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Confinement in asymptotically free gauge theories is accompanied by the spontaneous breaking of the
global flavor symmetry. If a subgroup of the flavor symmetry group is coupled weakly to additional gauge
fields, the vacuum state tends to align such that the gauged subgroup is unbroken. Independently, a lattice
discretization of the continuum theory typically reduces the manifest flavor symmetry, and, in addition, can
give rise to new lattice-artifact phases with spontaneously broken symmetries. Here, we study the interplay
of these two phenomena for Wilson fermions, using chiral Lagrangian techniques. We consider two
examples: electromagnetic corrections to QCD, and a prototype composite Higgs model.
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I. INTRODUCTION

Over the last few years, the computation of certain
hadronic quantities using lattice QCD has become so
accurate that electromagnetic effects, while typically small,
need to be included in order to further improve on present
errors [1]. A further reduction of the lattice spacing is also
needed in order to suppress competing discretization effects.
There may indeed be a real competition between electro-

magnetic effects and lattice artifacts: both can have a non-
trivial influence on the phase diagram of the lattice theory.
First, given a strongly interacting gauge theory, let us weakly
couple a subgroup of the flavor symmetry to dynamical
gauge fields (“weak gauge fields,” for short). It was observed
long ago that the weak gauge fields can influence the
symmetry-breaking pattern. Their coupling to unbroken
flavor generators tends to stabilize the vacuum, whereas
the coupling to broken generators tend to destabilize it, a
phenomenon usually referred to as “vacuum alignment” [2].
Furthermore, depending on the resulting alignment, some of
the Nambu-Goldstone bosons (NGBs) associated with the
symmetry breaking may acquire a mass, thereby becoming
pseudo-NGBs. An example is the QED-induced mass
splitting between the charged and neutral pions in QCD.
Even without weak gauge fields, a nontrivial phase

structure can also emerge at nonzero lattice spacing. An
example is the possible appearance of a so-called Aoki
phase in two-flavor QCD with Wilson fermions. Depending
on the details of the regularization, a phase can appear in
which isospin is spontaneously broken to a U(1) subgroup,
along with parity [3–5].
It is interesting to study what happens when both effects

are at work. For instance, in lattice QCD with two
degenerate Wilson fermions, what would happen to the
Aoki phase if QED is turned on, or if all the isospin
generators are coupled to weak gauge fields?

Similar questions arise beyond the realm of QCD.
The existence of a light Higgs particle has revived interest
in composite Higgs models, in which a strongly coupled
gauge theory breaks its flavor symmetry dynamically at the
TeV scale, producing a massless meson with the quantum
numbers of the Higgs among the NGBs associated with
the breaking of the symmetry. The flavor currents of this
strongly interacting theory can be coupled to a number of
weak gauge fields, with the Standard Model’s electroweak
gauge fields among them. Electroweak symmetry breaking
is then arranged to take place through the effective potential
generated for the NGBs of the strongly coupled theory by
the weak dynamics. A prototype example of such a theory
is the “littlest Higgs” model of Ref. [6]. In this theory the
flavor symmetry group is SU(5), spontaneously broken by
the strong dynamics to SO(5). Weak gauge fields are
coupled to an ½SUð2Þ × Uð1Þ�2 subgroup of SU(5), with
the Standard Model’s electroweak gauge fields coupling to
the diagonal subgroup of ½SUð2Þ × Uð1Þ�2, which is also a
subgroup of the unbroken SO(5).
A basic tool used in the phenomenological literature is

the nonlinear sigma model describing the (pseudo-) NGBs
(for recent reviews, see Refs. [7,8]). Such a low-energy
effective theory requires an “ultraviolet completion.” In
many cases, the underlying theory can be taken to be a
confining gauge theory, which, in turn, can be studied on
the lattice. One can then use numerical methods in order to
determine the low-energy constants (LECs) relevant for
electroweak physics. Since not only the precise values of
the LECs, but even their signs are usually outside the scope
of the nonlinear sigma model, their determination is crucial
if we are to confirm that the correct symmetry-breaking
pattern indeed takes place.1 Again, the question arises

1For realistic studies of the phenomenology of such models,
the top-quark sector should also be taken into account.
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whether lattice artifacts might have an effect on the phase
structure, possibly distorting the alignment properties of the
continuum theory.
In this article, we consider these questions in the context

of strongly coupled lattice gauge theories with Wilson
fermions. The use of Wilson fermions means that axial
symmetries are explicitly broken by the discretization, and
they are recovered only in the continuum limit. In the
two-flavor theory, this leads to the practical limitation that
weak dynamical gauge fields can be coupled to isospin
generators only, and not to the axial generators.
In order to realize the SUð5Þ=SOð5Þ nonlinear sigma

model we envisage a confining theory with five Weyl
fermions in a real representation of the strong gauge group
[2]. In the continuum, this strongly interacting theory can
equivalently be formulated in terms of Majorana fermions.
Transcribing the latter theory to the lattice is straightfor-
ward. But, once again, if we use Wilson fermions, only the
SO(5) flavor symmetry is preserved, because it is vectorial
in the Majorana formulation. The remaining symmetries
[which generate the coset SUð5Þ=SOð5Þ] are axial. They
are explicitly broken by the Wilson mass term, again to be
recovered only in the continuum limit. On the lattice we
thus consider only dynamical weak gauge fields for
subgroups of SO(5). As we will see, this is sufficient to
gain access to LECs of the low-energy effective theory that
are of interest to phenomenology.
In Sec. II we will consider two-flavor QCD with Wilson

fermions, and investigate what happens if we gauge all
isospin generators, or if we gauge only the U(1) subgroup
for the I3 component of the photon. We will consider the
lowest-order pion effective potential, containing terms
linear in the quark mass, quadratic in the lattice spacing,
and linear in the fine-structure constant, assuming that these
are all of a comparable magnitude. In Sec. III we will then
consider the SUð5Þ=SOð5Þ nonlinear sigma model, with the
weak gauge fields being those of the Standard Model group
SUð2ÞL × Uð1ÞY , in a similar framework. Because of the
more complicated form of the effective potential, we will
not be able to fully explore the phase diagram that may
arise from discretization effects. However, a quadratic
fluctuation analysis around the vacuum of the continuum
theory will still lead to nontrivial observations. The final
section contains our conclusions, and a proof of vacuum
alignment for the continuum SUð5Þ=SOð5Þ theory is
relegated to an Appendix.

II. TWO-FLAVOR QCD WITH WILSON
FERMIONS

Following Ref. [5], we start from the effective potential
for the pions of two-flavor lattice QCD with Wilson
fermions,2

Veff ¼ −
c1
4
trðΣþ Σ†Þ þ c2

16
ðtrðΣþ Σ†ÞÞ2

¼ −c1σ þ c2σ2; (2.1)

in which

Σ ¼ σ þ i
X
a

τaπa; σ2 þ
X
a

π2a ¼ 1 (2.2)

is the nonlinear SU(2) matrix built out of the isospin triplet
of pion fields πa, with τa the three Pauli matrices. The
parameter c1 is linear in the partially conserved axial
current quark mass m, while c2 is proportional to the
square of the lattice spacing a.3 Higher-order terms in the
chiral expansion of Veff will be neglected, since they do not
qualitatively affect the phase diagram (unless at least one of
the leading-order terms vanishes).
In the continuum limit, c2 ¼ 0, and there is a first-order

phase transition when c1, i.e., the quark mass m, changes
sign: the condensate Σ0 ¼ hΣi realigns from Σ0 ¼ þ1 for
c1 > 0 to Σ0 ¼ −1 for c1 < 0. At nonzero lattice spacing,
this conclusion does not change if c2 < 0, because the c2
term in Veff is minimized for Σ0 ¼ �1, irrespective of the
sign of Σ0.

4 Compared to the continuum theory, the
difference is that for c2 < 0 the pion masses do not vanish
at the transition; instead, they are all degenerate, and are of
order

ffiffiffiffiffiffiffiffi−c2
p ∝ a.

For c2 > 0, the minimum of Veff is reached at

hσi ¼
8<
:

1; c1 ≥ 2c2;
c1
2c2

; −2c2 < c1 < 2c2;

−1; c1 ≤ −2c2:
(2.3)

For jc1j < 2c2 we find that jhσij < 1, which implies that
hπai ≠ 0. SU(2) isospin is spontaneously broken to a U(1)
subgroup,5 and two of the three pions become massless as
the NGBs associated with this symmetry breaking. This
region in the phase diagram is the Aoki phase. Clearly, in
order to probe the Aoki phase transition, the couplings
c1 ∼ c2 have to be of the same magnitude. We may take the
direction of symmetry breaking to point in the τ3 direction,
so that π� are the NGBs, while π0 is massive inside the
Aoki phase. At the phase boundaries jc1j ¼ 2c2 all three
pions are degenerate and massless, even though c1 ∝ m
does not vanish. In the continuum limit, c2 ∝ a2 → 0, and

2For reviews of chiral perturbation theory for QCD with
Wilson fermions, see Refs. [9–11].

3Terms linear in the lattice spacing break the symmetry in
exactly the same way as the term linear in the quark mass, and are
thus absorbed into the term proportional to c1. Since both c1 and
c2 (and c3 in Sec. II B below) have mass dimension equal to four,
appropriate powers of ΛQCD will always be understood.

4In the large-Nc limit, c2 < 0 is excluded [12], but at finite Nc
both signs are possible.

5For the reason why the Vafa-Witten theorem [13] does not
apply inside the Aoki phase, see Ref. [5].
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the Aoki phase shrinks to zero; the continuum limit at
c2 ¼ c1 ¼ 0 yields QCD with two massless quarks.
Inside the Aoki phase of the lattice theory, parity is

spontaneously broken as well. In the continuum, if we take
the vacuum hΣi ¼ �1, parity acts as Σ → Σ†. Since the
symmetry is SUð2ÞL × SUð2ÞR, any expectation value
hΣi ∈ SUð2Þ can be rotated to hΣi ¼ �1 using, e.g., an
SUð2ÞL transformation. Thus, if we would want to expand
around an equivalent vacuum hΣi ≠ �1, parity would
merely take a more complicated form. By contrast, on
the lattice the axial symmetries are explicitly broken. Vacua
with different values of hσi are inequivalent, and, for any
hπai ≠ 0, parity is broken spontaneously.

A. Gauging isospin

We now consider what happens if we gauge isospin, with
a gauge coupling g weak enough that we can analyze the
effect on the phase diagram by considering the order-g2

correction to Veff . We expect that nontrivial modifications
of the scenarios reviewed above may occur when
g2 ∼ c1 ∼ c2, or, equivalently, g2 ∼m=ΛQCD ∼ ðaΛQCDÞ2.
In order to find the order-g2 part of Veff we proceed as

follows. The lowest-order chiral effective action contains a
term

L ¼ f2

8
trððDμΣÞ†DμΣÞ; (2.4)

where f is the pion decay constant in the chiral limit, and

DμΣ ¼ ∂μΣþ ig½Vμ;Σ�; (2.5)

with Vμ ¼
P

aVμ;aτa=2 the isospin gauge field.6 Upon
working out the nonderivative part of L,

g2f2

4
trðV2

μ − VμΣVμΣ†Þ; (2.6)

we see, first of all, that the weak gauge fields Vμ remain
massless on the isospin-symmetric vacua Σ0 ¼ �1.
Furthermore, integrating over the weak gauge fields, we find
the leading-order contribution to the effective potential (2.1),7

ΔVeff ¼ −
g2c3
8

X
a

trðτaΣτaΣ†Þ; (2.7)

in which c3 is independent of g2 to leading order. From
Ref. [14]weknow thatc3 > 0.UsingEq. (2.2),we find for the
effective potential

Veff þ ΔVeff ¼ −c1σ þ ðc2 − g2c3Þσ2 þ constant: (2.8)

The effect of the weak gauge fields Vμ on the phase diagram
is very simple: the parameter c2 gets shifted to c2 − g2c3.
If c2 < 0, the transition when c1 goes through zero remains
first order.Even in thecontinuumlimit,whenc2 ¼ 0, all pions
acquireamassproportional to

ffiffiffiffiffiffiffiffiffi
g2c3

p
∝ g. Ifc2 > 0, theAoki

transition changes into a first-order transition when the lattice
spacing becomes small enough such that c2 < g2c3. In
other words, the Aoki phase gets pushed away from the
continuum limit.

B. Coupling the photon

The situation changes when we restrict the gauge field
to Vμ ¼ AμQ, with Q ¼ diagð2=3;−1=3Þ ¼ 1=6þ τ3=2,
and g ¼ e, the electric charge, so that Aμ is the photon field.
In that case, the shift in the effective potential becomes

ΔVem
eff ¼ −

e2c3
8

trðτ3Στ3Σ†Þ; (2.9)

with the same coefficient c3 as in Eq. (2.7). Using Eq. (2.2)
again,

Veff þ ΔVem
eff ¼ −c1σ þ c2σ2 −

e2c3
2

ðσ2 þ π23Þ: (2.10)

Again, the analysis of this effective potential is very simple.
Since c3 > 0, minimizing the effective potential requires
that hσi2 þ hπ3i2 ¼ 1, i.e., hπ1i ¼ hπ2i ¼ 0, irrespective of
the values of c1 and c2. If c2 < 0, hσi ¼ �1 depending on
the sign of c1, the phase transition is first order, and takes
place at c1 ¼ 0. The term proportional to c3 raises the
charged pion mass relative to the neutral pion mass [15].
If c2 > 0, and jc1j < 2c2 so that we are in the Aoki

phase, again σ ¼ c1=ð2c2Þ as in Eq. (2.3), and therefore

hπ3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

c21
4c22

s
: (2.11)

Isospin is explicitly broken by the coupling to QED, but
parity is spontaneously broken in the Aoki phase, and there
still is a second-order phase transition. Inside the Aoki
phase, the pion masses are

m2
� ¼ e2c3f−2;

m2
0 ¼ 2c2

�
1 −

c21
4c22

�
f−2: (2.12)

We see that, depending on the relative size of the param-
eters c1, c2 and e2c3, the neutral pion might even be heavier
than the charged pion, even though in the continuum limit
Witten’s inequality implies that this can never be the case
[14]. The reason is that now we have a competition:

6The gauging of the vector symmetries leads to explicit
breaking of the axial symmetries.

7The effective potential due to the weak gauge fields always
has a similar form, even if some of the weakly gauged symmetries
are spontaneously broken. The reason is that the gauge bosons’
mass will be proportional to gf, and thus gauge-field mass effects
only show up in the effective potential at order g4.
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electromagnetic effects increase the charged pion mass
relative to the neutral pion mass, whereas the lattice
artifacts that give rise to the breaking of isospin in the
Aoki phase create an opposite effect, since the charged
pions are the NGBs of this symmetry breaking.

III. LITTLEST HIGGS

In this section we present an analysis of the littlest
Higgs model of Ref. [6]8 that parallels what we did for
QCD in Sec. II. First, we very briefly review the necessary
ingredients of this theory in the continuum, in Sec. III A,
including the coupling to the Standard Model gauge
fields. We next consider the Aoki phase for this theory,
without the weak gauge fields, in Sec. III B. In Sec. III C we
then consider the competition between the effective poten-
tial generated by the weak gauge fields and that generated
by lattice artifacts in the determination of the phase
diagram.

A. Littlest Higgs—continuum

We consider a strongly coupled gauge theory with five
Weyl fermions in a real representation of the (unspecified)
strong gauge group. This theory has an SU(5) flavor
symmetry which we assume to be broken to SO(5) by a
bilinear fermion condensate, resulting in 14 NGBs
parametrizing the coset SUð5Þ=SOð5Þ. In order to construct
the effective theory for these NGBs, we introduce the
nonlinear field

Σ ¼ expðiΠ=fÞΣ0 expðiΠT=fÞ ¼ expð2iΠ=fÞΣ0; (3.1)

with Σ0 ¼ hΣi given by9

Σ0 ¼

0
BBBBBB@

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

1
CCCCCCA
: (3.2)

Since the bilinear fermion condensate is symmetric
in its SU(5) indices, so is Σ. Therefore, Σ transforms into
UΣUT with U ∈ SUð5Þ, and this leads to the form (3.1) for
Σ in terms of the “pion” field Π, which satisfies
Σ0ΠT ¼ ΠΣ0. The generators T of the unbroken SO(5)
obey the relation Σ0TT ¼ −TΣ0.
The Standard Model SUð2ÞL gauge fields Wμa are

coupled to an SU(2) subgroup of SO(5) generated by [6]

Qa ¼

0
B@

1
2
τa 0 0

0 − 1
2
τTa 0

0 0 0

1
CA; a ¼ 1; 2; 3; (3.3)

where again τa are the Pauli matrices. The SU(2) generated
by the Qa is an invariant subgroup of the SO(4) group
defined by embedding its elements in the upper left 4 × 4
block of the SO(5) matrices.
The leading-order effective potential for the Σ field,

obtained by integrating over the W fields, is given by

Vweak ¼ g2CwtrðΣQaΣ�Q�
aÞ; (3.4)

where a sum over a is implied. The low-energy constantCw
is analogous to the constant c3 in Eq. (2.7), and it is
positive, as we show in the Appendix, using the relevant
result of Ref. [14]. In Ref. [6] more weak gauge fields were
coupled to a subgroup of SU(5) in order to obtain the
“collective” symmetry breaking typical of little Higgs
models. However, the primary goal of a lattice investigation
of this theory would presumably be the determination of
the LEC Cw, which can be probed using any subgroup of
SU(5), such as, for instance, the SU(2) group we introduced
in Eq. (3.3). As we explain below, this allows us to maintain
all gauged symmetries (strong and weak) on the lattice if
we choose to work with Wilson fermions.
In Eq. (3.4), the minimum value for the trace, −3, is

attained for Σ ¼ Σ0. Therefore the vacuum is aligned, i.e.,
the W fields do not move the vacuum away from Eq. (3.2).
The potential Vweak is invariant under the SO(4) subgroup
defined above: if we transform Σ → UΣUT with
U ∈ SOð4Þ, we see that this is equivalent to keeping Σ
fixed, while transforming Qa → UTQaU� ¼ RabQb inside
the trace, with R in the fundamental representation of
SO(3). Here we used the fact that the Qa generate an
invariant subgroup of SO(4). Using that RabRac ¼
ðRTRÞbc ¼ δbc the invariance follows.
We may also introduce the hypercharge weak gauge

field, which gauges the U(1) symmetry generated by [6]

Y ¼ 1

2
diagð1; 1;−1;−1; 0Þ: (3.5)

This breaks the SO(4) symmetry explicitly to SUð2ÞL×
Uð1ÞY , with SUð2ÞL the group to which the W fields
couple. The new contribution to the effective potential is

VY ¼ g02CwtrðΣYΣ�YÞ; (3.6)

where the constant Cw is the same as in Eq. (3.4), and g0 is
the hypercharge gauge coupling.
In order to move to the lattice, the strongly interacting

theory is first reformulated in terms of Majorana fermions
instead of Weyl fermions. Now, because the fermions
transform in a real representation of the strong gauge

8See also Ref. [8] for a review.
9Relative to Ref. [6] we interchanged the third and fifth rows

and columns in the form for Σ0.
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group, a gauge-invariant fermion mass term can be added to
the theory, breaking SUð5Þ → SOð5Þ softly. Going to the
lattice using Wilson fermions, it is then straightforward to
augment this local mass term with a Wilson mass term as
well, in order to avoid species doublers. The exact flavor
symmetry of the lattice theory is therefore just SO(5),
regardless of the fermion mass. We expect the full SU(5)
symmetry to be restored in the continuum limit, provided
that the single-site Majorana mass is tuned appropriately.
These features are, of course, completely analogous to the
usual case of Wilson-Dirac fermions.
On the lattice, before any weak gauge fields are coupled

to the flavor currents and for a large enough positive quark
mass, the fermion condensate will be proportional to the
unit matrix (see Sec. III B below). Anticipating this, it is
convenient to reformulate the (massless) continuum effec-
tive theory such that this is also the case there. Starting from
Eq. (3.2) it is straightforward to find an elementU of SU(5)
such that

Σ0
0 ¼ UΣ0UT ¼ 1: (3.7)

We also have to transform the generators Qa and Y to the
new basis, defining

Wa ≡UQaU†; X ≡UYU†: (3.8)

Since Σ0
0 is proportional to the unit matrix, theWa and X are

antisymmetric and Hermitian, and thus purely imaginary.
The potential Vweak þ VY can be written as

Vweak þ VY ¼ −g2CwtrðΣWaΣ�WaÞ − g02CwtrðΣXΣ�XÞ:
(3.9)

After adding Vweak þ VY to the effective theory, the
complete vacuum manifold is the U(1) circle generated
by T ¼ diagð1; 1; 1; 1;−4Þ.10
For Majorana (equivalently, Weyl) fermions there are no

separate C and P symmetries, only a CP symmetry. The
role ofCP parallels that of parity in the two-flavor theory of
Sec. II. If we expand the nonlinear field around the unit
matrix, CP acts on the pion field as Π → −Π. Since the
vacuum manifold contains the unit matrix, it follows that
CP symmetry is unbroken in the continuum theory.

B. Littlest Higgs—lattice artifacts

In this subsection, we turn off the weak gauge fields, and
consider only the strongly coupled theory on the lattice,
using Wilson-Majorana fermions.
The construction of the effective potential representing

the effects of a quark mass and lattice artifacts to order a2

for the SUð5Þ=SOð5Þ effective theory is very similar to
the construction for the ðSUð2ÞL × SUð2ÞRÞ=SUð2Þ case
reviewed in Sec. II. The only difference is that more
invariants proportional to a2 exist, so that now the effective
potential becomes [16]

VAoki ¼ −
c1
2

trðΣþ Σ†Þ þ c2
4
ðtrðΣþ Σ†ÞÞ2

−
c3
4
ðtrðΣ − Σ†ÞÞ2 þ c4

2
trðΣ2 þ Σ†2Þ; (3.10)

in which c1 is proportional to the (subtracted) quark mass,
and c2;3;4 are all proportional to a2.

11 There is no symmetry
relating the theory with c1 > 0 to that with c1 < 0, because
no nonanomalous transformation exists that relates the two.
We will therefore mostly limit ourselves to the choice
c1 ≥ 0 in this article.
On our new basis the pion field Π in Eq. (3.1) is real and

symmetric, and can thus be diagonalized by an SO(5)
transformation. It follows that in order to find the minimum
of VAoki we may choose Σ in Eq. (3.10) to be diagonal,

Σ ¼ diagðeiϕ1 ; eiϕ2 ; eiϕ3 ; eiϕ4 ; eiϕ5Þ; (3.11)

subject to the constraint

X5
i¼1

ϕi ¼ 0 ðmod 2πÞ: (3.12)

Substituting this into Eq. (3.10) yields

VAoki ¼ −
X
i

ðc1 cosϕi − 2c4cos2ϕiÞ þ c2

�X
i
cosϕi

�
2

þ c3

�X
i
sinϕi

�
2

:

(3.13)

This is not easily minimized, so we will begin with
simplifying VAoki by omitting the double-trace terms,
i.e., by setting c2 ¼ c3 ¼ 0. Even with only c1 and c4,
the minimization of VAoki will not be a simple task, because
of the constraint (3.12).
For c4 < 0, the minimum is at ϕi ¼ 0, as in the case of

Sec. II, and the pseudo-NGBs remain massive in the limit
c1 → 0, as long as c4 ≠ 0; their mass is proportional
to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1 − 4c4

p
.

For c4 > 0, we will proceed in several steps. First we
prove that for c1 > 4c4 the solution is again ϕi ¼ 0, so that
no symmetry is spontaneously broken. We will then
analyze the case that c1 ¼ 4c4 − 2ε with ε > 0 small, as
well as the case that c1 ¼ ε is small. Since we may take c4

10Since we gauge only the generators Qa ¼ Qa
1 þQa

2 and Y ¼
Y1 þ Y2 of Ref. [6], the Higgs field components of Π pick up a
mass; see Sec. III C below.

11For SU(2), the last three terms collapse to the one term in
Eq. (2.1).
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to set the overall scale of VAoki, we will set c4 ¼ 1 in most
of the rest of this subsection.
The potential VAoki is extremized if

sinϕiðc1 − 4 cosϕiÞ ¼ λ; (3.14)

where λ is a Lagrange multiplier enforcing the constraint.
First, let us ignore the constraint, which is equivalent to
setting λ ¼ 0. Then, for c1 > 4, Eq. (3.14) implies that
ϕi ¼ 0, if we also demand the solution to be the minimum
of VAoki. Since this solution satisfies the constraint (3.12),
we have found the solution we are looking for. Also, since
there is only one minimum for c1 > 4, it follows by
continuity that the same is true at c1 ¼ 4. Therefore, if a
phase transition occurs at c1 ¼ 4, this phase transition is
second order.
Next, we consider c1 ¼ 4 − 2ϵ, with ϵ > 0 small. Since

only a continuous phase transition may take place, ϕi will
be small as well, and we thus expand the left-hand side of
Eq. (3.14) to order ϕ3

i ,

ϕið−ϵþ ϕ2
i Þ ¼ λ=2: (3.15)

From this, it follows that for any triple i; j; k, if ϕi is equal
to neither ϕj nor ϕk, then

ϕ2
i þ ϕiϕj þ ϕ2

j ¼ ϕ2
i þ ϕiϕk þ ϕ2

k ¼ ϵ: (3.16)

It follows that either ϕk ¼ ϕj, or ϕk ¼ −ϕi − ϕj. This
provides us with a finite list of options to check, and we
find that VAoki is minimized for

Σ ¼ Σ0ð4 − 2ϵÞ ¼ exp ½i diagðφ;φ;φ;−3φ=2;−3φ=2Þ�;
(3.17a)

ϕ2 ¼ 9

7
ϵ: (3.17b)

Indeed, a second-order phase transition takes place at
c1 ¼ 4, with, below that value, a symmetry-breaking
pattern SOð5Þ → SOð3Þ × SOð2Þ. In addition, CP sym-
metry, Σ → Σ�, is spontaneously broken as well. We note
that the solution (3.17) cannot be rotated to Σ0 ¼ 1,
because on the lattice the SU(5) transformation that would
do this is not a symmetry.
We now turn to the case that c1 ¼ 0. If ϕ0 is a solution of

Eq. (3.14), i.e., sin 2ϕ0 ¼ −λ=2, then all possible solutions
are

ϕi ¼ ϕ0; ϕi ¼ π=2 − ϕ0;

ϕi ¼ π þ ϕ0; ϕi ¼ 3π=2 − ϕ0: (3.18)

Going through all possibilities for choosing the ϕi, i ¼
1;…; 5 from this list, and demanding that any such choice
satisfies the constraint (3.12), yields three degenerate
minima for c1 ¼ 0:

Σ ¼ Σð1Þ
0 ð0Þ ¼ exp ½ð2πi=5Þdiagð1; 1; 1; 1; 1Þ�; (3.19a)

Σ ¼ Σð2Þ
0 ð0Þ ¼ exp ½ð2πi=5Þdiagð1; 1; 1;−3=2;−3=2Þ�;

(3.19b)

Σ ¼ Σð3Þ
0 ð0Þ ¼ exp ½ð2πi=5Þ

× diagð1;−3=2;−3=2;−3=2;−3=2Þ�: (3.19c)

Next, let us consider small c1 ¼ ϵ. Once again, since the
three global minima at c1 ¼ 0 are discrete, this can at most
lead to a small shift δϕi away from 2π=5 or −3π=5 for each
i. Expanding VAoki, we find

Vð1Þ
Aoki ¼

5

4

�
3 −

ffiffiffi
5

p
− ϵ

� ffiffiffi
5

p
− 1

��
þ 1

2

�
1þ

ffiffiffi
5

p �X
i

δϕ2
i ;

(3.20a)

Vð2Þ
Aoki ¼

5

4

�
3−

ffiffiffi
5

p
−
ϵ

5

� ffiffiffi
5

p
− 1

��
þ 1

2

�
1þ

ffiffiffi
5

p �X
i

δϕ2
i ;

(3.20b)

Vð3Þ
Aoki ¼

5

4

�
3−

ffiffiffi
5

p
þ 3ϵ

5

� ffiffiffi
5

p
− 1

��
þ 1

2

�
1þ

ffiffiffi
5

p �X
i

δϕ2
i ;

(3.20c)

where the superscript on VAoki refers to which solution in
Eq. (3.19) we are expanding around. We have expanded to
quadratic order in δϕi, dropping terms of order ϵδϕ2

i ,
and we have used that

P
iδϕi ¼ 0 because of Eq. (3.12).

For small c1 ¼ ϵ > 0 the first minimum, Σð1Þ
0 ð0Þ, is the

absolute minimum, and, since the coefficients of the δϕ2
i

terms in Eq. (3.20) are always positive, the minimum stays

at Σ0ðc1 > 0Þ ¼ Σð1Þ
0 ð0Þ. The vacuum Σð1Þ

0 ð0Þ only breaks

CP. For c1 < 0, the solution Σð3Þ
0 ð0Þ becomes the absolute

minimum, and a first-order transition takes place at c1 ¼ 0.
This solution breaks SO(5) to SO(4), giving rise to
four NGBs.
The picture that arises is that there is an Aoki-like phase

when c4 > 0. For c1 just below 4c4, SO(5) breaks to
SOð3Þ × SOð2Þ, and there are six exact NGBs. CP is
broken as well. We do not know what happens when c1 is
further decreased, but when we reach c1 ¼ 0 (while
keeping c1 > 0) only CP remains spontaneously broken.
We end this section with a few observations on what

happens if c2 and c3 are turned back on. First, with c3 ¼ 0,
Eq. (3.14) becomes

sinϕi

�
c1 − 4 cosϕi − 2c2

X
i

cosϕi

�
¼ λ: (3.21)
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Our previous symmetric solution, ϕi ¼ 0, is still the only
solution when c1 > 4c4 þ 10c2. Moreover, this remains
true when c3 > 0 as well.
Next, we consider in more detail what happens for

smaller values of c1 when c2 and c3 do not vanish, but are
small. Near c1 ¼ 0, the potential remains equal to a
constant plus a positive-definite quadratic form in δϕi.
Denoting the new constant piece as δVðiÞ

Aoki we find

δVðiÞ
Aoki ¼ bðiÞ

�
c2

3 −
ffiffiffi
5

p

8
þ c3

5þ ffiffiffi
5

p

8

�
; (3.22)

where bð1Þ ¼ 25, bð2Þ ¼ 1, and bð3Þ ¼ 9. Since δVð2Þ
Aoki is

smaller than the other two, there will be regions where each

of the solutions, now including Σð2Þ
0 ð0Þ, is the global

minimum.
For c1 near 4c4, we consider the case that c2 ∼ c3 ∼ ε.

Expanding Eq. (3.21), we find the c2 ≠ 0 version of
Eq. (3.15),

ϕið−ðϵþ 5c2Þ þ ϕ2
i Þ ¼ λ=2: (3.23)

The c3 term does not contribute to this order, because of
the constraint (3.12). The phase transition now takes place
when ϵþ 5c2 becomes positive, or, equivalently, when c1
becomes smaller than 4þ 10c2. Restoring c4, the phase
boundary gets shifted from c1 ¼ 4c4 to c1 ¼ 4c4 þ 10c2,
consistent with what we already found above.

C. Combined phase diagram

We now combine the potentials VAoki of Eq. (3.10) and
Vweak of Eq. (3.4).12 The combined potential is invariant
under SO(4), embedded in the upper left 4 × 4 block of the
SO(5) matrices. The pion field Π, which transforms as the
traceless, two-index symmetric representation of SO(5),
decomposes into fields transforming as the traceless,
two-index symmetric representation of SO(4) which we
will denote by 9, the fundamental representation, denoted
by 4, and a singlet, denoted by 1.
A first observation is that, when c3 ≥ 0, the phase

transition boundary is still at c1 ¼ 4c4 þ 10c2. This is
because for c1 ≥ 4c4 þ 10c2, the minimum of both VAoki
and Vweak is at ϕi ¼ 0. Then, substituting Eq. (3.1) into the
sum of Eqs. (3.10) and (3.4), we find for the masses of each
of these representations13

M2
1 ¼ ð4=f2Þðc1 − 4c4 − 10c2Þ;

M2
4 ¼ ð4=f2Þðc1 − 4c4 − 10c2 þ 3g2Cw=4Þ;

M2
9 ¼ ð4=f2Þðc1 − 4c4 − 10c2 þ 2g2CwÞ: (3.24)

We see that indeed Vweak leads to mass splittings
consistent with the fact that it breaks SO(5) to SO(4). For
g ¼ 0, we recover the observation that one enters an Aoki
phase when c1 − 4c4 − 10c2 becomes negative, even though
the masses alone are not sufficient to deduce the symmetry-
breaking pattern found in Sec. III B. Furthermore, in the
continuum limit (c2 ¼ c3 ¼ c4 ¼ 0) and for vanishing
quark mass (c1 ¼ 0), Eq. (3.24) confirms that Vweak sta-
bilizes the vacuum manifold that we have inferred
from Eq. (3.9).
An important practical issue facing the lattice simulation

of a UV completion of this model is how to tune the bare
mass towards its critical value where the (Majorana)
fermions become massless. Starting from large positive
c1, in the absence of weak gauge fields the fermion mass, as
well as the masses of all pions, will vanish simultaneously
when c1 reaches 4c4 þ 10c2. Equation (3.24) tells us that,
when the weak gauge fields are dynamical, this is no longer
true. Clearly, the massless limit of the continuum theory
corresponds to vanishing M2

1, and therefore it is the singlet
that must be tuned to criticality in a lattice simulation. By
contrast, if one were to tune M2

4 or M
2
9 to zero in the lattice

theory, the curvature in the singlet direction would have
become negative at the origin, implying that the SO(4)
singlet field, η, has acquired a nonvanishing expectation
value. Since this vacuum is still invariant under the SO(4)
symmetry of the full potential V, there are no NGBs.
However, CP symmetry is spontaneously broken, because
for hηi ≠ 0 one has hΣi ≠ hΣ�i on the lattice.
We have not been able to minimize the full potential inside

the Aoki phase. It appears likely that, as one moves towards
more negative values of c1 − 4c4 − 10c2, the SO(4) sym-
metry will break spontaneously, giving rise to some NGBs.
Imagine starting at some small but fixed c1 − 4c4−

10c2 < 0, and gradually turning on g. For g ¼ 0, we have
found that the vacuum is given by Eq. (3.17), with
symmetry breaking SOð5Þ → SOð3Þ × SOð2Þ. For g ≠ 0
the symmetry of the theory is reduced to SO(4). As long as
g is small enough, we expect that the vacuum (3.17) will be
modified by continuous Oðg2Þ corrections. One may
speculate on how the SOð3Þ × SOð2Þ and SO(4) subgroups
of SO(5) align relative to each other. One possibility is that
the SO(3) is a subgroup of the SO(4), with the spontaneous
symmetry breaking pattern SOð4Þ → SOð3Þ. Instead of six,
there will only be three exact NGBs. However, one can
verify that in that case all the SU(2) generators in Eq. (3.8)
are broken, and these three NGBs are thus eaten by theWμa
gauge fields. Another possibility is that the SO(2) is a
subgroup of the SO(4), while the SO(3) is explicitly broken
to another SO(2). The spontaneous symmetry-breaking

12We set the hypercharge gauge coupling g0 ¼ 0, since not
much changes in our analysis when it is turned on.

13In the model of Ref. [6], thanks to the presence of more weak
gauge fields,M4 ¼ 0 in the continuum, allowing its identification
with the Higgs field.
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pattern is now SOð4Þ → SOð2Þ × SOð2Þ, yielding four
NGBs. In this case, only two out of three SU(2) generators
in Eq. (3.8) are broken. One W field stays massless, with
two exact NGBs remaining in the spectrum. According to
Ref. [2], this scenario would be favored.
We see that, deeper inside the Aoki phase, it is

quite likely that one would encounter long-range effects
mediated by exact NGBs. The existence of such exact
NGBs is purely a lattice artifact.

IV. CONCLUSIONS

In an asymptotically free gauge theory with massless
fermions one can consider a number of small perturbations.
In the continuum, one can give the (Dirac or Majorana)
fermions a mass. One can also couple the fermions to
another dynamical gauge field gauging some of the flavor
symmetries, such that, at the scale where the original gauge
theory confines, the new gauge coupling is weak. In general,
such perturbations break the flavor symmetry of the strong
gauge theory explicitly.
In addition, in order to study such a theory nonpertur-

batively, one needs to consider the lattice discretization.
Again, the lattice formulation usually breaks explicitly
some of the flavor symmetries. Finally, the strong dynamics
typically gives rise to spontaneous symmetry breaking.
In this article we investigated flavor symmetry breaking

using effective field theory techniques in two examples,
using Wilson fermions for the lattice formulation of the
theory. In both cases, we allowed the weak gauge fields to
couple only to a subgroup of the lattice flavor symmetry
group, since otherwise we would need to consider a chiral
gauge theory on the lattice.14 In many applications to
physics beyond the Standard Model, weak gauge fields
coupling to broken, or axial, generators are also needed.
Nevertheless, the restriction to weak gauge fields coupled
to conserved lattice currents is not a severe limitation, as it
already gives access to LECs whose values are phenom-
enologically interesting. The reason is that, thanks to its
symmetry structure, the (continuum) effective theory is
typically characterized by a very small number of LECs,
which are common to weak gauge fields coupled to both
vector and axial generators.
The two examples we considered are QCDwith two light

flavors where also (part of) the isospin symmetry group is
gauged, and the littlest Higgs model of Ref. [6]. In the latter
case, only the Standard Model subgroup of the flavor
symmetry group was gauged, because, among the weak
gauge fields of Ref. [6], only the electroweak fields couple
to vector currents of the strongly interacting theory. Since
a lattice gauge theory with Wilson fermions gives rise to a
nontrivial phase diagram at nonzero lattice spacing, this
phase structure can “interfere” with the expected effects of

the continuum perturbations from the fermion masses and
weak gauge fields.
In the QCD case, in the continuum limit, gauging isospin

leads to all pions acquiring a mass. However, if lattice
spacing effects, represented in the effective theory through
the LEC c2 in Sec. II, are large enough, one finds that some
of the pions may remain massless as a pure lattice artifact.
This happens if the LEC c2 > 0 so that an Aoki phase
exists near the continuum limit. Moreover, in that case
parity is also spontaneously broken. In the case that only a
U(1) subgroup of isospin is gauged, all pions can remain
massive even for vanishing quark mass, with the neutral
pion mass of order the lattice spacing, but parity can still be
spontaneously broken. Perhaps surprisingly, the neutral
pion can be heavier than the charged pion.
Very similar conclusions are obtained in the case of

the littlest Higgs model, which we studied in Sec. III. In the
continuum, the weak gauge fields make most of the
Nambu-Goldstone bosons of the strong gauge theory
massive, but inside the Aoki phase of the lattice version
of the theory, some of these mesons may again become
massless, as a consequence of lattice artifacts. Moreover,
inside the Aoki phase, CP is spontaneously broken as well.
Because of the complicated structure of the effective
potential in this case an exhaustive study of the phase
diagram is more difficult, but the message is essentially the
same as in the case of QCD with two flavors.
Our results lead us to the following conjecture. If a general

subgroup of the unbroken flavor symmetries is gauged, we
expect the boundary of the Aoki phase to stay at the same
location, but the symmetry-breaking pattern inside the Aoki
phase can change. If, however, an invariant subgroup of the
unbroken flavor symmetry group is gauged, the potential
will retain the same flavor symmetry, and, as a result, the
boundary of the Aoki phase itself will shift its location. This
includes the case where the full unbroken flavor symmetry
group is gauged, as in Sec. II A.15

Clearly, these results have practical consequences for the
lattice study of electromagnetic effects in hadronic physics
and for composite Higgs models. The interplay between all
three sources of symmetry breaking (weak gauge fields,
fermion masses, and lattice artifacts) will have to be
considered very carefully in order to arrive at valid
conclusions about the continuum limit. For example, in
the context of the littlest Higgs model of Sec. III, our
analysis clarifies how to tune to the massless limit on the
lattice. It should be straightforward to extend the analysis
framework we developed in this article to gauge theories
with different flavor symmetry groups.

14The definition of chiral gauge theories on the lattice is as yet
not a fully solved problem; see for example Ref. [17].

15An example of a nontrivial invariant subgroup would be an
SUð4Þ=SOð4Þ nonlinear sigma model, where the lattice flavor
symmetry is SO(4), and in which the invariant subgroup of
Sec. III A is gauged.
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Finally, our conclusions are not limited to lattice gauge
theories with Wilson fermions. In a companion paper [18]
we find that similar considerations apply to the use of
staggered fermions as well, since staggered fermions also
break continuum flavor symmetries,16 and a nontrivial
phase structure is possible in that case as well [20]. In
addition, the same continuum mass matrix can arise from
inequivalent choices of the staggered mass terms on the
lattice, and this can also give rise to a competition with the
effects of the weak gauge fields.
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APPENDIX: PROOF THAT Cw IS POSITIVE

In this appendix we prove that Cw in Eq. (3.4) is positive.
The structure of the proof is similar to the proof that the
electromagnetic contribution to m2

π� −m2
π0

in QCD is
positive [14].
We will consider the case of a strongly coupled gauge

theory withNf Weyl fermions in a real representation of the
strong gauge group. This theory has an SUðNfÞ flavor
symmetry, which is spontaneously broken to SOðNfÞ. For
the purpose of this appendix, it is convenient to assemble
each two-component Weyl fermion and its antifermion
field into a four-component Majorana fermion χi,
i ¼ 1;…; Nf. The continuum action is then 1

2
χ̄iγμDμχi,

where Dμ is the covariant derivative in the real representa-
tion. Here χ̄i ¼ χTi CR by definition, where C is the usual
charge-conjugation matrix, and R is a matrix such that
RT ¼ R† ¼ R−1 ¼ R and RT αR ¼ −T T

α for the gener-
ators T α of the strong gauge group in the real representa-
tion. The fermion condensate hχ̄iχji is symmetric in
the indices i; j, and we will assume that hχ̄iχji ∝ δij.
Thus the unbroken SOðNfÞ generators are antisymmetric,
TT
a ¼ −Ta, and the broken generators for the coset

SUðNfÞ=SOðNfÞ are symmetric, TT
a ¼ Ta.

We introduce an SUðNfÞ global spurion Q ¼ QaTa,
where Ta are the Hermitian generators of SUðNfÞ.17 The
spurion transforms as Q → UQU† for U ∈ SUðNfÞ. The
microscopic partition function is

ZðQÞ ¼
Z

d½A�d½W�d½χ�exp½−SSðAμ;χiÞ−SWðWμ;χi;QÞ�;

(A1)

SWðWμ; χi; QÞ ¼ 1

4
F2
μν þ gWμQaJμa; (A2)

Jμa ¼ χ̄iγμPRTaijχj ¼ χ̄iγμPLð−TTÞaijχj: (A3)

Here Aμ is the strong gauge field, and SS is the action for the
strong dynamics. The fieldWμ is the weak gauge field, with
Fμν its field strength. Since we work to order g2, a single
gauge fieldWμ will be sufficient. Correspondingly, we may
neglect the nonlinear part of Fμν. In this framework, the
global SUðNfÞ transformations are carried by the spurions
Qa, whereas the field Wμ is invariant.18

The leading-order effective potential, bilinear in Q, is
now

Veff ¼ g2C0trðQ2Þ þ g2CwtrðQΣQ�Σ�Þ; (A4)

in which C0 is another constant. The chiral field Σ is a
unitary and symmetric matrix, and transforms as
Σ → UΣUT . Using Q� ¼ QT , on the vacuum Σ0 ¼ 1 this
expression collapses to

Vvac ¼ g2C0trðQ2Þ þ g2CwtrðQQTÞ: (A5)

Introducing general linear combinations QV and QA of the
unbroken and broken SUðNfÞ generators,

QV ¼
X

Ta¼−TT
a

QV
a Ta; QA ¼

X
Ta¼þTT

a

QA
aTa: (A6)

and using the fact that Q ¼ QV þQA and QT ¼
−QV þQA, we may write Vvac as

Vvac ¼ g2C0trðQVQV þQAQAÞ
− g2CwtrðQVQV −QAQAÞ: (A7)

Differentiating twice yields the linear combinations

∂
∂QV

a

∂
∂QV

b
Vvac ¼ g2δabðC0 − CwÞ; (A8a)

∂
∂QA

a

∂
∂QA

b

Vvac ¼ g2δabðC0 þ CwÞ; (A8b)

from which we may extract C0 and Cw separately.
In the microscopic theory

hJμaðxÞJνbð0Þi ¼ −trhγμTaPR½χðxÞχ̄ð0Þ�γνTbPR½χð0Þχ̄ðxÞ�i
þ trhγμTaPR½χðxÞχ̄ð0Þ�γνTT

bPL½χð0Þχ̄ðxÞ�i
(A9a)

16For reviews, see Refs. [9,19] and references therein.
17For the QCD plus QED case, see Refs. [7,18,21].

18It is also possible to promote the flavor symmetry to a local
symmetry (at least classically), by introducing the gauge fields
WμaTa, see Ref. [7].
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¼ −trðTaTbÞtrhγμPR½χðxÞχ̄ð0Þ�γνPR½χð0Þχ̄ðxÞ�i
þ trðTaTT

bÞtrhγμPR½χðxÞχ̄ð0Þ�γνPL½χð0Þχ̄ðxÞ�i; (A9b)

where ½χðxÞχ̄ðyÞ� is the Majorana fermion propagator. In
Eq. (A9b), in each term the first trace is over flavor indices,
and the second over Dirac and strong gauge group indices.
The reason for the two terms on the right-hand side is that,

with χi being Majorana, two different contractions contrib-
ute. In the first term on the right-hand side of Eq. (A9), we
express both currents using the first expression on the right-
hand side of Eq. (A3), and then contract the fermion fields
cyclically. The second term is obtained by first rewriting
Jνbð0Þ using the second expression on the right-hand side of
Eq. (A3), before cyclically contracting the fermions.
Unlike in the case of QCD, the same two-current

correlation function now has both symmetry-preserving
and symmetry-breaking parts. But these two parts have a
different flavor structure. Indeed, the flavor structure of the
two terms in Eq. (A9b) reproduces that obtained at the
effective potential level (A5). Defining form factors from
the contractions (P⊥

μν is the transverse projector)

q2P⊥
μνΠ0ðq2Þ ¼ −

Z
d4xeiqxtrhγμPR½χðxÞχ̄ð0Þ�

× γνPR½χð0Þχ̄ðxÞ�i; (A10a)

q2P⊥
μνΠwðq2Þ ¼

Z
d4xeiqxtrhγμPR½χðxÞχ̄ð0Þ�

× γνPL½χð0Þχ̄ðxÞ�i; (A10b)

one finds that

C0 ¼
1

16π2

Z
∞

0

dq2q2Π0ðq2Þ; (A11a)

Cw ¼ 1

16π2

Z
∞

0

dq2q2Πwðq2Þ: (A11b)

Finally, we observe that the Dirac structure in Eq. (A10b)
is identical to that of ΠLRðq2Þ in QCD, and therefore the
proof in Ref. [14] that ΠLRðq2Þ ≥ 0 applies to Πwðq2Þ as
well, with the consequence that Cw > 0. We note that the
first of these two integrals is UV divergent, but the second,
being an order parameter, is finite.
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