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We calculate the Sivers function in semi-inclusive deep inelastic scattering (SIDIS) and in the Drell-Yan
process (DY) by employing the quasiclassical Glauber-Mueller/McLerran-Venugopalan approximation.
Modeling the hadron as a large “nucleus” with nonzero orbital angular momentum (OAM), we find that its
Sivers function receives two dominant contributions: one contribution is due to the OAM, while another
one is due to the local Sivers function density in the nucleus. While the latter mechanism, being due to the
“lensing” interactions, dominates at large transverse momentum of the produced hadron in SIDIS or of the
dilepton pair in DY, the former (OAM) mechanism is leading in saturation power counting and dominates
when the above transverse momenta become of the order of the saturation scale. We show that the OAM
channel allows for a particularly simple and intuitive interpretation of the celebrated sign flip between the
Sivers functions in SIDIS and DY.
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I. INTRODUCTION

Single transverse spin asymmetries (STSAs) generated
in semi-inclusive deep inelastic scattering (SIDIS) and in
hadronic collisions are one of the hot topics of research in
quantum chromodynamics (QCD), promising unparalleled
insight in the physics of chiral symmetry breaking and
quark confinement. In the factorization framework involv-
ing transverse momentum-dependent distribution functions
(TMDs) [1,2], the origin of STSAs is chiefly ascribed either
to the quark TMDs (Sivers effect [3,4]), to multiple partonic
rescattering [5–14], or to the quark fragmentation functions
(Collins effect [15]).
While both the quark TMD and the fragmentation

function are nonperturbative, and, according to the conven-
tional wisdom, cannot be calculated form first principles, it
is desirable to understand the detailed physical mechanism
leading to generation of STSAs in QCD. To that
end, significant progress has been achieved by Brodsky,
Hwang, and Schmidt (BHS) in Ref. [10] (see also
Refs. [5–7,9,11,16,17]), where, in a quark-diquark proton
model calculation, it has been shown that the STSA in
SIDIS can be generated through an interference of the final-
state parton rescattering diagram with the Born-level
amplitude. In essence, it was shown in Refs. [10,11] that
multiple partonic rescatterings are key to generating the
asymmetry. The multiple rescatterings are often referred to
as the “lensing” interaction, since, in SIDIS, the associated
color-Lorentz force tries to attract the knocked-out quarks
back into the hadron [18,19], thus “focusing” them. The
effects of such multiple rescatterings can be absorbed into
the Sivers distribution function of a polarized hadron in
SIDIS [11,20].
A consequence of this understanding of the origin of

STSA in SIDIS is that the Sivers function (and hence, the
asymmetry itself) has to change sign between SIDIS and

the Drell-Yan process (DY). At the level of the operator
matrix element, this conclusion has been reached in
Ref. [11], while an illustration of this result in the BHS
model was completed only recently [21] (see also Ref. [22]
for the outline of the calculation). It is our understanding
that in the “lensing” interpretation of STSAs, this sign
change corresponds to the color-Lorentz force changing
sign from attractive to repulsive between a knocked-out
quark in SIDIS and the incoming antiquark in DY.
The goal of the present work is to extend our under-

standing of the physical mechanism behind the STSA
beyond the quark-diquark model of the proton used in
Refs. [10,21,22] (see Refs. [23,24] for other efforts in a
similar direction). In particular, multiple partonic rescatter-
ings in high-energy scattering can be particularly simply
accounted for in the framework of the quasiclassical
approximation to QCD employed in the Glauber-Mueller
(GM) [25] and, equivalently, McLerran-Venugopalan (MV)
[26–28] models. In these approaches the hadron is modeled
by a large nucleus, with a large number A of nucleons in it.
The large number of nucleons leads to a high density of
small-x gluons in the nuclear wave function, which, in turn,
generates a hard scale Qs ≫ ΛQCD known as the parton
saturation scale, justifying the use of perturbative QCD
calculations. [For reviews of the saturation/color glass
condensate (CGC) physics, see Refs. [29–33].] The fact
that the quasiclassical approximation generates a hard
scale justifying the approach indicates that it is not simply
a “model” of QCD, but in fact, it represents a limiting
behavior of strong interactions at high energy. Multiple
rescatterings can be resummed in the GM/MV model as an
expansion in powers of the parameter α2sA1=3 [34]: the
presence of a resummation parameter allows for a con-
trolled approximation to the problem at hand. In the past,
there were a number of efforts to include spin effects in the
saturation/CGC framework [17,35–41].
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To alleviate the worry about whether a large nucleus can
adequately represent a proton (or any other hadron) in
SIDIS and DY experiments, let us point out that in
unpolarized scattering the proton may have a significant
number of nonperturbatively generated large-x (x > 0.01)
partons, which are modeled by “nucleons” in this large-
nucleus approximation. The large-x partons/“nucleons,” in
turn, give rise to small-x gluons. The resulting expressions
for the deep inelastic scattering (DIS) structure functions
have been quite successful in describing HERA low-x data
[42–45], also indicating relevance of the large-“nucleus”
approximation to the proton wave function at small x.
In what follows, we would have to slightly modify the

original MV model of the nucleus by giving the
“nucleus” both a nonzero spin and a nonzero orbital
angular momentum (OAM). Here this would mean that
free nucleons in an approximately spherical bag, as
considered originally in Refs. [26–28], would now be
polarized and would be orbiting the nuclear spin axis. In
a realistic polarized nucleus, the nucleons tend to form
pairs with zero net OAM, such that the net spin of the
nucleus is carried by the few unpaired nucleons and does
not get very large (does not grow directly with A). Since
it is not clear whether such effect (at the level of quarks
and gluons) takes place in the proton we are trying to
model, we will not make any particular assumptions
about the polarizations and OAMs of the nucleons in our
“nucleus.”
The main physical mechanism for generating STSA in

the quasiclassical framework is as follows: Imagine a large
spinning nucleus. The nucleus is so large that it is almost
completely opaque to a colored probe. This strong nuclear
shadowing is due to multiple rescatterings in the nucleus
generating a short mean free path for the quark, antiquark,
or a gluon.
Let us first consider the Drell-Yan process on such a

rotating nucleus with shadowing, as shown in Fig. 1 in the
nuclear rest frame with the rotation axis of the nucleus
perpendicular to the collision axis. The incoming antiquark
(generated in the wave function of the other hadron)
scatters on the “front” surface of the polarized nucleus
due to the strong shadowing. Since the antiquark interacts
with the nucleons, which, at the “front” of the nucleus,
preferentially rotate with the nucleus out of the plane of the
page in Fig. 1, the produced timelike virtual photons are
produced preferentially out of the page, generating left-of-
polarized-beam single spin asymmetry.1

The same mechanism can be applied to generate STSA
in SIDIS, as illustrated in Fig. 2, also in the rest frame of

the nucleus. Now the incoming virtual photon interacts
with the transversely polarized nucleus, producing a
quark. For the quark to escape out of the nucleus and
be produced, the interaction has to take place at the
“back” of the nucleus, to minimize the path the quark
needs to travel through the nucleus, maximizing its
chances to escape. The nucleons in the “back” of the
nucleus rotate preferentially into the page of Fig. 2:
scattering of a virtual photon on such nucleons results in
right-of-beam single spin asymmetry for the outgoing
quarks (quarks produced preferentially with transverse
momentum pointing into the page).
Spin asymmetries in DYand SIDIS shown in Figs. 1 and

2 are generated through a combination of OAM effects and
nuclear shadowing. The two asymmetries are opposite in
sign (left and right of beam) and, assuming that scattering
in the two processes happens at equal distances from the
nuclear edge, are likely to be equal in magnitude, in
agreement with the prediction of Refs. [11,22].
As we will see below in the actual calculations, the

STSAs in Figs. 1 and 2 do require multiple rescatterings,
but they are needed solely to generate nuclear shadowing.
Thus, the physical mechanism of Figs. 1 and 2 is quite
different from the “lensing” interaction [10,22], in which
the knocked-out quark in SIDIS “feels” the net color charge
of the remainder of the proton and is attracted back by this

FIG. 1 (color online). The physical mechanism of STSA in DY
as envisioned in the text.

FIG. 2 (color online). The physical mechanism of STSA in
SIDIS as envisioned in the text.

1This mechanism is similar in spirit to the original way of
thinking by D. Sivers about the single transverse spin asymmetry
(D. Sivers to M. Sievert, private communications). A heuristic
classical picture of a polarized hadron or nucleus was pioneered
in Ref. [46].
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charge [18,19].2 In the presence of shadowing, it would be
much harder for the quark in SIDIS to “see” the whole
remainder of the polarized proton (nucleus) coherently:
thus, one expects the “lensing” effect to weaken with
increasing shadowing (if we could increase shadowing
without modifying the degree of the polarization of the
nucleus). This is qualitatively different from the mechanism
in Figs. 1 and 2, in which the asymmetry actually increases
with shadowing. Clearly, themore opaque the nucleus is, the
more likely the interactions to happen at its “front” inDYand
at its “back” in SIDIS, making the asymmetry larger.
In the paper below, we will outline the calculations

leading to the physical picture presented in Figs. 1 and 2.
After some generalities in Sec. II, we proceed in Sec. III
with the quasiclassical analysis of STSA in SIDIS. As
mentioned above, to model the OAM of a polarized nucleus
we have to assume that the nucleus is rotating. This implies
a generalization of the original MV and GM models, in
which nucleons are static, to include rotational motion of
the nucleons. Hence, the nucleons need to have both well-
defined positions and momenta: this is only possible in the
classical limit. The classical MV model limit is achieved in
Sec. III using the Wigner functions approach, which allows
us to specify both the positions and momenta of the
nucleons in the polarized nucleus.
We then proceed to the calculation of STSA in SIDIS,

identifying two mechanisms for STSA generation: one is
due to the coupling of the produced quarks’ transverse
momentum to the OAM of the nucleus, while another one is
due to the STSA generated in the scattering of the virtual
photon on an individual nucleon along the lines of the BHS
mechanism [10] (Sivers function density). The former
mechanism is leading in the saturation framework, being
dominant in the saturation power counting (for nonzero
OAM): it is order 1 for α2sA1=3 ∼ 1. The latter mechanism is
order αs for α2sA1=3 ∼ 1, and is thus subleading.
At large values of the produced quark transverse

momentum kT , the OAMmechanism gives the contribution
to the Sivers function of the order AαsmNpTQ2

s=k6T, with pT
the typical transverse momentum of the valence quarks in
the polarized nucleus due to orbital motion and mN the
nucleon mass (with mN=3 roughly the constituent quark
mass), while the Sivers function density gives a contribu-
tion proportional to Aα2sm2

N=k
4
T . Assuming that pT ≈mN ,

we see that the Sivers function density mechanism domi-
nates for kT > Qs=

ffiffiffiffiffi
αs

p
; conversely, the OAM mechanism

is dominant for kT < Qs=
ffiffiffiffiffi
αs

p
, the domain including

everything inside of the saturation region and a phase-
space sector outside of that region.
A similar quasiclassical STSA calculation is carried out

for the Drell-Yan process in Sec. IV, where we also
explicitly show the mechanism for the sign reversal of
the Sivers function outlined in this Introduction. We
conclude in Sec. V by summarizing our results and out-
lining possible improvements of our results left for the
future work.

II. DEFINITIONS: SINGLE SPIN ASYMMETRIES,
SIVERS FUNCTION

The single transverse spin asymmetry is defined as

ANðkÞ≡
dσ↑

d2kdy −
dσ↓

d2kdy

dσ↑

d2kdy þ dσ↓

d2kdy

¼
dσ↑

d2kdy ðkÞ − dσ↑

d2kdy ð−kÞ
dσ↑

d2kdy ðkÞ þ dσ↑

d2kdy ð−kÞ
(1)

for producing a hadron with transverse momentum k in
SIDIS on a transversely polarized target and in polarized
proton-proton collisions or a dilepton pair with transverse
momentum k in the DY process on a polarized proton.
The asymmetry AN singles out a part of the production
cross section proportional to ð~S × ~pÞ · ~k, where ~p is the
three-momentum of the polarized hadron pointing along
the collision axis.
Throughout this paper, we will use light-cone coordi-

nates p� ≡ p0 � p3 with the corresponding metric
p · q ¼ 1

2
pþq− þ 1

2
p−qþ − p · q. Accordingly, we denote

four-vectors as pμ ¼ ðpþ; p−; pÞ, with the transverse
momentum p≡ ðp1; p2Þ and pT ¼ p⊥ ¼ jpj.
As we have outlined above, a possible physical explan-

ation of the asymmetry is the Sivers effect [3,4]. The aim of
this work is to calculate the Sivers function in the
quasiclassical approximation. To define the Sivers function,
first consider a quark-quark correlation function in a
polarized hadron or nucleus defined by [47,48]

Φijðx; k;P; SÞ≡
Z

dx−d2x⊥
2ð2πÞ3 eið12xPþx−−x·kÞ

× hP; Sjψ̄ jð0ÞUψ iðxþ ¼ 0; x−; xÞjP; Si;
(2)

where ψ i is the quark field with Dirac index i ¼ 1;…; 4,
while the quark is taken with transverse momentum k and
the longitudinal momentum fraction x. The proton
(or polarized nucleus) spin four-vector is Sμ, while U is
the gauge link necessary to make the object on the right of
Eq. (2) gauge invariant.
Below, when considering SIDIS and DY, we will work in

the light-cone gauge of the projectile. Choosing the
polarized proton (nucleus) to move along the light-cone
xþ direction, such that Pþ is large, we will work in the
A− ¼ 0 gauge. In the quasiclassical approximation, the

2Applying this logic to DY, one would expect that to obtain a
STSA sign reversal compared to SIDIS, one needs the antiquark
in DY to “feel” an equal repulsive force from the rest of the proton
(that is, from the proton without the quark which is about to
annihilate the antiquark): however, it is unclear to us how the
incoming antiquark can “feel” the force of only a part of the intact
proton (excluding the quark) while interacting with the whole
proton coherently.
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A− ¼ 0 gluon field of a large ultrarelativistic nucleus
moving along the xþ direction has zero transverse compo-
nent, A ¼ 0, such that the only nonzero component is Aþ.
Defining the Wilson line

Vx½b−; a−�≡ P exp

�
ig
2

Z
b−

a−
dx−Aþðxþ ¼ 0; x−; xÞ

�
; (3)

we write for the case of SIDIS [11,20]

USIDIS ¼ V†
0½þ∞; 0�Vx½þ∞; x−�; (4)

while for DY we have

UDY ¼ V0½0;−∞�V†
x½x−;−∞�: (5)

In both cases we neglected the transverse gauge link
at x− ¼ �∞, since A ¼ 0 in the gauge we chose. As will
become apparent below, the direction of the Wilson
lines in the U’s is given by the direction of motion of
the outgoing quark in SIDIS and the incoming antiquark
in DY. This results in different definitions of the
correlator Φij for the two processes, which is usually
referred to as the controlled process dependence of the
TMDs [11].
The correlation function Φij is decomposed as

[48,49]

Φijðx; k;P; SÞ ¼
M
2Pþ

�
f1ðx; kTÞ

P
M

þ 1

M2
f⊥1Tðx; kTÞϵμνρσγμPνkρ⊥Sσ⊥ −

1

M
g1sðx; kÞPγ5

−
1

M
h1Tðx; kTÞiσμνγ5Sμ⊥Pν −

1

M2
h⊥1sðx; kÞiσμνγ5kμ⊥Pν þ h⊥1 ðx; kTÞσμν

kμ⊥Pν

M2

�
ij
; (6)

where M is the mass of the polarized proton or nucleus.
In the following, we will be using the Sivers function

f⊥1Tðx; kÞ and the unpolarized quark TMD f1ðx; kÞ. These
functions can be obtained from the correlator Φij using the
following expressions:

ΦijðγþÞjijspin independent ¼ 2f1ðx; kTÞ; (7a)

ΦijðγþÞjijspin dependent ¼
2

M
ϵijSi⊥k

j
⊥f⊥1Tðx; kTÞ: (7b)

III. SEMI-INCLUSIVE DEEP
INELASTIC SCATTERING

We first consider the process of quark production in
semi-inclusive deep inelastic lepton scattering on a trans-
versely polarized heavy nucleus: lþ A↑ → l0 þ qþ X.
The leptonic tensor can be factorized out in the usual way,
so we represent the process as the scattering of a virtual
photon: γ� þ A↑ → qþ X. This photon carries a large
spacelike virtuality qμqμ ¼ −Q2 and knocks out a quark
from one of the nucleons, which may then rescatter on the
nuclear remnants. The nucleus is taken in the classical GM/
MV approximation, which we augment by requiring that
the nucleons be polarized and the nucleus rotate around the
transverse spin axis, which leads to a nonzero OAM.
Consider first the lowest-order process shown in Fig. 3,

in which a quark is ejected without rescattering.3 We work
in a frame (such as the photon-nucleus center-of-mass

frame) in which the virtual photon moves along the x− axis
with a large momentum q− and the nucleus moves along
the xþ axis with a large momentum Pþ. In this frame, the
kinematics are

Pμ ¼
�
Pþ;

M2
A

Pþ ; 0

�
;

qμ ¼
�
−
Q2

q−
; q−; 0

�
;

pμ ¼
�
αPþ;

p2
T þm2

N

αPþ ; p

�
;

kμ ¼
�
k2T
k−

; k−; k

�
; (8)

where MA is the mass of the nucleus, and the on-mass-shell
valence quark with momentum pμ is a part of the light-cone

FIG. 3. The lowest-order SIDIS process in the usual αs power
counting. A quark is ejected from a nucleon in the nucleus by
the high-virtuality photon, which escapes without rescattering.
Different solid horizontal lines represent valence quarks from
different nucleons in the nuclear wave function, with the latter
denoted by the vertical shaded oval.

3In small-x physics, quark production is dominated by a
higher-order-in-αs process, where the virtual photon splits into
a qq̄ pair before hitting the target: since in this work x ¼ Oð1Þ,
the dipole process is not dominant, constituting an order-αs
correction to the channel shown in Fig. 3.
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wave function of the nucleus. In what follows, wewill model
nucleons as made out of single valence quarks: in the end of
the calculation, to go back to the nucleons, one simply would
need to replace distribution functions in a valence quark with
the distribution functions in the nucleons.
Let us denote the photon-nucleus center-of-mass energy

squared by sA ≡ ðPþ qÞ2 and the photon-nucleon (valence
quark) center-of-mass energy squared by ŝ≡ ðpþ qÞ2. We
consider the kinematic limit sA ≫ ŝ; Q2 ≫ p2

T; k
2
T;M

2
A and

work to leading order in the small kinematic quantities
⊥2

ŝ ; ⊥2

Q2, which we denote collectively asOð⊥2

Q2Þ. Since we are
operating in the limit in which Q2 ≫ ⊥2 ≫ Λ2, the
formalism of TMD factorization applies, justifying the
use of the correlator [Eq. (2)] and decomposition [Eq. (6)].
Additionally, to a good accuracy one can assume that a
typical scale for the momentum fraction α is Oð1=AÞ,
where A is the mass number of the nucleus (in fact, α ≈ 1=A
for the single-valence quark “nucleons” at hand). In this
limit,

pþq− ¼ ŝþQ2;

qþ ¼ −
�

Q2

ŝþQ2

�
pþ ¼ −xpþ ¼ −αxPþ; (9)

where x≡Q2=ð2p · qÞ is the Bjorken scaling variable per
nucleon. The corresponding scaling variable for the entire
nucleus is xA ≡Q2=ð2P · qÞ ¼ αx ≈ x=A. The kinematic
limit at hand, ŝ ∼Q2 ≫ p2

T; k
2
T;M

2
A, corresponds to

x ∼Oð1Þ. The on-shell condition for the outgoing gluon is

k− ¼ k2T
kþ

¼ q− þ p2
T þm2

N

αPþ −
ðp − kÞ2

T

αPþ − αxPþ − kþ
≈ q−;

(10)

which fixes the struck quark to be ejected along the x−

direction, so that its light cone plus momentum

kþ ¼ k2T
q−

¼
�

k2T
ŝþQ2

�
pþ ¼

�
k2T
Q2

�
αxPþ (11)

is small, since
ffiffiffî
s

p
∼Q ∼ pþ ≫ kT . This also fixes the

momentum fraction of the active quark just before inter-
action with the photon to be xF ≡ ðkþ − qþÞ=pþ ≈
−qþ=pþ ¼ x in the usual way. (Note that qþ ¼
−Q2=q− < 0.)
In our frame, the x− extent of the Lorentz-contracted

nucleus is L− ∼ MA
Pþ R, where R is the radius of the nucleus

in its rest frame. The incoming virtual photon and outgoing
quark interact with the nucleus based on their correspond-
ing coherence lengths: l−

γ ∼ 1=jqþj and l−
k ∼ 1=kþ, respec-

tively. Comparing these to the size of the nucleus,

l−
γ

L− ∼
1

x
1

αMAR
∼OðA−1=3Þ ≪ 1;

l−
k

L− ∼
1

x

�
Q2

k2T

�
1

αMAR
∼O

�
Q2 þ ŝ
⊥2

A−1=3
�

≫ 1; (12)

we see that the photon’s coherence length is short, but the
coherence length of the ejected quark is parametrically
large for ŝ; Q2 ≫ ⊥2A1=3. Thus, for our calculation in
which x ∼Oð1Þ, the virtual photon interacts incoherently
(locally) on a single nucleon, but the ejected quark interacts
coherently with all of the remaining nucleons it encounters
before escaping the nucleus.
This limit thus combines the local “knockout” picture of

the deep inelastic scattering process with the coherent
rescattering that usually characterizes the small-x limit.
In the formal limit of a large nucleus in which αs ≪ 1 and
A ≫ 1 such that α2sA1=3 ∼Oð1Þ, these coherent interactions
with subsequent nucleons must be resummed according to
this saturation-based power counting.

A. Quark production in SIDIS

In general, it is rather straightforward to write an answer
for the quasiclassical quark production in SIDIS. As we
mentioned in the Introduction, here the problem is a little
more subtle than usual, since we are interested in also
including transverse and longitudinal motion of the nucle-
ons in the nucleus in order to model its OAM. Thus, our
quasiclassical description of the nucleus has to provide us
with both the positions and momenta of the nucleons. This
can be done using Wigner distributions.
Let us illustrate the method with a simple single

scattering from Fig. 3. Just like in the parton model, the
time scale of internucleon interactions is Lorentz-dilated in
the infinite-momentum frame of the nucleus that we are
working in. We can, therefore, write the scattering ampli-
tude for the process in Fig. 3 as a product of the light-cone
wave function ψ of the valence quarks in the nucleus
(defined according to light-front perturbation theory rules
[50,51] in the boost-invariant convention of Ref. [33]) with
the quark–virtual photon scattering amplitude MK:

Mtot ¼ ψðpÞMKðp; q; kÞ: (13)

Here ψðpÞ ¼ ψðpþ=Pþ; pÞ is the boost-invariant light-
cone wave function of a valence quark (in one of the
nucleons) in the nucleus, while MK is the scattering
amplitude for the “knockout” process γ� þ q → qþ X.
The sum over valence quark spin and color is implied in
Eq. (13). In calculating the quark production process we
need to square this amplitude, we integrate it over the
momentum of the final-state and sum over all nucleons in
the nucleus. Since momenta k and q are fixed, this amounts
to integrating over p. One gets
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Z
dpþd2p

2ðpþ þ qþÞð2πÞ3 jMtotj2

¼ A
Z

dpþd2p
2ðpþ þ qþÞð2πÞ3 jψðpÞj

2

����MKðp; q; kÞ
����2: (14)

First, let us introduce a Fourier transform of the valence
quark wave function,

ψðbÞ≡ ψðb−; bÞ ¼
Z

dpþd2p

2
ffiffiffiffiffiffi
pþp

ð2πÞ3 e
−ip·bψðpÞ; (15)

with p · b ¼ 1
2
pþb− − p · b. Next, we define the Wigner

distribution for the valence quarks (which is closely related
to the Wigner distribution of the nucleons in the quasi-
classical MV model employed here) with the help of the
Fourier transform [Eq. (15)]:

Wðp; bÞ≡Wðpþ; p; b−; bÞ

≡
Z

d2δbdδb−eip·δbψ
�
bþ 1

2
δb
�
ψ�

�
b −

1

2
δb
�
:

(16)

Note that the wave function is normalized such that

Z
dpþd2p
2pþð2πÞ3 jψðpÞj

2 ¼ 1; (17)

giving Z
dpþd2pdb−d2b

2ð2πÞ3 Wðp; bÞ ¼ 1: (18)

Since

Z
d2bdb−Wðp; bÞ ¼ jψðpÞj2=pþ; (19)

we can recast Eq. (14) as

Z
dpþd2p

2ðpþ þ qþÞð2πÞ3 jMtotj2

¼ A
Z

dpþd2pdb−d2b
2ð2πÞ3

×Wðp; bÞ pþ

pþ þ qþ
jMKðp; q; kÞj2: (20)

Finally, in the following, as usual in the saturation
framework, it would be convenient to calculate the scatter-
ing amplitude in (partial) transverse coordinate space.
Writing

MKðp; q; kÞ ¼
Z

d2xe−ik·ðx−bÞMKðp; q; x − bÞ (21)

[with k− and kþ fixed by Eqs. (10) and (11)], we rewrite
Eq. (20) as

Z
dpþd2p

2ðpþ þ qþÞð2πÞ3 jMtotj2

¼ A
Z

dpþd2pdb−d2b
2ð2πÞ3 Wðp; bÞ pþ

pþ þ qþ

×
Z

d2xd2ye−ik·ðx−yÞMKðp; q; x − bÞM�
Kðp; q; y − bÞ:

(22)

Note that the Fourier transform in Eq. (21) appears to
imply that b is the transverse position of one of the
outgoing partons in Fig. 3, whereas in the Wigner dis-
tribution b is the position of the valence quark p. As we will
shortly see, such interpretation is not inconsistent: in the
classical limit of a large nucleus, the Wigner distribution is
a slowly varying function of b, with changes in W
becoming significant over the variations of b over distances
of the order of nucleon size 1 fm or larger. The valence
quark and outgoing parton at b in Fig. 3 are perturbatively
close to each other (being part of the same Feynman
diagram), and hence the difference in their positions is
outside the precision of Wðp; bÞ and can be taken to be the
same in the Wigner distribution.
In Appendix A, we show that Eq. (22) holds not only at

the lowest order, but when multiple rescatterings are
included as well, such that in the kinematics outlined
aboveZ

dpþd2p
2ðpþþqþÞð2πÞ3 jAtotj2

¼A
Z

dpþd2pdb−d2b
2ð2πÞ3 Wðp;bÞ pþ

pþþqþ

×
Z

d2xd2ye−ik·ðx−yÞAðp;q;x−bÞA�ðp;q;y−bÞ; (23)

where we define the energy-independent (at the lowest
nontrivial order) 2 → 2 scattering amplitudes by [see also
Eqs. (A8) and (A11)] [33]

Aðp; q; kÞ ¼ Mðp; q; kÞ
2pþq−

; (24)

and Aðp; q; kÞ in Eq. (23) denotes the sum over rescatter-
ings of the quark on any number of nucleons in the
nucleus.4 [Note that for a “nucleus” made out of a

4Strictly speaking, we need to include in Eq. (23) Wigner
function convolutions with all the interacting nucleons in the
nucleus: however, since in our kinematics only the first
“knockout” process depends on the transverse momentum p⊥
of the nucleon, we only keep one convolution with the Wigner
function explicitly.
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single nucleon, pþ ¼ Pþ, which allows one to reduce
Eq. (22) to Eq. (23) by neglecting the “spectator”
nucleons.] We therefore conclude that the quark produc-
tion cross section for the γ� þ A → qþ X process can be
written as

dσγ
�þA→qþX

d2kdy
¼ A

Z
dpþd2pdb−d2b

2ð2πÞ3

×Wðp; bÞ dσ̂
γ�þNN…N→qþX

d2kdy
; (25)

where the cross section for producing a quark in γ�
scattering on the nucleons is

dσ̂γ
�þNN…N→qþX

d2kdy
¼ N

Z
d2xd2ye−ik·ðx−yÞAKðp; q; x − bÞ

× A�
Kðp; q; y − bÞDxy½þ∞; b−�; (26)

with the semi-infinite fundamental dipole scattering
amplitude given by [cf. Eq. (4)]

Dxy½þ∞; b−� ¼
�

1

Nc
Tr½Vx½þ∞; b−�V†

y½þ∞; b−��
�
; (27)

and with some ŝ and Q2-dependent prefactor N . Here y ¼
ln 1=x is the rapidity of the produced quark, and a factor
of A in Eq. (25) accounts for the fact that the first
scattering can take place on any of the A nucleons. We
fixed the normalization of Eq. (25) by requiring it to be
valid for a nucleus made out of a single nucleon, which
would be described by a trivial Wigner distribution fixing
the momentum and position of the nucleon by simple
delta functions. (Alternatively one could require the
formula to be valid for the case of a cross section σ̂
independent of p and b.)
As already mentioned before, with the accuracy of

the large-A classical approximation, the argument b in
the Wigner distribution can be replaced by any other
transverse coordinate involved in the scattering process.
Hence, one can replace b in Wðb; pÞ from Eq. (25)
with either x or y from Eq. (26), or with any linear
combination of those variables. Replacing b in Wðb; pÞ
from Eq. (25) with ðxþ yÞ=2 and employing Eq. (26), we
write

dσγ
�þA→qþX

d2kdy
¼ A

Z
dpþd2pdb−

2ð2πÞ3

×
Z

d2xd2yW
�
p; b−;

xþ y

2

�

× e−ik·ðx−yÞjAKj2ðp; q; x − yÞDxy½þ∞; b−�;
(28)

where

jAKj2ðp; q; x − yÞ

≡N
Z

d2bAKðp; q; x − bÞA�
Kðp; q; y − bÞ

¼
Z

d2k0

ð2πÞ2 e
ik0·ðx−yÞ dσ̂γ

�þN→qþX

d2k0dy
ðp; qÞ: (29)

Substituting Eq. (29) into Eq. (28) yields

dσγ
�þA→qþX

d2kdy
¼ A

Z
dpþd2pdb−

2ð2πÞ3

×
Z

d2xd2yW

�
p; b−;

xþ y

2

�

×
Z

d2k0

ð2πÞ2 e
−iðk−k0Þ·ðx−yÞ

×
dσ̂γ

�þN→qþX

d2k0dy
ðp; qÞDxy½þ∞; b−�: (30)

Equation (30) is our starting point for exploring the STSA
in SIDIS: it gives the quark production cross section in
the quasiclassical approximation.
The expression (30) is illustrated in Fig. 4: the first

interaction between the incident virtual photon and a
nucleon in the transversely polarized nucleus happens at
the longitudinal coordinate b−. A quark is knocked out,
which proceeds to interact with the rest of the nucleons in
the nucleus. This latter interaction is recoil-less and is
encoded in a Wilson line.

FIG. 4 (color online). Space-time structure of quark production
in the quasiclassical SIDIS process in the rest frame of the
nucleus, overlaid with one of the corresponding Feynman
diagrams. The shaded circle is the transversely polarized nucleus,
with the vertical double arrow denoting the spin direction.
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The Wigner distribution in Eq. (30) allows us to take the
quasiclassical GM/MV limit of a large nucleus in a con-
trolled way. For a large “classical” nucleus, we usually can
replaceWðp; bÞwith the following classical expression for it
(neglecting longitudinal orbital motion of the nucleons):

Wclðp; bÞ ¼
4π

A
ρðb; b−Þδ

�
pþ −

Pþ

A

�
wðp; bÞ; (31)

where ρðb; b−Þ is the nucleon number density normalized
such that

Z
d2bdb−ρðb; b−Þ ¼ A: (32)

The function wðp; bÞ in Eq. (31) is responsible for the
transverse momentum distribution of the nucleons and, to
satisfy Eq. (18), is normalized such that

Z
d2p
ð2πÞ2 wðp; bÞ ¼ 1: (33)

As originally formulated [26–28], the MV model con-
tained no dependence on the spin or transverse momen-
tum of the valence quarks. This result is recovered by
using wMV ¼ ð2πÞ2δ2ðpÞ.
Substituting the classical Wigner distribution [Eq. (31)]

into Eq. (30) yields

dσγ
�þA→qþX

d2kdy
¼

Z
d2pdb−

ð2πÞ2 d2xd2yρ

�
xþ y

2
; b−

�
w

�
p;

xþ y

2
; b−

�

×
Z

d2k0

ð2πÞ2 e
−iðk−k0Þ·ðx−yÞ dσ̂γ

�þN→qþX

d2k0dy
ðp; qÞDxy½þ∞; b−�; (34)

which is a simplified version of Eq. (30).

B. Quasiclassical Sivers function in SIDIS

Imagine a large nucleus with the total spin ~J such that

~J ¼ ~Lþ ~S; (35)

where ~L is the OAM of all the nucleons in the nucleus
and ~S is the net spin of all the nucleons. In the
quasiclassical approximation at hand, the OAM is gen-
erated by rotation of the nucleons around a preferred
axis. The nucleus is transversely polarized to the beam:
we assume that both ~L and ~S point along the (positive or
negative) x̂ axis.
The result [Eq. (30)] for the quark production cross

section in SIDIS can be utilized to write down an
expression for the SIDIS Sivers function of the large
nucleus with the help of Eq. (7b). We first note that the
quark production cross section in SIDIS is proportional to
the correlator [Eq. (2)] with the future-pointing Wilson
line given by Eq. (4) [cf. Eqs. (26) and (27)]. The gauge
link in Eq. (27) begins and ends at the same b−, while
the more general gauge link in Eq. (4) has different
endpoints at 0 and x−. The reason is that the nuclear
wave function is composed of color-neutral “nucleons”
localized in b−; hence, there is only a contribution to the
correlator when the gauge link both begins and ends at
the same b−. The Dirac γþ matrix of Eq. (7b) is also
present in the quark production cross section, since the
Dirac structure of the large-k− outgoing quark line is
given by γþk−. To obtain the Sivers function one only
needs to eliminate the gamma matrices stemming from

the quark-photon vertices in the amplitude and in the
complex conjugate amplitude; this can be done by
simply contracting the Lorentz indices of these gamma
matrices [21]. While such contraction is not allowed in a
calculation of the SIDIS cross section due to nontrivial
structure of the lepton tensor, it is a legitimate method of
extracting the Sivers function [21], since γμγ

þγμ ¼ −2γþ.
We thus see that an equation like Eq. (30) would still
hold for Tr½Φγþ� instead of the SIDIS cross section, since
to obtain the former, one simply needs to repeat all the
steps of the cross-section derivation that led to Eq. (30)
without inserting the photon polarizations [implicit in
Eq. (30)] and add a contraction over Lorentz indices of
the gamma matrices from the quark-photon vertices in
the end.
By analogy with Eq. (30), we can express the quark

correlation function ΦA of the nucleus in terms of the
quasiclassical distributionWNðp; bÞ of nucleons, the quark
correlators ϕN of individual nucleons, and the semi-infinite
Wilson-line trace Dxy½þ∞; b−�:

Tr½ΦAðx̄; k;P; JÞγþ� ¼ A
Z

dpþd2pdb−

2ð2πÞ3 d2xd2y

×
X
σ

Wσ
N

�
p; b−;

xþ y

2

�

×
Z

d2k0

ð2πÞ2 e
−iðk−k0Þ·ðx−yÞ

× Tr½ϕNðx; k0 − xp;p; σÞγþ�
×Dxy½þ∞; b−�: (36)
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Equation (36) is illustrated in Fig. 5. In Eq. (36) we
explicitly show the sum over the polarizations σ ¼ �1=2 of
the nucleons along the x axis. Note that x ¼ −qþ=pþ, and
it varies with pþ inside the integral; at the same time,
the “averaged” value of Bjorken-x per nucleon is x̄ ¼ −
Aqþ=Pþ. The quark correlator of the nucleus ΦA is defined
by Eq. (2),

ΦA
ijðx̄; k;P; JÞ≡

Z
dx−d2x⊥
2ð2πÞ3 eið12x̄Pþx−−x·kÞ

× hA;P; Jjψ̄ jð0ÞUSIDIS

× ψ iðxþ ¼ 0; x−; xÞjA;P; Ji; (37)

along with the corresponding nucleonic correlator:

ϕN
ijðx; k;p; σÞ≡

Z
dx−d2x⊥
2ð2πÞ3 eið12xpþx−−x·kÞ

× hN;p; σjψ̄ jð0ÞUSIDIS

× ψ iðxþ ¼ 0; x−; xÞjN;p; σi: (38)

These definitions are done in a frame in which the
parent particle’s transverse momentum is zero. The k0 −
xp in the argument of ϕN in Eq. (36) is obtained by
making a transverse boost from the frame in which the
nucleon has transverse momentum' p into a frame in
which p ¼ 0 [and the definition in Eq. (38) applies].
Note that our lab frame corresponds to the photon-
nucleus center-of-mass frame in which q ¼ P ¼ 0. The
polarization-dependent Wigner functions are normalized
as [cf. Eq. (18)]

Z
dpþd2pdb−d2b

2ð2πÞ3 AWþ1=2ðp; bÞ ¼ #spin-up nucleons;

Z
dpþd2pdb−d2b

2ð2πÞ3 AW−1=2ðp; bÞ ¼ #spin-down nucleons:

(39)

As in Ref. [48], the correlation functions in Eq. (36) can
be parametrized in terms of the TMD distribution functions,
of which the most relevant to the problem at hand are the
unpolarized distribution f1 and the Sivers function f⊥1T .
Using Eq. (7), we write

Tr½ΦAðx̄; k;P; JÞγþ�

¼ 2fA1 ðx̄; kTÞ þ
2

MA
ẑ · ðJ × kÞf⊥A

1T ðx̄; kTÞ; (40a)

Tr½ϕNðx; k0 − xp;p; σÞγþ�
¼ 2fN1 ðx; jk0 − xpjÞ

þ 2

mN
ẑ · ðσ

¯
×ðk0 − xpÞÞ f⊥N

1T ðx; jk0 − xpjÞ; (40b)

where we introduce the unpolarized quark TMDs (fA1 and
fN1 ) and Sivers functions (f

⊥A
1T and f⊥N

1T ) for the nucleus and
nucleons, respectively, along with the masses MA and mN
of the nucleus and nucleons.
We may extract the Sivers function of the nucleus f⊥A

1T by
antisymmetrizing Eq. (40a) with respect to either the
nuclear spin or the momentum k of the produced quark5:

ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼

1

4
MATr½ΦAðx̄; k;P; JÞγþ�

− ðk → −kÞ: (41)

Using Eq. (36) in Eq. (41), we write

FIG. 5. Decomposition of the nuclear quark distribution ΦA probed by the SIDIS virtual photon into mean-field wave functions ψ ;ψ�
of nucleons and the quark and gluon distributions ϕN and ϕN of the nucleons.

5In doing so, we assume that the Sivers function is an even
function of k, which is indeed the case due to its T-symmetry
properties.
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ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼

1

4
MAA

Z
dpþd2pdb−

2ð2πÞ3 d2xd2y
X
σ

Wσ
N

�
p; b−;

xþ y

2

�

×
Z

d2k0

ð2πÞ2 e
−iðk−k0

¯
Þ·ðx−yÞ

Tr½ϕNðx; k0 − xp;p; σÞγþ�Dxy½þ∞; b−� − ðk → −kÞ: (42)

We can decompose the quark correlator in a nucleon ϕN into the nucleon’s unpolarized quark distribution fN1 and Sivers
function fN1T using Eq. (40b). Substituting this into Eq. (42) yields

ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼

1

4
MAA

Z
dpþd2pdb−

2ð2πÞ3 d2xd2y
X
σ

Wσ
N

�
p; b−;

xþ y

2

�Z
d2k0

ð2πÞ2 e
−iðk−k0Þ·ðx−yÞ

×
h
2fN1 ðx; jk0 − xpjÞ þ 2

mN
ẑ · ðσ

¯
×ðk0 − xpÞÞ f⊥N

1T ðx; jk0 − xpjÞ
i
Dxy½þ∞; b−� − ðk → −kÞ:

(43)

We can understand the sources of the T-odd nuclear
Sivers function f⊥A

1T by explicitly (anti)symmetrizing the
various terms on the right of Eq. (43). To start with, we
perform the nucleon spin sum

P
σ in a basis parallel or

antiparallel to the nuclear spin S. This can be done using the
definitions

X
σ

Wσ
Nðp; bÞ≡Wunpðp; bÞ;

X
σ

Wσ
Nðp; bÞσ

¯
≡ 1

A
Wtransðp; bÞS; (44)

where we will refer to Wunp as the distribution of unpo-
larized nucleons and to Wtrans as the nucleon transversity
distribution. Note that

Z
dpþd2pdb−d2b

2ð2πÞ3 Wunpðp; bÞ ¼ 1;

Z
dpþd2pdb−d2b

2ð2πÞ3 Wtransðp; bÞ ¼ 1; (45)

as follows from the definition in Eq. (44) and from Eq. (39).
Equation (43) becomes

ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼

MA

2

Z
dpþd2pdb−

2ð2πÞ3 d2xd2y
d2k0

ð2πÞ2 e
−iðk−k0

¯
Þ·ðx−yÞ

×

�
AWunp

�
p; b−;

xþ y

2

�
fN1 ðx; jk0 − xpjÞ þWtrans

�
p; b−;

xþ y

2

�
1

mN
ẑ

· ðS × ðk0 − xpÞÞf⊥N
1T ðx; jk0 − xpjÞ

�
Dxy½þ∞; b−� − ðk → −kÞ: (46)

Now, in the terms with ðk → −kÞ being subtracted, we also redefine the dummy integration variables x ↔ y, k0 → −k0, and
p → −p. This leaves the Fourier factors and the distribution functions fN1 , f

⊥N
1T unchanged, giving

ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼

MA

2

Z
dpþd2pdb−

2ð2πÞ3 d2xd2y
d2k0

ð2πÞ2 e
−iðk−k0Þ·ðx−yÞ

	
fN1 ðx; jk0 − xpjÞ

× A
�
Wunp

�
pþ; p; b−;

xþ y

2

�
Dxy½þ∞; b−� −Wunp

�
pþ;−p; b−;

xþ y

2

�
Dyx½þ∞; b−�

�

þ 1

mN
ẑ · ðS × ðk0 − xpÞÞf⊥N

1T ðx; jk0 − xpjÞ

×

�
Wtrans

�
pþ; p; b−;

xþ y

2

�
Dxy½þ∞; b−� þWtrans

�
pþ;−p; b−;

xþ y

2

�
Dyx½þ∞; b−�

�

: (47)

At this point, it is convenient to explicitly (anti)symmetrize the distribution functions with respect to p ↔ −p and the
Wilson lines with respect to x ↔ y. We define
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Sxy ≡ 1
2
ðDxy þDyxÞ;

iOxy ≡ 1
2

�
Dxy −Dyx

�
;

Dx y ¼ Sxy þ iOxy (48)

and

WðOAMsymmÞðp; bÞ≡ 1

2
½Wðp; bÞ � ðp → −pÞ�; (49)

where we have used the “OAM” label to indicate that the preferred direction of transverse momentum in the antisymmetric
case reflects the presence of net orbital angular momentum. We can decomposeW into symmetric and OAM parts for both
the unpolarized distribution Wunp and the transversity distribution Wtrans.
Using the (anti)symmetrized quantities in Eq. (49), we can evaluate the factors in the square brackets of Eq. (47) as

Wunpðp; bÞDxy½þ∞; b−� −Wunpð−p; bÞDyx½þ∞; b−� ¼ 2ðWOAM
unp ðp; bÞSxy½þ∞; b−� þWsymm

unp ðp; bÞiOxy½þ∞; b−�Þ;
Wtransðp; bÞDxy½þ∞; b−� þWtransð−p; bÞDyx½þ∞; b−� ¼ 2ðWsymm

trans ðp; bÞSxy½þ∞; b−� þWOAM
trans ðp; bÞiOxy½þ∞; b−�Þ;

(50)

giving

ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼ MA

Z
dpþd2pdb−

2ð2πÞ3 d2xd2y
d2k0

ð2πÞ2 e
−iðk−k0Þ·ðx−yÞ

	
fN1 ðx; jk0 − xpjÞ

× A

�
WOAM

unp

�
pþ; p; b−;

xþ y

2

�
Sxy½þ∞; b−� þWsymm

unp

�
pþ; p; b−;

xþ y

2

�
iOxy½þ∞; b−�

�

þ 1

mN
ẑ · ðS × ðk0 − xpÞÞf⊥N

1T ðx; jk0 − xpjÞ

×

�
Wsymm

trans

�
pþ; p; b−;

xþ y

2

�
Sxy½þ∞; b−� þWOAM

trans

�
pþ; p; b−;

xþ y

2

�
iOxy½þ∞; b−�

�

: (51)

Altogether, the symmetry arguments presented above
allow us to decompose the nuclear Sivers function f⊥A

1T into
four distinct channels with the right quantum numbers to
generate the T-odd asymmetry. These four channels cor-
respond to the negative T parity occurring in the nucleon
distribution WOAM, in the quark Sivers function of the
nucleon f⊥N

1T , in the antisymmetric “odderon” rescattering
iOxy, or in all three simultaneously.
We will now neglect the odderon contributions in

Eq. (51). The way to understand this approximation is as

follows: As shown in Ref. [17], the preferred direction
generated by odderon-type rescattering couples to transverse
gradients of the nuclear profile function, ∇TðbÞ. The length
scale over which these gradients become important is on the
order of the nuclear radius; these gradients are therefore
OðA−1=3Þ ∼Oðα2sÞ suppressed (in addition to an extra power
of αs entering the lowest-order odderon amplitude corre-
sponding to the triple-gluon exchange [17,52–59]) and are
beyond the precision of the quasiclassical formula [Eq. (51)].
Neglecting the odderon channels in Eq. (51), we arrive at

ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼ MA

Z
dpþd2pdb−

2ð2πÞ3 d2xd2y
d2k0

ð2πÞ2 e
−iðk−k0Þ·ðx−yÞ

×

	
AWOAM

unp

�
pþ; p; b−;

xþ y

2

�
fN1 ðx; jk0 − xpjÞ

þ 1

mN
ẑ · ðS × ðk0 − xpÞÞWsymm

trans

�
pþ; p; b−;

xþ y

2

�
f⊥N
1T ðx; jk0 − xpjÞ



Sxy½þ∞; b−�: (52)
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Shifting the integration variable k0 → k0 þ xp, we write

ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼ MA

Z
dpþd2pdb−

2ð2πÞ3 d2xd2y
d2k0

ð2πÞ2 e
−iðk−xp−k0

¯
Þ·ðx−yÞ

	
AWOAM

unp

�
pþ; p; b−;

xþ y

2

�
fN1 ðx; k0TÞ

þ 1

mN
ẑ · ðS × k0ÞWsymm

trans

�
pþ; p; b−;

xþ y

2

�
f⊥N
1T ðx; k0TÞ



Sxy½þ∞; b−�: (53)

To further simplify the obtained expression [Eq. (53)],
we need to impose a constraint on the transverse
momentum of the nucleons. Consider the nucleus in
its rest frame, as shown in Fig. 6. The net OAM ~L of the
transversely polarized nucleus corresponds to the rotation
of the nucleus around the spin axis (the x axis in Fig. 6).
The rotational invariance around the x axis implies that
the average magnitude of the rotational transverse
momentum is constant for a given distance from the x
axis and for a fixed x coordinate. (In Appendix B, we
show that, as a consequence of PT symmetry, only
rotational motion of the nucleons in the nucleus rest
frame is allowed.)
Consider a nucleon at the point ~x ¼ ð0;−R; 0Þ in the

ðx; y; zÞ coordinate system, as illustrated by the black circle
in Fig. 6. Its three-momentum is ~prest ¼ ð0; 0;−pÞ, where p
denotes some typical rotational momentum of a nucleon.
After a longitudinal boost along the z axis to the infinite-
momentum frame of Eq. (8), we find the large light-cone
component of the momentum to be

pþ ¼ Pþ

MA

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ p2

q
− p

�
: (54)

The corresponding Bjorken-x is [see Eq. (9)]

1 ≥ x ¼ −qþ

pþ ¼ xAA
mNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
N þ p2

p
− p

; (55)

where we have used MA ¼ AmN . The x ≤ 1 constraint in
Eq. (55) [cf. Eq. (9)] gives

p ≤ mN
1 − x2AA

2

2xAA
: (56)

Since xAA is not a small number—in fact, xAA ¼ Oð1Þ—
we conclude that p≲mN . Therefore, the magnitude of the
rotational momentum in the nuclear rest frame is bounded
by ∼mN from above. The typical transverse momentum pT
in Eq. (53), being boost invariant, is also bounded by the
nucleon mass from above, pT ≲mN . Since we assume that
kT is perturbatively large, kT ≫ ΛQCD ∼mN , we do not
consistently resum all powers of mN=kT . (The saturation
approach resums mainly A1=3-enhanced power corrections
—that is, powers of Q2

s=k2T , but not powers of Λ
2
QCD=k

2
T .)

The bound in Eq. (56) provides us with the condition
on when the SIDIS process on the nucleon highlighted
in Fig. 6 can take place. Violation of this bound would
imply that SIDIS on that nucleon is kinematically
prohibited, and consequently SIDIS may take place
only on some of the other nucleons in the nucleus.
While such a situation where the nucleus is spinning so
fast that SIDIS is only possible on a subset of its
nucleons is highly unlikely in the real physical experi-
ments, this presents a theoretical example where the
Sivers function [Eq. (53)] would, in fact, depend on the
direction of p and, hence, of spin J, presumably through
even powers of J · k. While such dependence is impos-
sible for spin-1=2 particles such as protons [60], it has
been considered for targets with different spin [61]; in
our case, it arises due to the classical model at hand
with the value of spin J not restricted to 1=2. To avoid
potential formal complications and unrealistic effects
associated with large rotational momentum, below we
will assume that pT ≲mN such that the bound in
Eq. (56) is satisfied. Without such assumption,
Eq. (53) would be our final result for the Sivers function
in the quasiclassical approximation.
We see that we have to limit the calculation to the

lowest nontrivial power of pT=kT ∼mN=kT contributing
to the Sivers function. Expanding Eq. (53) in the powers
of p to the lowest nontrivial order, and remembering
that WOAM is an odd function of p, we obtain

FIG. 6. This figure demonstrates our axis-labeling convention
and helps illustrate an example discussed in the text.
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ẑ · ðJ × kÞf⊥A
1T ðx̄; kTÞ ¼ MA

Z
dpþd2pdb−

2ð2πÞ3 d2xd2y
d2k0

ð2πÞ2 e
−iðk−k0

¯
Þ·ðx−yÞ

×

	
ixp · ðx − yÞAWOAM

unp

�
pþ; p; b−;

xþ y

2

�
fN1 ðx; k0TÞ

þ 1

mN
ẑ ·

�
S × k0

�
Wsymm

trans

�
pþ; p; b−;

xþ y

2

�
f⊥N
1T ðx; k0TÞ



Sxy½þ∞; b−�: (57)

Equation (57) is our main formal result. It relates the
Sivers function of a nucleus to the quark TMD and quark
Sivers function in a nucleon. It shows that within the
quasiclassical approximation, there are two leading chan-
nels capable of generating the Sivers function of the
composite nucleus:
(1) Orbital angular momentum (OAM) channel: An

unpolarized nucleon in a transversely polarized
nucleus with a preferred direction of transverse
momentum generated by the OAM of the nucleus
has a quark knocked out of its symmetric fN1
transverse momentum distribution which rescatters
coherently on spectator nucleons. The multiple
rescatterings bias the initial knockout process to
happen near the “back” of the nucleus, where, due to
OAM motion of the nucleons, the outgoing quark
gets an asymmetric distribution of its transverse
momentum, generating STSA. (See Fig. 2 or left
panel of Fig. 7 below.)

(2) Transversity/Sivers density channel: A polarized
nucleon with its preferred transverse spin direction
inherited from the nucleus has a quark knocked out of
its Sivers f⊥N

1T distribution which rescatters coherently
on spectator nucleons. The single spin asymmetry is
generated at the level of the “first” nucleon, and

unlike the OAM channel, the presence of other
nucleons is not essential for this channel (see Fig. 7).

The OAM and transversity channels are depicted in
Fig. 7 in terms of their space-time structure and
Feynman diagrams. The diagrams resummed in arriving
at Eq. (57) are the square of the graph shown in the left
panel of Fig. 7 (OAM channel) and the diagram looking
like the interference between the two panels in Fig. 7
(transversity channel). The difference between the two
channels outlined above is in the first “knockout”
interaction: the OAM channel couples to quark TMD,
while the transversity channel couples to the nucleon
Sivers function. At the lowest order in perturbation
theory the two functions are illustrated in Fig. 8: indeed,
the Sivers function shown in panel B of Fig. 8 requires
at least one more rescattering as compared to the quark
TMD in panel A, according to the conventional
wisdom [10,11].
Note that, in the OAM channel, the unpolarized quark

distribution fN1 enters parametrically at OðαsA1=3Þ if
calculated at the lowest order in the perturbation theory
(see panel A in Fig. 8), which is Oðα−1s Þ in the
saturation power counting (where α2sA1=3 ∼ 1). In the
transversity channel, the nucleonic Sivers function f⊥N

1T
enters at Oðα2sA1=3Þ ¼ Oð1Þ at the lowest order in

FIG. 7 (color online). Side-by-side comparison of the Feynman diagram’s contribution to the OAM and Sivers density channels in the
quasiclassical approximation (in the rest frame of the nucleus).
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perturbation theory, because it requires an extra OðαsÞ
gluon to be exchanged with the same nucleon to obtain
the necessary lensing effect [10] (see panel B in Fig. 8).
The transversity channel is therefore Oð1Þ in the
saturation power counting and is subleading by OðαsÞ
to the OAM channel in this sense.6 Indeed, the non-
trivial transverse motion of nucleons due to OAM
should be present in order for the OAM channel to
be nonzero: this channel is leading only if there is an
OAM. In our estimate here, we have assumed that the
net spin of our “nucleons” scales linearly with the
atomic number, S ∼ A; perhaps a more realistic (both
for protons and nuclei) slower growth of S with A would
introduce extra A suppression for the transversity
channel.
Despite the transversity channel being subleading, it is

more dominant than the OðA−1=3Þ ∼Oðα2sÞ corrections we
neglected when arriving at the quasiclassical formula
[Eq. (57)] (again, for S ∼ A). Order-α1s quantum corrections
to the OAM channel also enter at the same order as the
nucleonic Sivers function and are also within the precision
of the formalism.
An essential role is played by the rescattering factor

Sxy½þ∞; b−� in the OAM channel. The Wigner function
due to the orbital motion of nucleons around the axis of the
transverse spin is an odd function of the longitudinal
coordinate bz in the rest frame of the nucleus,

WOAM
unp ðp; b; bzÞ ¼ −WOAM

unp ðp; b;−bzÞ; (58)

which follows simply from the fact that in the left panel
of Fig. 7 we have as many nucleons moving outside the

page to the left of the nuclear center as there are nucleons
moving into the page to the right of the nuclear center. In
Appendix B, we show how the result [Eq. (58)] can be
obtained by requiring that our “nucleus” be PT sym-
metric. The b− integral of the first term in the curly
brackets of Eq. (57) would have been zero, if it were not
for the b−-dependent factor of Sxy½þ∞; b−�. This multi-
ple rescattering factor approaches 1 for b− values near the
“back” of the nucleus (the right end of the nucleus in
Fig. 7) and is a monotonically decreasing function of b−.
Due to this factor, different b− regions contribute differ-
ently to the integral, making it nonzero. The region near
the “back” of the nucleus dominates, which has a
physical interpretation that it is easier for the quark to
escape the nucleus if it is produced near the edge. Hence,
we arrive at the interpretation of the SIDIS in the OAM
channel outlined in the Introduction: the quarks are
produced predominantly toward the “back” of the
nucleus, where the nucleons rotate preferentially into
the page (see the left panels of Figs. 7 or 2). Therefore,
the quark has more transverse momentum into the page
than out of the page, which leads to STSA for the
produced quarks.
To complete Eq. (57), we need to construct an expression

for the nuclear spin ~J ¼ ~Lþ ~S. The OAM of the nucleons
in the nucleus from Fig. 6 in the nuclear rest frame is

~L ¼ A
Z

d3pd3b
2ð2πÞ3 Wunpð~p; ~bÞ~b × ~p

¼ A
Z

d3pd3b
2ð2πÞ3 Wunpð~p; ~bÞx̂ðbypz − bzpyÞ; (59)

where d3p ¼ dpxdpydpz, d3b ¼ dbxdbydbz, and
Wunpð~p; ~bÞ is the Wigner distribution in the rest frame
of the nucleus expressed in terms of three-vectors ~p ¼
ðpx; py; pzÞ and ~b ¼ ðbx; by; bzÞ.
To boost this into the infinite-momentum frame of Eq. (8),

we define the Pauli-Lubanski vector of the nuclear spin,

Wμ ¼ −
1

2
ϵμνρσJνρPσ; (60)

where Jμν ¼ Lμν þ Sμν, with Lμν and Sμν the expectation
values of the OAM and spin generators of the Lorentz group
in the nuclear state. The OAM generator is

L̂μν ¼ x̂μp̂ν − x̂νp̂μ (61)

as usual, with the hat denoting operators. The nuclear OAM
four-vector is then defined by

Lμ ¼ −
1

2
ϵμνρσLνρ Pσ

MA
: (62)

Note that p̂μ in Eq. (61) are the momentum operators of the
nucleons,whilePσ in Eqs. (60) and (62) is the netmomentum

(a) (b)

FIG. 8. Lowest-order diagrams for the quark TMD f1 (panel A)
and the Sivers function f⊥1T (panel B). The vertical dashed line
denotes the final-state cut, while the double horizontal line in
panel B denotes the Wilson line.

6We would like to point out that the coupling constant αs
in fN1 runs with some nonperturbative momentum scale, and is
large, αs ¼ αsð∼Λ2

QCDÞ; however, a simple application of the
BLM [51] prescription to the calculation of Ref. [21] can show
that in f⊥N

1T ðx; kTÞ the two powers of the coupling run as
αsðk2TÞαsð∼Λ2

QCDÞ. While one of the couplings is also non-
perturbatively large, the other one is perturbatively small for
kT ≫ ΛQCD, indicating suppression.
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of thewhole nucleus. In the rest frame of the nucleus, Eq. (62)
gives Lx ¼ Lyz as expected (for ϵ0123 ¼ þ1). The nuclear
OAM four-vector can then be written as

Lμ ¼ −
1

2
ϵμνρσ

Pσ

MA
A
Z

dpþd2pdb−d2b
2ð2πÞ3

×Wunpðp; bÞðbνpρ − bρpνÞ (63)

in the infinite-momentum frame of the nucleus.
Since boosts preserve transverse components of

four-vectors, the boost along the ẑ axis of the nucleus
in Fig. 6 would preserve its OAM three-vector ~L.
Hence, Eq. (59) gives us the transverse components
of OAM in the infinite-momentum frame as well. We
thus write

~J¼ x̂

�
SþA

Z
d3pd3b
2ð2πÞ3 Wunpð~p; ~bÞx̂ðbypz−bzpyÞ

�
; (64)

where the integration over p and b needs to be carried
out in the nucleus rest frame.
Combining Eqs. (57) with (64) allows one to extract the

Sivers function f⊥A
1T of the nucleus.

C. Comparison of the OAM and transversity channels
in the SIDIS Sivers function

We will now illustrate the properties of the Sivers
function [Eq. (57)] by studying a specific simplified

example. Consider the model of the nucleus as a non-
relativistic rigid rotator, with the rotational momentum in
its rest frame being much smaller than the nucleon mass,
pT ≪ mN . The corresponding classical Wigner distribution
is [cf. Eq. (31)]

Wunpðp; bÞ ≈
2ð2πÞ3

A
ρðb; b−Þδ2

�
p − ŷpmaxðbxÞ

b−

R−ðbxÞ
�

× δ

�
pþ −

Pþ

A

�
; (65)

where 2R−ðbxÞ is the extent of the nucleus in the b−

direction at b ¼ ðbx; 0Þ [with R−ðbxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−b2x

p
MA=Pþ],

and pmaxðbxÞ ¼ pmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2x

p
=R is the maximum value

of the rotational momentum at a given bx. In writing down
the distribution in Eq. (65), we have neglected possible
longitudinal rotational motion of the nucleons, which is
justified in the pT ≪ mN limit. We also assume that a
fraction β of the nucleons in the nucleus are polarized in
the þx̂ direction, such that their net spin is S ¼ βA=2 and
[see Eq. (44)]

Wtransðp; bÞ ¼ βWunpðp; bÞ: (66)

Substituting Eqs. (65) and (66) into Eq. (57) and
integrating over pþ and p yields

Jkyf⊥A
1T ðx̄; kTÞ ¼ MA

Z
db−d2xd2yρ

�
xþ y

2
; b−

�
d2k0

ð2πÞ2 e
−iðk−k0

¯
Þ·ðx−yÞ

	
ix̄pmax

�ðxþ yÞx
2

�
b−

R−ððxþy
2
ÞxÞ

ðx − yÞ
y
fN1 ðx̄; k0TÞ

þ β

2mN
k0yf⊥N

1T ðx̄; k0TÞ


Sxy½þ∞; b−�; (67)

where we also replace ~J with x̂J and ~S with x̂ðβA=2Þ.
To further simplify Eq. (67), we need to make specific assumptions about the form of fN1 and f⊥N

1T . Inspired by the lowest-
order expressions for both quantities [21,48,62], we write

fN1 ðx; kTÞ ¼
αsC1

k2T
; f⊥N

1T ðx; kTÞ ¼
α2sm2

NC2

k4T
ln

k2T
Λ2

; (68)

whereC1 andC2 are some x-dependent functions and Λ is an infrared cutoff. Inserting Eq. (68) into Eq. (67) and integrating
over k0T yields

Jkyf⊥A
1T ðx̄; kTÞ ¼

αsMA

2π

Z
db−d2xd2yρ

�
xþ y

2
; b−

�
e−ik·ðx−yÞðx − yÞ

y

	
ix̄pmax

�ðxþ yÞx
2

�
b−C1

R−ððxþy
2
ÞxÞ

× ln
1

jx − yjΛþ iαsmNβC2

4
ln2

1

jx − yjΛ


Sxy½þ∞; b−�: (69)

In the classical MV/GM approximation, the (symmetric part of the) dipole scattering matrix is [25]
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Sxy½þ∞; b−� ¼ exp

�
−
1

4
jx − yj2Q2

s

�
xþ y

2

�

×

�
R−ðbÞ − b−

2R−ðbÞ
�

ln
1

jx − yjΛ
�
; (70)

where R−ðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2

p
MA=Pþ, and the quark satura-

tion scale is

Q2
sðbÞ ¼ 4πα2s

CF

Nc
TðbÞ (71)

with the nuclear profile function

TðbÞ ¼
Z

db−ρðb; b−Þ: (72)

As usual, Nc is the number of colors, and CF ¼ ðN2
c − 1Þ=

2Nc is the Casimir operator of SUðNcÞ in the funda-
mental representation. In arriving at Eq. (70), we assume
that the nuclear density is constant within the nucleus,
such that

ρðb; b−Þ ¼
θ
�
R−ðbÞ − jb−j

�
2R−ðbÞ TðbÞ: (73)

Employing Eq. (70) along with Eqs. (73) and (71), and
neglecting all logarithms ln ð1=jx − yjΛÞ (which is justified
as long as kT is not too much larger than Qs [63]), we can
integrate Eq. (69) over b− and x − y, obtaining

f⊥A
1T ðx̄; kTÞ ¼

MANc

4παsJCF

1

k2T

Z
d2b

	
4x̄pmaxðbÞC1

×

�
e−k

2
T=Q

2
sðbÞ þ 2

k2T
Q2

sðbÞ
Ei

�
−

k2T
Q2

sðbÞ
��

þ αsβmNC2e−k
2
T=Q

2
sðbÞ



; (74)

where now b¼ðxþyÞ=2 and pmaxðbÞ¼pmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−b2

p
=R.

The b integral appears to be rather hard to perform for a
realistic spherical nucleus: we leave expression (74) in its
present form.
To obtain a final expression for the Sivers function, we

need to determine the spin of the nucleus J. For a rigid
rotator spinning around the x̂ axis with the maximum
nucleon momentum pmax, we readily get

L ¼ 4

5
ApmaxR (75)

in the nuclear rest frame. Using this in Eq. (64) along with
S ¼ βA=2, we obtain

J ¼ β
A
2
þ 4

5
ApmaxR: (76)

Inserting Eq. (76) into Eq. (74) gives

f⊥A
1T ðx̄; kTÞ ¼

mNNc

2παsCF

1

βþ 8
5
pmaxR

1

k2T

Z
d2b

	
4x̄pmaxðbÞC1

×

�
e−k

2
T=Q

2
sðbÞ þ 2

k2T
Q2

sðbÞ
Ei

�
−

k2T
Q2

sðbÞ
��

þ αsβmNC2e−k
2
T=Q

2
sðbÞ



: (77)

Equation (77) is our final expression for the Sivers
function of a nucleus in the quasiclassical approximation
with the rigid rotator model for the nucleus and kT not
too much larger than Qs. Analyzing this expression, we
see that the OAM term (the first term in the curly
brackets) does change sign as a function of kT , while the
Sivers density term [the second term in the curly brackets
of Eq. (77)] is positive definite. Still, the first term in the
curly brackets is positive for most of the kT domain, in
agreement with the qualitative argument in the
Introduction corresponding to quarks being produced
preferentially into the page in Fig. 2.
To study the kT ≫ Qs case, we have to return to Eq. (69):

this time, we do not neglect the logarithms. A large-kT limit
implies that jx − yj is small, and we need to expand the
exponential in Eq. (70) to the lowest nontrivial (contrib-
uting) order in each term in Eq. (69). For the Sivers density
term, this corresponds to replacing the exponent with 1.
The remaining evaluation is easier to carry out in Eq. (67),
which yields an intuitively clear formula

Jf⊥A
1T ðx̄; kTÞjtransversity channel;kT≫Qs

¼ ASf⊥N
1T ðx̄; kTÞ: (78)

In the first term in the curly brackets of Eq. (69), we need to
expand the exponential in Sxy½þ∞; b−� one step further,
obtaining after some straightforward algebra for the whole
SIDIS Sivers function

f⊥A
1T ðx̄; kTÞ

����
kT≫Qs

¼ S
J

�
−
4αsmNx̄C1

3βk6T
ln

k2T
Λ2

Z
d2bTðbÞpmaxðbÞQ2

sðbÞ þ Af⊥N
1T ðx̄; kTÞ

�

¼ β

β þ 8
5
pmaxR

�
−
4αsmNx̄C1

3βk6T
ln

k2T
Λ2

Z
d2bTðbÞpmaxðbÞQ2

sðbÞ þ
Aα2sm2

NC2

k4T
ln

k2T
Λ2

�
: (79)
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Since

Z
d2bTðbÞ ¼ A; (80)

we see that the OAM channel contribution in Eq. (79)
(the first term) is proportional to AαsmNpTQ2

s=k6T , while
the transversity channel contribution (the second term)
scales as Aα2sm2

N=k
4
T . [Note that x ¼ Oð1Þ, such that

powers of x do not generate suppression.] Assuming that
pT ≈mN [see the discussion following Eq. (56)], we
observe that the ratio of the OAM to the transversity
channel contributions is ∼Q2

s=ðαsk2TÞ. [Note that for
pT ≈mN , the prefactor of Eq. (79) gives a factor
∼1=ðmNRÞ ≈ A−1=3 multiplying both terms, but not af-
fecting their ratio.] We conclude that the OAM channel
dominates for

kT <
Qsffiffiffiffiffi
αs

p ; (81)

that is both inside the saturation region and in a sector of
phase space outside that region. For kT > Qs=

ffiffiffiffiffi
αs

p
,

the transversity channel dominates, mapping onto the
expected perturbative QCD result [Eq. (78)].
While the main aim of this calculation is to model a

nucleon at high energies, a few comments are in order
about the application of this rigid rotator toy model to a
realistic nucleus. Certainly a classical rigid rotator is a
poor model for a real nucleus; a better approach would
be to use our general result in Eq. (57) with the Wigner
distribution Wðp; bÞ given by the realistic single-particle
wave functions taken from nuclear structure calculations.
In such realistic cases, the total angular momentum J of
the nucleus is typically small, and the fraction β that
comes from the nucleons’ spins is also small due to
nucleon spin pairing. If one were to approximate a real
nucleus with this rigid rotator toy model, appropriately
small J and β would need to be used in Eqs. (77) and
(79). The smallness of the total OAM J does not affect
the Sivers function f⊥A

1T , because the magnitude is
contained in the prefactor ẑ · ðJ × kÞ and cancels in the
S=J ratio. The smallness of the spin contribution
β ∼Oð1=AÞ, however, would suppress the transversity
channel and ensure the dominance of the OAM term. But
regardless of its applicability to a real nucleus, the rigid
rotator toy model illustrates the ability of this formalism
to capture the interplay of spin and angular momentum in
a dense system at high energy.

IV. DRELL-YAN PROCESS

We now wish to perform a similar analysis for the
Drell-Yan process q̄þ A↑ → γ� þ X → lþl− þ X, where
the antiquark from the unpolarized hadron scatters on

the transversely polarized hadron/nucleus, producing a
spacelike photon which later decays into a dilepton pair.
The annihilation subprocess q̄þ q↑ → γ� þ X is related to
the SIDIS process by time reversal, which leads to the
famous prediction [11] that the Sivers functions entering
observables in the two processes should have equal
magnitudes and opposite signs.
The lowest-order Drell-Yan annihilation process is

shown in Fig. 9, without including initial-state rescattering
of the antiquark on nuclear spectators. Labeling the
momenta as in Fig. 9 and following along the same lines
as for SIDIS, we can write the kinematics in the q̄þ A↑

center-of-mass frame as

Pμ ¼ ðPþ;M2
A=P

þ; 0Þ;
pμ ¼ ðpþ; ðp2

T þm2
NÞ=pþ; pÞ;

kμ ¼
�
m2

q

Q2
qþ; k− ≈ q−; 0

�
;

qμ ¼ ðqþ; q− ≈Q2=qþ; qÞ; (82)

where

ŝ≡ ðpþ kÞ2 ≈ pþq−;

x≡ Q2

2p · q
≈
Q2

ŝ
≈
qþ

pþ : (83)

As with SIDIS, we are working in the kinematic limit
sA ¼ ðPþ kÞ2 ≫ ŝ; Q2 ≫ ⊥2, with α≡ pþ=Pþ ≈ ŝ=sA∼
Oð1=AÞ. Again, we can compare the coherence lengths
l−
k ∼ 1=kþ of the antiquark and l−

γ ∼ 1=qþ of the virtual
photon

l−
k

L− ∼
1

x

�
Q2

m2
q

�
1

αMAR
∼O

�
Q2

m2
q
A−1=3

�
≫ 1;

l−
γ

L− ∼
1

x
1

αMAR
∼OðA−1=3Þ ≪ 1: (84)

FIG. 9. Lowest-order DY process in the usual αs power
counting. An antiquark from a projectile hadron annihilates
with a quark from a nucleon in the target nucleus, producing
a highly virtual photon which then decays into a dilepton pair
(not shown).
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Analogous to SIDIS, this shows that the coherence length
of the incoming antiquark is large; in fact, it would be
infinite if we dropped the quark mass mq as we have
elsewhere in the calculation. We conclude that the long-
lived antiquark is able to rescatter off of many nucleons
before it finally annihilates a quark. The annihilation occurs
locally, as indicated by the short coherence length of the
virtual photon, and thereafter the produced photon/dilepton
system does not rescatter hadronically. This again moti-
vates the resummation of these initial state rescatterings
into a Wilson-line dipole trace.

A. Quasiclassical Sivers function in DY

The entire Drell-Yan (DY) process in the quasiclassical
approximation is shown in Fig. 10 at the level of the
scattering amplitude: the incoming antiquark coherently
scatters on the nucleons in the transversely polarized
nucleus, until the last interaction in which the virtual
photon is produced, which later generates the dilepton
pair.7

By analogy with Eq. (36) in SIDIS, we write the
following relation for the quark correlators in DY:

Tr½ΦAðx̄; q;P; JÞγþ� ¼ A
Z

dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 e

ik0
¯
·ðx−yÞ

×
X
σ

Wσ
N

�
p; b−;

xþ y

2

�
Tr½ϕNðx; q − k0 − xp;p; σÞγþ�Dyx½b−;−∞�; (85)

where

Dyx½b−;−∞� ¼
�

1

Nc
Tr½Vy½b−;−∞�V†

x½b−;−∞��
�
; (86)

and the quark correlators are defined by equations similar to (37) and (38), but now using a different gauge link [Eq. (5)]:

ΦA
ijðx̄; k;P; JÞ≡

Z
dx−d2x⊥
2ð2πÞ3 eið12x̄Pþx−−x·kÞhA;P; Jjψ̄ jð0ÞUDYψ iðxþ ¼ 0; x−; xÞjA;P; Ji; (87)

ϕN
ijðx; k;p; σÞ≡

Z
dx−d2x⊥
2ð2πÞ3 eið12xpþx−−x·kÞhN;p; σjψ̄ jð0ÞUDYψ iðxþ ¼ 0; x−; xÞjN;p; σi: (88)

Here x̄ ¼ Aqþ=Pþ. Equation (85) is illustrated in Fig. 11. The main difference compared to Eq. (36) is that now k ¼ 0 and
q ≠ 0.
Projecting out the DY Sivers function of the nucleus f⊥A

1T using Eq. (41) gives

ẑ · ðJ × qÞf⊥A
1T ðx̄; qTÞ ¼

MAA
4

Z
dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 e

ik0
¯
·ðx−yÞX

σ

Wσ
N

�
p; b−;

xþ y

2

�

× Tr½ϕNðx; q − k0 − xp;p; σÞγþ�Dyx½b−;−∞� − ðq → −qÞ: (89)

FIG. 10 (color online). Space-time structure of the quasiclass-
ical DY process in the rest frame of the nucleus, overlaid with one
of the corresponding Feynman diagrams. The shaded circle is the
transversely polarized nucleus, with the vertical double arrow
denoting the spin direction.

7Just like for SIDIS, in small-x physics the DY process is dominated by the q̄þ A → γ� þ q̄þ A scattering [64], which is OðαsÞ
subleading compared to the diagram in Fig. 10: since in our calculation x ¼ Oð1Þ, we will neglect the q̄þ A → γ� þ q̄þ A process here
as an OðαsÞ correction.
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With the help of Eq. (40b), we write

ẑ · ðJ × qÞf⊥A
1T ðx̄; qTÞ ¼

MAA
2

Z
dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 eik

0·ðx−yÞX
σ

Wσ
N

�
p; b−;

xþ y

2

�

×

�
fN1 ðx; jq − k0 − xpjTÞ þ

1

mN
ẑ · ðσ × ðq − k0 − xpÞÞf⊥N

1T ðx; jq − k0 − xpjTÞ
�

×Dyx½b−;−∞� − ðq → −qÞ: (90)

Performing the spin sums [Eq. (44)] gives

ẑ · ðJ × qÞf⊥A
1T ðx̄; qTÞ ¼

MA

2

Z
dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 eik

0·ðx−yÞ
�
AWunp

�
p; b−;

xþ y

2

�

× fN1 ðx; jq − k0 − xpjTÞ þWtrans

�
p; b−;

xþ y

2

�
1

mN
ẑ · ðS × ðq − k0 − xpÞÞ

× f⊥N
1T ðx; jq − k0 − xpjTÞ

�
Dyx½b−;−∞� − ðq → −qÞ: (91)

In the terms being subtracted in Eq. (91) with ðq → −qÞ, we can also reverse the dummy integration variables k0 → −k0,
p → −p, and x ↔ y. This leaves the Fourier factor and the distributions fN1 , f

⊥N
1T invariant, giving

ẑ · ðJ × qÞf⊥A
1T ðx̄; qTÞ ¼

MA

2

Z
dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 eik

0·ðx−yÞ
	
fN1 ðx; jq − k0 − xpjTÞ

× A

�
Wunp

�
pþ; p; b−;

xþ y

2

�
Dyx½b−;−∞� −Wunp

�
pþ;−p; b−;

xþ y

2

�
Dxy½b−;−∞�

�

þ 1

mN
ẑ · ðS × ðq − k0 − xpÞÞf⊥N

1T ðx; jq − k0 − xpjTÞ

×

�
Wtrans

�
pþ; p; b−;

xþ y

2

�
Dyx½b−;−∞� þWtrans

�
pþ;−p; b−;

xþ y

2

�
Dxy½b−;−∞�

�

: (92)

We recognize the factors in brackets from the SIDIS case [Eq. (50)], rewriting Eq. (92) as

FIG. 11. Decomposition of the nuclear quark distribution ΦA probed by the DY process into mean-field wave functions ψ ;ψ� of
nucleons and the quark and gluon distributions ϕN and ϕN of the nucleons.
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ẑ · ðJ × qÞf⊥A
1T ðx̄; qTÞ ¼ MA

Z
dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 eik

0·ðx−yÞ
	
fN1 ðx; jq − k0 − xpjTÞ

× A
�
WOAM

unp

�
pþ; p; b−;

xþ y

2

�
Syx½b−;−∞� þWsymm

unp

�
pþ; p; b−;

xþ y

2

�
iOyx½b−;−∞�

�

þ 1

mN
ẑ · ðS × ðq − k0 − xpÞÞf⊥N

1T ðx; jq − k0 − xpjTÞ

×

�
Wsymm

trans

�
pþ; p; b−;

xþ y

2

�
Syx½b−;−∞� þWOAM

trans

�
pþ; p; b−;

xþ y

2

�
iOyx½b−;−∞�

�

: (93)

As before, we drop contributions from the odderon iOyx as being outside the precision of the quasiclassical formula

[Eq. (85)] to get

ẑ · ðJ × qÞf⊥A
1T ðx̄; qTÞ ¼ MA

Z
dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 eik

0·ðx−yÞ
	
AWOAM

unp

�
pþ; p; b−;

xþ y

2

�

× fN1 ðx; jq − k0 − xpj
T
Þ þ 1

mN
ẑ · ðS × ðq − k0 − xpÞÞWsymm

trans

�
pþ; p; b−;

xþ y

2

�

× f⊥N
1T ðx; jq − k0 − xpj

T
Þ


Syx½b−;−∞�: (94)

Since the rotational momentum of the nucleons pT is assumed to be small, we have to expand in it to the lowest nontrivial
order. Shifting the integration variable k0 → k0 þ q − xp in Eq. (94) and expanding the exponential to the lowest nontrivial
order in pT , we obtain [cf. Eq. (57)]

ẑ · ðJ × qÞf⊥A
1T ðx̄; qTÞ ¼ MA

Z
dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 e−iðq−k

0Þ·ðx−yÞ

×

	
ixp · ðx − yÞAWOAM

unp

�
pþ; p; b−;

xþ y

2

�
fN1 ðx; k0TÞ

−
1

mN
ẑ · ðS × k0ÞWsymm

trans

�
pþ; p; b−;

xþ y

2

�
f⊥N
1T ðx; k0TÞ



Sxy½b−;−∞�; (95)

where we have also interchanged x ↔ y and k0 → −k0.
Equation (95) is our main formal result for the DY Sivers function. We again see that the Sivers function in DY can arise

through two distinct channels in this quasiclassical approach: the OAM channel that contains its preferred direction in the
distribution WOAM

unp and the transversity/Sivers density channel that generates its preferred direction through a local lensing
mechanism f⊥N

1T .
To demonstrate the importance of the Wilson lines for the Sivers function, for the moment, let us ignore the contribution

of the Wilson lines associated with initial-state rescattering in Eq. (95). Without any such initial-state interactions, the
nucleonic Sivers function is zero, fN1T ¼ 0 [21,22,48], leaving

ẑ · ðJ × qÞf⊥A
1T ðx̄; qTÞ ¼ MA

Z
dpþd2pdb−

2ð2πÞ3
Z

d2k0d2xd2y
ð2πÞ2 e−iðq−k

0Þ·ðx−yÞ

× ixp · ðx − yÞAWOAM
unp

�
pþ; p; b−;

xþ y

2

�
fN1 ðx; k0TÞ ¼ 0; (96)

which vanishes after b− integration because of the rotational and PT-symmetry conditions [Eq. (B7)].
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B. Sign reversal of the Sivers function between
SIDIS and DY

Now that the DY Sivers function [Eq. (95)] is ex-
pressed in the same form as the Sivers function for
SIDIS [Eq. (57)], we can compare both expressions to
see how the nuclear Sivers functions have changed between
SIDIS and DY and understand the origin of the SIDIS/DY
sign-flip relation [11]

f⊥A
1T ðx; kTÞjSIDIS ¼ −f⊥A

1T ðx; kTÞjDY: (97)

First, we notice that the transversity/Sivers density channel
(the second term in the curly brackets) has changed signs as
required between Eqs. (57) and (95). Mathematically, this
occurs because of the k0 → −k0 interchange, simply
because the momentum going into the Wilson line in
SIDIS corresponds to the momentum coming from the
Wilson line in DY (cf. Figs. 5 and 11). The transversity/
Sivers density channel contribution thus automatically
satisfies the sign-flip relation [Eq. (97)].
The OAM channel contribution to Eq. (95) is more

subtle; although the prefactor has not changed as compared
to Eq. (57), the longitudinal coordinate b− integral entering
Eq. (95) for DY can be modified using b− → −b−
substitution along with Eq. (B7) to give

Z
db−WOAM

unp ðp; bÞSxy½b−;−∞�

¼ −
Z

db−WOAM
unp ðp; bÞSxy½−b−;−∞�: (98)

When evaluating the dipole S matrix, we neglect the
polarization effects as being energy suppressed.
Therefore, for the purpose of this S matrix, the nucleus
has a rotational symmetry around the z axis (see Fig. 6 for
axis labels). We thus write

Sxy½−b−;−∞� ¼PT S−x;−y½þ∞; b−� ¼z−rotation Sxy½þ∞; b−�;
(99)

where z rotation denotes a half-revolution around the z axis.
Using Eq. (99) in Eq. (98), we arrive at

Z
db−WOAM

unp ðp; bÞSxy½b−;−∞�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{DY

¼ −
Z

db−WOAM
unp ðp; bÞSxy½þ∞; b−�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{SIDIS

: (100)

One can also simply see that Eq. (100) is true by using
the quasiclassical GM/MV dipole S matrix from Eq. (70)
on its right-hand side, along with

Sxy½b−;−∞�

¼ exp

�
−
1

4
jx− yj2Q2

s

�
xþ y

2

��
b− þR−

2R−

�
ln

1

jx− yjΛ
�

(101)

on its left-hand side. We conclude that the OAM channel
contributions to the SIDIS Sivers function [Eq. (57)] and
the DY Sivers function [Eq. (95)] also satisfy the sign-flip
relation [Eq. (97)].
Therefore, for any Wigner distribution Wðp; bÞ, the

Sivers functions at the quasiclassical level for SIDIS
[Eq. (57)] and for DY [Eq. (95)] are equal in magnitude
and opposite in sign [Eq. (97)]. This statement is a direct
consequence of the invariance of Wðp; bÞ under rotations
and PT-reversal, Eq. (B7), and it mirrors in this context the
original derivation by Collins [11].
The advantage of our approach here, apart from provid-

ing the explicit formal results in Eqs. (57) and (95), is in
the new physical interpretation of the transverse spin
asymmetry in the OAM channel. As described in the
Introduction following Fig. 1, the incoming antiquark is
more likely to interact with the “front” of the nucleus due to
shadowing effects, thus scattering on the nucleon moving
out of the page in Fig. 1. This is justified by the
Sxy½b−;−∞� function in Eq. (95) [see also Eq. (101)],

which is largest for b− ¼ −R−. Thus, the virtual photon is
produced preferentially out of the page; this leads to a
nonzero STSA in DY. The sign reversal relation follows
from comparing Figs. 1 and 2: in DY, the particles are
produced preferentially left of beam, while in SIDIS, the
produced hadrons come out mainly right of beam.
The rigid rotator toy model of Sec. III C can also be

constructed for the DY Sivers function. However, due to the
sign-reversal relation [Eq. (97)], we can read off the answer
for the DY Sivers function in the rigid rotator model as
being the negative of that in Eq. (77) for moderate kT and
the negative of Eq. (79) for kT ≫ Qs. All the conclusions
about the relative importance of the two contributing
channels remain the same.

V. DISCUSSION

The main goal of this work was to construct SIDIS and
DY Sivers functions in the quasiclassical GM/MVapproxi-
mation, which models a proton as a large nucleus, and
which we modified by giving the nucleus a nonzero OAM.
The main formal results are given in Eqs. (57) (SIDIS)
and (95) (DY). We showed that there are two main
mechanisms generating the quasiclassical Sivers function:
the OAM channel and the transversity channel. The former
is leading in saturation power counting; it also dominates
for kT < Qs=

ffiffiffiffiffi
αs

p
, that is both inside and—for

Qs < kT < Qs=
ffiffiffiffiffi
αs

p
—outside of the saturation region. At

higher kT, the transversity channel dominates. In the future
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our quasiclassical calculation can be augmented by includ-
ing evolution corrections to the Sivers function, making the
whole formalism ready for phenomenological applications,
similar to the successful use of nonlinear small-x evolution
equations [65–71] for the description (and prediction) of
high-energy scattering data [72,73].
Perhaps just as important, we constructed a novel

physical mechanism of the STSA generation. This is the
OAM channel. The OAM mechanism, while diagrammati-
cally very similar to the original BHS mechanism [10],
provides a different interpretation from the “lensing” effect
[10,21] or the color-Lorentz force of Refs. [18,19]. The
OAM mechanism is described in the Introduction, in the
discussion around Figs. 1 and 2. It is based on interpreting
the extra rescattering proposed by BHS as a shadowing-
type correction. The STSA is then generated by the
combination of the OAM and shadowing. The shadowing
makes sure the projectile interacts differently with the front
and the back of the target, generating the asymmetry of the
produced particles.
While shadowing is a high-energy phenomenon, and our

calculation was done in the high-energy approximation
ŝ ≫ ⊥2 [though for x ∼Oð1Þ], it may be that the OAM
mechanism for generating STSA is still valid for lower-
energy scattering, though of course the formulas derived
above would not apply in such a regime. At lower energies,
the difference between the interactions of the projectile
with the front/back of the target may result from, say,
energy loss of the projectile as it traverses the target. Again,
combined with the target rotation, this would generate
STSA, and hence, the Sivers function. The formalism
needed to describe such a low-energy process would be
quite different from the one presented above; moreover, the
correct degrees of freedom may not be quarks and gluons
anymore. However, the main physics principle of combin-
ing OAM with the difference in interaction probabilities
between the projectile and front/back of the target to
generate STSA may be valid at all energies.
Returning to higher energies and the derived formulas in

Eqs. (57) and (95), let us point out that these results, when
applied to experimental data, may allow one to determine
the distribution of intrinsic transverse momentum pðb; b−Þ
of partons in the hadronic or nuclear target, along with the

transversity/Sivers function density in the target. This
would complement the existing methods of spatial imaging
of quarks and gluons inside the hadrons and nuclei [74],
providing a new independent cross-check for those
methods.
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APPENDIX A: WIGNER DISTRIBUTIONS WITH
MULTIPLE RESCATTERINGS

The aim of this appendix is to justify the result given in
Eq. (23). To study the interplay between the local “knock-
out” channel of deep inelastic scattering and the coherent
multiple rescattering on the nuclear remnants, it is illus-
trative to consider a minimal case with both features. This
process, shown in Fig. 12, consists of the knockout
subprocess followed by a single rescattering on a different
quark from a second nucleon in the nucleus. Rescattering
on a second nucleon receives a combinatoric enhancement
of order ∼A1=3 compared to rescattering on the same
nucleon; the former is Oð1Þ in the saturation power
counting, while the latter is OðαsÞ.
The total SIDIS amplitude Mtot depicted in Fig. 12

consists of a loop integral connecting the mean-field single-
particle wave functions ψðpÞ of the nucleus to a scattering
amplitude MKþR denoting both the “knockout” and rescat-
tering processes:

Mtot ¼
Z

drþd2r
2ð2πÞ3

Pþ

ðpþ
1 − rþÞðpþ

2 þ rþÞ
× ψðp1 − rÞψðp2 þ rÞMKþRðp1 − r;p2 þ r;q; k; rÞ;

(A1)

where a sum over spins and colors of the participating
quarks is implied. Squaring both sides of Eq. (A1) and
integrating out the final-state momenta p1 and p2 gives

hjMtotj2i≡ AðA − 1Þ
Z

dpþ
1 d

2p1dp
þ
2 d

2p2

½2ð2πÞ3�2ðpþ
1 þ qþÞpþ

2

jMtotj2

¼
Z

dpþ
1 d

2p1dp
þ
2 d

2p2

½2ð2πÞ3�2ðpþ
1 þ qþÞpþ

2

drþd2r
2ð2πÞ3

dr0þd2r0

2ð2πÞ3
AðA − 1ÞðPþÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðpþ

1 − rþÞðpþ
2 þ rþÞðpþ

1 − r0þÞðpþ
2 þ r0þÞp

×
Z

db−1 d
2b1db−2 d

2b2e−iðr−r
0Þ·ðb1−b2ÞW

�
p1 −

rþ r0

2
; b1

�
W

�
p2 þ

rþ r0

2
; b2

�

×MKþRðp1 − r; p2 þ r; q; k; rÞM�
KþRðp1 − r0; p2 þ r0; q; k; r0Þ; (A2)

where we have employed the Wigner distributions defined in Eq. (16) above and summed over all pairs of nucleons.
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Equation (A2) is still far from Eq. (23), because in
Eq. (A2) we do not have the amplitude squared: instead,
we have the product of MKþR and M�

KþR with different
arguments. It is easier to further analyze the expression
separately for the transverse and longitudinal degrees of
freedom. We proceed by taking the classical limits, in
which case the Wigner distributions give us the position
and momentum distributions of nucleons simultaneously.
Moreover, for the large nucleus at hand, the Wigner
distributions depend on b1 and b2 weakly over the
perturbatively short distances associated with the
Feynman diagrams. We thus define b ¼ ðb1 þ b2Þ=2
and Δb ¼ b1 − b2 and write

Z
d2rd2r0d2b1d2b2eiðr−r

0Þ·ðb1−b2ÞW
�
p1 −

rþ r0

2
; b1

�
W

�
p2 þ

rþ r0

2
; b2

�

×MKþRðp1 − r; p2 þ r; q; k; rÞM�
KþRðp1 − r0; p2 þ r0; q; k; r0Þ ≈

Z
d2rd2r0d2bd2Δbeiðr−r0Þ·Δb

×W

�
p1 −

rþ r0

2
; b−1 ; b

�
W

�
p2 þ

rþ r0

2
; b−2 ; b

�
MKþRðp1 − r; p2 þ r; q; k; rÞ

×M�
KþRðp1 − r0; p2 þ r0; q; k; r0Þ ¼ ð2πÞ2

Z
d2rd2bW

�
pþ
1 −

rþ þ r0þ

2
; p

1
− r; b−1 ; b

�

×W

�
pþ
2 þ rþ þ r0þ

2
; p

2
þ r; b−2 ; b

�
MKþRðpþ

1 − rþ; p
1
− r; pþ

2 þ rþ; p
2
þ r; q; k; rþ; rÞ

×M�
KþRðpþ

1 − r0þ; p
1
− r; pþ

2 þ r0þ; p
2
þ r; q; k; r0þ; rÞ: (A3)

Now the difference in the arguments of MKþR and M�
KþR is only in the longitudinal momenta rþ and r0þ. To integrate

over these momenta we notice that, as follows from Fig. 12, in the high-energy kinematics at hand, the leading contribution
to the amplitude MKþR comes from the region where pþ

1 ; p
þ
2 ≫ rþ; r0þ. In this regime we combine Eqs. (A2) and (A3) to

write

hjMtotj2i ¼
Z

dpþ
1 d

2p1dp
þ
2 d

2p2

½2ð2πÞ3�2ðpþ
1 þ qþÞpþ

2

drþdr0þd2r
4ð2πÞ4

ðPþÞ2
pþ
1 p

þ
2

db−1 db
−
2 d

2be−i
1
2
ðrþ−r0þÞðb−

1
−b−

2
ÞAðA − 1Þ

×Wðpþ
1 ; p1

− r; b−1 ; bÞWðpþ
2 ; p2

þ r; b−2 ; bÞMKþRðpþ
1 ; p1

− r; pþ
2 ; p2

þ r; q; k; rþ; rÞ
×M�

KþRðpþ
1 ; p1

− r; pþ
2 ; p2

þ r; q; k; r0þ; rÞ: (A4)

In the pþ
1 ; p

þ
2 ≫ rþ; r0þ kinematics, the amplitudeMKþR contains only one pole in rþ resulting from the denominator of the

k − r quark propagator (cf. Refs. [25,33,63]). We can thus write

MKþRðp1 − r; p2 þ r; q; kÞ ¼ i
ðk − rÞ2 þ iε

~MKþRðp1 − r; p2 þ r; q; kÞ; (A5)

where ~MKþR denotes the rest of the diagram which does not contain singularities in rþ in the pþ
1 ; p

þ
2 ≫ rþ; r0þ

approximation. (Note that ~MKþR also contains the numerator of the k − r quark propagator.) Since
ðk − rÞ2 ≈ −k−rþ þ k2 − ðk − rÞ2, we can use Eq. (A5) to integrate over rþ:

FIG. 12. The minimal SIDIS process containing both the
“knockout” of a quark from the nuclear wave function and
rescattering on a different quark from a second nucleon. The
short, thick vertical line indicates that the pole of the intermediate
quark propagator is picked up in the calculation.
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Z
∞

−∞

drþ

2π
e−i

1
2
rþðb−

1
−b−

2
ÞMKþRðp1 − r; p2 þ r; q; kÞ

≈
1

k−
θðb−2 − b−1 Þ ~MKþRðpþ

1 ; p1
− r; pþ

2 ; p2
þ r; q; kÞ

¼ 1

k−
θðb−2 − b−1 ÞMKðp1 − r; q; k − rÞMRðp2 þ r; k − r; k; rÞ: (A6)

Here we assume that rþ ¼ ½k2 − ðk − rÞ2�=k− ≈ 0 in our kinematics. After putting the k − r quark propagator on mass shell,
the amplitude ~MKþR factorizes into a product of separate amplitudes for knockout MKðp1 − r; q; k − rÞ and rescattering
MRðp2 þ r; k − r; k; rÞ [25,33,63], as employed in Eq. (A6), where the sum over quark polarizations and colors is implicit.
With the help of Eq. (A6) (and a similar one for the r0þ integration of M�

KþR), we write

hjMtotj2i ¼
Z

dpþ
1 d

2p1dp
þ
2 d

2p2

½2ð2πÞ3�2ðpþ
1 þ qþÞpþ

2

d2r
4ð2πÞ2

AðA − 1ÞðPþÞ2
pþ
1 p

þ
2 ðk−Þ2

db−1 db
−
2 d

2bθðb−1 − b−2 Þ

×Wðpþ
1 ; p1

− r; b−1 ; bÞWðpþ
2 ; p2

þ r; b−2 ; bÞ
× jMKðp1 − r; q; k − rÞj2jMRðp2 þ r; k − r; k; rÞj2: (A7)

Defining the energy-independent (at the quasiclassical level) rescattering amplitude by [25,33]

jARðp2 þ r; k − r; k; rÞj2 ≡ 1

4ðpþ
2 Þ2ðk−Þ2

jMRðp2 þ r; k − r; k; rÞj2 (A8)

and denoting the average of this object in the Wigner distribution by the angle brackets,

hjARðk; rÞj2iðb−1 ; bÞ ¼
Z

dpþ
2 d

2p2db−2
2ð2πÞ3 θðb−2 − b−1 ÞðA − 1ÞWðpþ

2 ; p2
þ r; b−2 ; bÞ × jARðp2 þ r; k − r; k; rÞj2; (A9)

we rewrite Eq. (A7) as

hjMtotj2i ¼ A
Z

dpþ
1 d

2p1db−1 d
2b

2ð2πÞ3
ðPþÞ2

pþ
1 ðpþ

1 þ qþÞWðpþ
1 ; p1

; b−1 ; bÞ

×
Z

d2r
ð2πÞ2 jMKðp1; q; k − rÞj2hjARðk; rÞj2iðb−1 ; bÞ: (A10)

In arriving at Eq. (A10), we have shifted the momentum p1 → p1 þ r.
We now define the “energy-independent” total and “knockout” amplitudes [25,33]

jAtotj2 ≡ 1

4ðPþÞ2ðq−Þ2 jMtotj2; jAkj2 ≡ 1

4ðpþ
1 Þ2ðq−Þ2

jMKj2: (A11)

Employing the Fourier transform [Eq. (21)], we reduce Eq. (A10) to

hjAtotj2i ¼ A
Z

dpþ
1 d

2p1db−1 d
2b

2ð2πÞ3
pþ
1

pþ
1 þ qþ

Wðpþ
1 ; p1

; b−1 ; bÞ
Z

d2xd2ye−ik·ðx−yÞ

× AKðp1; q; k−; rþ; x − bÞA�
Kðp1; q; k−; rþ; y − bÞhjARj2iðk−; x − y; b−1 ; bÞ (A12)

with

hjARj2iðk−; x − y; b−1 ; bÞ ¼
Z

d2r
ð2πÞ2 e

ir·ðx−yÞhjARðk; rÞj2iðb−1 ; bÞ: (A13)

Comparing Eq. (A10) to Eq. (22), we see that, just like in all high-energy QCD scattering calculations [25,30–33], the
rescattering can be factored out into a multiplicative factor in the transverse coordinate space. Similar to the above, one can
show that all further rescatterings would only introduce more multiplicative factors. Defining a somewhat abbreviated
notation
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Aðp; q; x − bÞA�ðp; q; y − bÞ
≡ AKðp; q; k−; rþ; x − bÞA�

Kðp; q; k−; rþ; y − bÞ
× hjARj2iðk−; x − y; b−1 ; bÞ; (A14)

we see that Eq. (A12) reduces to Eq. (23), as desired. The
above discussion also demonstrates how multiple rescatter-
ings factorize in the transverse coordinate space: in the
high-energy kinematics, they are included through the
Wilson lines of Eqs. (26) and (27). The Wilson-line
correlator Dxy½þ∞; b−� from Eq. (27) contains a
b−-ordered product of multiple rescattering factors
hjARj2i from all the interacting nucleons [63,75].

APPENDIX B: THE ROLE OF PT SYMMETRY

The decompositions in Eqs. (57) and (95) essentially
break the Wilson-line operator U in definition (2) into two
parts: the coherent rescattering Sxy½þ∞; b−� on other

spectator nucleons, which is a leading-order contribution
in the saturation power counting; and the subleading
lensing interaction with the same nucleon, which generates
f⊥N
1T . If we neglect the Wilson-line operator U entirely, then

we know that the Sivers function of the nucleus f⊥A
1T must

vanish, as first proved by Collins [15]. But if we drop f⊥N
1T

and Sxy½þ∞; b−� from Eq. (57), we do not obviously get
zero:

ẑ · ðJ × kÞf⊥A
1T ðx; kTÞ

¼MAA
Z

dpþd2pdb−

2ð2πÞ3 d2xd2y
d2k0

ð2πÞ2 e
−iðk−k0Þ·ðx−yÞ

× ixp · ðx− yÞWOAM
unp

�
pþ;p; b−;

xþ y

2

�
fN1 ðx; k0TÞ¼? 0:

(B1)

The right-hand side of this equation must vanish for wave
functions described by WOAM

unp that are PT eigenstates [15];
we can see this explicitly by considering the constraints on
Wσðp; bÞ due to rotational invariance and PT symmetry. It
is most convenient to enumerate the rotational symmetry
properties of the nucleon distribution Wσðp; bÞ in the rest
frame of the nucleus, using a cylindrical vector basis
coaxial to the transverse spin vector S. This basis
ðêρ; êθ; x̂Þ is shown in Fig. 13 and is defined by

�
êρ
êθ

�
¼

�
by=bρ bz=bρ
−bz=bρ by=bρ

��
ŷ

ẑ

�

¼
�

cos θ sin θ

− sin θ cos θ

��
ŷ

ẑ

�
; (B2)

where ðpρðbÞ; pθðbÞÞ ¼ p · ðêρðbÞ; êθðbÞÞ and bρ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2y þ b2z

q
.

First, the distribution must be symmetric under rotations
about the transverse spin Sx, which are easy to express in
this cylindrical basis:

FIG. 13. Definition of the cylindrical coordinate basis
[Eq. (B2)] convenient for formulating the symmetry properties
of the nucleonic distribution Wσðp; bÞ in the rest frame of the
nucleus.

FIG. 14. Illustration of the PT transformation and rotational symmetry in the rest frame used in Eq. (B4). Left panel: Illustration of the
momentum flow represented byWσðp; bÞ. Center panel: Under a PT transformation, the spins S; σ and coordinate b are reversed, but the
momentum p is invariant. Right panel: Rotation of the center panel by π about the vector ~S × ~b returns the distribution to its original
position b, with pρ and px having been reversed.
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Wσðpx;pρðbÞ;pθðbÞ;bÞ ¼ Wσðpx;pρðb0Þ;pθðb0Þ; b0Þ:
(B3)

Second, if the nucleus is in a PT-symmetric eigenstate of
the QCD Hamiltonian, then Wσðp; bÞ should be invariant

under PT transformations. These transformations reverse
the coordinates ðb → −bÞ and pseudovectors like the spin
ðS; σ → −S;−σÞ but leave the momentum vector p
unchanged. Using this transformation, together with rota-
tional invariance as shown in Fig. 14, we obtain

WσðpρðbÞ; pθðbÞ; px; b; SxÞ¼PTW−σðpρðbÞ; pθðbÞ; px;−b;−SxÞ
¼ W−σð−pρð−bÞ;−pθð−bÞ; px; b;−SxÞ
¼RbWσð−pρðbÞ; pθðbÞ;−px; b; SxÞ
∴

WσðpρðbÞ; pθðbÞ; px; b; SxÞ ¼ Wσð−pρðbÞ; pθðbÞ;−px; b; SxÞ; (B4)

where the rotation Rb is a half-revolution in the Sb plane.
This means that in a PT eigenstate with transverse spin Sx,
the only allowed direction of net momentum flow corre-
sponds to the azimuthal orbital momentum pθ and explains
the naming convention WOAM in Eq. (49).

The distributions that enter Eqs. (57) and (95), however,
are the (anti)symmetrized distributions under reversal of the
transverse momenta ðpx; py → −px;−pyÞ. For these pur-
poses, it is more convenient to write the distribution
Wσðp; bÞ in terms of the Cartesian basis:

Wðpx; py; pz; bÞ ¼ Wσ

�
px;

by
bρ

pρðbÞ −
bz
bρ

pθðbÞ;
bz
bρ

pρðbÞ þ
by
bρ

pθðbÞ; b
�
: (B5)

Using the symmetry properties [Eqs. (B3) and (B4)], we can write the p-reversed distribution in terms of the distribution at a
point b̄≡ ðbx; by;−bzÞ on the opposite side of the nucleus:

Wσð−px;−py; pz; bÞ ¼ Wσ

�
−px;−

by
bρ

pρðbÞ þ
bz
bρ

pθðbÞ;
bz
bρ

pρðbÞ þ
by
bρ

pθðbÞ; b
�

¼Eq.ðB3Þ
Wσ

�
−px;−

by
bρ

pρðb̄Þ −
bz
bρ

pθðb̄Þ;−
bz
bρ

pρðb̄Þ þ
by
bρ

pθðb̄Þ; b̄
�

¼Eq.ðB4Þ
Wσ

�
px;

by
bρ

pρðb̄Þ −
bz
bρ

pθðb̄Þ;
bz
bρ

pρðb̄Þ þ
by
bρ

pθðb̄Þ; b̄
�

¼ Wσðpx; py; pz; b̄Þ
∴

Wσð−px;−py; pz; bÞ ¼ Wσðpx; py; pz; b̄Þ: (B6)

Thus, a nucleon on the back side of the nucleus has an opposite transverse momentum to a corresponding nucleon in the
front of the nucleus. Therefore, the (anti)symmetrized distributions have definite parity under bz → −bz:

Wsymm
σ ðp; bÞ≡ 1

2
½Wσðp; bÞ þ ðp → −pÞ� ¼ þWsymm

σ ðp; b̄Þ;

WOAM
σ ðp; bÞ≡ 1

2
½Wσðp; bÞ − ðp → −pÞ� ¼ −WOAM

σ ðp; b̄Þ: (B7)

Equation (B7) tells us that a consequence of PT
invariance in the nucleus is that the orbital angular
momentum encountered at any point in the front of the
nucleus is compensated by an equal and opposite orbital

angular momentum from a corresponding point on the back
of the nucleus. This is the resolution to the apparent
paradox in Eq. (B1): when we neglect all Wilson-line
contributions (both Sxy½þ∞; b−� and f⊥N

1T ), the net
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asymmetry in the quark distribution is zero, sinceR
db−WOAM

unp ðp; bÞ ¼ 0. Hence, neglecting all Wilson-line
contributions yields a zero Sivers function, consistent
with Ref. [15].
An essential role is played in Eq. (57), then, by the

rescattering factor Sxy½þ∞; b−�. In the OAM channel, even

though the rescattering Sxy½þ∞; b−� is not the source of a

preferred transverse direction, without it the net contribu-
tion to the Sivers function from OAM would vanish after
integration over b−, as can be gleaned from the left panel in
Fig. 7. The rescattering factor Sxy½þ∞; b−� is essential

because it introduces shadowing that breaks this front-back
symmetry by screening quarks ejected from the front of the
nucleus more than those ejected from the back. The Sivers
function relevant for SIDIS is therefore more sensitive to
OAM from the back of the nucleus than from the front,
which prevents the complete cancellation of the OAM
contribution as in Eq. (B1).

This analysis is strikingly similar to the arguments that
historically established the existence of the Sivers function.
As Collins argued in Ref. [15], PT invariance of any
hadronic eigenstate prohibits a preferred direction that can
generate the Sivers function. This is directly reflected in the
vanishing of Eq. (B1) without the effects of multiple
rescattering. And as Brodsky, Hwang, and Schmidt dem-
onstrated in Ref. [10], the rescattering represented by the
semi-infinite Wilson lines breaks this symmetry and per-
mits a preferred direction for the asymmetry. Unlike that
calculation, however, here the rescattering does not occur
as color-correlated “lensing” due to rescattering on the
remnants of the active quark. Here the interaction is
explicitly color decorrelated because the rescattering occurs
on many nucleons whose colors are not correlated. Despite
this difference, the rescattering effects are still sufficient to
break the front-back symmetry and give rise to a net
preferred direction for the asymmetry.
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