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We study the Landau gauge gluon propagatorDðpÞ in the three-dimensional SUð2Þ lattice gauge theory.
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(in the infrared) from that calculated in the fundamental modular region Γ. Also we show that this
conclusion does not change when spacing a tends to zero.

DOI: 10.1103/PhysRevD.89.054504 PACS numbers: 11.15.Ha, 12.38.Aw, 12.38.Gc

I. INTRODUCTION

There are various scenarios of confinement based on
infrared behavior of the gauge-dependent propagators. For
example, in the Gribov-Zwanziger (GZ) confinement
scenario [1,2] the Landau gauge gluon propagator DðpÞ
at infinite volume is expected to vanish in the infrared limit
p → 0. At the same time, a refined Gribov-Zwanziger
(RGZ) scenario [3–5] allows a finite nonzero value ofDð0Þ.
The nonperturbative lattice calculations are necessary to
check the validity of each scenario as well as to check the
results obtained by analytical methods, e.g., the (truncated)
Dyson-Schwinger equations (DSE) approach. The DSE
scaling solution predicts that the propagator tends to zero in
the zero-momentum limit [6,7] in accordance with the GZ
scenario. Another decoupling solution [8–11] allows a
finite nonzero value of Dð0Þ in conformity with the
RGZ scenario.
The three-dimensional SUð2Þ theory can serve as a

useful test ground to verify these predictions. It is also
of interest for the studies of the high-temperature limit of
the four-dimensional theory. Last year the three-
dimensional theory was numerically studied in a number
of papers [12–18]. It was shown that the propagator has a
maximum at momenta about 350–400 MeV and that zero
momentum propagator Dð0Þ does not tend to zero in the
infinite-volume limit [14,18].
The Gribov copy problem still remains one of the main

difficulties in computation of the gauge-dependent objects
(for a recent review see [19], for the three-dimensional case
see, e.g., [18] and references therein).
The manifold consisting of Gribov copies providing

local maxima of the gauge-fixing functional and a

semi-positive Faddeev-Popov operator is termed the
“Gribov region” Ω, while that of the global maxima is
termed the “fundamental modular region” Γ ⊂ Ω [20].
Our gauge-fixing procedure is aimed to approach Γ.
In paper [21] it was claimed that although there are

Gribov copies inside the Gribov region Ω; they have no
influence on expectation values in the thermodynamic
limit, i.e., for any gauge noninvariant observable O,

hOiΩ ¼ hOiΓ: (1)

In our recent paper [18] we attempted to check this
statement. We calculated gluon propagators DðpÞ on
different lattices (for p ¼ 0 as well as for p ≠ 0) and then
extrapolated the values of D in the thermodynamic limit. It
was shown that in the thermodynamic limit L → ∞, Gribov
copies have a significant effect on the value of Dð0Þ.
Most of our calculations in [18] were performed at β ¼

4.24 (a ¼ 0.17 fm). The main goals of this paper are (a) to
find confirmation of our observations made in [18] employ-
ing different (larger) values of β and (b) to draw some
definite conclusions about the continuum limit of the
theory.
In Sec. II we introduce the quantities to be computed and

give some details of our simulations. In Sec. III we present
our numerical results. Conclusions are drawn in Sec. IV.

II. MAIN DEFINITIONS AND DETAILS
OF THE SIMULATION

We consider three-dimensional cubic lattice L3 with
spacing a. To generate Monte Carlo ensembles of ther-
malized configurations, we use the standard Wilson action,

PHYSICAL REVIEW D 89, 054504 (2014)

1550-7998=2014=89(5)=054504(7) 054504-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.054504
http://dx.doi.org/10.1103/PhysRevD.89.054504
http://dx.doi.org/10.1103/PhysRevD.89.054504
http://dx.doi.org/10.1103/PhysRevD.89.054504
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X
x;μ>ν

�
1 − 1

2
Tr

�
UxμUxþμ̂a;νU

†
xþν̂a;μU

†
xν

��
; (2)

where β ¼ 4=g2Ba, μ̂ is a vector of unit length along the μth
coordinate axis, and gB denotes dimensionful bare cou-
pling. Uxμ ∈ SUð2Þ are the link variables that transform
under local gauge transformations gx as follows:

Uxμ↦
g
Ug

xμ ¼ g†xUxμgxþμ̂a; gx ∈ SUð2Þ: (3)

In Table I we provide the full information about the
field ensembles used in this investigation. The scale is
set in accordance with [22], where string tension
is

ffiffiffi
σ

p ¼ 440 MeV.
We study the gluon propagator
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; (4)

where the vector potentials Aa
μðxÞ are defined as

follows [23],

Aμ

�
xþ μ̂a

2

�
≡X3

b¼1

Ab
μσ

b ¼ i
agB

ðUxμ −U†
xμÞ; (5)

and the momenta qμ take the values qμ ¼ 2πnμ=aL, where
nμ runs over integers in the range −L=2 ≤ nμ < L=2. The
gluon propagator can be represented in the form

Dbc
μνðqÞ ¼

(
δbcδμνDð0Þ; p ¼ 0;

δbc
�
δμν − pμpν

p2

	
DðpÞ; p ≠ 0;

where pμ ¼ 2
a sin

qμa
2

and p2 ¼ P
3
μ¼1 p

2
μ. For p ≠ 0 one

arrives at

DðpÞ ¼ 1

6

1

ðLaÞ3
X3
μ¼1

X3
b¼1

h ~Ab
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μð−qÞi; (6)

where

~Ab
μðqÞ ¼ a3

X
x

Ab
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exp
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iq
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2
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and the zero-momentum propagator has the form

Dð0Þ ¼ 1

9

1

ðLaÞ3
X3
μ¼1

X3
b¼1

h ~Ab
μð0Þ ~Ab

μð0Þi: (8)

In what follows we use the gluon propagator DðpÞ
normalized at μ ¼ 2.5 GeV, so that p2DðpÞ ¼ 1
for p2 ¼ μ2.
We employ the usual choice of the Landau gauge

condition on the lattice [23],

ð∂AÞðxÞ ¼ 1

a

X3
μ¼1

�
Aμ

�
xþ μ̂a

2

�
− Aμ

�
x − μ̂a

2

��
¼ 0;

(9)

which is equivalent to finding a local extremum of the
gauge-fixing functional,

FU½g� ¼
1

3L3

X
xμ

1

2
TrUg

xμ; (10)

with respect to gauge transformations gx.
To fix the gauge we choose for every gauge orbit a

representative from Γ [20], i.e., the absolute maximum of
the gauge-fixing functional FU½g�. This choice is well
consistent with a nonperturbative Parrinello-Jona-
Lasinio-Zwanziger gauge-fixing approach [24,25] which
presumes that a unique representative of the gauge orbit
needs the global extremum of the chosen gauge- fixing
functional. Also in the case of pure gauge Uð1Þ theory in
the Coulomb phase some of the gauge copies produce a
photon propagator with a decay behavior inconsistent with
the expected zero mass behavior [26–28]. However, the
choice of the global extremum permits to obtain the
massless photon propagator.

TABLE I. Values of lattice size, L, number of measurements
nmeas, and number of gauge copies ncopy used throughout this
paper.

β ¼ 7.09 (a ¼ 0.094 fm)
L nmeas ncopy aL [fm] pmin [GeV]

36 2000 160 3.38 0.365
42 2800 160 3.96 0.313
48 900 160 4.51 0.274
56 900 160 5.26 0.234
64 1200 160 6.02 0.205
78 900 280 7.33 0.168
92 1000 280 8.65 0.143
108 300 280 10.18 0.122

β ¼ 10.21 (a ¼ 0.063 fm)
L nmeas ncopy aL [fm] pmin [GeV]

36 2800 160 2.27 0.546
42 1600 160 2.65 0.467
48 2000 160 3.02 0.408
56 1400 160 3.53 0.350
64 1200 160 4.03 0.306
76 1100 280 4.80 0.258
96 1200 280 6.05 0.204

BORNYAKOV, MITRJUSHKIN, AND ROGALYOV PHYSICAL REVIEW D 89, 054504 (2014)

054504-2



For practical purposes, it is sufficient to approach the
global maximum close enough so that the systematic errors
due to nonideal gauge fixing (because of, e.g., Gribov copy
effects) are of the same magnitude as statistical errors. This
strategy was checked in a number of papers on four-
dimensional and three-dimensional theory studies for both
SUð2Þ [18,29–33] and SUð3Þ [34,35] gauge groups. For
recent alternative attempts, see [36–38].
The gluon propagator in the deep infrared region can be

reliably evaluated only when the effects of Gribov copies
are properly taken into account. The gauge-fixing pro-
cedure that we use was already successfully employed in
the four-dimensional theory at both zero [31,32] and
nonzero [33,34] temperature. There are three main ingre-
dients in this procedure: the powerful simulated annealing
algorithm, which proved to be efficient in solving various
optimization problems; the flip transformation of gauge
fields, which was used to decrease both the Gribov-copy
and finite-volume effects [31–33]; and the simulation of a
large number of gauge copies for each flip sector in order to
further decrease the effects of Gribov copies.
All details of our gauge-fixing procedure can be found,

e.g., in [18]. For the reader’s convenience, we will describe
it shortly here.
First, we extend the gauge group by the transformations

(also referred to as Z2 flips) defined as follows,

fνðUx;μÞ ¼

−Ux;μ if μ ¼ ν and xμ ¼ a;
Ux;μ otherwise

which are the generators of the Z3
2 group leaving the action

(2) invariant. Such flips are equivalent to nonperiodic gauge
transformations. A Polyakov loop directed along the trans-
formed links and averaged over the two-dimensional plane
changes its sign. Therefore, the flip operations combine the
23 distinct gauge orbits (or Polyakov loop sectors) of
strictly periodic gauge transformations into one larger
gauge orbit.
We use the simulated annealing algorithm, which was

found to be computationally more efficient than the use of
the standard overrelaxation (OR) only [30,39,40]. The
simulated annealing algorithm generates gauge transfor-
mations gx by MC iterations with a statistical weight
proportional to exp ð3VFU½g�=TÞ. The “temperature” T
is an auxiliary parameter which is gradually decreased in
order to maximize the gauge functional FU½g�. In the
beginning, T has to be chosen sufficiently large in order
to allow traversing the configuration space of gx fields in
large steps. T is decreased with equal step size. The final
temperature is fixed such that during the consecutively
applied OR algorithm, the violation of the transversality
condition

gBa2

2
max
x;c

jð∂AcÞðxÞj < ϵ (11)

decreases in a more or less monotonous manner for the
majority of gauge-fixing trials until the condition (11)
becomes satisfied with ϵ ¼ 10−7.
To finalize the gauge-fixing procedure, we apply the OR

algorithm with the standard Los Alamos–type overrelax-
ation. In what follows, this method is labeled “FSA”
(flipped simulated annealing). To demonstrate the effect
of flip sectors, we also use the gauge-fixing procedure
without flips, labeled “SA” (simulated annealing) (for
details see [18]).
We then take the best copy (bc) out of many gauge-fixed

copies obtained for the given gauge field configuration, i.e.,
a copy with the maximal value of the lattice gauge-fixing
functional FU½g� as a best estimator of the global extremum
of this functional.
To demonstrate the effect of Gribov copies, we also

consider the gauge obtained by a random choice of a copy
within the first Gribov horizon, the first copy (fc); i.e., we
take the first copy obtained by our gauge-fixing procedure.
It is instructive also to compare bc and fc propagators
with the worst copy (wc) propagators, which correspond to
the choice of the gauge copy with minimal value of the
gauge-fixing functional.

III. NUMERICAL RESULTS

To estimate the infinite-volume limits L → ∞ of the
zero-momentum gluon propagatorsDð0;LÞwe apply a few
different fit-formulas :
(A) c1 þ c2=L;
(B) c1 þ c2=Lþ c3=L2;
(C) c1 þ c2=Lγ;
(D) c2=Lγ ,

where c1; c2; c3 and γ are fit-parameters.
Calculations on rather large lattices (up to L ¼ 320) and

β ¼ 3.0 showed [14] that the fit-formula (A) works well for
large values of L (at least, in the minimal Landau gauge)
with nonvanishing value of Dð0; LÞ in the thermodynamic
limit (i.e., c1 ≠ 0). On the contrary, the fit-formula (D) used
in [16] (for comparatively small lattices) presumes that
Dð0;LÞ vanishes in the thermodynamic limit (c1 ¼ 0).
We apply these four fit-formulas toDfcð0;LÞ,Dbc

SAð0;LÞ,
and Dbc

FSAð0;LÞ. The comparison of different fits serves to
check the stability of the results.
Fit-formulas (A), (B), and (C) provide a good fit of

propagators with χ2=ndf ≤ 1.4. The best fit is provided
by formula (B), fit (A) is only slightly worse, both of them
give significantly smaller errors in the infinite-volume
extrapolation than fit (C).
In all three cases [i.e., (A), (B), and (C)] the values of

Dð0Þ in the thermodynamic limit differ from zero which is
in agreement with the statement made in [14,18].
In contrast, the quality of the fit with fit-formula (D) in

most cases is much worse (with χ2=ndf up to 15).
Therefore, we exclude fit-formula (D) from the further
consideration.
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The infinite-volume values of Dbc
FSAð0Þ obtained by fit-

formulas (A), (B), and (C) coincide within 1–2 standard
deviations for both values of β under consideration; the
same is valid also forDbc

SAð0Þ. The infinite-volume values of
Dfcð0Þ obtained by fit-formulas (A), (B), and (C) coincide
(within errorbars) only for β ¼ 10.21, whereas for β ¼ 7.09
they fall within 5 standard deviations. Such discrepancy can
be due to significant finite-volume contributions of the
order 1=L2 for small lattices.
We also checked the stability of the fit-parameters by

excluding the lattice of minimum volume from consider-
ation. Such an exclusion has a negligible effect on the fit-
parameters.
In Fig. 1 we show our values of Dð0;LÞ calculated for

β ¼ 7.09 (left panel) and β ¼ 10.21 (right panel) in the bc
FSA, fc, and wc FSA cases. The lines represent fits
according to fit-formula (A) (however, we note that in
the wc case the fit is unstable).
Moreover, Fig. 1 demonstrates another interesting phe-

nomenon: the Gribov copy influence remains rather strong
even in the thermodynamic limit. Indeed, the infinite-
volume extrapolation of Dfcð0Þ differs from infinite-
volume extrapolation ofDbcð0Þ. This difference is observed
for all values of β and all fit formulas in agreement with our
observation made in [18] for β ¼ 4.24.
Therefore, the expectation values over the Gribov region

Ω are different in the infrared from that calculated in the
fundamental modular region Γ that disagrees with the
statements made in [21]. This is the main result of our paper.
At the same time, as in [18] we found that while finite L

Dbc
SAð0; LÞ is higher than Dbc

FSAð0; LÞ, in the infinite volume
they coincide within error bars. This remarkable agreement
confirms the reliability of our estimation of Dð0Þ in the
infinite-volume limit.
For better illustration of our main result, we calculated

additionally the averaged difference between fc and bc
propagators normalized to Dbcðp;L ¼ ∞Þ;

WðpÞ ¼ DfcðpÞ −DbcðpÞ
Dbcðp;L ¼ ∞Þ : (12)

In Fig. 2 we show the dependence ofWð0Þ on the inverse
lattice size both for FSA and SA procedures. For FSA the
value ofWð0Þ decreases for rising size, while for SAWð0Þ
it grows. To fit data for Wð0Þ we used fit formulas (A) and
(B). The lines in Fig. 2 are for fit (B) since in this case it is
much better than fit (A).
For smaller volumes the values of Wð0Þ for the SA

procedure, WSAð0Þ, are close to zero (“Gribov noise”),
while WFSAð0Þ is at its maximum. The last observation
corresponds to strong effects of flip sectors (see, e.g., [18]).
However, with increasing volume, WSAð0Þ is increasing,
indicating the increasing role of the copies within a given
flip sector. Conversely, decreasing of WFSAð0Þ with
increasing volume implies that the role of the flip sectors
reduces.
Remarkably, in the limit L → ∞, the values WFSAð0Þ

and WSAð0Þ coincide (within error bars), which confirms
the reliability of our fitting procedure. Results for both
procedures imply a nonzero difference between fc and bc
values of the propagators of ∼30–40% in the thermody-
namic limit. Thus, the effect is very strong. Note that the
asymptotic value Wð0; L ¼ ∞Þ depends weakly (if at all)
on the value of the spacing a.
In Fig. 3 we show the momentum dependence of

Dbc
FSAðpÞ for three different values of β (i.e., for three

different values of spacing a). In all three cases the physical
volumes are approximately equal with aL≃ 6:0 fm. One
can see that the finite-spacing effects are very small for
large momenta and are still small (∼1–2%) for jpj≲
400 MeV if data for β ¼ 7.09 and β ¼ 10.21 are compared.
For larger values of jpj, finite-spacing effects are even
much less. We conclude that (at least) for β ¼ 10.21, we
can speak about the propagator Dbc

FSAðpÞ in the con-
tinuum limit.
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FIG. 1. Dð0Þ as a function of 1=aL for β ¼ 7.09 (Left) and for β ¼ 10.21 (Right). Lines show results of the fit to the function (A)
(however, we note that in the wc case the fit is unstable).
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Note that the propagator has a maximum at nonzero
value of momentum jpj ∼ 400 MeV. Therefore, the behav-
ior ofDðpÞ in the deep infrared region is inconsistent with a
simple pole-type dependence.
In Fig. 4 we compare the momentum dependence of the

bc gluon propagator calculated for four different volumes
for β ¼ 10.21. Apart from p ¼ 0 case, the finite-volume
dependence can be seen for comparatively small values of
momenta, i.e., jpj≲ 0.5 GeV. For larger values of
momenta, the volume dependence quickly disappears.
To compare Gribov copy effects for different values of L

and various momenta, we define the Gribov copy
sensitivity parameter ΔðpÞ≡ Δðp;LÞ as a normalized
difference of the fc and bc gluon propagators,

ΔðpÞ ¼ DfcðpÞ −Dbc
FSAðpÞ

Dbc
FSAðpÞ

; (13)

where the numerator is the average of the differences
between fc and bc propagators calculated for every

configuration and normalized with the bc (averaged)
propagator.
In Fig. 5 we show the momentum dependence of ΔðpÞ.

In the left panel ΔðpÞ for β ¼ 7.09 for two volumes is
depicted. As one can see, the Gribov copy influence is very
strong in deep infrared. For a given value of L, the
parameter ΔðpÞ decreases quickly with an increase of
the momentum. One can also see that for a fixed nonzero
physical momentum, ΔðpÞ tends to decrease with increas-
ing L. These observations are in agreement with the
observations made earlier in [18] and for the four-
dimensional SUð2Þ theory [32]. Quantitatively our results
for β ¼ 7.09 and β ¼ 10.21 satisfy the following con-
straint: ΔðpÞ ≲ 0.05 for pL≳ 10. In the right panel of
Fig. 5 ΔðpÞ for two lattices (L ¼ 64, β ¼ 7.09 and L ¼ 96,
β ¼ 10.21) with aL≃ 6 fm are presented. The data
indicate that ΔðpÞ does not decrease with decreasing a.
Figure 6 demonstrates the dependence of the zero-

momentum propagators Dð0Þ on spacing a in the thermo-
dynamic limit where the results of fit formula (B) were used
for L → ∞. As one can see, this dependence is rather weak
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FIG. 2. Wð0Þ as a function of 1=aL for β ¼ 7.09 (Left) and β ¼ 10.21 (Right). Lines show results of the fit to the function (B).
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taken from [18].
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when a → 0, and the values obtained at β ¼ 10.21 are very
close to the respective continuum limit values. We should
emphasize that our results for p ¼ 0 for all lattice spacings
(see also Fig. 1 and Fig. 2) as well as our results for small
nonzero physical momentum presented in [18] imply
that there are comparatively small nonzero momenta
where Gribov copy effects also survive in the
thermodynamic limit.
The last observation is essential also for the calculation

of, e.g., screening masses in four-dimensional theory at
nonzero temperature, where the momentum dependence of
the gluon propagator DðpÞ in the infrared region is
important.

IV. CONCLUSIONS

We investigated numerically the Landau gauge gluon
propagator DðpÞ in the three-dimensional pure gauge
SUð2Þ lattice theory. We have employed lattices with
various values of L for β ¼ 7.09 (a ¼ 0.094 fm) and

β ¼ 10.21 (a ¼ 0.063 fm). This work is the continuation
of our previous paper [18], where most calculations were
done for β ¼ 4.24 (a ¼ 0.17 fm).
The main goal of this work was to confirm our

observations made earlier in [18] employing larger values
of β and to draw some definite conclusions about the
continuum limit of the theory.
Special attention in this study has been paid to the

dependence on the choice of Gribov copies. To this purpose
we have generated up to 280 gauge copies for every
configuration. Our bc FSA method provides systematically
higher values of the gauge-fixing functional as compared to
the fc and bc SA methods. We stress that the choice of the
efficient gauge-fixing procedure is of crucial importance in
the study of the gluon propagator in the Landau gauge.
Our main results are the following:
(1) The Gribov copy effects are very strong in the deep

infrared region. Moreover, fc propagators do not
coincide with the bc propagators even in the infinite-
volume limitL→∞ (with differenceup to∼30÷40%).
Therefore, the expectation values over the Gribov
region Ω are different in the infrared from that
calculated in the fundamental modular region, i.e.,

hOiΩ ≠ hOiΓ; (14)

which does not confirm the statements made in [21].
(2) In the deep infrared the Gribov copy effects for DðpÞ

do not decrease with a decrease of the lattice spacing.
So, we conclude that the difference between averag-
ing over Gribov region Ω and fundamental modular
region Γ persists also in the continuum limit.

(3) We find strong indications that in the thermodynamic
limit L → ∞ the value of Dð0;LÞ differs from zero.
This is in agreement with the RGZ scenario and the
decoupling solution of DSE, and confirms the results
of numerical computations in Refs. [14,18].
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FIG. 5. ΔðpÞ as a function of p for two lattice sizes at β ¼ 7.09 (left) and for approximately equal physical lattice sizes at β ¼ 7.09 and
10.21 (right).
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With decreasing the lattice spacing a, the value of
Dð0;∞Þ does not show the tendency to decrease.

(4) Comparing results for β ¼ 10.21 and β ¼ 7.09, we
find that the finite-spacing effects for Dbc

FSAðpÞ
appear to be rather small in the infrared and they
are absent for large momenta (see Fig. 3 and Fig. 6).
Thus the data obtained for β ¼ 10.21 are a good
approximation for the continuum limit.
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