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Using spectral data from nonstrange and strange hadronic τ decays, flavor-breaking chiral sum rules
involving the flavor ud and us current-current two-point functions are constructed and used to determine
the SUð3Þ next-to-next-to-leading order (NNLO) low-energy constant combinations Cr

61, C
r
12 þ Cr

61 þ Cr
80

and Cr
12 − Cr

61 þ Cr
80. The first of these determinations updates the results of an earlier analysis by Dürr and

Kambor, while the latter two are new. The error on Cr
12 þ Cr

61 þ Cr
80 is particularly small. Comparisons are

made to model estimates for these quantities. The role of the third combination in significantly improving
the determination of the next-to-leading order low-energy constant Lr

10 from NNLO analyses of the flavor
ud V − A correlator is also highlighted.
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I. INTRODUCTION

Chiral perturbation theory (ChPT) provides a means of
implementing, in the most general way, the constraints on
low-energy processes of the symmetries of QCD [1–3]. The
effects of resonances, and other heavy degrees of freedom,
are encoded in the low-energy constants (LECs) which
appear in the resulting effective chiral Lagrangian multi-
plying those operators allowed by these constraints. In the
even-intrinsic-parity sector, at next-to-leading order (NLO)
in the chiral counting, the SUð3Þ × SUð3Þ Lagrangian
involves ten in-principle measurable LECs, the Lk intro-
duced in Ref. [3]. The next-to-next-to-leading order
(NNLO) form was first considered in Ref. [4], and a
reduced minimal set of operators subsequently found in
Ref. [5]. The minimal NNLO SUð3Þ form involves 94
additional LECs, 4 in contact and 90 in noncontact terms.
In what follows, we work with the dimensionful versions,
Ck, of the NNLO LECs introduced in Ref. [5].
To make the NNLO chiral Lagrangian fully predictive,

existing determinations of the Lk must be supplemented
with model-independent experimental and/or theoretical
determinations of the Ck. To date, a limited number of such
determinations exist.

First attempts at obtaining what is now called C61 were
made in Refs. [6–8], with a more robust chiral sum rule
determination, involving the flavor-breaking (FB) ud-us
vector current correlator, obtained in Ref. [9]. C12 and the
combination C12 þ C34 were determined via phenomeno-
logical [10,11] and lattice [12] analyses of the scalar Kπ
form factor, and C14 þ C15 and C15 þ 2C17 from analyses
of the quark-mass dependence of lattice data for fK=fπ
[12–14] (some aspects of these latter analyses employing,
in addition, large-Nc arguments). Generally less precise
constraints on the combinations C88 − C90, 2C63 − C65 and
6C12 þ 2C63 þ 2C65 þ 3C90 were obtained from analyses
of the charged π and K electromagnetic form factors [15],
and on the combinations C12 þ 2C13, C13 and C12 þ 4C13

from analyses of the curvature of the π and strangeness-
changing Kπ scalar form factors [16]. An overconstrained
(but, with current data, not yet fully self-consistent)
determination of the set C1−4 was also made [17], using
a combination of four of the subthreshold coefficients of the
πK scattering amplitudes determined in Ref. [18] and two
of the low-energy ππ scattering parameters determined in
Ref. [19]. The four remaining ππ scattering parameters and
six remaining πK subthreshold coefficients provide ten
additional constraints on the 24 NNLO LECs C5−8, C10−17,
C19−23, C25, C26 and C28−32 [17]. Finally, C87 has been
determined from analyses of the light-quark V-A current-
current correlator [20,21].
In the absence of clean theoretical and/or data-based

determinations, it is common to use estimates of the Ck
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obtained in model-dependent approaches. One such strategy
is to extend the resonance ChPT (RChPT) approach [22]
(often held to work well in estimating NLO LECs [23]) to
NNLO [24]. This approach typically employs, in addition to
long-distance chiral constraints, short-distance QCD and
large-Nc constraints. Evidence exists that at least some
1=Nc-suppressed LECs cannot be neglected [25,26] (we
will comment below on another such piece of evidence). A
second approach to estimating the Ck, in a large-Nc gauge-
invariant nonlocal quark model framework, was presented in
Ref. [27]. Comparisons performed in Refs. [17,27] between
predicted Ck values and those known from experiment
expose some shortcomings in both approaches.
In light of this situation, additional model-independent

NNLO LEC determinations are of interest, first as part of
the ongoing long-term program of pinning down the
parameters of the low-energy effective Lagrangian, and
second, as a means of further testing, and constraining,
models used to estimate additional as-yet-undetermined
LECs. In this paper, we update the earlier determination of
C61 [9] and provide a new high-precision determination of
the combination C12 þ C61 þ C80. With input for C12 from
other sources (such as those noted above), this yields also a
determination of C80. A direct determination of the com-
bination C12−C61þC80, which, with the 1=Nc-suppressed
combination C13 − C62 þ C81, is needed to complete the
determination of the NLO LEC L10 from an NNLO
analysis of the low-energy behavior of the light quark
V-A correlator [20,21], is also obtained. Combining this
determination with the continuum light-quark V-A corre-
lator analysis of Ref. [21] and the lattice analysis of
Ref. [28] turns out to make possible a high-precision
(∼10%) determination of L10. This level of precision
requires careful consideration of the LEC combination
C13 − C62 þ C81, which, though nominally subleading in
1=Nc, turns out to have a nonzero value comparable to that
of the non-1=Nc-suppressed combination C12 − C61 þ C80

(although with large errors) [21]. This nonzero value has a
nontrivial impact on the determination of L10, shifting the
magnitude of the result by 15% compared to what is
obtained if C13 − C62 þ C81 is instead set to zero on the
grounds of its 1=Nc suppression [28].
The rest of the paper is organized as follows: In Sec. II,

we introduce and give the explicit forms of the chiral sum
rules to be employed. In Sec. III, the experimental, NLO
LEC, and OPE inputs to these sum rules are specified.
Section IV contains the results and a comparison to
model predictions for the LEC combinations in question.
Section V, finally, contains a brief summary. Details of the
OPE contributions and errors are gathered in the Appendix.

II. THE FLAVOR-BREAKING CHIRAL
SUM RULES

The key objects for the analysis described in this paper
are the flavor ij ¼ ud, us vector (V) and axial vector (A)

current-current two-point functions, Πμν
V=A, and their spin

J ¼ 0, 1 components, ΠðJÞ
ij;V=A. These are defined by

Πμν
ij;V=Aðq2Þ≡i

Z
d4xeiq·xh0jTðJμij;V=AðxÞJ†νij;V=Að0ÞÞj0i

¼ðqμqν−q2gμνÞΠð1Þ
ij;V=AðQ2ÞþqμqνΠð0Þ

ij;V=AðQ2Þ;
(1)

where Jij;V=A are the standard flavor ij V=A currents, and

Q2 ¼ −q2 ¼ −s. Πð0;1Þ
ij;A individually have kinematic singu-

larities atQ2 ¼ 0, but their sum, Πð0þ1Þ
ij;A , and sΠð0Þ

ij;A are both
kinematic singularity free. The associated spectral func-

tions, ρðJÞij;V=AðsÞ ¼ ImΠðJÞ
ij;V=AðsÞ=π, are accessible experi-

mentally through the normalized differential distributions,
dRij;V=A=ds,

Rij;V=A ≡ Γ½τ− → ντhadronsij;V=AðγÞ�=Γ½τ− → ντe−ν̄eðγÞ�;
(2)

measured in flavor ij V- or A-current-induced hadronic τ
decays. Explicitly [29],

dRij;V=A

ds
¼ 12π2jVijj2SEW

m2
τ

× ½wτðyτÞρð0þ1Þ
ij;V=AðsÞ − wLðyτÞρð0Þij;V=AðsÞ�; (3)

with yτ ¼ s=m2
τ , wτðyÞ ¼ ð1 − yÞ2ð1þ 2yÞ, wLðyÞ ¼

2yð1 − yÞ2, SEW a known short-distance electroweak cor-
rection [30], and Vij the flavor ij CKMmatrix element. The

dominant contributions to ρð0Þud;us;AðsÞ are the accurately
known, chirally unsuppressed π and K pole terms. The
remaining J ¼ 0 V=A spectral contributions are propor-
tional to ðmi∓mjÞ2, and hence numerically negligible for

ij ¼ ud. ρð0þ1Þ
ud;VþAðsÞ is thus determinable directly from the

nonstrange differential decay distribution. For ij ¼ us,
phenomenological determinations strongly constrained
by the known strange quark mass are available for the

small continuum scalar ρð0Þus;VðsÞ [31] and pseudoscalar

ρð0Þus;AðsÞ [32] contributions in the region s < m2
τ relevant

to hadronic τ decays. With the contributions proportional to

wLðyτÞρð0Þus;V=AðsÞ in Eq. (3) thus fixed, ρð0þ1Þ
us;VþAðsÞ can be

determined from the strange differential decay distribution.
The V=A separation for the ud and us cases will be
discussed further in the next section.
Given a correlator, ΠðQ2 ¼ −sÞ, free of kinematic

singularities, and the corresponding spectral function,
ρðsÞ, application of Cauchy’s theorem to the contour
shown in Fig. 1 yields the inverse-moment (chiral)
finite-energy sum rule (IMFESR) relation, valid for any
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choice of weight function, wðsÞ, analytic in the region of
the contour:

wð0ÞΠð0Þ ¼ 1

2πi

I
jsj¼s0

ds
wðsÞ
s

ΠðQ2Þ þ
Z

s0

th
ds

wðsÞ
s

ρðsÞ;

(4)

where th is the relevant physical threshold. We will work
below with values of s0 and FB correlator combinations,
ΠðQ2Þ, such that the ρðsÞ needed on the rhs are accessible
from hadronic τ-decay data. A determination of the
combination of LECs occurring in the chiral representation
of Πð0Þ is then obtained by inputting the chiral represen-
tation on the lhs and evaluating both terms on the rhs. For
large enough s0, the first term on the rhs can be evaluated
using the OPE representation ofΠðQ2Þ, while, for s0 < m2

τ ,
the second term can be evaluated using experimental
spectral data. Previous sum rule studies have, however,
found that, even for s0 ∼ 2–3 GeV2, integrated duality
violations (OPE breakdown) can be sizeable for wðsÞ
which are not zero at the timelike point s ¼ s0 on the
contour [33–35]. We thus further restrict our attention to
wðsÞ satisfying wðs0Þ ¼ 0.
We will consider two choices for the weight wðyÞ,

y ¼ s=s0:

wDKðyÞ ¼ ð1 − yÞ3
�
1þ yþ 1

2
y2
�

¼ 1 − 2yþ 1

2
½y2 þ y3 þ y4 − y5�;

ŵðyÞ ¼ ð1 − yÞ3: (5)

The first of these was considered in Ref. [9]. Both weights
satisfy wð0Þ ¼ 1 and are “triply pinched” (i.e., they have a
triple zero at s ¼ s0), strongly suppressing duality-violating
contributions to the first term on the rhs of Eq. (4). An
additional advantage of the triple zero is the suppression of
contributions to the weighted spectral integrals [the second
term on the rhs of Eq. (4)] from the high-s part of the spectral
functions, where the us data currently available suffers from
low statistics and large V=A-separation uncertainties [9]. The

strong suppression at large s for these weights is thus doubly
beneficial to the goal of this article, which is to determine as
accurately as possible the lhs’s, wð0ÞΠð0Þ ¼ Πð0Þ, of
Eq. (4) for various FB combinations, Π, of the ud and us
V and A correlators [see Eq. (6) below].1

The value of Πð0Þ in Eq. (4) should, of course, be
independent both of s0 and the choice of weight, wðsÞ.
Verifying that these independences are in fact realized
provides nontrivial tests of the self-consistency of the
theoretical and spectral input to the analysis.
In the rest of the paper, we concentrate on IMFESRs

involving one of the three choices, T ¼ V, V � A, of the
FB ud-us combinations of J ¼ 0þ 1 V and A correlators,

ΔΠT ≡ Πð0þ1Þ
ud;T − Πð0þ1Þ

us;T : (6)

The corresponding spectral functions are denoted ΔρT .
Versions of the T ¼ V � A correlator and spectral-function
combinations having their π and K pole contributions
subtracted will be denoted by ΔΠ̄V�A and Δρ̄V�A. The
restriction to the J ¼ 0þ 1 combination is predicated on
the very bad behavior of the OPE representation of
Πð0Þ

ij;V=AðQ2Þ on the contour jQ2j ¼ s0 for all s0 accessible
using τ decay data [36,37].
It is worth commenting on the differences in the OPE

contributions for the two weights wDK and ŵ. We focus
here on D ≥ 4 contributions (D ¼ 2 contributions will
be discussed in more detail later, as will D ¼ 4 contribu-
tions higher order in αs). For a general polynomial
wðyÞ ¼ P

m¼0amy
m, writing ½ΔΠTðQ2Þ�OPE

D≥4 in the formP
k≥2C

T
2k=Q

2k, with CT
D an effective dimension-D

s−plane

Im s

Re s

|s|=s0

th

FIG. 1 (color online). The contour underlying the chiral sum
rules of Eq. (4).

1The motivation for the choice of weights here is to be
contrasted with that in Refs. [34,35], in which the principal
aim was a precision determination of αsðm2

τ Þ from the non-FB ud
V and A correlators. The need for high (∼1% or less) precision on
the theoretical side of the sum rules employed in that case favors a
restriction to weights of lower degree, which minimize the
number of D ≥ 6 OPE condensates that need to be fit to data,
but have less pinching than those in the present case. As the level
of pinching decreases, the possibility for significant integrated
duality violations increases. As explained in detail in Ref. [34],
the inclusion of unpinched weights in that analysis allowed for
the modeling and constraining of these contributions, providing a
means for investigating quantitatively the level of integrated
duality violation not only in that case but also in earlier pinched-
weight analyses. Here, the situation is different, as the use of
triply pinched polynomials wðyÞ in the full weights, wðyÞ=s, used
to access the low-s physics of interest to us, not only strongly
suppresses duality-violating contributions, as already noted
above, but also significantly reduces the errors on the weighted
us spectral integrals. The additional 1=s factor in the weights
further helps by reducing the maximum dimension of OPE
condensates which have to be considered in the analysis. The
final important difference between the present case and that of the
αs analysis is the precision required for the OPE contributions.
Here, OPE contributions turn out to play a smaller numerical role,
greatly reducing the level of precision required for the evaluation
of these contributions.
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condensate, the integrated D ≥ 4 OPE contributions to the
rhs of Eq. (4) become

1

2πi

I
jsj¼s0

ds
wðs=s0Þ

s
½ΔΠTðQ2Þ�OPE

D≥4 ¼
X
k≥2

ð−1Þkak
CT
2k

sk0

(7)

up to logarithmic corrections suppressed by additional
powers of αs. Since ŵ has degree 3, only OPE contributions
up to D ¼ 6 contribute, if we ignore the αs-suppressed
logarithmic corrections. In contrast, wDK , which has degree
5, produces contributions at leading order in αs up to
D ¼ 10. In this sense, ŵ is preferred over wDK, since the
latter involves additional unknown or poorly known D ¼ 8
and D ¼ 10 condensates. For wDK, these contributions are
expected to be small, partly because the coefficients am,
m ¼ 4, 5 are small enough to avoid unwanted enhance-
ments, and partly because of the 1=sD=2

0 suppression of such
higher-D contributions for s0 ≫ Λ2

QCD, but this expectation
can (and should) be tested. Performing the IMFESR
analysis for a range of s0 provides a means of doing so
and, in fact, provides a test of the reliability of any
approximations employed in evaluating the rhs, including
also the neglect of integrated duality violations. The s0
dependence of the rhs of Eq. (4) will be considered for the
combinations of Eq. (6) for both weights in Sec. IV below.
An advantage of the weight wDK over ŵ is that the

D ¼ 2, 4 contributions to the integral in Eq. (7) are better
behaved for wDK. In addition, as can be seen from Eq. (7),
since aŵ2 =a

wDK
2 ¼ 6, the leading-order D ¼ 4 contribution,

and the associated error are both a factor of ∼6 larger for ŵ.
Analogous, though somewhat smaller, enhancement fac-
tors, jaŵ1 =awDK

1 j ¼ 3=2 and jaŵ3 =awDK
3 j ¼ 2 are operative for

the leading-order ŵ D ¼ 2 and D ¼ 6 contributions and
errors. D ¼ 2, 4 and 6 contributions, and hence total OPE
errors, are thus significantly larger for ŵ than for wDK from
this effect alone. The nominal convergence of the known
terms in the integrated D ¼ 2 OPE series is also signifi-
cantly slower for ŵ. The larger OPE errors turn out to
produce total errors for ŵ which are similar to those for
wDK (cf. Table II in Sec. IV). The differences in the relative
sizes of spectral integral and OPE contributions to the rhs’s
of the wDK and ŵ IMFESRs also means that the tests of
self-consistency provided by the agreement of the results of
the two analyses are indeed nontrivial.
Below, the magnitude of the D ¼ 6 contributions will be

estimated using the vacuum saturation approximation
(VSA) with very generous errors, and D ¼ 8 and D ¼
10 contributions will be assumed negligible.2 The fact that

higher-D contributions vary more strongly with s0 than do
integrated lower-dimensional D ¼ 2, 4 contributions
means that these assumptions can also be tested, provided
a range of s0 is employed in the analysis. As already
emphasized above, such s0-stability tests play an important
role in all such sum-rule analyses.
For T ¼ V � A, π and K pole contributions appear on

both sides of Eq. (4). The LECs of interest in these cases,
in fact, appear only in the pole-subtracted parts, ΔΠ̄V�A,
of the ΔΠV�A, and it is thus convenient to move all
the pole contributions to the corresponding rhs’s. With
wDKð0Þ ¼ ŵð0Þ ¼ 1, the three IMFESRs of interest, for
wðsÞ ¼ wDKðyÞ or ŵðyÞ, then take the form

ΔΠVð0Þ ¼
1

2πi

I
jsj¼s0

ds
wðsÞ
s

½ΔΠVðQ2Þ�OPE

þ
Z

s0

th
ds

wðsÞ
s

ΔρVðsÞ; (8)

ΔΠ̄V�Að0Þ ¼
1

2πi

I
jsj¼s0

ds
wðsÞ
s

½ΔΠV�AðQ2Þ�OPE

þ
Z

s0

th
ds

wðsÞ
s

Δρ̄V�AðsÞ

�
�
f2K
s0

fwresðyKÞ −
f2π
s0

fwresðyπÞ
�
; (9)

where, owing to the pole subtraction, th is now the
continuum threshold 4m2

π , yπ ¼ m2
π=s0, yK ¼ m2

K=s0,
fwDK
res ðyÞ¼4−y−y2−y3þy4 and fŵresðyÞ ¼ 6 − 6yþ 2y2.

The normalization of the decay constants is such that
fπ ≈ 92 MeV. Note that it is the full correlators ΔΠV�A,
including the π/K pole contributions, which occur in the
first term of the rhs of Eq. (9). We discuss the inputs to the
rhs’s of Eqs. (8) and (9) in the next section.
We conclude this section with the NNLO low-energy

representations of the lhs’s of Eqs. (8) and (9). The general
structure of these representations is RTð0Þ þ ½ΔΠTð0Þ�LEC,
with

½ΔΠTð0Þ�LEC ¼
X

k¼5;9;10

cTkL
r
k þ 32ðm2

K −m2
πÞ

X
k¼12;61;80

aTkC
r
k;

(10)

and RTð0Þ, the NLO LECs Lr
k and the NNLO LECs Cr

k all
depending on the chiral renormalization scale μ. The
RTð0Þ’s combine all one- and two-loop contributions
involving only LO vertices, and are completely fixed by
the pseudoscalar meson masses, decay constants and μ.
Their forms are rather lengthy (especially for the T ¼
V � A cases) and hence not presented here. They can be
reconstructed from the results of Secs. 4, 6 and Appendix B
of Ref. [38]. NLO contributions proportional to the Lr

k
cancel in the FB combinations considered here. The

2Existing fits for the effective D ¼ 6 and 8 condensates, C6;8,
for the ud V and A correlators can be used to evaluate the ud
contributions to the FB D ¼ 6þ 8 differences. These results will
be used as a very conservative bound for the corresponding FB
combinations.
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coefficients cT5;9;10 are generated by one-loop graphs with a
single NLO vertex, and thus also μ dependent. The aTk are,
in contrast, μ independent at this order.
Fixing the chiral scale μ to the conventional scale choice

μ0 ≡ 0.77 GeV, the explicit forms of the ½ΔΠTð0Þ�LEC
become

½ΔΠVð0Þ�LEC ¼ −0.7218Lr
5 þ 1.423Lr

9 þ 1.062Lr
10

þ 32ðm2
K −m2

πÞCr
61;

½ΔΠ̄VþAð0Þ�LEC ¼ −0.7218Lr
5 þ 1.423Lr

9

þ 32ðm2
K −m2

πÞ½Cr
12 þ Cr

61 þ Cr
80�;

½ΔΠ̄V−Að0Þ�LEC ¼ −0.7218Lr
5 þ 1.423Lr

9 þ 2.125Lr
10

− 32ðm2
K −m2

πÞ½Cr
12 − Cr

61 þ Cr
80�; (11)

where the renormalized LECs are all understood to be
evaluated at μ ¼ μ0, and mπ and mK have been taken to be
the charged pion mass and, for definiteness, the average of
the charged and neutral kaon masses. (Taking insteadmK to
be the charged K mass has no impact on our final results.)
The corresponding values for the LEC-independent RT
contributions are

RVðμ0Þ ¼ 0.00775;

RVþAðμ0Þ ¼ 0.00880;

RV−Aðμ0Þ ¼ 0.00670: (12)

III. INPUTS TO THE V, V þ A AND
V − A IMFESRS

A. Meson masses, decay constants
and NLO LEC inputs

PDG 2012 values [39] are used for fπ, mπ , mK and mη

(the latter is required in evaluating some of the NNLO
contributions). Explicitly, mπ ¼ 139.57 MeV, mη ¼
547.85 MeV and mK ¼ 495.65 MeV, the latter being the
average of the charged and neutral masses. For the
normalization used here, fπ ¼ 92.21ð14Þ MeV [39]. fK
is obtained by combining this value with the current
FLAG assessment of nf ¼ 2þ 1 lattice results, fK=fπ ¼
1.193ð5Þ [40].
The NNLO representation ofΔΠ̄VþAð0Þ does not involve

Lr
10, so the only NLO LECs required as input to the

determination of the corresponding NNLO LEC combina-
tion Cr

12 þ Cr
61 þ Cr

80 are Lr
5 and Lr

9. The ΔΠVð0Þ and
ΔΠ̄V−Að0Þ IMFESRs, in contrast, also require input on Lr

10.
For Lr

5 and Lr
9, we employ the values Lr

5ðμ0Þ ¼
0.00058ð13Þ and Lr

9ðμ0Þ ¼ 0.00593ð43Þ. The former is
the result of the recommended All fit from the most recent
NNLO analysis of the NLO LECs Lr

1−8, given in Table 5 of
Ref. [26]. The latter was obtained in an NNLO analysis
of the π and K electromagnetic form factors [15]. The
contributions proportional to Lr

5 in the three IMFESRs

under consideration are numerically rather small, and the
resulting contributions to the errors on the corresponding
NNLO LEC combinations negligible in comparison to the
contributions from other sources.
The situation with Lr

10 is somewhat more complicated,
since the NNLO determination of Lr

10 is not independent
of the NNLO LECs appearing in the ΔΠV and ΔΠ̄V−A
IMFESRs. The standard route to an experimental determi-
nation of Lr

10 has been through a dispersive or IMFESR
determination of the value of the π-pole-subtracted light-
quark V-A correlator, Π̄ud;V−AðQ2Þ, at Q2 ¼ 0. An early
IMFESR analysis, employing ChPT to NLO may be
found in Ref. [41]. Two NLO determinations using lattice
data for Πud;V−AðQ2Þ also exist [42,43]. A very precise
determination,

Π̄ud;V−Að0Þ ¼ 0.0516ð7Þ; (13)

has been obtained in Ref. [21] using the results of
Refs. [34,35] in combination with the updated version of
the OPAL nonstrange spectral distributions [44] reported in
Ref. [35]. A similar result for Πud;V−Að0Þ has been obtained
in Ref. [20] using the nonstrange ALEPH rather than OPAL
data [45]. The error on the result of Ref. [20] is, unfortu-
nately, not reliable, owing to an error in the publicly posted
covariance matrices for the version of the ALEPH data used
in that analysis [46].
It is now known that the NLO approximation provides a

very poor representation of the low-Q2 dependence of
Π̄ud;V−AðQ2Þ [21]. This result, which is not unexpected in
view of a similar observation about the NLO representation
of the ud V correlator [47], clearly calls into question the
results for Lr

10 obtained from NLO analyses.
The NNLO representation of Π̄ud;V−Að0Þ required to

extend the NLO analyses to NNLO has the form [38]

Π̄ud;V−Að0Þ ¼ Rud;V−A þ ĉ9Lr
9 þ ĉ10Lr

10 þ Cr0 þ Cr1; (14)

where Rud;V−A is the sum of one- and two-loop contribu-
tions involving only LO vertices,

ĉ9 ¼ 16ð2μπ þ μKÞ;
ĉ10 ¼ −8ð1 − 8μπ − 4μKÞ; (15)

with μP ¼ m2
P

32π2f2π
logðm2

P
μ2
Þ being the usual chiral logarithm,

and

Cr0 ¼ 32m2
π½Cr

12 − Cr
61 þ Cr

80�;
Cr1 ¼ 32ðm2

π þ 2m2
KÞ½Cr

13 − Cr
62 þ Cr

81�: (16)

Rud;V−A, ĉ9 and ĉ10 are all fixed by the chiral scale μ and
pseudoscalar masses and decay constants. The NNLO
LECs appearing in Cr0 are LO in 1=Nc, and those in Cr1
are 1=NC suppressed. Note that Cr0 involves precisely the
combination of NNLO LECs appearing in ΔΠ̄V−Að0Þ. For
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μ ¼ μ0, the results of Ref. [21] for Π̄ud;V−Að0Þ and Ref. [15]
for Lr

9ðμ0Þ yield the very precise constraint

Lr
10ðμ0Þ ¼ −0.004098ð59Þexpð74ÞLr

9
þ 0.0822ðCr0 þ Cr1Þ

(17)

on Lr
10ðμ0Þ, Cr0ðμ0Þ and Cr1ðμ0Þ.3 Information on Cr0ðμ0Þ and

Cr1ðμ0Þ is, however, required to turn this into a determi-
nation of Lr

10ðμ0Þ. The differing dependences of ĉ9, ĉ10, Cr0
and Cr1 on the meson masses makes it natural to approach
this problem using the lattice, where the pseudoscalar
meson masses can be varied by varying the input quark
masses.
Such an analysis has been carried out in Ref. [28]. The

first stage of this analysis uses lattice and continuum data for
Π̄ud;V−AðQ2Þ in combination with the constraint, Eq. (17),
obtained from the already published result for Π̄ud;V−Að0Þ,
Eq. (13). For low EuclideanQ2, the errors on the lattice data
for Π̄ud;V−AðQ2Þ are currently larger than those on the
continuum version. The consequence is that, while use of
the lattice data in combination with the Π̄ud;V−Að0Þ con-
straint, Eq. (17), does allow all three of Lr

10, C
r
0 and Cr1 to be

determined, the errors that result from this first-stage analysis
are at the ∼25%, ∼100% and ∼80% levels for Lr

10, C
r
0 and

Cr1, respectively. The ΔΠ̄V−A IMFESR, which involves a
distinct combination of two of these three quantities, Lr

10 and
Cr0, provides an additional constraint, and allows an extended
(second-stage) version of the analysis of Ref. [28] to be
carried out. The extended analysis, which employs our
results below for the ΔΠ̄V−A IMFESR constraint as input,
produces results [quoted in Eqs. (27), (28) and (29) below]
with significantly reduced errors.
In presenting the results of the IMFESR analyses below,

we will thus first quote the result for Cr
12 þ Cr

61 þ Cr
80 from

the ΔΠ̄VþA IMFSER, which is independent of the treatment
of Lr

10, and then quote the result for the constraint onL
r
10 and

Cr0 arising from the ΔΠ̄V−A IMFESR. The ΔΠ̄VþA and
ΔΠ̄V−A IMFESRs can, of course, also be combined to obtain
the related (but not independent) ΔΠV and ΔΠ̄A IMFESRs.
The former constrains the combination of Lr

10 and C
r
61 noted

above; the latter an analogous combination of Lr
10 and

Cr
12 þ Cr

80. To go further, and turn these constraints into
explicit determinations of the corresponding NNLO LEC
combinations, requires input on Lr

10. We will employ for Lr
10

the result of the second-stage combined lattice-continuum
analysis of Ref. [28]. This analysis incorporates the wDKðyÞ
version of the ΔΠ̄V−A IMFESR constraint, in addition to the
Π̄ud;V−Að0Þ constraint, Eq. (17), and the constraints gener-
ated by data from four different lattice ensembles. The
resulting error for Lr

10 is dominated by lattice errors, and
hence independent of those in the present analysis. With this
input for Lr

10, C
r
61 follows from the ΔΠV IMFESR constraint

and Cr
12 þ Cr

80 from the ΔΠ̄A IMFESR constraint. External
input on Cr

12 then allows us to also fix Cr
80.

B. OPE input

The correlator combinations entering the IMFESRs
under consideration are all flavor breaking and thus have
vanishing D ¼ 0 OPE series. We include D ¼ 2 and 4
contributions for all channels, treat D ¼ 6 and 8 contri-
butions as discussed below, and assume that D ¼ 10 and
higher contributions can be neglected for IMFESRs based
on either wDKðyÞ or ŵðyÞ. Integrated duality violations will
also be neglected. Since integrated OPE contributions of
D ¼ 2k scale, up to logarithms, as 1=sk0 [see Eq. (7)], and
integrated duality violations typically produce contribu-
tions with oscillatory s0-dependence, these assumptions
can be tested by studying the IMFESRs [Eqs. (8) and (9)]
over a range of s0 and ensuring that the resulting Q2 ¼ 0
correlator values are independent of s0, as well as of the
choice of weight, as they should be.
The D ¼ 2 OPE series for the flavor ij ¼ ud, us,

J ¼ 0þ 1, V and A correlators are known to four loops.
The explicit expressions to three loops, including light-
quark mass corrections, may be found in Ref. [48], and the
Oðm2

sÞ terms in the four-loop contributions in Ref. [49].
Expressions for the corresponding D ¼ 4 and 6 contribu-
tions may be found in Refs. [50,51].
Omitting, for presentational simplicity, corrections sup-

pressed by 1 or more powers of mu;d=ms, these results
imply, for D ¼ 2,

½ΔΠVðQ2Þ�OPE
D¼2 ¼

3

4π2
m2

sðQ2Þ
Q2

�
1þ 7

3
āþ 19.9332ā2 þ 208.746ā3 þ � � �

�
;

½ΔΠVþAðQ2Þ�OPE
D¼2 ¼

3

2π2
m2

sðQ2Þ
Q2

�
1þ 7

3
āþ 19.9332ā2 þ 208.746ā3 þ � � �

�
;

½ΔΠV−AðQ2Þ�OPE
D¼2 ¼

3

2π2
muðQ2ÞmsðQ2Þ

Q2

�
2

3
āþ 8.7668ā2 þ � � �

�
; (18)

3The slight difference between the result given inEq. (17) and that quoted inEq. (4.9) ofRef. [21],Lr
10¼−0.004113ð89Þexpð74ÞLr

9
, results

from the inadvertent use in Ref. [21] of the less precise determination of the quantityLeff
10, given by Eq. (4.1) of that reference, in place of the

most precise determination, Eq. (4.2 b). Switching instead to themost precise determination, Eq. (4.2 b), leads to the result quoted inEq. (17).
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where ā≡ αsðQ2Þ=π, with αsðQ2Þ being the M̄S running
coupling, and muðQ2Þ and msðQ2Þ are the M̄S running u
and s quark masses.
For D ¼ 4, one has, omitting numerically negligible

contributions of fourth order in the quark masses and terms
suppressed by mu;d=ms,

½ΔΠVðQ2Þ�OPE
D¼4 ¼−

1

Q4

�
ms

m̂

�
hm̂ ūui

×

�
rcþ ā

�
4

3
− rc

�
þ ā2

�
59

6
−
13

3
rc

��
;

½ΔΠVþAðQ2Þ�OPE
D¼4 ¼−

2

Q4

�
ms

m̂

�
rchm̂ ūui

�
1− ā−

13

3
ā2
�
;

½ΔΠV−AðQ2Þ�OPE
D¼4 ¼−

1

Q4

�
ms

m̂

�
hm̂ ūui

�
8

3
āþ59

3
ā2
�
; (19)

where m̂ ¼ ðmu þmdÞ=2 and rc ¼ hs̄si=hūui.
D ¼ 6 contributions are expected to be dominated by

contributions from four-quark condensates. These conden-
sates are not known experimentally for the flavor us
correlators but can be roughly estimated using the VSA.
In this approximation, one has [51]

½Πð0þ1Þ
ij;V=AðQ2Þ�OPE

D¼6;VSA

¼ 32π

81

αs
Q6

½∓9hq̄iqiihq̄jqji þ hq̄iqii2 þ hq̄jqji2�; (20)

from which the VSA approximations to ½ΔΠV �OPE
D¼6 and

½ΔΠV�A�OPE
D¼6 are easily obtained. With these estimates, one

finds that D ¼ 6 contributions are numerically very small,
particularly so for the V and V þ A IMFESRs, where they
could be safely neglected even if the VSA were to be in
error by an order of magnitude.4

The VSA estimates for theD ¼ 6 contributions to the FB
IMFESRs, being proportional to the FB factor rc − 1,
display quite strong cancellations. Some care must thus
be exercised in assigning errors to these estimates. Here it is
possible to take advantage of recent results for the effective
D ¼ 6 and D ¼ 8 condensates appearing in the OPE
representations of Πud;V , Πud;A and Πud;V−A, obtained in
the course of the analyses described in Refs. [21,35]. These
allow a determination of the sum of the D ¼ 6 and 8
contributions to the ud parts of the relevant IMFESR OPE
integrals. Although the corresponding flavor us contribu-
tions are not known, some degree of cancellation will
certainly be present in the FB ud-us differences. The flavor
ud D ¼ 6þ 8OPE sums can thus be used to provide a very

conservative estimate of the uncertainties on the central FB
ud-us D ¼ 6þ 8 OPE contributions described above.
The inputs required to evaluate the D ¼ 2, 4 OPE

contributions are as follows: For the running coupling
and masses, we employ the exact solutions generated using
the four-loop-truncated β and γ functions [52]. The initial
condition for αs is taken to be α

nf¼3
s ðm2

τÞ ¼ 0.3181ð57Þ,
obtained from the nf ¼ 5 PDG 2012 assessment
αsðm2

ZÞnf¼5 ¼ 0.1184ð7Þ via standard four-loop running
and three-loop matching at the flavor thresholds [53]. For
the initial conditions for the running masses, we take the
results for mu;d;sð2 GeVÞ contained in the latest FLAG
assessment [40]. The GMOR relation m̂hūui ¼ − 1

2
m2

πf2π is
used for the light-quark condensate. For the ratio of strange
to light condensates, the recent lattice result, rc ¼ 1.08ð16Þ
[54], is in good agreement with the value rc ¼ 1.1ð3Þ
obtained by updating the sum-rule result of Ref. [55] for
modern nf ¼ 2þ 1 values of the ratio fBs

=fB. To be
conservative, we will take the larger of the two errors.
In the case of the V and V þ A IMFESRs, the largest

source of uncertainty in the OPE contribution turns out to
lie in the treatment of the integrated D ¼ 2 series. Since
αsðm2

τÞ=π ≃ 0.1, one sees from Eqs. (18) that, in these
cases, the convergence of the known terms in the D ¼ 2
series is marginal at best: at the spacelike point on the
contour, the four-loop [Oðā3Þ] D ¼ 2 term in fact exceeds
the three-loop [Oðā2Þ] one for all s0 accessible using τ-
decay data. The rather problematic convergence behavior
of the D ¼ 2 series manifests itself not only in a similarly
problematic behavior for the integrated D ¼ 2 series, but
also in a large difference, increasing with truncation order,
between the results of evaluations of the integrated trun-
cated series obtained using the FOPT (fixed-order pertur-
bation theory) and CIPT (contour-improved perturbation
theory) prescriptions. The two prescriptions differ only by
contributions of order higher than the truncation order, the
former involving the truncation of the integrated series at
fixed order in αsðs0Þ, the latter the summation of logarithms
point by point along the contour via the local scale choice
μ2 ¼ Q2 and truncation at the same fixed order in αsðQ2Þ
for all such Q2.
The problematic convergence behavior and increase in

the FOPT-CIPT difference with increasing truncation order
both suggest the D ¼ 2 series may already have begun to
display its asymptotic character at three- or four-loop order,
complicating an assessment of the error to be assigned to
the integrated truncated series. This issue has been raised
previously in the context of the determination of jVusj from
FB hadronic τ decay sum rules [56].
Fortunately, the lattice provides a means of investigating

the reliability of various treatments of the D ¼ 2 OPE
series. In Ref. [57], lattice data for the FB V þ A combi-
nation was shown to favor the fixed-scale over the local-
scale treatment of the D ¼ 2 series, and hence FOPT
over CIPT for the IMFESR integrals. Moreover, with the

4In fact, the VSA turns out to yield central values for theD ¼ 6
contributions much smaller than the corresponding estimated
errors. To the number of digits quoted below, our final results are,
in fact, unchanged if we shift from our VSA estimates to zero for
the D ¼ 6 contributions.
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three-loop-truncated, fixed-scale version of the D ¼ 2
series, the OPE was found to provide a good representation
of the lattice data for Q2 in the range from m2

τ down to
∼2 GeV2 [57]. In view of these results, the integrated
D ¼ 2 OPE contribution has been evaluated using the
FOPT prescription truncated at three loops. The associated
error is taken to be the quadrature sum of (i) the three-loop
FOPT-CIPT difference, (ii) the magnitude of the last (three-
loop) term retained in the integrated FOPT series, (iii) the
error associated with the uncertainty in the input
msð2 GeVÞ, and (iv) the error associated with the uncer-
tainty in the input αsðm2

τÞ. The resulting error is dominated
by the FOPT-CIPT difference for wDK, while both the
FOPT-CIPT difference and last-term-retained contributions
are important for ŵ. Based on the lattice results, this
approach should, in fact, yield a rather conservative assess-
ment of the D ¼ 2 error.
Further details of our assessments of the errors on the

various OPE contributions may be found in the Appendix.

C. Flavor ud and us spectral input

The weighted spectral integrals needed to complete the
evaluations of the rhs’s of the IMFESRs in Eq. (9) are

Z
s0

th
ds

wðsÞ
s

ρð0þ1Þ
ud;us;VðsÞ and

Z
s0

th
ds

wðsÞ
s

ρ̄ð0þ1Þ
ud;us;AðsÞ;

(21)

with wðsÞ ¼ wDKðyÞ or ŵðyÞ, and the range 2.15 GeV2 <
s0 < m2

τ (the lower bound reflecting the binning of the
ALEPH data) employed to carry out the s0-stability (self-
consistency) tests noted above.
An update of the OPAL results for ρð0þ1Þ

ud;V ðsÞ and
ρ̄ð0þ1Þ
ud;A ðsÞ [44], reflecting changes to the exclusive-mode
branching fractions since the original OPAL publication,
was performed in Ref. [35]. This update employed non-
strange branching fractions from an HFAG fit incorporating
Standard Model expectations based on πμ2 and Kμ2 decay
widths and then-current strange branching fractions from
the same fit. Since then, Belle has produced a new result for
B½τ− → KSπ

−π0ντ� [58] which shifts slightly the previous
world average for this mode. To restore the sum over all
branching fractions to 1 after this shift, and in the absence
of an update of the previously used HFAG fit which takes
this shift into account, a common global 0.99971 rescaling
has been performed on the ud V and A distributions of
Ref. [35]. Being so close to 1, this rescaling, not surpris-
ingly, has negligible effect.
The V=A separation for the nonstrange modes was

performed by OPAL using G parity. The main uncertainty
in this separation results from KK̄π contributions, for which
G parity cannot be used. A conservative, fully anticorrelated
50� 50% V=A breakdown was assumed. While the KK̄π
V=A separation uncertainty can, in principle, be significantly
reduced through angular analyses [59] of the much higher

statistics B-factory data on these modes, such an improve-
ment is irrelevant for our purposes, since this uncertainty
plays a negligible role in the present analysis.
The differential decay distribution dRus;VþA=ds has been

measured, and its exclusive mode contributions made
available, by the ALEPH Collaboration [60]. Much higher
statistics B-factory results now exist for the relative (unit-
normalized) distributions of the K−π0 [61], KSπ

− [62],
K−πþπ− [63,64] and KSπ

−π0 [58] exclusive modes, the
latter in preliminary form only. We employ the B-factory
results for these four modes, using current branching
fraction values to fix the overall normalizations.5 For all
other modes, the ALEPH results, rescaled to current
branching fraction values, are used. The J ¼ 0 subtraction
of the dRus;VþA=ds distribution, required to extract the J ¼
0þ 1 component contribution thereof, and hence the
combination ρ̄ð0þ1Þ

us;VþAðsÞ is, as noted above, performed using
the results of Refs. [31,32]. For jVusj (needed to convert
from dR=ds to the spectral function), we employ the value
0.2255(10) implied by three-family unitarity and the
Hardy-Towner determination jVudj ¼ 0.97425ð22Þ [65].
The V=A separation of the us, V þ A distribution is more

complicated than in the analogous ud case. While the K
pole contribution is pure A, and the Kπ distribution pure V,
chirally unsuppressed V and A contributions are both
present for all the higher-multiplicity Knπ (n ≥ 2) modes.
For Kππ, the V=A separation could be performed, up
to small chirally suppressed corrections, by a relatively
simple angular analysis [59], but this has yet to be done.
Fortunately, for phase-space reasons, the Kππ and higher-
multiplicity strange mode distributions lie at relatively high
s, increasingly so with increasing multiplicity. Their con-
tributions to the IMFESR spectral integrals are thus
strongly suppressed by the combination of the 1=s factor
in the overall weight,wðsÞ=s, and the triple zeros of wDKðyÞ
and ŵðyÞ at s ¼ s0. The suppression of such high-s
contributions, of course, grows stronger as s0 is decreased.
The strong high-s suppression is also welcome in view of
the low statistics and consequent large errors for the high-s
part of the ALEPH us distribution and the fact that the s
dependences of the ALEPH K3π, Kη, K4π and K5π
distributions were fixed from Monte Carlo rather than by
direct measurement. The high-s suppression is, in fact,
strong enough to allow the analyses to proceed with a

5The version of the Belle KSπ
−π0 results used here is prelimi-

nary, having been read off from Fig. 2 of the report, Ref. [58],
prepared by the Belle Collaboration for the Tau 2012 proceedings.
The errors take into account the uncertainty in the reported
branching fraction in addition to those shown in the figure. While
this should (and will) be updated once the final version of the Belle
analysis is released, the KSπ

−π0 uncertainties errors play a
negligible role in the V and V − A analyses (where they are
swamped by the much larger V=A separation uncertainties) and a
very small role in the V þ A analysis (where Kπ error contribu-
tions are dominant). The preliminary nature of the Belle data
should thus have no relevant impact on the present analysis.
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50� 50% (fully anticorrelated) V=A breakdown assigned
to contributions from all modes other than K and Kπ.
As noted in Refs. [9,60], however, the Kππ distributions

contain contributions from the axial K1ð1270Þ, the axial
K1ð1400Þ and the vector K�ð1410Þ resonances. While the
latter two cannot be disentangled without an angular
analysis, the former lies in a distinct part of the spectrum
and can be unambiguously assigned to the A channel. This
observation allows an improvement to be made on the V=A
separation for the Kππ modes. Dürr and Kambor [9],
following ALEPH [60], modeled the Kππ distribution as a
sum of two resonant contributions, one from the K1ð1270Þ
and one from a single effective 1400 region resonance with
mass and width equal to the average of the corresponding
K1ð1400Þ and K�ð1410Þ parameters. The resulting 1400
region contribution was then assigned 50� 50% each to
the V and A channels. For the V channel considered by
Dürr and Kambor, the resulting ALEPH-based Kππ
IMFESR contribution was found to be only ∼5% (∼7%)
of the corresponding Kπ one at s0 ∼ 2 GeV2 (s0 ∼m2

τ ).
This approximate separation of V and A contributions to

the Kππ spectral distribution can be carried out even more
convincingly with the much-higher-precision BABAR
K−πþπ− [64] and Belle KSπ

−π0 [58] data, both presented
at Tau 2012. Figure 2 shows the us spectral function
contributions produced by these data sets. The K1ð1270Þ
peak is clearly visible for both modes. Performing the
ALEPH/Dürr-Kambor analysis, one finds V=A breakdowns
of ∼20� 20%V=80� 20%A for the wDK- and ŵ-
weighted IMFESR integral contributions from the combi-
nation of these two modes, the precise value varying by a
few percent with variations in the choice of weight, the
input effective 1400 width and fit window employed, and
by ∼2% over the range of s0 considered in this analysis.
While the reduction from �50% to �20%, accomplished
by taking into account the presence of the K1ð1270Þ
contributions, represents a significant improvement in
the V=A separation uncertainty for the Kππ component

of the us spectral integrals, one should bear in mind that the
Kππ contribution is much smaller than the K and/or Kπ
ones, making the impact of this improvement on the errors
in the total us spectral integrals much more modest.
In the absence of high-statistics B-factory results for

the distributions of the much smaller K−π0π0 mode and
all higher-multiplicity modes, we take the maximally
conservative approach and assume a fully anticorrelated
50� 50%V=50� 50%A breakdown for the correspond-
ing spectral integral contributions. Because of the anti-
correlation, both for these modes, and in the separation of
the 1400 region Kππ contributions, the total us spectral
integral error is magnified for the V − A difference. For the
V, A and V − A channels, where the V=A separation
uncertainty plays a role, the suppression of contributions
from the high-s region produced by the triple zeros of
wDKðyÞ and ŵðyÞ at s ¼ s0 and the 1=s factor in the full
weight wðsÞ=s is especially important. The V=A separation
uncertainty is, of course, absent for the Vþ A combination.

IV. RESULTS

The rhs’s of the IMFESRs of Eqs. (8) and (9) are
evaluated using the input specified in the previous section.
Included in this input is the choice of the three-loop-
truncated FOPT prescription for evaluating theD ¼ 2 series.
Since this choice was predicated on an agreement of the
corresponding OPE representation and lattice data for
Euclidean Q2 extending from m2

τ down to, but not below,
∼2 GeV2, we restrict our attention to s0 lying safely in this
interval. With the ALEPH us data binning, this corresponds
to 2.15 GeV2 ≤ s0 ≤ m2

τ . For s0 in this range, experience
with sum rules involving weights with a double zero at s ¼
s0 suggests integrated duality violations should also be
negligible [34,35,66]. OPE contributions are very small
for the wDKðyÞ version of the ΔΠ̄V−A IMFESR, but less
so for the ŵðyÞ version, where enhanced D ¼ 4 contribu-
tions reach up to∼8% of the rhs in the s0 window employed.
OPE contributions are numerically relevant for both versions
of the ΔΠV and ΔΠ̄VþA IMFESRs, reaching 6% and 8%,
respectively, of the rhs’s for the wDKðyÞ case, and 16% and
19%, respectively, of the rhs’s for the ŵðyÞ case.
The dependences on s0 of the OPE, continuum spectral

integral and residual π=K-pole term contributions to the
rhs’s of the wDKðyÞ ΔΠ̄VþA and ΔΠ̄V−A IMFESRs, Eq. (9),
are shown, for illustration, in Figs. 3 and 4. As noted
already, OPE contributions are negligible for the latter, but
not the former. Also shown are the totals of all three
contributions, which should be independent of s0 and equal
to ΔΠ̄VþAð0Þ and ΔΠ̄V−Að0Þ, respectively. The s0 stability
of these results is obviously excellent. Similarly good s0
stability is found for the wDKðyÞ ΔΠV IMFESR and all
three ŵðyÞ IMFESRs. The corresponding figures are thus
omitted for the sake of brevity. Given that OPE contribu-
tions to the wDKðyÞ V − A IMFESR are numerically
negligible, the stability of ΔΠ̄V−Að0Þ with respect to s0
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FIG. 2 (color online). The K−πþπ− and K̄0π−π0 contributions
to ρð0þ1Þ

us;VþAðsÞ implied by the BABAR K−πþπ− [64] and Belle
K̄0π−π0 [58] results presented at Tau 2012.
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for this case supports the treatment of the exclusive us
spectral integral contributions and V=A separation. The
stability in the V þ A cases tests, in addition, the treatment
of the OPE contributions. The s0 stability in all cases also
supports the neglect of higher-D OPE and residual duality-
violating contributions in the analysis.
The values for ΔΠVð0Þ, ΔΠ̄VþAð0Þ and ΔΠ̄V−Að0Þ

obtained from the wDKðyÞ analysis are as follows:

ΔΠVð0Þ¼0.0230ð11Þcontð4ÞOPEð3Þs0¼0.0230ð12Þ;
ΔΠ̄VþAð0Þ¼0.0348ð10Þcontð2Þresð5ÞOPEð6Þs0¼0.0348ð13Þ;
ΔΠ̄V−Að0Þ¼0.0113ð15Þcontð2Þresð3ÞOPEð1Þs0¼0.0113ð15Þ;

(22)

where, to be specific, the central values quoted represent
the average over the s0 window employed. The subscripts
OPE, cont and res identify error components associated
with OPE, continuum spectral integral and (where present)
residual π=K-pole contributions, while the additional
component labeled by the subscript s0 specifies the small
residual variation of the total over the s0 analysis window.

The ŵðyÞ versions of these analyses, similarly, yield

ΔΠVð0Þ¼0.0227ð9Þcontð6ÞOPEð2Þs0¼0.0227ð10Þ;
ΔΠ̄VþAð0Þ¼0.0348ð8Þcontð2Þresð8ÞOPEð3Þs0¼0.0348ð12Þ;
ΔΠ̄V−Að0Þ¼0.0105ð11Þcontð2Þresð5ÞOPEð3Þs0¼0.0105ð13Þ:

(23)

The agreement between the results of Eqs. (22) and (23)
represents a further nontrivial test of the treatment of
theoretical and spectral integral contributions. The total
errors on ΔΠVð0Þ, ΔΠ̄VþAð0Þ and ΔΠ̄V−Að0Þ are rather
similar for the wDKðyÞ and ŵðyÞ determinations, with
spectral integral errors somewhat smaller and OPE errors
somewhat larger for the ŵðyÞ case. In view of the similarity
of the errors, and the fact that the ŵðyÞ analyses involve
both significantly larger OPE contributions and integrated
D ¼ 2 and D ¼ 4 OPE series having much slower con-
vergence behavior, we take our final results to be those
obtained from the wDKðyÞ IMFESRs, whose errors are
dominantly experimental.
The results of Eq. (22), combined with the LEC con-

tributions of Eq. (11), the LEC-independent contributions
of Eq. (12), and the input values for Lr

5;9ðμ0Þ, yield the final
versions of the IMFESR constraints on the NNLO LEC
combinations and (for T ¼ V, V − A) Lr

10.
We now discuss in more detail the version of this

analysis based on the weight wDK . The ŵ-based analysis
is analogous and, due to the good agreement between the
results of Eqs. (22) and (23), leads to very similar results for
the NNLO LECs. These will be displayed, together with
those from the wDK analysis, in Table II below.
The wDKðyÞ T ¼ V þ A IMFESR becomes

Cr
12ðμ0Þ þ Cr

61ðμ0Þ þ Cr
80ðμ0Þ

¼ 0.00248ð13Þcontð2Þresð7ÞOPEð9Þs0ð1ÞLr
5
ð8ÞLr

9
GeV−2

¼ 0.00248ð19Þ GeV−2; (24)

where the subscripts Lr
5 and L

r
9 label errors associated with

the uncertainties on the input L5;9ðμ0Þ values, and the
labeling of all other sources of error is as specified above.
The wDKðyÞ T ¼ V − A IMFESR, similarly, yields

2.12Lr
10ðμ0Þ− 32ðm2

K −m2
πÞ½Cr

12ðμ0Þ−Cr
61ðμ0Þ þCr

80ðμ0Þ�
¼ −0.00346ð145Þcontð15Þresð31ÞOPEð8Þs0ð9ÞLr

5
ð61ÞLr

9

¼ −0.00346ð161Þ; (25)

and the wDKðyÞ T ¼ V constraint

32ðm2
K −m2

πÞCr
61ðμ0Þ

¼ 0.00727ð108Þcontð38ÞOPEð32Þs0ð9ÞLr
5
ð61ÞLr

9

− 1.06Lr
10ðμ0Þ: (26)
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FIG. 4 (color online). Right-hand side contributions to the
wDKðyÞ ΔΠ̄V−A IMFESR, Eq. (9), as a function of s0.
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wDKðyÞ ΔΠ̄VþA IMFESR, Eq. (9), as a function of s0.
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In Ref. [28], a combined fit incorporating the constraint,
Eq. (25), the Πud;V−Að0Þ constraint, Eq. (17), and lattice
Πud;V−AðQ2Þ results for four nf ¼ 2þ 1, domain-wall
fermion RBC/UKQCD ensembles (two with inverse lattice
spacing 1=a ¼ 2.31 GeV and pion masses mπ ¼ 293 and
349 MeV, and two with 1=a ¼ 1.37 GeV and mπ ¼ 171
and 248 MeV), was shown to yield

Lr
10ðμ0Þ ¼ −0.00346ð32Þ; (27)

Cr0ðμ0Þ ¼ −0.00034ð13Þ; (28)

Cr1ðμ0Þ ¼ 0.0081ð35Þ: (29)

The result in Eq. (28) corresponds to

Cr
12ðμ0Þ − Cr

61ðμ0Þ þ Cr
80ðμ0Þ ¼ −0.00055ð21Þ GeV−2:

(30)

Equation (27), combined with the T ¼ V constraint,
Eq. (26), then implies

Cr
61ðμ0Þ ¼ 0.00151ð15Þcontð5ÞOPEð4Þs0ð1ÞLr

5
ð8ÞLr

9
ð5ÞLr

10

× GeV−2

¼ 0.00151ð19Þ GeV−2: (31)

There is some correlation between the continuum spectral
integral errors and Lr

10, but the impact of this correlation
does not show up in the combined error, to the number of
significant figures shown, since the error on Lr

10 is strongly
dominated by the errors on the lattice data.6

Taking into account the correlations between the V and
V þ A analysis inputs (or, equivalently, performing the FB

ud-us A IMFESR analysis directly), one finds, from
Eqs. (24) and (31),

Cr
12ðμ0Þ þ Cr

80ðμ0Þ
¼ 0.00097ð8Þcontð2Þresð4ÞOPEð5Þs0ð5ÞLr

10

¼ 0.00097ð11Þ GeV−2: (32)

The determination of Cr
12 in Ref. [10] has been recently

updated to reflect new values for the main inputs fþð0Þ and
fK=fπ [67], with the result

Cr
12ðμ0Þ ¼ 0.00005ð4Þ GeV−2: (33)

Equations (32) and (33) yield

Cr
80ðμ0Þ ¼ 0.00092ð12Þ GeV−2: (34)

Replacing the inputs from Eq. (22) with those from
Eq. (23) and repeating the steps just described yields the
alternate ŵ IMFESR determinations of the same NNLO
LEC combinations shown in Table II. These are in excellent
agreement with those obtained from the wDK IMFESR
analysis.
A number of estimates exist in the literature for the three

NNLO LECs, Cr
12;61;80ðμ0Þ, entering the combinations

determined above. Cr
61 was also obtained directly in an

earlier version [9] of the FB V-channel IMFESR analysis,7

and Cr
12ðμ0Þ (not determined here) in the lattice analysis of

Ref. [12] and an updated version [67] of the coupled-
channel dispersive analysis of Ref. [10]. These estimates/
results are compiled in Table I. For the quark model results
of Ref. [27], we quote, for simplicity, the larger of the two
asymmetric errors from the original publication. In

TABLE I. Previous results and estimates from the literature for Cr
12ðμ0Þ, Cr

61ðμ0Þ and Cr
80ðμ0Þ. LEC values are in

units of GeV−2.

LEC RChPT Quark model Other

Cr
12 −0.00082 [26] −0.00034ð2Þ [27] 0.00005(4) (Dispersive [67])

−0.00044ð16Þ [68] 0.00057(10) (Lattice [12])
−0.0008ð4Þ [69]

Cr
61 0.0021 [17] 0.00288(26) [27] 0.00081(38) (IMFESR [9])

0.0019 [38]

Cr
80 0.0021(5) [69] 0.00087(4) [27]

0.0019 [38]

6The impact of the uncertainties on Lr
5 and Lr

9 in the T ¼
V − A IMFESR constraint is also very small. As an example,
doubling the Lr

9 uncertainty of Ref. [15] and rerunning the fit of
Ref. [28], we find the errors in Eqs. (27), (28) and (29) shifted to
0.00033, 0.00015 and 0.0036, respectively, with no change in the
central fitted values.

7A value for Cr
61ðμ0Þ differing from that in Table I was also

given in Ref. [17]. This was meant to represent a translation of the
Dürr-Kambor result [9], which was not given directly in terms of
Cr
61, into the explicit Cr

61 form. The two values turn out to differ
because of a minor sign transcription error in the translation
process. Thanks to Bachir Moussallam for clarifying the sit-
uation, and tracking down the source of the discrepancy.
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Ref. [12], a number of different results were presented for
Cr
12, corresponding to different fit strategies and inputs.

Here only the result of fit IV, which did not employ data
from the heaviermπ ¼ 556 MeV ensemble and which used
updated NLO LEC input (the preliminary version of the
results of Ref. [26]), has been tabulated. Comparing the
quark model and RChPT estimates to the IMFESR results
above, one sees that the quark model does well for Cr

80 but
badly for Cr

61, while RChPT somewhat overestimates Cr
61

and significantly overestimates Cr
80.

An alternate comparison, involving the combinations of
NNLO LECs determined in the IMFESR analyses above, is
given in Table II. Since errors are not quoted for some of the
RChPT results in the literature, we present only central values
inthiscase,usingaveragesofthedifferentRChPTresults listed
inTable I foreachof theCr

k’s. It isworthnoting that the result in
Eq. (30) for Cr

12ðμ0Þ − Cr
61ðμ0Þ þ Cr

80ðμ0Þ differs signifi-
cantly from the value 0.00086ð67Þ GeV−2 employed in
Ref. [20]. The difference is due to a combination of two
factors: a significant overestimate of Cr

80 in the RChPT
value used in Ref. [20], and the shift in the V-channel
IMFESR result for Cr

61 resulting from significant shifts in
OPE and data inputs.

V. SUMMARY AND DISCUSSION

We have obtained rather good precision determinations
of the NNLO LECCr

61 and NNLO LEC combinationCr
12 þ

Cr
61 þ Cr

80 through the use of FB IMFESRs. The much
improved low-multiplicity B-factory strange hadronic
decay distribution data plays an important role in achieving
the reduced errors, as does the improved determination of
Lr
10 made possible by the lattice data on the flavor ud V − A

correlator. Our final results for the NNLO LECs are those
given in the previous section.
The determinations based on wDK and ŵ are in excellent

agreement, and both show good s0 stability. Those based on
wDK have the additional advantage that the final errors are
more dominated by their experimental components, and
hence less dependent on the reliability of the estimates of
OPE uncertainties, than are those based on ŵ. Because of the
strong suppression of high-s spectral contributions for the
weights employed, the us spectral integrals are dominated by
contributions from the Kπ mode, which has the most
accurately measured of the strange exclusive distributions.
For the T ¼ V þ A case, where the us V=A separation

uncertainties play no role, the result is that the errors on the
ud continuum spectral integrals (which are a factor of ∼2
larger than the us continuum integrals) are slightly larger
than the continuum us errors. Improvements to the errors on
both the ud and us spectral distributions would thus be
useful for further reducing the errors on our final results. For
the T ¼ V and V − A cases, in spite of the suppression of
contributions from the higher-multiplicity modes, the us
V=A separation uncertainty represents the largest component
of the error on the us continuum spectral integrals.8 The ud
continuum errors, however, remain non-negligible, even for
the V − A case. For the wDK-based IMFESRs, there is room
for significant experimental improvement before reaching
the limitations set by the OPE uncertainties. Improved V=A
separation of the contributions from the KK̄π and K̄ππ
channels can, in principle, be made by angular analyses of
the B-factory data for these modes, and such improvements
would serve to significantly reduce the experimental com-
ponents of the errors on the corresponding T ¼ V and V − A
IMFESR results.
With regard to the experimental errors, one should bear

in mind that work on the strange distributions and
branching fractions is ongoing. Preliminary BABAR results
based on the Ph.D. thesis of Adametz [70], for example,
show increases in the branching fractions of the τ− →
K−nπ0ντ modes. The dominant impact of such changes on
the current analyses would be through the normalization of
the K−π0-mode contributions, where the preliminary result
B½τ−→K−π0ντ�¼0.00500ð14Þ [70] differs significantly
from the current PDG average 0.00429(15). (K̄0π− con-
tributions, whose branching fraction normalization is a
factor of about 2 larger, are, however, unaffected.)
Rerunning the IMFESR analyses discussed above with
the preliminary B½τ− → K−nπ0ντ� results of Ref. [70] in
place of those used previously and a concomitant adjust-
ment to the global approximate ud V, A rescaling, one
finds that Cr

12 þ Cr
61 þ Cr

80 and Cr
61 are both shifted

downwards by ∼1σ, while Cr
80 is left essentially

unchanged. Explicitly, the results of the wDK versions of
these modified analyses are Cr

12ðμ0ÞþCr
61ðμ0ÞþCr

80ðμ0Þ¼

TABLE II. Comparison of quark model and central RChPT estimates to the values of the NNLO LEC combinations obtained from the
various IMFESR analyses above. LEC combinations are understood to be evaluated at μ ¼ μ0, and are in units of GeV−2.

LEC combination RChPT Quark model This work (wDK) This work (ŵ)

Cr
12 þ Cr

61 þ Cr
80 0.0034 0.00341(27) 0.00248(19) 0.00248(18)

Cr
12 − Cr

61 þ Cr
80 −0.0006 −0.00235ð25Þ −0.00055ð21Þ −0.00046ð19Þ

Cr
61 0.0020 0.00288(26) 0.00151(19) 0.00147(17)

Cr
12 þ Cr

80 0.0014 0.00053(2) 0.00097(11) 0.00101(10)

8As an example, at the midpoint, s0 ¼ 2.65 GeV2, of the s0
analysis window, the ratio of the V=A separation uncertainty and
Kπ distribution error contributions to the error on the wDK-
weighted us spectral integral is ∼1.5 for the V channel and ∼3 for
the V − A channel.
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0.00230ð18ÞGeV−2, Cr
61ðμ0Þ¼0.00133ð18ÞGeV−2, and

Cr
80ðμ0Þ ¼ 0.00097ð11ÞGeV−2. We stress that BABAR has

not yet released their final version of the analysis of the
Adametz thesis data, so, at present, these results serve only
to illustrate thepotential impactofongoingexperimentalwork.
We also note that the RChPT estimates for the NNLO

LECs considered here are not quantitatively reliable. This
confirms the relevance of worries expressed elsewhere in
the literature about some of the aspects of the RChPT
approach [13,71,72].
Finally, we comment that the result of Ref. [28] for

Cr1ðμ0Þ, which corresponds toCr
13ðμ0Þ−Cr

62ðμ0ÞþCr
81ðμ0Þ¼

0.00049ð21ÞGeV−2, provides another example of a 1=Nc-
suppressed LEC combination having a nonzero value for
Nc ¼ 3. Such combinations are usually neglected in making
RChPT estimates, but the nonzero value in this case plays a
nontrivial role in achieving the improveddeterminationofLr

10

reported inRef. [28].Wealsonote that thecentralvalue for this
combination exceeds by a factor of ∼2.7 the bound

jCr
13ðμ0Þ − Cr

62ðμ0Þ þ Cr
81ðμ0Þj

< jCr
12ðμ0Þ − Cr

61ðμ0Þ þ Cr
80ðμ0Þj=3 (35)

assumed for it inRef. [20],where the1=3on the rhswasmeant
to reflect the 1=Nc suppression of the lhs. This observation
provides a cautionary note regarding the use of such large-Nc
assumptions/bounds in contexts where they dominate the
errors in the full analysis (in the case ofRef. [20], that onLr

10).
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APPENDIX: OPE CONTRIBUTIONS
AND ERRORS

In this appendix, we provide details, broken down by
dimension and source, of the total errors on the OPE
contributions to the rhs’s of the wDK and ŵ T ¼ V, V þ A
and V − A IMFESRs quoted above. We remind the reader
that the OPE terms in question represent contributions to
the IMFESR determinations of the Q2 ¼ 0 values of the
relevant FB correlator differences, and thus that the relevant
scale for assessing the largeness or smallness of a given
contribution is the corresponding Q2 ¼ 0 correlator value.
To two significant figures these are, from either Eq. (22)
or Eq. (23), ΔΠVð0Þ ¼ 0.023, ΔΠ̄VþAð0Þ ¼ 0.035 and
ΔΠ̄V−Að0Þ ¼ 0.011.
Table III lists our estimates of the central D ¼ 2

contributions and errors, together with the individual
contributions to these errors. The column headings δm2,
Oðā2Þ, Prescription and δαs label individual contributions
associated with (i) the uncertainty on the overall squared
mass factors arising from uncertainties in the FLAG quark
mass inputs, (ii) a contribution to the truncation uncertainty
equal to the size of the last [Oðā2Þ] term kept in the
truncated series, (iii) the difference between the results for
the three-loop-truncated series obtained using the central
FOPT and alternate CIPT prescriptions, and (iv) the uncer-
tainty induced by that on the nf ¼ 5 αsðM2

ZÞ input,
respectively. We display results only for the smallest and
largest s0 employed, 2.15 and 3.15 GeV2, respectively. All
results decrease monotonically in magnitude with increas-
ing s0.
From the table, we see that D ¼ 2 contributions are

entirely negligible for T ¼ V − A. The central D ¼ 2 OPE
contributions are also small, though not negligible, for the
other channels, varying, for example for wDK, from 5% to
3% ofΔΠVð0Þ for T ¼ V and from 6% to 4% ofΔΠ̄VþAð0Þ

TABLE III. The wDK and ŵ IMFESR D ¼ 2 OPE assessments, total errors and error components for the T ¼ V, V þ A and V − A
channels and s0 ¼ 2.15 and 3.15 GeV2. The s0 entries are in GeV2, and the error components are labeled as described in the text.

Weight T s0 D ¼ 2 integral δm2 Oðā2Þ Prescription δαs

wDK V 2.15 0.00106(29) 0.00005 0.00011 0.00027 0.00002
3.15 0.00061(13) 0.00003 0.00005 0.00012 0.00001

V þ A 2.15 0.00211(59) 0.00011 0.00022 0.00053 0.00003
3.15 0.00121(26) 0.00006 0.00010 0.00023 0.00001

V − A 2.15 −0.00001ð1Þ 0.00000 0.00000 0.00000 0.00000
3.15 −0.00000ð0Þ 0.00000 0.00000 0.00000 0.00000

ŵ V 2.15 0.00196(44) 0.00010 0.00038 0.00020 0.00004
3.15 0.00109(20) 0.00006 0.00018 0.00007 0.00001

V þ A 2.15 0.00391(88) 0.00020 0.00075 0.00040 0.00007
3.15 0.00219(40) 0.00011 0.00036 0.00015 0.00003

V − A 2.15 0.00001(1) 0.00000 0.00001 0.00000 0.00000
3.15 0.00001(0) 0.00000 0.00000 0.00000 0.00000
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for T ¼ V þ A, as s0 is increased from 2.15 to 3.15 GeV2.
The corresponding total D ¼ 2 errors, similarly, vary
from 1% to 0.6% of ΔΠVð0Þ and from 2% to 0.7% of
ΔΠ̄VþAð0Þ over the same range. The prescription depend-
ence is the dominant contribution to the total error for
wDK , while both the prescription dependence and Oðā2Þ
truncation error contribution play a significant role for ŵ.
TheD ¼ 2 errors for ŵ are∼50% larger than those for wDK.
Table IV contains our D ¼ 4 contributions and total

errors. The errors are the quadrature sum of (i) the uncer-
tainty generated by that on the input FLAG ratio of strange to
light quark masses, (ii) a truncation uncertainty equal to the
last [Oðā2Þ] term kept in the truncated D ¼ 4 series, and
(iii) the uncertainty generated by that on rc. Since the rc-
induced uncertainty is much larger than the other two, we
quote only the total error in this case.D ¼ 4 errors for the V
and V þ A channels are much smaller than the correspond-
ing D ¼ 2 errors for wDK, but grow to ∼90% of the
corresponding D ¼ 2 errors for ŵ. The D ¼ 4 contributions
are also subleading (∼20%–25% of theD ¼ 2 ones) in the V
and V þ A channels for wDK. For ŵ, in contrast, they range
from 88% to 73% and from 69% to 58% of the D ¼ 2
contributions for the V and V þ A channels, respectively.
D ¼ 4 V − A contributions, though larger than the strongly
suppressed D ¼ 2 ones, are still very small for wDK and do
not exceed 7% of ΔΠ̄V−Að0Þ for ŵ.
As noted in the text, a very conservative error, equal to

the value of the ud contribution to the FB difference, is
employed for the sum of the FBD ¼ 6 and 8 contributions.

The central value is obtained using the VSA for the D ¼ 6
contributions and setting D ¼ 8 contributions to zero. The
ud contribution used to set the error on this (very small)
central value is evaluated for T ¼ V and V þ A using the fit
values for CV

6 , C
A
6 , C

V
8 and CA

8 obtained in Ref. [35], and for
T ¼ V − A using the direct fits for the V − A channel
analogues, CV−A

6 and CV−A
8 , obtained in Ref. [21]. The

resulting central ud-us D ¼ 6þ 8 estimates, together with
the ud D ¼ 6þ 8 contributions and their errors (the latter
generated by the errors and correlations on the fittedD ¼ 6
and 8 coefficients) are listed in Table V. For T ¼ V þ A,
there are strong cancellations between the separate V and A
contributions, with the result that the central value of the
D ¼ 6þ 8 ud V þ A sum is much smaller than the
corresponding uncertainty. No such strong cancellation
occurs in either of the V or V − A channels. To maintain
our D ¼ 6þ 8 bound as a conservative one for all three
cases, we have thus taken as the final versions of the error
bounds on the FB ud-us D ¼ 6þ 8 contributions the sum
of the absolute values of the corresponding central ud
contribution and its error. These can be read off directly
from the results quoted in the table. The resulting D ¼
6þ 8 error is the largest of the OPE error components for
the V and V − A channels, and non-negligible, but some-
what smaller than the D ¼ 2 error, for V þ A.
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