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Scattering lengths for two pseudoscalar meson systems
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Scattering lengths for two pseudoscalar meson systems, zz(I = 2), KK(I = 1) and zK(I = 3/2,1/2),
are calculated from lattice QCD by using the finite size formula. We perform the calculation with N, =
2+ 1 gauge configurations generated on 323 x 64 lattice using the Iwasaki gauge action and a
nonperturbatively O(a)-improved Wilson action at a~! = 2.19 GeV. The quark masses correspond to
m, = 0.17-0.71 GeV. For the zK(I = 1/2) system, we use the variational method with the two operators,
su and 7K, to separate the contamination from the higher states. In order to obtain the scattering length at
the physical quark mass, we fit our results at several quark masses with the formula of the O(p*) chiral
perturbation theory and that includes the effects of the discretization error from the Wilson fermion, Wilson
chiral perturbation theory. We found that the mass dependence of our results near m, = 0.17 GeV are
described well by Wilson chiral perturbation theory but not by chiral perturbation theory. The scattering

2)

lengths at the physical point are given as a; m, = —0.04263(22)(41), a(()1>m,( = —0.310(17)(32),
aS" g = —0.0469(24)(20), and a\/?u,x = 0.142(14)(27). Possible systematic errors are also

discussed.
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I. INTRODUCTION

The scattering length is a key quantity for understanding
the basic properties of the hadron interaction at low energy.
The lattice QCD calculations of the scattering length for
many scattering systems have been reported in the past
year. Most of the calculations employ the finite-volume
method of Liischer [1], in which the scattering phase shift is
related to the energy eigenvalue on a finite volume. In the
present work, we consider giving a lattice QCD calculation
on the scattering lengths for the zz(I =2), KK(I = 1),
7nK(I =3/2), and zK(I = 1/2) systems.

The S-wave zz system has two isospin channels (I = 0,
2). For the zz(I = 0) system, the time correlation function
has a disconnected quark diagram. The statistical error of
this diagram is very large and it makes a calculation of the
scattering length very difficult [2-5]. In the present work,
we do not study this channel. For the zz(I = 2) system,
whose interaction is experimentally known to be repulsive,
after pioneering works with the quenched approximation
[2,6-9], several authors reported the realistic calculations
with the various formulations of the dynamical fermion
[3-5,10-14]. For the S-wave KK (I = 1) system, only one
calculation has been reported by the NPLQCD
Collaboration [15]. The S-wave 7K system has two isospin
channels (I = 1/2, 3/2). For I = 3/2, the interaction is
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experimentally known to be repulsive. After working with
the quenched approximation [16,17], several calculations
with dynamical quarks were reported in Refs. [18-20]. For
I =1/2, the interaction is known to be attractive, and
existence of a scalar resonance with a broad width is
suggested. The NPLQCD Collaboration evaluated the
scattering length by using the chiral perturbation theory
with the low energy constants (LECs) obtained from the
lattice calculations of the decay constants f, and fg, and
the scattering length for the zK(I =3/2) system [18].
After this work, the direct calculations of the 7 =1/2
scattering length have been reported by some groups
[17,19,20].

Here, we note that all above calculations of the scattering
length were performed in the quark-mass range
m, > 0.24 GeV. A calculation near the physical quark
mass is desired to evaluate the reliable results at the
physical quark mass. In the present work, we calculate
the scattering lengths for the zz(l =2), KK(I =1),
zK(I=3/2), and zK(I =1/2) systems in m, =
0.17-0.71 GeV. For the zK(I = 1/2) system, where the
existence of a scalar resonance is suggested, the con-
tamination from the higher states might be non-negligible.
To separate the contamination, we use the variational
method with the two operators, su and zK. In order to
obtain the scattering length at the physical quark mass, we

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.89.054502
http://dx.doi.org/10.1103/PhysRevD.89.054502
http://dx.doi.org/10.1103/PhysRevD.89.054502
http://dx.doi.org/10.1103/PhysRevD.89.054502

SASAKI et al.

fit our results at several quark masses with the formula of
the O(p*) chiral perturbation theory (ChPT) and that
includes the effects of the discretization error from the
Wilson fermion, Wilson chiral perturbation theory
(WChPT). We found that the mass dependence of our
results near m, = 0.17 GeV can be described well by
WChPT, but not by ChPT.

This article is organized as follows. In Sec. II, we give
the brief description for the Liischer’s finite size formula
and the calculation method of the time correlation function.
We also give the simulation parameters. In Sec. III, we
show our results of the scattering length at several quark
masses. In Sec. IV, we discuss the quark-mass dependence
of our scattering lengths by using the O(p*) ChPT and
WChPT. In Sec. V, we evaluate the scattering lengths at the
physical point and discuss the possible systematic errors. In
Sec. VI, our conclusions are given. All calculations of the
present study have been done on the super parallel com-
puters, PACS-CS and T2K-Tsukuba at the University of
Tsukuba, and TSUBAME at the Tokyo Institute of
Technology. The preliminary results of the present work
have been reported in Ref. [21].

II. METHOD OF CALCULATION

A. Scattering length

The S-wave scattering phase shift §, for the system of
two spinless particles with masses m; and m, is related to
the energy eigenvalue on the finite volume by

[tan 80(k) /K]~ = Vazgoo(k; 1), (1)

where k is the scattering momentum related to the energy
by E = \/m? + k* + \/m3} + k%. The function gy (k; 1) is
given by the analytic continuation of

\24? Z (p2_k2)fz

Goo(k; 2) = —=- mnez?), (2

p=27n/L

which is defined for Re(z) > 3/2, where L is the spatial
extent. The scattering length is defined as

ay = ilfé tan 8y (k)/ k. 3)

In the case of an attractive interaction on a finite volume,
the lowest energy state has a negative k2, so that k is pure
imaginary. In this case, for L — oo, two situations can be
considered as
(a) k> = —«k? (k € R),

b) ¥*=0.
In (a), the system has a bound state whose binding
momentum is k. The § matrix
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sisy(k) _ L —tan 5o (k)

S pu— pu—
¢ i + tan 6y (k)

“

has a pole at k> = —«x?, and tan §,(k) converges to —i in
L — o0 [22,23]. In (b), the system has no bound state, but
only scattering states. In general, if the system has no
bound state, we can obtain the scattering length a, by
substituting k of the lowest energy state into Eq. (1) and
extrapolating it to L — oo regardless of whether the
interaction is attractive or repulsive.

B. Time correlation function

For the zz(I = 2) system, we extract the energy E from
the time correlation function

GO (1) = (012 (1. QP (1) 0). )
The operators Q) and Q) are defined by

QA(1),1) = a (1)t (1) - emati=0),

Q(Z)(IO) = Wﬂ* (fo + I)Wﬂ+ (IO)’ (6)

where 7" () is the local operator for the z* meson at the
time slice 7 with the zero spatial momentum and W - (¢) is
the wall-source operator at the time slice . In Eq. (6), the
time slice of one of the wall-source operator is shifted from
the time slice of another source operator 7, to avoid the
Fierz mixing of the wall-source operators [2]. In the
previous calculations, the time slice of the sink operators
are set at t; =t, and they simultaneously run over the
whole time extent. We call this calculation method “method
I” in the following. We also employ an another method,
where the time slice of one of the pions at #; is fixed and
only ¢ runs over the whole time extent. This method is
called “method II” in the following. In method II, we need
to set #; > ¢ to avoid contamination from higher energy
states produced by the operator at #. For f) <t < ty,
G?(t) can be written as

G(Z)(t) - Z<0’ﬂ+|”> <”|7[+‘E11><E11|Q(2)T|0> . G_E"U_IO)’

n

@)

where |z) is the pion state and where |E,,) is the nth energy
eigenstate of the two-pion state with the energy eigenvalue
E,. The exponential factor """ in the definition of
Q@)(z,,1) in Eq. (6) is introduced so that the operator
Q@)(1,,1) has the same time behavior as that of the usual
Heisenberg operator, i.e.,

0|QP)(#,,1) = (0|QP) (t,,1,)e 1=1) fort;>1.1,, (8)

with the Hamiltonian H.
For the KK(I = 1) system, we similarly extract E from
the time correlation functions
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G(1) = (01Q" (1, Q' (1)]0). ©)
QW) and Q) are defined by

Q(1.1) = K (1)K (1) -0,

QW (1g) = W+ (tg + 1) Wi+ (1o), (10)

where K7 (¢) is the local operator for the K™ meson at the
time slice 7 with the zero spatial momentum and W (¢) is
the wall-source operator at the time slice ¢.

Also for the zK(I = 3/2) system, we define the time
correlation function

G2 (1) = (0]Q52) (1, NQ2 (1) [0). (1)

where Q©/2) and QG/?) are defined by

Q1. 1) = %(F(n) (1) —
Q1) = su(),
a2 (1) = %(Wlﬁ(fo OWalt)

where K°(t) and 7°(¢) are the local operator for the K° and
7% meson at the time slice ¢ with the zero spatial
momentum, respectively. Wgo(z), W,o(t), and Wy, () are
the wall-source operators for the corresponding mesons at
the time slice ¢, respectively. The exponential factor

e”«(1=1) in the definition of Q(()l/ 2 (t,, 1) is introduced like
as for the other channels.

We construct the 2 x 2 matrix of a time correlation
function,

DM w)loy (i, j=0.1).
(14)

Gy (1) = 012" (n,

1

In method I the sink operators are set to the equal time slice,
t; = t, and they simultaneously run over whole time extent.
For the zK (I = 1/2) system, we need to repeat solving
quark propagators for the whole time extent as explained
later and the computational costs become huge. Thus, we
only employ method II for this channel. For 7y <t < 11,
G\

1

(1) can be written by
1/2 Zwm% (t— to) (15)

where
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QG2 (1, 1) = K (1))x* (1) - emxni=0),
QB2 (1) = Wi (tg + D)W (1). (12)

Next, we construct the time correlation function of the
zK(I = 1/2) system. If a resonance state exists and its
energy is not large for the energy of the lowest zK
scattering state, the single exponential behavior for the
time correlation function is seen only for a very large time
region. In this case, it is very difficult to extract the
scattering state with the small statistical error. In order to
overcome this possible problem, we use the variational

method [24] with two kinds of operators, Q(()l/ ?) and le/ 2
(Q(()l/z) and le/z))

VKO (1) (1)) - @m0,

—V2Wio(tg + D)W, (1)),

(13)

1 + 0 _ 0 t
W0n27§[<O|K |K)(K|2°|E,,) — V2(0|K°|K) (K|x*|E,)],

2
wi, = (0|Q"7|E, ).,
v, = (E,|QV|0). (16)

|K) is the kaon state and |E,,) is the nth energy eigenstate of
the zK state with the energy eigenvalue E,. We assume that
the lowest two states dominate the time correlation function
in a large time region. With this assumption, we can extract
the energy E, by a single exponential fit for two eigen-
values G, (t)(n =0,1) as

G,(t) = BV[[G"2 (tp)] 7' - G2 ()], = e Enl=0) | (17)

where Ev[M], means the nth eigenvalue of the matrix
M and tg is some reference time. The function G, (1)
is the time correlation function of an optimal operator ¢,
for the nth energy eigenstate |E,), whose property
is (0]¢p, (1)|E,;) = Sme™"".

Next, we explain the construction of the time correlation
functions by quark propagators. The time correlation
functions of the zz(l =2) and KK(I = 1) systems are
given by

054502-3



SASAKI et al. PHYSICAL REVIEW D 89, 054502 (2014)

G)(1) = GEZT (1) + GEaE (1) — G (1) Gt (1) = (X (11 |tg + 1)X"(t]t0) - €7 170),
— Gy (1), (18) Gz (1) = (X™(tltg + 1) X" (11 8) - e’"”'<’1")>
GEir (1) = (Te[U" (11 |20) U™ (1l10)] - = (070),
5 (1) = (Te[U" (1] 10) UM (11 ]19)] - e (1),
Gt (1) = (XX(11]t + 1)X* (t]1g) - ems170),
GEKZKK (1) = (XX (1]tg + 1) X (1,]10) - ems(071),
; B} ) GEEZFX (1) = (Te[U™ (11 |10) U™ (el - 7=,
GU(1) = KN (1) + RGN (1) — GEEKN (1 ) o
= t) = |t "1 |1 mgth=
_ chl)iZZKK(t)v (19) cr0s52 ( ) 1’[ | ) ( l| )] >
In Eq. (20) the angle bracket refers to the expectation value
over the gauge configurations, and the trace is taken for the
where color and spinor indices. The exponential factors e”(1—*)
b 7]
t t
Glaea1 (1) = H Glanas (1) =
t0+1 tO tg+1 tg
t ti
t t
Gawst (1) = Gaos2 (1) =
t0+1 tO t0+1 tO
b t
t t
Gliea1 (t) = ﬁ e () =
to+1 tU t0+1 tg
t t
t t
Gt (1) Glas2 (1) =
th+1 tO th+1 tO
t t 5}
t t t
Gl (1) Glaos™ (1) Gamnini' (1)
t+1 t, to+1 t r1 AL
t
t t
Gs’uaﬂtK (t) G7cK—>§u (t)
ty+1 ty+1 /"\3

FIG. 1.

b

List of the diagrams employed to calculate the time correlation function for the S-wave zz(I = 2), KK(I = 1), zK(I = 3/2),

and 7K (I = 1/2) systems. The thin (thick) lines represent the up/down (strange) quark propagators. The time runs upward. The circles
are the local operators for the 7z, K, and su mesons at the time slice specified in each diagram, and the squares are the wall-source
operators for these mesons. The open symbols mean the operators summed over y in Egs. (31) and (32).
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and e”«(1=) come from the definitions of Q) in Eq. (6)
and Q1) in Eq. (10), respectively. The indices / and s mean
the up/down and strange quark, respectively. X”(7|z,),
XX(t]t,), and U/1/>(1|t,) are defined by

X7 (1|t,) ZTr (0" (

Q'(x,

D@

)0 (x.11,)].  (22)

K(tty) ZTr 0 (

UR2(1)1,)

=22 Cdilx

X QG (x,

with the quark propagator with the wall source

)= (D Vis(xny.r)  (F=Ls). @4)

y

1)
t;) (fi.fa=1s). (23)

QAB(

where A, B, and C refer to color and spinor indices.

The quark diagrams for the components in Eq. (20) are
shown in Fig. 1. The thin (thick) lines represent the up/
down (strange) quark propagators. The time runs upward in
the diagrams. The circles are the local operators for the z,
|

GJrK—»ﬂK (Z)

direct

Grow ™ (1)

XK (1|10 +

o~ o~

Gﬂl(—»;rl( (l)

annihi

X

GEu—mK (Z)

X

GﬂK—>§u (l) —

X

ZTr[

X

G (1lt;)

P U e N

In Eq. (30) the exponentlal factor e”«(1~") comes from the
definitions of Q4/? in Eq. (12) and Q{"/? in Eq. (13).
V(x,1|t,) and W(x, s) are defined by

-1

X {ySZle(y9 Iy — l|ts)}CB7 (31)

1)X”(t]to) -
Te[U* (1)) U™ (219)] - &

> TrW(x. t]t [t + 1)V(x,

D T [WH(x ]ty |10 + 1)r5 Q' (x,

tS)YSQl( P
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K, and su mesons at the time slice specified in each
diagram, and the squares are the wall-source operators for
these mesons.

G2 () and GS;/ 2)(t) are constructed by

GU(1) = G (1) — GEES™ (1), (25)

direct

_ é GﬂK—»ﬂ'K( ),(26)

1
GnK—»n:K( ) +— G’Cfrlés_s’”K( ) 2 annihi

1/2
G(()O/ )( ) direct 2

3 -
G(()ll/z)(l‘) _ —\/;G““_)”K(l), (27)

Gl (1) =~

3 nK—5u
\/;G (1), (28)

G2 = Gty + 1), (29)

where

ek (11—’)>’
K'(tl_t)>’

+ 1)] . emK'(tl_Z>>,

] emwinn),

S THO (X, i + 15V (x. i + 1)),

zs)]>. (30)

Wap (X, t]t,|t,)

=22

X [YSQ‘ (y. talts)]cn (32)

Dhe(x.1y.1,)

where the square bracket in Eq. (32) is taken as the source
in solving the propagator. The quark diagram for the
components in Eq. (30) are plotted in Fig. 1. The open
symbols mean the operators summed over y in Egs. (31)
and (32). In method I, we must solve W(x, t|t|t, + 1) for
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each 7 in the calculation of GZX=7K(¢) and G**~"K (). On
the other hand, in method II, we need to solve it only once
at t;. Therefore, the computational cost is reduced for the
7K (I =1/2) system.

We solve four kinds of Q-type propagators in Eq. (24)
with (f,1,) = (I, 1y + 1), (s, 1o + 1), (L, 19), (s, 1y). We also
solve one W-type propagator in Eq. (32) with
(t,,t5) = (11,19 + 1). Thus, we solve five quark propaga-
tors for each configuration.

C. Simulation parameters

The calculations are carried out with Ny =2+ 1 full
QCD configurations generated by the PACS-CS
Collaboration [25] using the Iwasaki gauge action at
B =190 and nonperturbatively O(a)-improved Wilson
quark action with Cgy = 1.715 on a 32° x 64 lattice.
The lattice cutoff is a=' =2.194(10) GeV [a =
0.08995(40) fm] determined from the Q-baryon mass.
The spatial extent of the lattice is La = 2.878(13) fm
[26]. The statistical error of a is not included in the
following analysis. The quark-mass parameters, the corre-
sponding hadron masses, and the number of configurations
are listed in Table I.

The quark propagators are calculated with the same
action as the configuration generation. They are solved on
the configurations at every 20 trajectories for
K,qa = 0.13781, and 10 trajectories for the others. The
Dirichlet boundary condition is imposed for the temporal
direction and the periodic boundary condition for the
spatial directions. The wall source is used with the gauge
configurations fixed to the Coulomb gauge. The time slices
of the source operators are 7, = 12 and ¢, + 1 = 13, and
the time slice of the fixed sink operator is set at #; = 53. We
adopt 1 = 18 as the reference time for the diagonalization
for the zK(I = 1/2) system. The statistical errors are
evaluated by the jackknife analysis with a bin size of
110 MD time for x,,; = 0.13781, and 125 MD time for the
others. Here, the MD time is the number of trajectories
multiplied by the trajectory length z, which takes z = 0.25
for x,; =0.13781 and 0.13770, and 7= 0.5 for the
other «,,,.

We calculate the time correlation functions on the gauge
configurations shifted by 7;; in the temporal direction and

PHYSICAL REVIEW D 89, 054502 (2014)

take an average of them to improve the statistics. We use
T gnife listed in Table I, but do not include T g,;; = O for the
analysis of the KK(I = 1) system in all the quark masses.

III. RESULTS OF THE SCATTERING LENGTH

A. Time correlation functions and effective masses

The time correlation functions of the zz(l =2),
KK(I =1), nK(I=3/2), and zK(I =1/2) systems
which are defined in Egs. (5), (9), (11), and (14), are
plotted in the columns (a), (b), (c), and (d) of Fig. 2,
respectively. Each row in Fig. 2 represents the time
correlation functions for m, = 0.17, 0.30, 0.41, 0.57 and
0.71 GeV. For the repulsive channels, zz(I = 2), KK(I =
1) and 7K (I = 3/2), we employ both methods I and II for
the calculation of the time correlation function as explained
before. The two results are compared in the figure. For
zK(I = 1/2) plotted in column (d), the absolute values of
each component of |G(!/?)(¢)| are presented. As discussed
in the previous section, we employ only method II for this
channel. The open symbols represent the diagonal elements
of GU1/2)(¢). The filled symbols represent the off-diagonal
elements, whose signs are reversed.

The effective masses for the repulsive channel,
ar(l =2), KK(I=1), and zK(I =3/2) systems are
plotted in columns (a), (b), and (c) of Fig. 3, respectively.
Each row of Fig. 3 represents the effective masses for
m, = 0.17, 0.30, 0.41, 0.57, and 0.71 GeV. We show the
results with method I by squares and method II by circles.
We observe clear plateaus for all the cases. We also find that
the two methods give the same results of the effective
masses. This supports that our choice of 1; = 53 is enough
large for the dominance of the one particle state in the time
correlation functions.

For the 7zK(I=1/2) system, we calculate the
effective masses for the eigenvalues G, (1) =
EV[[G1/2) (1)1 - GY/2(1)], in Eq. (17) for the lowest
(n = 0) state and the next-lowest (n = 1) state. They are
plotted in columns (a) and (b) of Fig. 4. One sees that the
effective mass of the n = 0 state shows a clear plateau in
the small m, region (m, = 0.17-0.57 GeV), while it does
only a short plateau at the large m, (m, = 0.71 GeV). The
reason will be discussed in Sec. III C.

TABLE 1. The quark-mass parameters and corresponding hadron masses. We do not include T = O for the analysis of the
KK(I =1) system.

Kud Ky my [GCV] mg [GCV] Nconf Tshift

0.13781 0.13640 0.1661(58) 0.5594(23) 154 0, 16, 32, 48
0.13770 0.13640 0.2973(23) 0.5975(17) 800 0, 16, 32
0.13754 0.13640 0.4144(16) 0.6401(13) 450 0, 16, 32, 48
0.13727 0.13640 0.5746(13) 0.7190(12) 400 0, 16, 32, 48
0.13700 0.13640 0.7069(12) 0.7953(12) 400 0, 16, 32, 48
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(a) mn(1=2) (b) KK(I1=1)

PHYSICAL REVIEW D 89, 054502 (2014)
(d) nK(I1=1/2)

() K(1=3/2)

[ method |
r method Il

[ method | —e—
r method Il —e— -

[ method| —e—
r method Il —e—

method | —&—

method |
102+ method Il —e—

r method Il
1 1 1 1 1 1 1

!

method | —&—
r method Il —e—

T T T T T T g

method | —&—
 method Il —e—

method |
 method Il

T R R

method | —&—
 method Il —e—

[ method |
r method Il

| method | —e—
10| method Il —e— -

[ method| —e—
r method Il —e—

| method | —e—
10 [~ method Il —e— B

method |
[ method Il

o R R R R R R R

T T T T T

method | —&—
[ method Il —e—
L L L L L L L

-4 L L L L L L L L L L L L L L
10

0 8 16 64 0 8 16

64

0 8 16

FIG. 2. The time correlation functions for (a) the zz(I = 2), (b) the KK(I = 1), (c) the zK(I =3/2), and (d) the zK(I = 1/2)
systems at m, = 0.17, 0.30, 0.41, 0.57, and 0.71 GeV. In columns (a), (b), and (c), the results of the two methods, methods I (squares)
and II (circles), are shown. In column (d), the open symbols represent the diagonal elements of G(!/) (). The filled symbols represent

the off-diagonal elements, whose signs are reversed.

B. Scattering length for repulsive channels
[zz(I =2), KK(I =1) and zK(I = 3/2)]

For the znz(l =2), KK(I = 1), and zK(I = 3/2) sys-
tems, we extract the energy of the lowest state by a single
exponential fit for the time correlation functions, G®(¢),
G(1), and G2 (t) in Egs. (5), (9), and (11). As shown in
Sec. IIT A, the effective masses of the time correlation
functions obtained by methods I and II give the consistent
results. Thus, we average over the energies extracted from
these two time correlation functions. In Tables II, III, and IV,
we tabulate the fit range, the energy E, and the scattering
momentum k. We evaluate the scattering phase shift 6, (k) by
substituting k into Eq. (1), which is also tabulated in the tables.

In all the cases, tan J, is negative, so that the interaction is
repulsive. If the interaction between two particles is not
strong, then the scattering momentum |k?| takes a small value
and tan 8,(k)/k can be expanded in terms of k> as

ftan 8o(K) /™! = — 4 L rgk® + O, (33)
Cl() 2

where a, is the scattering length and r; is the effective range.
In the following, we assume that O(k?) and the higher terms
can be neglected in (33) at all m, for the repulsive channel,
and we regard the first term of (33) as the inverse of the
scattering length.
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FIG. 3. The effective masses in the physical unit (GeV) for (a) the zz(I = 2), (b) the KK(I = 1), and (c) the zK (I = 3/2) systems at
m, = 0.17, 0.30, 0.41, 0.57, and 0.71 GeV. The results of the two methods, methods I (squares) and II (circles), are shown.

C. Scattering length for the attractive G2 (1) o
channel [zK(I = 1/2)] Ri(1) = G(lll/z—)(t) . [e_(m,,—k—mx)(t—fk)]* (i=0,1),
ii R

In order to clearly show the contamination from the

n

= (1/2) -1.G01/2)
higher states for the zK(I = 1/2) system, we consider the D, (1) = EV[[GY P (1p)] - GH(1)]
ratios, e lmatme) =)=l (p = 0, 1). (34)

054502-8



SCATTERING LENGTHS FOR TWO PSEUDOSCALAR MESON ... PHYSICAL REVIEW D 89, 054502 (2014)

(a) TK(1=1/2) lowest (b) TK(I=1/2) next
1.200 T 1.440 T T
11209 ¢¢+ 4 1360 | B
> 1040 F J 1280 F ]

[

G o960 | J 1200 F ]

~

-

S 080k 4 1120 F E
Il 0.800 | (#)(H) 4 1.040 b
R 0
E o720 | 000oonoooo1mmili‘""'0""000"""" 4 o0.960 B

0.640 1 osso | ]

0560 T T P T VU VO T 0.800 T | A ST |

1.280 T T T T T T T T T 1.440 T T T T T T T T T

1200 F  ¢@ 4 1.360 F E
o)

> 1120 & 1 1280 | E
©

G 1040 F J 1200 F ]

o

@ 0.960 [ 4 1120 F ]

o o) 00000.."

I 0.880 000000000000000000000000( 00, 4 1.040 F 5
R
€ 0800 | 1 o.960 |

0.720 | J 0880 o %) b
0640 1 1 1 1 1 1 1 1 1 0800 O 1 1 1 1 1 1 1 1
1.440 T T T T T T T T T 1.440 T T T T T T T T T
1.360 [ 1 1360 F ]
> 120f o 1 1280 F (1)05151)4)4) ]
9)

G 1200F o 1 1200 + B

—

< 1120 F 4 1120 | B

ﬁ 1.040 1.040

. o o 0 0 1 o E
B Cﬁp
€ 090 o 1 o960 F o E
0.880 1 oss0 | ]
0.800 T T P T VU VO T 0.800 et et
1.760 T 1.760 T
1.680 [ J 1680 F ]
> 1600 J 1600 ]

[

G 520 J 1520 E

~

g 1.440Q 1 1440 | 3
o130 f @ ] 1360 F ®I¢t¢¢+ ]
R

o) 052000000 +
€ 1280 | 1 1280 | ® 3
1.200 [ d1200F © ]
1120 T T P TS T T 1120 TTRTTITE | P T P T
1.840 g T 1.840 T
1.760 | 1 1760 | E

> 1.680¢ 1 1680 F E
[

G 1600 1 1.600 | 3

~

1520 [ J 1520 F 000 ]
S 520 OO 520 000 0000"000
N0} ] L ]

I 1.440 m]%cl) 1.440
B (0]
£ 1360 F @ J 1380 F O E

®
1.280 [O q 1280 F ]
1.200 Lt TN PR 1.200 T T TS T P P IN I
12 16 20 24 28 32 36 40 44 48 52 12 16 20 24 28 32 36 40 44 48 52
t t

FIG. 4. The effective masses in the physical unit (GeV) for (a) the lowest zK (I = 1/2) (n = 0) and (b) the next-lowest zK (I = 1/2)
(n =1) systems at m, = 0.17, 0.30, 0.41, 0.57 and 0.71 GeV.

In Fig. 5, Ry(¢) (open circles), R;(¢) (open squares), Dy(f)  Ry(¢) in the right panel, which is different from the other
(filled circles), and D, () (filled squares) are plotted. Each  masses.

row of Fig. 5 represents the results for m, = 0.17, 0.30, We find that the difference between Ry () and Dy(¢) is
0.41, 0.57 and 0.71 GeV, respectively. Note that for  small for m, = 0.17-0.30 GeV in Fig. 5. This means that
m, = 0.71 GeV, R,(t) is plotted in the left panel and  the zK-type operator [Q(()l/ 2)] has a large overlap with the
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FIG. 5.

results at m, = 0.17, 0.30, 0.41, 0.57, and 0.71 GeV, respectively.

lowest (n = 0) state for the small quark mass. On the
other hand, at m, = 0.71 GeV, D(r) is very different
from Ry(¢) and is similar to R;(¢). This means that the
operator which has a large overlap with the n = O state is

the su-type operator [le/ 2>] for the large quark mass. We
can also read out this tendency from the effective masses.

t

R (1) (open circles), R, (¢) (open squares), D, (1) (filled circles), and D, (¢) (filled squares) are plotted. Each row represents the

As we have observed in Fig. 4, at m, = 0.71 GeV, the
statistical error of the effective mass of the n = 0 state is
larger than that of the next-lowest (n=1) state.
This can be attributed to a fact that G(lll/ 2)(z‘) has a
larger statistical error, and is the dominant contribution to
the n = 0 state.
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TABLEIL The energy E, the scattering momentum k, and the scattering phase shift 5, (k) for the lowest state of the S-wave zz(I = 2)
system. The fit range for the extraction of the energy E from the time correlation are also tabulated. E™® = 2m_ is also shown for a

guide.

Ky 0.13781 0.13770 0.13754 0.13727 0.13700
m, [GeV] 0.1661(58) 0.2973(23) 0.4144(16) 0.5746(13) 0.7069(12)
Fit range 22-42 23-43 2444 25-46 2546
[fiee [GeV] 0.332(12) 0.5947(47) 0.8288(32) 1.1492(26) 1.4137(25)
E [GeV] 0.347(10) 0.6024(49) 0.8357(33) 1.1543(27) 1.4180(25)
K2 [GeV?] 0.00256(25) 0.00229(23) 0.00285(18) 0.00292(18) 0.00302(11)
[tan 5, (k) /&] ! [GeV] —1.78(16) —1.96(18) —1.611(89) —1.574(87) —1.531(48)
[tan 5, (k) / k] [fm] —0.1113(97) —0.1010(92) —0.1225(68) —0.1254(70) —0.1289(41)
[tan 8, (k) /K] - m,, —0.0936(64) —0.152(14) —0.257(14) —0.365(21) —0.462(15)
8o (k) [deg] —1.64(22) —1.40(20) —1.90(16) —1.97(17) —2.05(10)
TABLE IIl. The same as Table II for the S-wave KK (I = 1) system (E™® = 2my).

Ky 0.13781 0.13770 0.13754 0.13727 0.13700
m, [GeV] 0.1661(58) 0.2973(23) 0.4144(16) 0.5746(13) 0.7069(12)
Fit range 22-42 23-43 2444 2546 2546
[fiee [GeV] 1.1188(46) 1.1950(35) 1.2802(26) 1.4381(24) 1.5905(24)
E [GeV] 1.1256(43) 1.2003(35) 1.2858(25) 1.4423(25) 1.5944(24)
K2 [GeV?] 0.00382(71) 0.00321(20) 0.00362(22) 0.00303(32) 0.00307(22)
[tan 5, (k) /&] ! [GeV] —1.26(20) —1.450(80) —1.306(70) —1.53(14) —1.510(94)
[tan 8o(k) /K] [fm] —0.158(25) —0.1361(75) —0.1511(80) —0.130(12) —0.1308(81)
[tan 6o(k) /K] - mg —0.448(71) —0.412(23) —0.490(26) —0.471(44) ~0.527(33)
[tan 6y (k) /K] - m, —0.133(19) —0.205(11) —0.317(17) —0.377(35) —0.468(29)
8o (k) [deg] —2.84(71) —2.24(19) —2.64(22) —2.07(30) —2.10(21)

We show the fit range, the energy E, and the scattering
momentum k in Table V for the lowest state (n = 0) and
Table VI for the next-lowest state (n = 1). We find that k2 is
negative and the interaction is attractive for the n = 0 state.
We evaluate the scattering phase shift §,(k) by substituting
k into Eq. (1), which are also tabulated in the tables. For the
n = 1 state at m, = 0.17 and 0.71 GeV, k? gets across the
divergence points of the function /4zmgy(k;1) within
the statistical errors and the values of [tan&,(k)/k]~!
diverge. For the n = 1 state at m, = 0.30 and 0.41 GeV,
k* gets across the zero points of \/4zgy(k; 1) within the

statistical errors and the values of tan&y(k)/k diverge. In
Table VI, these values are omitted.

In Fig. 6, the energy eigenvalues of then = 0and n = 1
states are plotted as a function of m2. The two dashed lines
are the energies of the n =0 and n =1 states for the
noninteracting 7K system, which are given by

El® = m, + my, (35)

Egree — \/m;[ + (ZH/LCI)Z + \/m%( + (277,'/L(1)2. (36)

TABLE IV. The same as Table II for the S-wave 7K (I = 3/2) system (E™ = m_ + mg). ux = mymg/(m, + my) is the reduced

mass of 7 and K.

Kud 0.13781 0.13770 0.13754 0.13727 0.13700
m, [GeV] 0.1661(58) 0.2973(23) 0.4144(16) 0.5746(13) 0.7069(12)
Fit range 22-42 23-43 24-44 25-46 25-46
Efre [GeV] 0.7261(82) 0.8949(38) 1.0545(28) 1.2937(25) 1.5021(24)
E [GeV] 0.7371(73) 0.9019(39) 1.0609(29) 1.2985(26) 1.5062(25)
K2 [GeV?] 0.00302(39) 0.00281(14) 0.00320(19) 0.00307(20) 0.00308(13)
[tan 5o (k) / k]! [GeV] —1.54(18) —1.629(70) —1.453(78) —1.509(86) —1.503(54)
[tan 50(k) /K] [fm] —0.129(15) —0.1212(52)  —0.1359(72)  —0.1309(75)  —0.1313(47)
[tan 8o (k) /K] - pek —0.0838(92)  —0.1219(54)  —0.1733(93) —0.212(12) —0.2491(91)
[tan 50(k) /K] - m,, —0.108(12) —0.1826(82) —0.285(15) —0.381(22) —0.471(17)
8o (k) [deg] —2.06(36) ~1.87(12) —2.23(19) ~2.10(19) —2.12(12)
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TABLE V. The same as Table II for the lowest (n = 0) state of the S-wave 7K (I = 1/2) system (E = m, + my) except for o (k).
oo(k) is a real function defined by the analytic continuation as tan ¢,/x = tan §y(k)/k (x> = —k?). It is noted that 6, (k) is not the

physical scattering phase shift.

Kud 0.13781 0.13770 0.13754 0.13727 0.13700
m, [GeV] 0.1661(58) 0.2973(23) 0.4144(16) 0.5746(13) 0.7069(12)
fit range 20-42 20-40 20-32 20-27 20-27
Efiee [GeV] 0.7261(82) 0.8949(38) 1.0545(28) 1.2937(25) 1.5021(24)
E [GeV] 0.7126(84) 0.8772(41) 1.0340(27) 1.2605(57) 1.413(15)
K2 [GeV?] —0.00323(59)  —0.00689(49)  —0.01018(78)  —0.0209(29)  —0.064(10)
[tan 5o (k) /k]™! [GeV] 1.07(23) 0.380(42) 0.184(32) —0.038(32) —0.239(26)
[tan 50(k) /K] [fm] 0.188(41) 0.520(59) 1.08(18) ~5.9(6.8) —0.826(89)
[tan 8o (k) /K] - ok 0.122(27) 0.523(60) 1.37(24) —10.(11.) —1.57(17)
[tan 8o (k) /K] - m,, 0.158(36) 0.784(89) 2.26(39) —17.(20.) —2.96(32)
oo (k) [deg] 3.12(98) 12.3(1.8) 28.8(5.1) —75.(11.) —46.68(74)

TABLE VL.  The same as Table II for the next-lowest (n = 1) state of the S-wave 7K (I = 1/2) system. We take E'™ = \/m2 + p* +

\/m% + p* with p = 2z/La.

Kud 0.13781 0.13770 0.13754 0.13727 0.13700
m, [GeV] 0.1661(58) 0.2973(23) 0.4144(16) 0.5746(13) 0.7069(12)
Fit range 20-42 20-40 20-32 20-27 20-27
Efree [GeV] 1.1679(40) 1.2600(26) 1.3693(21) 1.5563(21) 1.7322(21)
E [GeV] 1.16(18) 1.139(67) 1.246(42) 1.366(30) 1.507(10)
k2 [GeV?] 0.182(99) 0.116(37) 0.106(26) 0.047(20) 0.0036(78)
[tan 8, (k) /]! [GeV] 0.18(29) 0.10(15) —0.174(93)
[tan 5o(k) /K] [fm] —1.18(63)

[tan 8o (k) /K] - ok ~1.9(1.0)

[tan 5o(k) /K] - m, —3.4(1.8)

8o (k) [deg] —52.(20)

The continuous values of these for m2 are given by a linear
interpolation from the measured value of m%. From Fig. 6,
we find that the energies of the n = 0 states lie near Ef° in
the small m, region (m, = 0.17-0.41 GeV), while it is
lower than E* in the largest m, (m, = 0.71 GeV). The
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FIG. 6. The energies of the lowest state (circles) and the next-
lowest state (squares) for the zK (I = 1/2) system as a function
of m2. The energies of the free 7K system are also shown by
dashed lines.

energy of the n = 1 state lies near E'™ in the smallest m,,
(m, = 0.17 GeV). It deviates from E™¢, and gets closer to
Efr® for larger m,. We note that similar features of the
n =0 state in the scalar meson channel have already
reported in Refs. [27-30].
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FIG. 7. \/éf;;goo(k;l) (dashed line), and the results of
[tan 5y(k)/k]™" (open symbols) as a function of k*. A solid
line is tan &y(k) = —i which corresponds to a formation of the
bound state.
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TABLE VII.  The quark formulation, the number of flavor N, the lattice spacing a, the spatial extent La, and the pion-mass range of
the present and previous studies.
Quark formulation Ny a [fm] La [fm] m, [GeV]
The present work Improved Wilson 2+1 0.090 29 0.17-0.71
NPLQCD [12,15,18] Improved staggered (sea) + domain-wall (valence) 2+1 0.125 2.5 0.29-0.60
RBC and UK [3] Domain-wall 241 0.114 1.8 0.43-0.67
ETM [13] Maximally twisted-mass 2 0.067 2.1 0.31
0.086 2.1 0.39-0.49
0.086 2.7 0.27-0.31
Yagi et al. [14] Overlap 2 0.118 1.9 0.29-0.75
Fu [5] Improved staggered 2+1 0.12 2.7 0.24
24 0.32-0.37
0.15 3.0 0.24
2.5 0.33-0.46
Fu [19] Improved staggered 241 0.15 2.5 0.33-0.46
Lang et al. [20] Improved Wilson 2 0.124 2.0 0.27

In order to more clearly show this phenomena, we plot
[tan 5y(k)/k|]~! in Fig. 7, where the dashed line is the
function given by the right-hand side of Eq. (1). A solid line
istan §y(k) = —i. The n = 1 states at m, = 0.17,0.71 GeV
are not plotted because they are across the divergent points
of V4mgy(k;1). Because of the strong attraction,
[tan 5y (k)/k|~! of the n = 0 state changes the sign, and
tan 8y(k) = —i at m, = 0.71 GeV. This suggests a bound
state formation at m, = 0.71 GeV.

In the following discussion, we concentrate only on the
n = 0 state, because the statistics of the phase shift for the
n =1 state is not enough to analyze the quark-mass
dependence and obtain the value at the physical quark
mass. Figures 6 and 7 suggest that the values of the
scattering phase shift of the n =0 state for m, >
0.57 GeV might be strongly affected by the existence of
the bound state. In that case, we need the higher order term

of k* in Eq. (33) to obtain the scattering length. In the
present work, we assume that O(k?) terms in Eq. (33) can
be neglected for m, <0.41 GeV, and we regard
tan §y(k)/k as the scattering length aj.

D. Comparison with the previous
studies at several quark masses

In this section we compare our results with the previous
studies [3,5,12-15,18-20]. In Table VII, the quark formu-
lation, the number of flavor Ny, the lattice spacing a, the
spatial extent La, and the pion mass m, for the present

and previous studies are summarized. In Fig. 8, a(()z)m,,

for zz(l =2), a(ol)mK for KK(I =1), aéS/ )M”K for
zK(I =3/2), and a(()l/2>/4ﬂ,< for zK(I =1/2) are com-
pared for m, < 0.63 GeV, where u,x =m,mg/(m, +
mg) is the reduced mass of 7z and K. These calculations
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FIG. 8. Comparlson of the present results with the previous lattice studies [3,4,12-15,18-20]. a02>m for zx(l = 2), a(()]>mK
for KK(I=1),a / )/4,,,( for zK(I = 3/2) and af) /2 );4,,,( for zK (I = 1/2) are plotted. For Yagi et al. [14], the finite-volume corrected

values are plotted
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are performed with the different lattice spacings and quark
formulations. The strange quark mass is set near the
physical strange quark mass. In the figure, we find that
all the results for zz and KK systems are almost consistent.
Our results for the zK(I = 3/2,1/2) systems are reason-
ably consistent with the ones of the NPLQCD
Collaboration [18] and Lang et al. [20], while large
discrepancies from Fu’s results [19] are found. We can
consider some possible reasons for the discrepancies, e.g.,
the discretization error, but we need further investigation
for a conclusion.

IV. CHIRAL ANALYSIS
A. Chiral analysis with O(p*) ChPT

In this section, we investigate the quark-mass depend-
ence of the scattering lengths to evaluate the value at the
physical quark mass. For this purpose, first, we consider
the ChPT formulas in O(p*) given in Refs. [31-33]. The
scattering lengths of the zz(l=2), KK(I=1),
7K (I =3/2), and 7K (I = 1/2) systems can be written by

2 2
@  my 16 ms
4 M= e {_Hf_,% {m%'”‘?““(z)”’

(37

2 16 2
a(()Um s {—1 —[m%(-L’—%'L5+C(1)”,

=—FK -1+
B 16nf% Ik 2
(38)
Gy = Fak [ 16
O T 8afafk fefc 78
2 2
— w -Ls + g:(3/2)”7 (39)
Cl(l/z)ﬂ — IuJZZK 2+ 16 m-m 'L/
O T afafk T Sk U
2 2
+ 2% Ls+ §(1/2>”, (40)

where the formulas are written by O(p*) values of the
masses of the Nambu-Goldstone (NG) bosons (m,, and m )
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and the decay constants (f, and fg), which are not the
parameter of ChPT and depend on the quark masses. The
normalization of f, = 0.092 GeV at the physical point is
adopted. The constants L5 and

LlEle+2L2+L3—2L4—L5/2+2L6+L8 (41)

are the LECs defined in Ref. [31] at a renormalization scale
u. In the present work, we adopt u = 0.770 GeV.
¢@-(1).3/2).(172) are known functions with chiral logarith-
mic terms, which are given in the Appendix.

In the chiral analysis, we fit our results of the scattering
length with the ChPT formulas in Egs. (37)—(40) for all the
channels simultaneously, where the values of m,, mg, f,,
and fg in the formulas are fixed to the measured values by
the lattice calculations at each quark mass. The free
parameters in the fitting are the LECs (Ls and L’).

For the other fitting procedure, we rewrite the ChPT
formulas in terms of the the quark mass and the decay
constantat my = 0, F, and fit our results with the formulas,
regarding the LECs (L5 and L") and F as a free parameter of
the fitting. In this case the measured values of the decay
constants f, and fy are not used. However, it was shown
that using the measured values f, significantly improves
the convergence of the chiral expansion in the studies of the
zn(l = 2) scattering lengths in Refs. [12,13]. Motivated
from these studies, we adopt the chiral analysis with the
measured values in the present work.

Before showing the results of the chiral analysis, we
explain the decay constant used in the present work. The
values of f, and fx in the same lattice setup have been
calculated in Ref. [25]. They are defined in the normali-
zation with f, = 0.130 GeV at the physical point and
evaluated with the perturbative renormalization factor ZF.
In the present work, we convert them to the values in the
normalization with f, = 0.092 GeV, and also to the values
evaluated with the nonperturbative renormalization factor
Z\P by multiplying ZY*/(uyZ%). Here, uy = P'/* is the
correction factor of the tadpole improved renormalization
with plaquette value P and takes uy, = 0.86968135
(Ref. [34]). The renormalization factors are given by Z§ =
0.94279347 in Refs. [35-37] and Z)* =0.781(20) in
Ref. [34]. Converted values of f, and fx used in the
present work are listed in Table VIII. Here, the systematic
uncertainty for the determination of the renormalization
factor ZJF is added to the statistical errors in quadrature.

Here, we show the results of the analysis with the ChPT
formulas of Egs. (37), (38), (39), and (40). In the fitting,

TABLE VIII. The values of f, and fx used in the present work.

m, [GeV] 0.17 0.30 0.41 0.57 0.71
[ [GeV] 0.0969(57) 0.1030(29) 0.1105(29) 0.1260(42) 0.1327(38)
fx [GeV] 0.1148(35) 0.1195(32) 0.1246(33) 0.1353(41) 0.1392(40)
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FIG.9. Fitting results of the O( p4) ChPT fit with the data sets A, B, and C. The data are represented by circles, and those used in the fit
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correlations among the scattering lengths for the the
different channels are taken into account by the covariance
matrix among them. The statistical errors of the fitting
results of LECs are evaluated by the jackknife method. The
errors of [, and f are not included. The systematic error
from the uncertainty for f, and fx is discussed in
Sec. VB 3.

It was found in Ref. [25] that the formulas of O(p?)
ChPT describe the quark-mass dependence for m,, mg, and
fr in m; <041 GeV, and fx in m, <0.30 GeV well.
From this, we consider that the formula of O(p*) ChPT can
be safely applied to our scattering length in these mass
ranges. In the present work, for the repulsive channels, we
analyze the following data:

a?’m, for m, = 0.17,0.30,0.41 GeV,

al!'my  for m, = 0.17,0.30 GeV,

(3/2)

aS ux  for m, =0.17,0.30 GeV.

(42)
For the 7K (I = 1/2) system, in the continuum theory, it is
known that the convergence of the ChPT is not good
compared with those for the repulsive channel. Thus, we
need to test the convergence of the ChPT formula in this
channel. In the present work, we consider the following
three data sets of a(()]/ 2 M.k with the data in Eq. (42) for the
chiral analysis, and investigate the stability of the fitting.

data set A: not data,
data setB: m, = 0.17 GeV,

data setC: m, = 0.17,0.30 GeV, 43)

where these data sets are called data sets A, B, and C.
In Fig. 9, we plot the fitting results of the ChPT formulas
with the data sets A, B, and C. In all the cases, the ChPT
formulas reproduce the data for a(()z)m,[ in m, = 0.30,
0.41 GeV, aél)mK, a(()3/2 Mux, and ag’ Tppg at m, =
0.30 GeV well. At m, = 0.17 GeV, however, the fitting
results for some channels are not consistent with the data
points. The deviation between the data and the fitting
results can be also seen in the values of ¥2/Nq ot (Ngos is
the degrees of freedom in the fit), which are plotted in
Fig. 10 together with results of LECs (10°-Ls and
10° - L'). For each data set, y* /Ny, ¢ takes a huge number,
O(10). This shows that the fitting with the O(p*) ChPT

PHYSICAL REVIEW D 89, 054502 (2014)

formulas in Egs. (37)—(40) does not work for our results of
the scattering length.

B. Chiral analysis with O(p*) WChPT

The scattering length vanishes in the chiral limit due to
the chiral symmetry. But, for the Wilson fermion, it does
not vanish due to the explicit chiral symmetry breaking
from the Wilson term. We consider that an effect of this
symmetry breaking causes the discrepancy between the our
data and the formulas of ChPT. In order to investigate this,
we need to consider the ChPT including the effect of the
explicit chiral symmetry breaking, which has been pro-
posed in Refs. [38—44], and usually called the WChPT. The
WChHPT formula for the a(()z) m,, has been given by Ref. [45]
in the case of Ny = 2. Here, we extend it to the WChPT
formulas for the other scattering systems in the case
of N f = 2 + 1.

When we apply the WChPT to a chiral analysis, we
choose an appropriate order counting rule for the quark
mass mg and the lattice cutoff a for our lattice data. Our
calculations are done with the nonperturbatively O(a)-
improved theory; thus, we treat only the terms higher than
O(a?) in the Lagrangian. In the present work, we adopt the
following counting rule:

CR1
LO: p* m,
NLO: p*, p*mq, m3, a*. (44)

In the following, we call this counting rule CRI. A
dependence of the choice of the counting rule will be
discussed in the next section.

In this counting rule, the scattering lengths for the
ax(I=2), KK(I=1), zK(I =3/2), and zK(I =1/2)
systems are given by

2

2) 2) c2a

ag My = dy mﬂ'ChPT - 1671’f2 ) (45)
() 0 ¢’
ay'myg = ay mg|cppr — 167/ (46)
X
(3/2) (3/2) Y
ay' “pex = ag"” Pk |cnpr — : 47

8ufufk mami’

2 3
set X~/ Ngox. 107 L 10%e L
A T T T T T T T T T T T T T T T T T T T T T |_e_| T T
B ——— ——
C —e— —e—
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FIG. 10. ?/Ng4os and LECs (10° - Ls and 10% - L') determined in the O(p*) ChPT fit with the data sets A, B and C.
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FIG. 11. Fitting results of the O(p*) WChPT fit with the data sets A, B, and C. The data are represented by circles, and those used in
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2 2
1/2 1 C2da H
( / )lan = aé 2 )#nK|ChPT T 8af.fe m ’;ZK, (48)
TT. 3
1 3/2
where a(() lchpTs af) )mK|chpT, ay )ﬂﬂK|ChPT7 and

<1/ 2)/4,,K|ChPT are the ChPT formulas given by
Eqs (37), (38), (39), and (40), respectively. ¢, is a LEC
of the WChPT. The details of these formulas are discussed
in the Appendix.

Like as for the ChPT fit, we fix m,, mg, f,, and fx in the
WChHPT formulas, the measured values by the lattice
calculations at each quark mass. We fit our results with
the formulas regarding the LECs (L5, L', and ¢,) as free
parameters. In Fig. 11, we plot the fitting results of the
WChHPT formulas with the data sets A, B, and C. We find
that the fitting results at m, = 0.17 GeV are consistent with
the data points. We show more detailed information in
Fig. 12, where y?>/N4.; and LECs (c,, 103-Ls, and
10° - L' are given. y*>/Ng, s is improved compared with
the ChPT fitting, and takes the reasonable value within the
statistical error. We find that the fittings for three data sets
give consistent results. This means that the WChPT
formula works well for a(2> <041 GeV, aél) and

al’’? for m, <030 GeV, and a\’? for m, < 0.30 GeV.

To investigate the convergence of the WChPT formulas,
we consider the ratio of the next-to-leading terms to the
leading term in Eqs. (45), (46), (47), and (48). In Fig. 13,
we show

for m,,
(1 /2
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) WChPT fit with the data sets A, B, and C.
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LO  m?’
NLO, 16 m%
o - _f_%( [m%.y _T.LS +g(l)]
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LO  m}’
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— L’ K . L 3/2
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for the zn(I=2), KK(I=1), zK(I=3/2), and
zK(I = 1/2) systems, respectively. In this figure, we
use the LECs (L', Ls, and c¢,) obtained with data set B.
For the repulsive channels, the ratios are at most 20%
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The ratio of the next-to-leading terms to the leading term. NLO, /LO (circles) and NLO, (squares) are represented.
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except for NLO,/LO of aéz)m,, at m, = 0.17 GeV. The
irregular NLO,/LO means that the effect of the explicit
chiral symmetry breaking from the Wilson term cannot be
negligible compared to the leading term of the WChPT
for aéz)m,, at m, =0.17 GeV. For the zK(I =1/2)
system, we observe that NLO;/LO is not so small over
a wide range of m2. The convergence for the 7K (I = 1/2)
system might be disputable although the WChPT fit seems
to work well from the point of view of y*/N , ; . However,
the number of data points is insufficient to perform the
detailed investigation with O(p®) WChPT fit. In the
present work, alternatively, we discuss rough estimations
of the O(p®) contributions in Sec. VB 4.

V. EXTRAPOLATION TO THE PHYSICAL POINT

A. Scattering lengths at the physical point

We obtain the scattering length at the physical point by
using the O(p*) ChPT formulas, Egs. (37)—~(40), with
the LECs (Ls and L') obtained from the O(p*) WChPT
fit in Sec. IVB. Here, at the physical point,
m, = 0.140 GeV, myg =0.494 GeV, f,=0.092 GeV,
and fx = 0.110 GeV. The results obtained with data sets
A, B, and C are listed in Table IX.

As mentioned in Sec. IV B, three data sets give con-
sistent results, and thus we adopt data set B for the standard
fit. The extrapolated results including the systematic error
are summarized as

al?'m, = —0.04263(22)(41),
al'mg = —0.310(17)(32),
al’"? g = —0.0469(24)(20),
al"? g = 0.142(14)(27). (53)
TABLE IX. 4?/Ng.: and LECs obtained from the O(p*)

SU(3) WChPT fits for data sets A, B, and C. The scattering
lengths at the physical point are also shown.

Data set A B C
7*/Naox. 1.1(1.2) 1.9(1.2) 1.8(1.2)
¢, [GeV4] 0.078(24) 0.089(24) 0.090(24)
103 - Ls 2.84(93) 2.1(1.1) 2.61(79)
103 - L/ 1.24(53) 0.83(64) 1.12(53)
aPm, —0.04259(21)  —0.04263(22) —0.04260(30)
al my —0.307(16)  —0.310(17)  —0.308(23)
al'm, —0.0871(45)  —0.0880(47)  —0.0872(65)
alPu  —0.0486(20)  —0.0469(24)  —0.0481(14)
a$m, —0.0623(26)  —0.0602(31)  —0.0617(18)
al"? g 0.152(12) 0.142(14) 0.149(10)
al"Pm, 0.195(15) 0.183(18) 0.191(13)
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where the first parenthesis is the statistical error and the
second parenthesis represents the systematic error which is
discussed in the following subsections.

B. Estimate of systematic errors

1. Choice of the counting rule for the WChPT

In this section, we investigate the dependence of the
choice of the order counting rule for the results of the chiral
analysis. Here, we consider another counting rule [counting
rule 2 (CR2)],

CR2
LO: [)2,mq
NLO: a?
NNLO: p*, pzmq, m%, a, (54)

and compare the results with CR2 to those with CR1 given
in the previous section. The CR2 corresponds to

my = a3/2A%/CZD(: 6.7) MeV with a~! =2.19 GeV and
Agep = 0.217(24) GeV in the MS scheme [46], while
the CR1 does to mg = aAcp(=22) MeV. The quark-
mass parameters corresponding to m, = 0.17, 0.30, 0.41,

0.57, 0.71 GeV gives mMS =3.5, 12, 24, 46, 67 MeV,
respectively [25]. For the data in m, < 0.41 GeV, which
are used in our chiral analysis, it is not clear which counting
rule is appropriate from these rough estimations. We need
the quantitative comparison for the choice of the count-
ing rule.

Because of the O(a*) terms, the WChPT formulas given
by Egs. (45)—(48) are changed to

2
2 2 a a
a(() Jm, = aé il cnpr — (Cz +c; f_2> Tenf? (55)
() ) a) a
ay ' mg = ay mglewpr — | €2+ c3 ) Tenf2 (56)
k k

3/2 3/2
aé / )Mnk = a(() / )/‘ﬂK‘ChPT

a a
_ . ) .Mz 57
(02“3 f,,fK> 8afofx mamg O

1/2 1/2
aé) / )/"JrK = aé / )ﬂnK‘ChPT

2
J— . a . a . //lﬂK
<62+C3 f,sz> 8afolx g OO

. . 2)
with an additional free parameter c;. Here, a;’ m,|cypr,

(1) (3/2) (1/2)
ay ' mglewprs @y Hakloners and ay 7 paglcppr are the

scattering length of the ChPT given by Eqgs. (37)-(40),
respectively.
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set 12/ Ngos c, [GeV?] cy [GeV'] 108 L, 1081
A T T T T T T T T T T T T T T T T T T T T T T T T I_e_l T T
B —e—— B — B — —e— ——
C L L L L L L L -

o 1 2 3 4 -0.40 -0.20 0.00 0.20 0.40 0.60

-0.010 -0.005 0.000 0.005 0.010
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FIG. 14. x?/Ng,¢ and LECs (c,, c3, 10° - Ls, and 103 - L') determined in the O(p*) WChPT (CR2) fit with data sets A, B, and C.

In Fig. 14, we show the results of the fitting. y*/Ng .
takes the reasonable value within the statistical error. The
scattering lengths at the physical point obtained with the
data set A, B, and C are listed in Table X. For data set B,
they are given as

al’'m, = —0.04258(40),
al!myg = —0.306(30),
al"? px = —0.0464(42),
al " = 0.141(18). (59)

These are consistent with those obtained with the CR1 in
Eq. (53) and the systematic error caused by the choice of
the counting rule is negligible. Thus, we ignore the
systematic error caused by the choice of the counting rule
in the following discussion.

2. Finite volume

In this section, we discuss the systematic error of the
finite volume, which appears from a deformation of the
two-particle interaction due to the small lattice extent. For
the zz(I = 2) system, the error has been estimated by the
O(p*) SU(2) ChPT. [47]. The contribution to
[tan 8y (k)/k|~! is considered to be the order of e =4, Tt
is smaller than 6% of [tan 5,(k)/k|~' at m, = 0.14 GeV,

TABLE X. x?/Ngo.¢ and LECs obtained from the O(p*)
SU(3) WChPT (CR2) fits for the data sets A, B, and C. The
scattering lengths at the physical point are also shown.

Data set A B C
7*/Naor. 1.2(1.5) 2.3(1.3) 2.2(1.4)
¢, [GeV?] —0.11(30) 0.15(37) 0.07(38)
c3 [GeV] —0.0040(65)  0.0014(83)  —0.0003(82)
10 - Ls 3.4(1.2) 1.9(1.5) 2.6(1.1)
103 - L/ 1.44(55) 0.79(68) 1.13(54)
aPm, —0.04276(34) —0.04258(40) —0.04261(44)
almy —0320(26)  —0.306(30)  —0.309(33)
al'm, —0.0907(73)  —0.0867(86) —0.0875(94)
a$ ek —0.0505(33)  —0.0464(42) —0.0482(32)
a$"m, —0.0648(26)  —0.0595(53) —0.0619(41)
al' "k 0.159(14) 0.141(18) 0.150(13)
al"Pm, 0.204(18) 0.18123)  0.192(17)

and 1% in m, > 0.29 GeV at La = 2.9 fm. It is much
smaller than our statistical errors. In the SU(3) case, we
need to consider the contributions due to the K and 7
meson. However, they are considered to be smaller than the
contribution from the pion. Thus, we ignore this systematic
error in the following discussion.

3. Uncertainty for f, and fx

We discuss the effects of the statistical uncertainty for the
decay constants f, and fx in the WChPT formulas in
Egs. (45)—(48). In the following estimation, we use data set
B. In order to investigate the effects, we carry out the fitting
with (f, £ o6(f,), fx £ o(fx)) with 1 standard deviation,
o(f,) and o(fg), whose values are tabulated in Table VIIL
We regard the maximum absolute values of the differences
among these fit results as the systematic error from the
uncertainty of the decay constants. We obtain

al’'m, = —0.04263(22) = 0.00032,
al'my = —0.310(17) £ 0.024,
al’'? g = —0.0469(24) + 0.0020,
al""? g = 0.142(14) £ 0.011, (60)

where the second terms are the systematic errors from the
decay constants. We find that these errors are comparable
with the statistical error.

4. Higher order effects of ChPT

In this section, we give rough estimations of contribu-
tions of the O(p®) terms at the physical point. The O(p?)
and O(p*) contributions of our results at the physical point
are

O(p?) o(p*)
a!'my: —0.04607 —0.04263(22),
al'mg:  —0401  —0310(17), 61)
al P —0.0468  —0.0469(24),
alPu: 00936 0.142(14).

We roughly estimate the pure O(p®) contributions by

52 4 22
X@(l ) « (1 _XO(ﬂ )/XO(I ))2 for X — a(()Z)mm a(()l)mK’
a(<)3/ 2)m,[, a(()l/ 2)m,,. We regard them as the systematic error

from an uncertainty of the higher order terms of ChPT. We
obtain
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TABLE XI. a(()2> m, aél)m K» a(<)3/ 2)m,,, and aél/ 2)m,, in the present work are shown in a comparison with the previous works. As the
previous works, we refer to the experimental value by E865 [48] and NA48/2 [49], the phenomenological evaluations by Colangelo
et al. [50] and Biittiker et al. [51], and the lattice calculatlons b%r the NPLQCD Collaboration [12,15,18], the ETM Collaboration [13],
Yagi et al. [14], and Fu [5,19]. We note that for ao m and a; )m x of the NPLQCD Collaboration, the combined errors, where the

statistical and systematic errors are added in quadrature are hsted.

PHYSICAL REVIEW D 89, 054502 (2014)

0 20, EEE L0
0 z 0 K 0 3 0 4
The present work —0.04263(22)(41) —0.310(17)(32) —0.0602(31)(26) 0.183(18)(35)
E865 [48] —0.0432(86)
NA48/2 [49] —0.0447(7)
Colangelo et al. [50] —0.0444(10)
Biittiker et al. [51] —0.0448(77) 0.224(22)
NPLQCD [12,15,18] —0.04330(42) ~0.352(16) 00574(16)(+24) 01725013 ( 723 )
ETM [13] —0.04385(28)(38) —156
Yagi ef al. [14] —0.04410(69)(18)
Fu [5,19] —0.04430(25)(40) —0.0512(18) 0.1819(35)
@ (3/2) _
ag’'m, = —0.04263(22) & 0.00026, ag’“m, = —0.0602(31)(26),

a)my = —0.310(17) + 0.021, ay"?

al"? k= —0.0469(24) + 0.0001,
Wz)ﬂ,,,( = 0.142(14) £ 0.025,

m, = 0.183(18)(35). (63)

In Table XI and Fig. 15, we show aéz)m,,, a(()l)mK,
a03 2 m,, and ao1 : m, determined in the present work
together with the previous works. As the previous works,
we refer the experimental values by E865 [48] and NA48/2
[49], the phenomenological evaluations by Colangelo et al.
[50], and Biittiker et al. [51], and the lattice calculations by
the NPLQCD Collaboration [12,15,18], the ETM
Collaboration [13], Yagi et al. [14], and Fu [5,19]. In
the figure, we do not plot the result of E865 due to the large
statistical error. For the lattice calculations, we show the
combined errors where the statistical and systematic errors
are added in quadrature by dotted lines in addition to the
statistical errors (solid lines).

Although all the lattice results in each channel are roughly

(62)

where the second term refers to the systematic error.

This systematic error for the higher order effect is
added to the systematic error due to the error of f, and
fx in quadrature, and we regard it as the total
systematic error which is given by the second term
of Eq. (53).

C. Comparison with the previous studies

at the physical point

For the 7K channels, some of the previous works used
the values of a(3/ 2>m and aol/ : m,, instead of a(()3/ 2)u,,,<
(1/2)
and ay’ " pi k. For the comparison, we present these values
of our results,

consistent, there are the slight deviations from the previous
works, especially in @’ m,,. Th for the deviations i

, especially in a;; ' m,. The reason for the deviations is
not clear at the present. For the quantitative understanding,
the systematic study with the different lattice spacings near
the physical point is needed in the future.

b n =) m,
The present work = o e e
NA48/2 —e—
Colangelo et al. —e—
Buttiker et al. —— N
NPLQCD -0 = ..a. ..@
ETM o
Yagi et al. R
Fu o ) e
-0.046 -0.044 -0.042 -0.040  -0.40 -0.30 -0.20 0.08  -0.06 -0.04 -0.02 014 018 022 026
2) (1 (3/2) (1/2) . . . . .
FIG. 15. ay’'m,, ay'mg, ay'~m,, and a,’~m, in the present work are shown in a comparison with the previous works. As the

previous works, we refer the experimental value by NA48/2 [49], the phenomenological evaluations by Colangelo et al. [50] and
Biittiker et al. [51], and the lattice calculations by the NPLQCD Collaboration [12,15,18], the ETM Collaboration [13], Yagi et al. [14],
and Fu [5,19].
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VI. CONCLUSION

The interaction of the S-wave two-meson
systems [zz(l =2), KK(I=1), zK(I=3/2), and
7nK(I =1/2)] has been studied from lattice QCD. To
reduce the computational cost, we have employed the
method where one of the particles in the final state is
fixed at a given time. For the 7K (I = 1/2) system, we have
used the variational method with the two operators to
separate the contamination from the higher states. We have
observed that the interaction at low energy is repulsive for
the 7zz(I = 2), KK(I = 1), and zK (I = 3/2) systems, and
attractive for the zK(I = 1/2) system. This feature is
consistent with the experiment.

The scattering lengths have been calculated by using
Liischer’s finite size method. We have found that the
attraction in the zK(I = 1/2) system becomes so strong
in m, > 0.41 GeV that the sign of tan§y(k)/k becomes
negative. This fact indicates the formation of a bound state
at heavy m, for the 7K (I = 1/2) system. Therefore, we
have used the data in m, <0.30 GeV to evaluate the
reliable scattering length for this system.

We have investigated the quark-mass dependence of the
scattering lengths to evaluate the values at the physical
quark mass. For this purpose, we have considered the
O(p*) ChPT formulas. However, the fitting with these
formulas does not work for our results of the scattering
length, especially at m, = 0.17 GeV. We alternatively have
tried to fit with the O(p*) WChPT formulas including the
O(a?) terms. We have found that these formulas reproduce
the mass dependence of our results even near
m, = 0.17 GeV. The description seems to work well at
least in m, < 0.41 GeV for aéz)m,,, in m, <0.30 GeV for
al"my and a5 g, and in m, < 0.30 GeV for a{/? .
We have also discussed the possible systematic errors and
evaluated the scattering lengths at the physical quark mass.

Although our lattice results are roughly consistent with
the results of the previous studies, the deviations beyond
the statistical error remain at the present. We need the
systematic study with the different lattice spacings near the
physical point for the quantitative understanding in the
future.
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APPENDIX: O(p*) SU(3) WCHPT FORMULAS

We give the formulas constructed from the O(p*) SU(3)
WChPT with the CR1. According to Ref.[41], the O(a?)
Lagrangian consists of three terms written as

a*F? . a*F?
Eo(az):Wo'Y'<U+U'>2+W7' 6 (U -U")?
a’F? .
+ wg - (U +(U')?) (A1)

in the Minkowski space-time, where U = ¢/®/F with the
NG-boson field matrix ®, and the angle bracket means the
trace for the flavor indices. wg, wy, and wg are the LECs in
the SU(3) WChPT. The LEC ¢, discussed in Sec. IV B is
defined by ¢, = —8wg — 4wy. After calculating the gen-
erating function with zero external fields, we regard it as an
effective action of NG-boson fields according to Ref. [52].
On-shell quantities can be obtained from this effective
action.

We represent the mass of the NG boson P(= r, K, 1) at
the tree level by Mp. They are written as
M,zz = ZBmud,
M%( = B(myq + my),
M2 = B(2myg +4my)/3, (A2)

with a parameter B, bare quark masses mq(=m, = my),
and my. It is useful to consider the shifted mass with the
O(a?) terms as

M3 = M3 + (12w + dwg)a? (A3)
because the NG-boson mass always enters the WChPT
Lagrangian with the form of M3.

The NG-boson masses up to the O(p*
described as

) terms can be

M2
= M> [1 + F;’( 8L, —8Ls + 16Lgs + 16Lg)

My ISRY:

2
{ § (—16L, — 8Ls + 32Ls + 16Lyg)
M, 2/4,7

where jip = 51> M} log(M%/u?) . The difference from the
continuum ChPT originates only from M3 in the leading
order. It is noted that M,*, M,>M% and Mg* in the
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next-to-leading order are indistinguishable from M4,
M2M?%, and M%, respectively, up to O(p*) terms.

The decay constant of the pion and kaon up to the O(p*)
terms can be described as

72

PHYSICAL REVIEW D 89, 054502 (2014)

The difference from the continuum ChPT does not exist
because M,> and Mg” in the next-to-leading order are
indistinguishable from M2 and M%, respectively, up to
O(p*) terms.

The scattering lengths of the zz(l =2), KK(I =1),
aK(I =3/2), and zK(I = 1/2) systems are already given

Mz M%( Pk
fa=F [1 + 7 (4Lg +4Ls) + 5 (8L4) — Zﬁ_ﬁ '+ inEgs. (45), (46), (47), nd (48) with Eqs. (37), (36), (39)
(A6) and (40) except for the definitions of £(2)-(1)-G/2).(1/2) They
i i are written as
fx = [ FK (8Ly +4Ls) + F;’ (4Ly) ) 1 3m2 m2\  m? m2\  4m?
g()ziz - log( — | ——log{ — ,
3A, 3jix 3 (167) 2 U 18 U 9
A Pl A7
iR 2p 4F2] (A7) (A8)
J
1 mim? m2 m2 —20m% + 11m2m? m? 10m?
(1 — MK oo (2 Z 2 100 [ K K Koo X1 K| A9
) = a7 [y s () - (GF) + oy e () + 5 @
£ — 1 [22mimg + 11m2m3 — 5m3 log mz\ | 9my — 134mmy + 16mzmg — 55m m%(l my
(1627 (% — ) 2 36(m — m) pe
36my + 48m,my — 10mimy + 11m2m% — 9m3: m,% 3m, mg  8m mg
Tog [ -2 — -t , , Al0
72(m% — m32) 8\ 2 T 9 1z ) (&10)
1 1lmimg — 11mZm% + Sm? m2
(1/2) — K K Zlog| —= All
=G [ o () (A
—9m} — 6Tmmy + 8mimyg + 55m> mK1 m_%(
18(m3 — m2) iV
—36my, + 24mym, — Smgm3 — 11mim?2 + 9mi log <m_%)
36(my — mz) p
43 4 12
K Ty (i) =~ (g m) . (A12)
9 9 9
where t,(m,, mg), t,(m,, mg) can be written as
2myg — 2 —
tl(m/r’ml() — \/(mK + mﬂ)( mg mﬂ) arctan (mK mﬂ) mg + my ’ (A13)
myg — m, mg +2m, \ 2mg —m,
_ D) o) -
t2(mm mK) _ \/(mK mn’)( mg + mﬂ) arctan (mK + mn) mg my ) (A14)
myg + m, mg —2m, \/2mg + m,

We used M} = mp, fip = pp(= 55z mp log(mp /) and F* =
also used the tree-level (Gell-Mann-Okubo) relation, m
sufficient if we restrict ourselves up to the O(p

12 = f% at the O(p*) terms to simplify the expression. We

= (4m% —m ) /3 for the mass of the 7 meson. These relations are
*) expression.
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