eq. (48) would introduce arbitrary
factors adb, relative to this large-β0 result. 19In practice one would round nmax ¼ intðn0 þ 1=2Þ.
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By taking nmax ≃ n0 we minimize the dependence of the
series on the order at which it is truncated. We assign the
uncertainty of the sum due to the truncation to be

δSP ¼ ffiffiffiffiffi
n0

p
pn0α

n0þ1

≈
ð2πÞ3=2d1þdb

2dbβ0Γð1þ dbÞNPðΛaÞ4

≈ 12.06NPðΛaÞ4: (65)

This object is scheme and scale independent (to the 1=n
precision that we employed in the above derivation)
because, even though the normalization NP depends on
the scheme, the product NPΛ4 is scheme independent. A
higher-order calculation should yield an expression that is
proportional to the product of Eq. (65) and the Wilson
coefficient CG, since the ambiguity of the truncated sum
must cancel against a similar ambiguity of the contribution
from the gluon condensate.
In Fig. 8 we plot the combination

ffiffiffi
n

p
pnα

nþ1

ðΛaÞ4 ≈
ffiffiffi
n

p
pnα

nþ1e4½
2π
β0α

þb ln ð1
2

β0α
2π Þ−s1b

β0α
2π þs2b2ðβ0α2π Þ

2�

(66)

as a function of n where we substitute 1=ðΛaÞ4 by the
integrated four-loop β function of Eq. (44). For n≃ n0,

ffiffiffi
n

p
pnα

nþ1

ðΛaÞ4
����
n¼n0

¼ δSP
ðΛaÞ4 ≃ 12.06NP; (67)

so it should approach the value 12.06NP ¼ 5.1ð2.1Þ × 106

[Eq. (65) with the NP value of Eq. (58)] drawn as an error
band. The comparison is made for β ¼ 3=ð2παÞ ¼
5.3; 5.8; 6.3; 6.8, and 7.3. The three values β ¼ 5.8; 6.3,

and 6.8 are typical for present-day nonperturbative lattice
simulations, with inverse lattice spacings 1.4 GeV≲ a−1 ≲
6.4 GeV [55], while β ¼ 5.3 is in the strong-coupling
regime.
The corresponding n0 predictions Eq. (62) are, in

ascending order of the β values n0 ≃ 24; 26; 28; 30, and
33. In the figure we have multiplied the minimal term byffiffiffi
n

p
which then corresponds to the uncertainty of the

truncated series. Note that the variation of
ffiffiffi
n

p
for 24 ≤

n ≤ 33 can be neglected on the logarithmic scale of the
figure. As expected, the contributions to the sum decrease
monotonously down to the minimum at orders that, within
errors and for β ≥ 5.8, are consistent with the above
expectations on n0. Thereafter, the contributions start to
diverge.20 The ambiguity computed from the data agrees
perfectly with the prediction. This is quite remarkable, as
the sizes of the different terms of the perturbative series
cover several orders of magnitude.
The effect of truncating the integrated β function Eq. (44)

at different orders in Eq. (66) is sizeable because jβlatt2 j and
jβlatt3 j are numerically large and d ¼ 4. The 1=ðnþ dbÞ and
1=ðnþ dbÞ2 terms of Eq. (51) [for numerical values see
Eq. (52)] have the same origin. Including the s1α or s2α2

terms into Eq. (66) has a similar effect as the inclusion of
the 1=n or 1=n2 terms had on the determination of the
normalization NP, see Fig. 7. Therefore, best agreement is
achieved truncating Eq. (66) at the order in α associated to
the respective 1=n truncation of the NP determination. The
Wilson coefficient CG that we have ignored so far would
reduce the data points by only a few percent within the
range of couplings covered by the figure and can safely be
neglected.
It is interesting to see that the order at which the series

starts exploding can be delayed by decreasing the coupling,
i.e. going to larger β values, however, the ambiguity of the
expansion remains the same since its origin lies in the
inherent ambiguity of the definition of the nonperturbative
gluon condensate. We estimate this ambiguity using the
result Eq. (58) for NMS

G , the prefactor of Eq. (65), and the
value [55,56] ΛMSðnf ¼ 0Þ ¼ 0.602ð48Þr−10 ≈ 240 MeV:

δhOGiNP ≃ ð2πÞ3=2d1þdb

2dbβ0Γð1þ dbÞN
MS
G

����
nf¼0

Λ4

MS

¼ 27ð11ÞΛ4

MS
∼ 0.087 GeV4: (68)

nf ¼ 0 relates to the nf dependence of β0 and b. The above
value is bigger than standard estimates of the nonpertur-
bative gluon condensate [10] ∼0.012 GeV4, and indicates
that determinations of this quantity may significantly
depend on the way the perturbative series is truncated or
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FIG. 8 (color online). The combination
ffiffiffi
n

p
pnα

nþ1=ðΛlattaÞ4,
see Eq. (66), as a function of n for β ¼ 5.3; 5.8; 6.3; 6.8, and 7.3.
The error band corresponds to the theoretical expectation
12.06NP ¼ 5.1ð2.1Þ × 106 of Eq. (65), where we have used
the value of Eq. (58) for NP. The data sets have been adjusted
horizontally for better legibility. Note that the leftmost points
correspond to n ¼ 1.

20The exponential divergence was more clearly observed for
the static energy (see Fig. 15 of Ref. [3]), where the divergence is
expected to be stronger (u ¼ 1=2) and where we were also able to
compute a higher number of orders with n > n0.
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approximated. Note that the large-β0 limit of Eq. (68)
[using Eq. (61)] yields a considerably smaller number,
which, however, is still bigger than standard estimates:

δhOGiNP;large-β0 ≃
ð2πÞ3=2
β0

6e10=3

π3

����
nf¼0

Λ4

MS

≃ 7.77Λ4

MS
∼ 0.025 GeV4: (69)

Equations (68) and (69) have been computed for nf ¼ 0.

The prefactors multiplying NMS
G only show a mild nf

dependence in both cases. While the large-β0 limit of NMS
G

is nf independent, beyond this approximation the nf
dependence of NMS

G is unknown.

VI. SUMMARY AND CONCLUSIONS

The expectation value of the (infinite volume) plaquette
can be expanded as follows:

hPi ¼ PpertðαÞh1i þ a4
π2

36
CGðαÞhOGiNP þOða6Þ; (70)

where hOGiNP is the renormalization group invariant
definition of the nonperturbative gluon condensate and
CGðαÞ ¼ 1þOðαÞ is its Wilson coefficient. In our numeri-
cal stochastic perturbation theory simulation, we calculated
the coefficients pnðNÞ of the perturbative expansion

hPipertðNÞ ¼
X
n≥0

pnðNÞαnþ1 (71)

in lattice regularization with the Wilson gauge action up to
Oðα35Þ on lattices of up to 404 points, using TBC in three
directions. The choice of TBC turned out to be superior to
periodic boundary conditions, not only in terms of stat-
istical errors and reduced finite volume effects, but also
because only these boundary conditions allow for a
systematic analysis of finite volume effects in the frame-
work of the OPE. This enabled us to accurately obtain the
infinite volume extrapolation of the pn coefficients:

Ppert ¼ lim
N→∞

hPipertðNÞ and pn ¼ lim
N→∞

pnðNÞ; (72)

as well as of their ratios pn=ðnpn−1Þ. The results are
summarized in the last columns of Tables IV and VI. We
have analyzed their high-order behavior and found the pn
coefficients to diverge from orders n≳ 24 onwards in a
way consistent with a renormalon at u ¼ 2 in the Borel
plane, as expected from the dimensionality d ¼ 4 of the
gluon condensate. This is illustrated in Fig. 6. We stress that
we were only able to obtain this result after having achieved
both good theoretical control of finite volume effects and
computing the perturbative expansion to orders as high
as α35.

Furthermore, we have determined the normalization NP
of the corresponding renormalon [see Eqs. (48) and (51) for
its definition]:

Nlatt
P ¼ 42ð17Þ × 104: (73)

This can be converted from the lattice into the MS scheme
at arbitrary precision since the combination NPΛ4 is
scheme independent. We obtained NMS

P ¼ 0.61ð25Þ in
the MS scheme, which differs by 2.5 standard deviations
from zero. Still, a 40% error on NPΛ4 translates into a 10%
error on the d ¼ 1 combination N1=4

P Λ. Alternatively, we
can normalize the series accompanying h1i consistently
with respect to hOGi, to obtain the normalization of the
renormalon associated to the gluon condensate:

NMS
G ¼ 36

π2
NMS

P ¼ 2.24� 0.92: (74)

This is independent of any preasymptotic effects and
therefore of the observable in question. From this value
we can also estimate the intrinsic truncation ambiguity
of corresponding perturbative expansions, see Eqs. (65)
and (68),

δhOGiNP ≃ ð27� 11ÞΛ4

MS
: (75)

This is larger than standard estimates of the nonperturbative
gluon condensate [10] ∼0.012. Therefore, determinations
of this quantity may significantly depend on the way the
perturbative series is truncated or approximated. The above
value is by a factor of 3.5 bigger than the large-β0 result and
by about one order of magnitude larger than many previous
estimates of the ambiguity of the gluon condensate, see, for
instance, Eq. (5.12) of Ref. [46]. This is mainly due to the
large prefactor relating NP to δSP in Eq. (65), and NG to
δhOGiNP in Eq. (68). Finally, we remark that we obtained a
similar uncertainty just by computing

ffiffiffiffiffi
n0

p
pn0α

n0þ1 directly
from the data, see Fig. 8, thereby verifying this large
prefactor.
The magnitude of preasymptotic 1=n and 1=n2 correc-

tions was the main limiting factor for the precision of
Eq. (74). In our case, we suffered from large coefficients
jβlatt2 j and jβlatt3 j. This is not the case in the MS scheme.
Actually, there are strong indications (see, e.g., Ref. [57])
that renormalon dominance for the pole mass in the MS
scheme sets in already at orders as low as n≲ 2. Therefore,
in this scheme perturbative expansions of observables with
nonperturbative contributions from hOGiNP may show the
expected asymptotic behavior already for orders
n≲ 8 ≪ 24. However, a direct translation of the perturba-
tive coefficients from the lattice to the MS scheme is not
possible, since the necessary conversion is not known to
such high orders. In Ref. [3] we experimented with
resumming the expansion by redefining the coupling,
without changing the action or observable, so that it
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resembled a MS-like scheme. This resulted in an earlier
onset of the asymptotic behavior, however, at the price of
much larger statistical errors so that the determination of the
normalization could not be improved upon. Alternatively,
it is conceivable that other lattice discretizations with
smaller ΛMS=Λlatt ratios will have smaller high-order β-
function coefficients, resulting in renormalon dominance at
smaller orders n. In particular, the Oða2Þ Symanzik-
improved action [41,58] would be worthwhile to study.
Unfortunately, in this case fewer analytic and semianalytic
low-order results are available. Finally, we would also like
to stress that preasymptotic effects do not only depend on
the β-function coefficients but also on CG. Therefore, the
onset of renormalon dominance depends both on the
renormalization scheme and on the observable in question.
Our analysis may immediately impact phenomeno-

logical analyses in cases where the perturbative series is
sensitive to the gluon condensate renormalon. Even
though one should bear in mind that we have only
studied the pure gauge nf ¼ 0 theory, it is worth
mentioning that for the pole mass renormalon
(u ¼ 1=2) the nf dependence has been found to be
mild. In that case an analysis analogous to the one
performed in the present paper yielded a precision of
6% for the associated normalization NmΛ [4] for the

nf ¼ 0 theory. The resulting value was only 8% off of
the nf ¼ 3 result obtained in Ref. [57] from the pole
mass perturbative expansion (up to orders n ¼ 3) in the
MS scheme. It is also reassuring that the nf dependence
of the large-β0 result is under control [with a difference
of ∼20% between the nf ¼ 3 and nf ¼ 0 results of
Eq. (69)]. In any case, it would certainly be worthwhile
to repeat our investigation using a different gauge action
and incorporating fermions. Such future studies will not
change, however, the qualitative picture or the main
conclusions presented here.
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