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We study the pion distribution amplitude (πDA) in the context of a nonlocal chiral quark model.
The corresponding Lagrangian reproduces the phenomenological values of the pion mass and decay
constant, as well as the momentum dependence of the quark propagator obtained in lattice calculations.
It is found that the obtained πDA has two symmetric maxima, which arise from the new contributions
generated by the nonlocal character of the interactions. This πDA is applied to leading order and next-to-
leading order calculations of the pion-photon transition form factor. Implications of the results are discussed.
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I. INTRODUCTION

The pion distribution amplitude (πDA) is a fundamental
theoretical ingredient in the description of exclusive high-
energy processes. The simplest hard exclusive process
determined by the πDA is the transition π → γγ� at high
photon virtuality Q2, since for this process the pion is the
only hadron involved; on the other hand, the large Q2

behavior of the related pion transition form factor (πTFF) is
well known from perturbative QCD [1,2]. The πTFF can be
measured for both space-like and time-like momentum
transfers through the processes eþe− → eþe−π0 and
eþe− → π0γ, respectively. The corresponding experimental
status has been improved in the last years, since old results
from CELLO [3] (covering a space-like momentum trans-
fer region 0.68 < Q2 < 2.17 GeV2) and CLEO [4]
(1.64 < Q2 < 7.9 GeV2) have now been complemented
with data from the BABAR [5] and BELLE [6] collabora-
tions, which cover pion virtualities ranging from 4 to
35 GeV2. While the old data suggested that the πTFF
reaches its asymptotic behavior for Q2 values of the order
of a few GeV2, the new BABAR data exhibit a steeper
growth, indicating that the asymptotic QCD limit is crossed
at Q2 ∼ 10 GeV2. The BELLE data show instead a slower
growth, in which the πTFF seems to cross the asymptotic
limit at Q2 ∼ 20 GeV2. In addition, the BABAR collabo-
ration has recently measured the η and η0 transition form
factors [7]; the data show in this case a mild behavior,
approaching from below the corresponding asymptotic
QCD limit for large Q2 values. In any case, owing to
the relatively large errors, it could be said that present

experimental data are compatible with each other, and still
more accurate measurements would be needed in order to
firmly establish the behavior of the πTFF in the region of
intermediate and large Q2.
In view of the new experimental results, a significant

theoretical effort has been carried out towards the obtention
of theoretical predictions for the πDA and πTFF. First
analyses have proposed a flat πDA, i.e. ϕπðxÞ ¼ 1 [8,9].
This scenario is compatible with QCD sum rules [10] and
lattice QCD results [11,12], which lead to values for the
second moment of the πDA that are large in comparison
with that obtained using the asymptotic πDA
ϕπðxÞ ¼ 6xð1 − xÞ. A constant πDA is in fact obtained
within effective theories such as the Nambu-Jona-Lasinio
(NJL) model [13–15] and the “spectral” quark model [16].
A formalism which connects the experimental parametri-
zation of the πTFF at low photon virtuality with the
description of the πTFF at high photon virtuality using a
flat πDA has been developed in Ref. [17]. Within this
formalism, a good agreement with the experimental pattern
is achieved after the inclusion of a correction carrying an
extra power of 1=Q2, which is needed in order to reproduce
the data in the region 1 < Q2 < 15 GeV2. With the same
ingredients, in the context of the NJL model a good
description of the ηTFF can be obtained [18]. Finally,
other analyses carried out within quark models can be
found in Refs. [19–23]. Another recent calculation of the
πDA has been performed within the AdS/QCD holographic
correspondence hypothesis [24]. The πTFF obtained by
this approach cannot explain the trend of the recent BABAR
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data [25]. The same problem is also encountered in the
analysis of Ref. [26]. The πDA has been recently evaluated
also within the Dyson-Schwinger equation framework [27];
first lattice estimates of this quantity have been presented in
Ref. [28]. In all these approaches the πDA is obtained
through theoretical calculations, and parameters are fitted
from other physical quantities.
The πDA and the πTFF have also been studied within the

nonlocal condensates sum rule and light cone sum rule
approaches [29–34]. These calculations use similar ingre-
dients, introducing corrections with extra powers of 1=Q2

in order to describe the data through the twist 4 and 6
contributions. While in Refs. [33,34] a good description of
the experimental results is obtained, in Refs. [32] it is
claimed that in order to reproduce the data from BABAR
one would need some enhancement mechanism that cannot
be explained within the standard QCD scheme based on
collinear factorization. A study of the πDA is also pre-
sented in Refs. [35,36], starting from the pion leading twist
wave function. In general, in all these works the πDA is
parametrized in terms of an expansion in a series of
Gegenbauer polynomials. This expansion is truncated
keeping the first few polynomials, and the corresponding
coefficients are treated as parameters to be adjusted.
The aim of this work is to study the πDA and the πTFF

within the framework of a nonlocal Nambu–Jona-Lasinio
model (nlNJL). The NJL model is a simple scheme based
on the QCD feature of dynamical chiral symmetry break-
ing, in which quarks interact through a local, chiral
invariant four-fermion coupling. The local nature of this
interaction allows obtainment of simple solutions of the
corresponding Dyson-Schwinger and Bethe-Salpeter equa-
tions. However, the main drawbacks of the model are direct
consequences of the locality: a definite prescription is
needed in order to regularize ultraviolet loop divergences,
and the model is nonconfining. The nlNJL model repre-
sents an improvement over the local theory. Indeed, it can
be seen that nonlocal form factors regularize the model in
such a way that anomalies are preserved and charges are
properly quantized, and there is no need to introduce extra
cutoffs. In fact, nonlocality arises naturally in quantum field
theory when the interactions involve large coupling
constants.
The starting point in our analysis will be a Lagrangian

theory that includes couplings between nonlocal quark
currents. In this way, our formalism ensures the preser-
vation of fundamental symmetries (chiral, Poincaré and
local electromagnetic gauge invariances) that guarantee
the proper normalization of the πDA. In the framework
of a Lagrangian theory, the three main ingredients of a
nonperturbative analysis that involves photons and the
pion are the following: (i) the quark propagator, which
obeys the Dyson-Schwinger equation; (ii) the description
of the pion as a bound state of a Bethe-Salpeter equation
(BSE); and (iii) a prescription for introducing the

electroweak interaction that preserves gauge symmetry.
Owing to the chiral symmetry, the kernels of the
equations appearing in (i) and (ii) are not independent
[37]. The Dyson-Schwinger equation leads to momentum
dependencies in the quark propagators through its mass
and its wave function renormalization. In our scheme the
gluons have been integrated out (we have only flavor
interaction between quarks), and confinement is obtained
from the structure of the quark propagator and by
limiting the Fock space to color singlet states. The pion
is described in a consistent way by solving the BSE, and
it shows up as a Goldstone boson associated with the
spontaneous breakdown of the chiral symmetry. Finally,
the couplings involving photons and weak bosons are
implemented by imposing local gauge invariance in the
Lagrangian. Therefore, we must gauge not only the
kinetic term, but also the nonlocal quark currents in
the interaction terms.
The quark propagator is taken as one of the main

ingredients of our model. The reason is that one has direct
information on this propagator from the fundamental QCD
theory, since the momentum dependencies of quark mass
and wave function renormalization have been calculated in
lattice QCD [38,39]. Our Lagrangian is in fact the minimal
framework that allows incorporation of the full momentum
dependence obtained through these lattice calculations. In
this way, our model can be seen as an extension of nonlocal
NJL models analyzed in previous works [19,40–44], but
with a particular philosophy. The model considered here
has been proposed in Ref. [45] and then successfully
applied to the analysis of different hadronic observables
[46–48].
Once the Lagrangian theory has been defined, it is

possible to obtain the πDA from a fundamental calculation.
The main difficulty to be solved is that the bilocal axial
current present in the definition of the πDA will be dressed
by the nonlocal interaction. To deal with this problem we
rely on the basic physical idea beyond the factorization of
the πTFF into hard and soft contributions for high Q2:
the struck quark loses its high momentum before being
able to interact with the remaining quarks and gluons
of the hadron. This situation will be implemented here by
considering the bilocal current associated to the πDA as a
current coupled to an external fictitious probe carrying the
adequate quantum numbers.
The πDA provides the dominant twist two contribution

to the πTFF. Corrections to this term will be introduced by
considering contributions that carry extra powers of 1=Q2

(we will include 1=Q4 and 1=Q6 terms). Therefore, in our
schemewe have a fixed πDA and two free parameters in the
πTFF. This is in contrast with the program followed in
Refs. [30–36], where the πDA is parametrized in terms of a
expansion in Gegenbauer polynomials with free coeffi-
cients and the twist four and six corrections are constrained
by sum rule techniques.

GÓMEZ DUMM et al. PHYSICAL REVIEW D 89, 054031 (2014)

054031-2



The present paper is organized as follows. In Sec. II we
describe the connection between the πTFF and the πDA,
we present the model Lagrangian and we quote our
analytical results for the πDA. In Sec. III we show and
discuss the numerical results for the πDA obtained within
our model. The dependence on the transverse momentum
kT and the connection with the light cone wave functions
are discussed in Sec. IV. In Sec. V the results obtained
for the πTFF are analyzed. Finally, in Sec. VI we sketch
our conclusions. Details of the calculations, including
some relevant analytical expressions, can be found in
Appendixes A and B.

II. FORMALISM

A. Generalities on the evaluation of the πTFF
and πDA in effective quark models

As stated, the transition form factor for the process
π0 → γγ� at large photon virtuality is basically determined
by the pion distribution amplitude. At the leading order in
powers of 1=Q2 one has

FðQ2Þ ¼
ffiffiffi
2

p
fπ

3Q2

Z
1

0

dxTHðx;Q2; μÞϕπðx; μÞ; (1)

where fπ ¼ 0.131 GeV. Here, the function THðx;Q2; μÞ,
which includes both photon vertices (see Fig. 1), accounts
for the hard contributions to the process and can be
calculated from perturbative QCD. In the modified minimal
subtraction (MS) scheme, up to the next-to-leading order
(NLO) in the strong coupling, one obtains [49,50]

TNLO
H ðx;Q2; μÞ ¼ 1

x

�
1þ CF

αsðμÞ
4π

�
ln2x −

x ln x
1 − x

− 9

þ ð3þ 2 ln xÞ lnQ
2

μ2

��
; (2)

with CF ¼ 4=3 for Nc ¼ 3. On the other hand, ϕπðx; μÞ
stands for the πDA, which involves the soft, nonperturba-
tive contributions to the form factor [in Eq. (2), the
symmetry property ϕπð1 − x; μÞ ¼ ϕπðx; μÞ has been
used]. One can take this distribution amplitude from some
theoretical model for the pion or, alternatively, it can be

parametrized phenomenologically. Finally, the parameter μ
is the renormalization and factorization scale, which will be
set here by μ2 ¼ Q2. Different relations between μ2 and Q2

have been considered in Ref. [33]. In fact, our results do not
show a significant numerical variation for these different
choices. For simplicity, in the following we will omit the μ
dependence in ϕπðx; μÞ unless necessary.
We will postpone the analysis of the πTFF to Sec. V, and

concentrate now in the evaluation of the πDA within the
framework of an effective quark model. By definition, the
πDA ϕðxÞ is given by

i
ffiffiffi
2

p
fπϕπðxÞ ¼

Z
dz−

2π
eiP

þz−ðx−1
2
Þ
D
0
���ψ̄
�
−
z
2

�
γþγ5τ−ψ

�
z
2

�

× jπ−ðPÞ
E���

zþ¼0;~zT¼0
; (3)

where we have introduced the light front components
Pþ, z−, γþ, choosing a frame in which ~PT ¼ 0. For any
four-vector aμ, the light front components are defined by
a� ¼ ða0 � a3Þ= ffiffiffi

2
p

, while ~aT ≡ ða1; a2Þ. As it is well
known, x becomes the fraction of the þ component of the
momentum carried by the struck quark in the meson, and its
support is the interval [0, 1].
Recalling that the pion decay constant can be defined by

fπ ¼
1

i
ffiffiffi
2

p
Pþ h0jψ̄ð0Þγþγ5τ−ψð0Þjπ−ðPÞi; (4)

from Eq. (3) one obtains for ϕπðxÞ the sum rule

Z
1

0

dxϕπðxÞ ¼ 1: (5)

It is worth stressing that this is not a normalization
condition to be imposed, but a result that has to be fulfilled
by any well-defined model.

B. πDA in a nonlocal NJL model with
wavefunction renormalization

We consider here a nonlocal covariant SU(2) chiral quark
model that includes wave function renormalization in the
quark propagator. The corresponding Euclidean action
reads [45,47]

SE ¼
Z

d4y

�
ψ̄ðyÞð−i=∂ þmcÞψðyÞ −

GS

2
½jaðyÞjaðyÞ

þ jPðyÞjPðyÞ�
�
: (6)

Here, mc is the current quark mass, which is assumed to be
the same for u and d quarks, while the nonlocal currents
jaðyÞ, jPðyÞ are given by

TH

* (Q)

(P)

FIG. 1. Schematic structure of the QCD factorization for the
π → γγ� process.
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jaðyÞ ¼
Z

d4zGðzÞψ̄
�
yþ z

2

�
Γaψ

�
y −

z
2

�
;

jPðyÞ ¼
Z

d4zF ðzÞψ̄
�
yþ z

2

�
i∂↔
2ϰp

ψ

�
y −

z
2

�
; (7)

where Γa ¼ ð1; iγ5~τÞ and uðy0Þ∂↔vðyÞ ¼ uðy0Þ∂yvðyÞ−
∂y0uðy0ÞvðyÞ. The nonlocal character of the interactions
is provided by the covariant vertex form factors GðzÞ and
F ðzÞ in Eq. (7). In the mean field approximation these
functions determine the momentum dependence of the
mass and wave function renormalization in the quark
propagator,

D0ðpÞ−1 ¼
zp

−pþmp
; (8)

where

zp ≡ zðpÞ ¼ ð1 − σ̄2fpÞ−1;
mp ≡mðpÞ ¼ zpðmc þ σ̄1gpÞ: (9)

The functions gp and fp in these equations are the Fourier
transforms of GðzÞ and F ðzÞ, while σ̄1;2 are the mean field
values of the scalar fields associated with the currents j0ðyÞ
and jPðyÞ, respectively. The main point here is that starting
from a given expression formp and zp, based in our case on
lattice results, we can use Eq. (9) for extracting the related
gp and fp functions. The mean field values σ̄1;2 are related
to the values of mp and zp at p ¼ 0 through

σ̄2 ¼ 1 −
1

zð0Þ ; σ̄1 ¼
mð0Þ
zð0Þ −mc: (10)

Following Ref. [47], we choose mp and zp as

mp ¼ mc þ
αm

1þ ðp2=Λ2
0Þ3=2

;

zp ¼ 1þ αz
½1þ ðp2=Λ2

1Þ�5=2
; (11)

where mc ¼ 2.37 MeV, αm ¼ 309 MeV, αz ¼ −0.3, Λ0 ¼
850 MeV and Λ1 ¼ 1400 MeV. This parametrization
allows us to reproduce the momentum dependence of
the quark propagator mass and wave function renormali-
zation obtained in lattice calculations very well [38,39],
providing at the same time the proper physical values for
the pion mass and decay constant [47].
Given this effective model for the strong interactions at

low energies, one can explicitly evaluate the πDA from
Eq. (3). Since the amplitude involves a bilocal axial vector
current, one should introduce into the effective action in
Eq. (6) a coupling to an external axial gauge field aμ. For a
local theory this can be done by performing the replacement

∂μ → ∂μ þ iAμðyÞ; (12)

where, according to the quantum numbers of the π− field,

AμðyÞ ¼ τ−γ5aμðyÞ: (13)

In the case of the above described nlNJL model the situation
is more complicated since the inclusion of gauge interactions
implies a change not only in the kinetic terms in the
Lagrangian but also in the nonlocal currents appearing in
the interaction terms. If y and z denote the space variables in
the definitions of the nonlocal currents [see Eq. (7)], one has

ψðy − z=2Þ → Wðy; y − z=2Þψðy − z=2Þ;
ψ†ðyþ z=2Þ → ψ†ðyþ z=2ÞWðyþ z=2; yÞ: (14)

Here, the function Wðs; tÞ is defined by

Wðs; tÞ ¼ P exp

�
i
Z

t

s
drμAμðrÞ

�
; (15)

where r runs over an arbitrary path connecting s with t.
This procedure has been analyzed in detail within nlNJL

models, in particular regarding the calculation of the pion
decay constant [40,41,45]; see Eq. (4). The situation is
similar for the case of the bilocal axial current in the
definition of the πDA. In fact, the basic physical idea
beyond the factorization of the πTFF into hard and soft
contributions is that for high Q2 the struck quark loses its
high momentum before being able to interact with the
remaining quarks and gluons of the hadron (Q2 ∼ 1 GeV2

implies a time scale of the order of 10−24 s). Therefore, the
nonlocal interaction does not see the struck quark but only
the quarks in the hadron before and after the photon
absorption-emission process. This can be effectively imple-
mented by introducing an external fictitious probe carrying
the adequate quantum numbers, which in our case is an
axial gauge field (a similar situation has been studied in the
case of the pion parton distribution; see Refs. [45,46]).
Thus, the axial vertex in Eq. (3) will become dressed by the
nonlocal interaction, irrespective of whether the quark
current is a local or a bilocal one (as in this case).
The steps to be followed in the explicit calculation of the

πDA within the nlNJL model are detailed in Appendix A.
We quote here the resulting expression:

ϕπðxÞ ¼
2

ffiffiffi
2

p
Ncgπqq̄
fπ

Z
dwd2kT
ð2πÞ4 Fðw; x; kTÞ; (16)

where gπqq̄ stands for an effective quark-meson coupling
constant (see Appendix A). It is convenient to separate the
integrand in Eq. (16) into two pieces,

Fðw; x; kTÞ ¼ F1ðw; x; kTÞ þ F2ðw; x; kTÞ: (17)
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The explicit expressions for these functions are

F1ðw;x;kTÞ ¼
gk
2

zkþzk−
DkþDk−

�
1

zkþ
þ 1

zk−

�
½ð1− xÞmkþ þ xmk− �;

(18)

F2ðw; x; kTÞ ¼ gk
zkþzk−
DkþDk−

f½kþ · k− þmkþmk− �ν1

− k · ½kþmk− − k−mkþ�ν2g −
mkzk
Dkσ̄1

ν1; (19)

where we have defined k� ¼ k� P=2 and Dk ¼ k2 þm2
k.

In terms of the variables w and kT we have

k2 ¼ −iw
�
x −

1

2

�
þm2

π

�
x −

1

2

�
2

þ k2T;

k · P ¼ −i
w
2
:

Finally, the functions ν1 and ν2 in Eq. (19) are given by

ν1 ¼
ðx − 1

2
Þ

k · P

�
mkþ

zkþ
þmk−

zk−
− 2

mk

zk
þm2

πσ̄1α
−
g

�
þ σ̄1α

−
g ;

ν2 ¼
ðx − 1

2
Þ

k · P

�
1

zk−
−

1

zkþ
þm2

πσ̄2α
þ
f

�
þ σ̄2α

þ
f ; (20)

where α−g and αþf depend in general on the integration path
in Eq. (15). If one takes a straight line path the correspond-
ing explicit expressions read

α−g ¼
Z

1

0

dλ
λ

2
g0k−λP=2 −

Z
0

−1
dλ

λ

2
g0k−λP=2;

αþf ¼
Z

1

−1
dλ

λ

2
f0k−λP=2:

C. LO and NLO evolution of the πDA

Once the πDA ϕðxÞ is known at a given μ0 scale, its
evolution up to a new scale μ can be obtained from
perturbative QCD [1,2]. In order to calculate this evolution
(we denote now explicitly the μ dependence of the πDA), it
is convenient to expand ϕπðx; μÞ in a series of Gegenbauer
polynomials,

ϕπðx; μÞ ¼ 6xð1 − xÞ
X∞

n¼0ðevenÞ
anðμÞC3=2

n ð2x − 1Þ: (21)

From the orthogonality relations satisfied by these poly-
nomials one gets the coefficients at the μ0 scale, namely

anðμ0Þ ¼
2ð2nþ 3Þ

3ðnþ 1Þðnþ 2Þ
Z

1

0

dxC3=2
n ð2x − 1Þϕπðx; μ0Þ:

(22)

If ϕπðx; μ0Þ satisfies the sum rule Eq. (5), then the first
coefficient a0ðμ0Þ has to be equal to 1. Thus, all the
information from the pion effective model is included in
the remaining coefficients anðμ0Þ, with n ¼ 2; 4;…. At the
leading order (LO) in the strong coupling αs the coefficients
turn out to be renormalized multiplicatively,

aLOn ðμÞ ¼ anðμ0ÞELO
n ðμ; μ0Þ; (23)

whereas at the NLO the evolution equations for different
coefficients get mixed, and the pattern becomes more
complicated. One has [33]

aNLOn ðμÞ ¼ anðμ0ÞENLO
n ðμ; μ0Þ

þ αsðμÞ
4π

Xn−2

k¼0 ðevenÞ
akðμ0ÞELO

k ðμ; μ0Þdknðμ; μ0Þ:

(24)

Explicit expressions for the renormalization factors
ELO
n ðμ; μ0Þ, ENLO

n ðμ; μ0Þ, as well as for the off-diagonal
mixing coefficients dknðμ; μ0Þ in the MS scheme, are
collected in Appendix B. Usually the calculation of a
few coefficients anðμÞ is sufficient to get a good estimate of
the πDA at the scale μ using Eq. (21).

III. PION DISTRIBUTION AMPLITUDE

Our result for the πDA, Eq. (16), is plotted in Fig. 2
(solid line), where the contributions coming from Eqs. (18)

FIG. 2 (color online). Pion distribution amplitude. The solid
line stands for the πDA obtained in the present approach,
Eq. (16), while dashed and dotted lines correspond to the
contributions given by Eqs. (18) and (19), respectively. The
dashed-dotted curve stands for the distribution amplitude defined
by Eq. (26), normalized in order to satisfy the sum rule Eq. (5).
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and (19) are also separately shown (dashed and dotted lines,
respectively). One observes that the full result has two
symmetric maxima. This feature is also shown by the πDA
calculated in Refs. [10,29], but in our case the two maxima
are much closer to x ¼ 0.5. From the curves it is seen that
this shape arises from the term in Eq. (19), which is a
genuine nonlocal contribution.
Our calculation is performed in Euclidean space. To

check the consistency of our scheme we rely on the
verification of the following fundamental properties of
the πDA: (i) the πDA has to be invariant under the
exchange x↔ð1 − xÞ; (ii) the πDA has support in the
interval [0, 1]; (iii) the sum rule Eq. (5) has to be fulfilled.
The first property is a consequence of isospin symmetry.

It can be easily checked from the analytical expressions in
Eqs. (16)–(20).
Concerning the second property, we notice that it can be

associated to the Wick rotation in cases where an exact
solution can be obtained [17]. Let us assume that quark
masses do not depend on the momentum, and let us write
the denominators Dk� in Eqs. (18) and (19) in Minkowski
space:

Dk− ¼ ðk2− −m2 þ iϵÞ ¼ −2Pþð1 − xÞ
��

k− −
P−

2

�

þ
~k2T þm2

2Pþð1 − xÞ −
iϵ

2Pþð1 − xÞ
�
; (25a)

Dkþ ¼ ðk2þ −m2 þ iϵÞ ¼ 2Pþx
��

k− þ P−

2

�

−
~k2T þm2

2Pþx
þ iϵ
2Pþx

�
: (25b)

We observe that the integration of the function in Eq. (18)
with respect to k− is different from zero only if 0 < x < 1.
Indeed, we can perform the Wick rotation in the region
0 < x < 1, where it is well defined according to the
positions of the poles determined by Eq. (25), whereas
for x < 0 and x > 1 the πDA will trivially vanish. For a
calculation performed in Euclidean space (as in our case),
the poles lie outside the region of integration, and the loop
integrals are formally well defined. However, for x < 0 or
x > 1 the positions of the poles do not allow us to perform
the Wick rotation, and thus in these regions the result
cannot be connected with the definition of the πDA in
Minkowski space. Consequently, the integral in Eq. (16)
will have physical meaning only for x ∈ ½0; 1�.
The last, third property becomes the main consistency

check for a calculation in Euclidean space. Indeed, the
fact that the sum rule is fulfilled when ϕπðxÞ is integrated
from 0 to 1 confirms that our πDA has the proper
support.
Within the framework of nlNJL models, several authors

have used in the definition of the πDA the operator γþγ5

without dressing. In our scheme, this choice would corre-
spond to the following expression for the πDA:

ϕð0Þ
π ðxÞ ¼ 2

ffiffiffi
2

p
Ncgπqq̄
fπ

×
Z

dwd2kT
ð2πÞ4

gkzkþzk− ½ð1 − xÞmkþ þ xmk− �
ðk2þ þm2

kþÞðk2− þm2
k−
Þ :

(26)

It can be seen that in this case the sum rule Eq. (5) is not
satisfied. Indeed, in our approach, the usage of Eq. (26) to
evaluate the sum rule yields 0.845 instead of 1. The
distribution amplitude given by Eq. (26), properly normal-
ized to satisfy the sum rule [i.e. ϕð0Þ

π ðxÞ=0.845], is also
shown in Fig. 2 (dashed-dotted line). We observe that,
except for a soft depression in the central part, this result is
close to the contribution given by Eq. (18).
Let us consider now the QCD evolution of the πDA.

A crucial point is the choice of the scale μ0 to be associated
with the result provided by the quark model. In our case this
value is fixed by that of the lattice calculation used to model
the quark propagator. According to Ref. [38], we have to
take μ0 ¼ 3 GeV, which is a large value compared to the
scale μ0 ∼ 1 GeV usually adopted in model calculations.
In Fig. 3 we show the distribution amplitude obtained in

our model together with its evolution up to μ ¼ 1 GeV, at
LO and NLO. It is seen that the πDA at μ0 ¼ 3 GeV is not
far from the asymptotic limit ϕπðxÞ ¼ 6xð1 − xÞ. The most
significant difference between the results after the LO and
NLO evolutions of the πDA is that the central minimum
decreases significantly; nevertheless, the two maxima do
not separate appreciably. As it is expected, the πDA moves
away from the asymptotic limit. Another important feature
of the obtained πDA is that it goes to zero rather fast for
x ¼ 0 and x ¼ 1, supporting the idea of suppression of the

FIG. 3 (color online). πDA within our model at μ ¼ 3 GeV
(thick solid line), and evolved πDA at μ ¼ 1 GeV, at both LO
(dotted line) and NLO (thin solid line). The dashed line
corresponds to the asymptotic πDA limit.
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kinematic endpoints [30,31]. Moreover, this feature is
stressed in the evolution towards smaller values of μ, as
it should be expected, because the predicted πDA lies
below the asymptotic one in this region.
In Tables I and II we quote the first coefficients of the

Gegenbauer expansion obtained with our πDA at LO and
NLO, respectively, while in Table III the values obtained by
other authors at μ ¼ 1 GeV are also shown. It is seen that,
at variance with the results obtained in other works [19],
within our approach the absolute values of the expansion
coefficients an decrease rather slowly with n.

IV. LIGHT CONE WAVE FUNCTION
AND KT DEPENDENCE

The concept of πDA is often associated with that of light
cone wave function (lcwf). If the pion wave function is
expanded in terms of Fock states, the first (valence)
component, dominant at large Q2, is the lcwf ΦA

π ðx; kTÞ,
defined by

i
ffiffiffi
2

p
fπΦA

π ðx; kTÞ ¼
Z

dz−d2zT
2π

eiP
þz−ðx−1

2
Þ−i~kT ·~zT

×
D
0
���ū
�
−
z
2

�
γþγ5d

�
z
2

�
jπ−ðPÞ

E���
zþ¼0

:

(27)

The label A, denoting “axial” lcwf, has been used, e.g., in
Ref. [51]. When dealing with hard-exclusive processes, the
lcwf Eq. (27), integrated with respect to kT , can be
identified with the πDA [52]. Therefore, in order to carry
out a phenomenological analysis, some authors do not
distinguish between the (kT-integrated) lcwf and the πDA.
In this section we compare the predictions in those works
with ours, paying special attention to the results related to
the quark transverse momentum kT . To this aim, some
caveats are in order.
The most direct comparison that could be performed is

that between the results obtained in other works for
ΦA

π ðx; kTÞ, Eq. (27), and those obtained here for the
πDA, Eq. (16). If we write

ϕπðxÞ ¼
Z

d2kT
ð2πÞ2 Φπðx; kTÞ; (28)

it is natural to identify [c.f. Eq. (16)]

ΦA
π ðx; kTÞ≡ Φπðx; kTÞ

¼ 2
ffiffiffi
2

p
Ncgπqq̄
fπ

Z
dw
ð2πÞ2 Fðw; x; kTÞ: (29)

On the other hand, in some works the lcwf has been
identified with a different quantity, which in our context

TABLE II. Coefficients of the Gegenbauer expansion calculated at NLO.

NLO a2ðμÞ a4ðμÞ a6ðμÞ a8ðμÞ a10ðμÞ a12ðμÞ
μ ¼ 1 GeV 0.0113 −0.0482 −0.0019 −0.0242 0.0081 −0.0189
μ ¼ 2 GeV 0.0048 −0.0289 −0.0002 −0.0117 0.0045 −0.0084
μ ¼ 3 GeV 0.0033 −0.0238 0.0003 −0.0089 0.0036 −0.0061

TABLE III. Gegenbauer coefficients for the πDA given by various authors. The scale is μ ¼ 1 GeV, except in the
last row. An exhaustive list of results is given in Refs. [30] and [33].

a2ðμÞ a4ðμÞ a6ðμÞ a8ðμÞ a10ðμÞ a12ðμÞ
Ref. [34] 0.10 0.10 0.10 0.034 0 0
Ref. [19] (M ¼ 350, n ¼ 1) 0.114 0.015 0.001 0.0001 � � � � � �
Ref. [19] (M ¼ 350, n ¼ 2) 0.066 −0.027 −0.017 −0.006 � � � � � �
Ref. [29] 0.20 −0.14 0 0 � � � � � �
Ref. [36] (μ ¼ 2 GeV) 0.22 0.01 � � � � � � � � � � � �

TABLE I. Coefficients of the Gegenbauer expansion calculated at LO.

LO a2ðμÞ a4ðμÞ a6ðμÞ a8ðμÞ a10ðμÞ a12ðμÞ
μ ¼ 1 GeV 0.0047 −0.0407 0.0006 −0.0185 0.0081 −0.0144
μ ¼ 2 GeV 0.0037 −0.0281 0.0004 −0.0112 0.0047 −0.0080
μ ¼ 3 GeV 0.0033 −0.0238 0.0003 −0.0089 0.0036 −0.0061
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would correspond to Φð0Þ
π ðx; kTÞ, obtained from the

relation

ϕð0Þ
π ðxÞ ¼

Z
d2kT
ð2πÞ2 Φ

ð0Þ
π ðx; kTÞ; (30)

with ϕð0Þ
π ðxÞ given by Eq. (26). From Eqs. (26) and (30),

Φð0Þ
π ðx; kTÞ can be cast in the form

Φð0Þ
π ðx; kTÞ ¼ N

Z
dw

gkzkþzk− ½ð1 − xÞmkþ þ xmk− �
ðk2þ þm2

kþÞðk2− þm2
k−
Þ ;

(31)

where N is a normalization factor.
We recall that ϕð0Þ

π ðxÞ is the πDA evaluated in nlNJL
models using the operator γþγ5 without dressing, while the
full πDA obtained in the present nlNJL approach also
includes other operators carrying different tensor structures,
namely ūðp1 þ p2Þþðp1 þ p2Þγ5d and ūðp1 − p2Þþγ5d,
where p1;2 are the quark momenta. We emphasize therefore
that in the present scheme the (kT-integrated) pion lcwf and
the πDA are different quantities. In particular, as it is
discussed in the previous section, the latter satisfies exactly
the normalization sum rule Eq. (5).
Thus, in the following we will compare ΦA

π ðx; kTÞ,
evaluated within other approaches, with our results for
both the quantities Φπðx; kTÞ and Φð0Þ

π ðx; kTÞ. It is
worth stressing that some predictions concerning the kT
dependence could be ultimately related to observables.
Let us consider the quantities

hk2Tið0Þ ¼
R
dxd2kTk2T jΦð0Þ

π ðx; kTÞj2R
dxd2kT jΦð0Þ

π ðx; kTÞj2
(32)

and

hk2Ti ¼
R
dxd2kTk2T jΦπðx; kTÞj2R
dxd2kT jΦπðx; kTÞj2

: (33)

Since Φð0Þ
π ðx; kTÞ and Φπðx; kTÞ are probability amplitudes,

either hk2Ti or hk2Tið0Þ can be interpreted as the average
transverse momentum of the valence quark. For the region
of high Q2 (i.e., where the lcwf is thought to be the
dominant contribution to the pion wave function [52])
this quantity could be accessed in future measurements,
performed along the lines proposed in Ref. [53].
In our framework we get hk2Ti1=2ð0Þ ¼ 270 MeV and

hk2Ti1=2 ¼ 260 MeV. It is interesting to compare these
values with the result obtained in Ref. [36], namely
hk2Ti1=2 ≃ 710 MeV, where the average is evaluated con-
sidering an axial pion lcwf at a scale μ ¼ 1 GeV. The
corresponding kT dependence is given by

ΦA
π ðx; kTÞ ¼ ϕπðxÞ

4πσ2π
xð1 − xÞ exp

�
−

k2Tσ
2
π

xð1 − xÞ
�
; (34)

where ϕπðxÞ is the πDA. Although at first sight the results
seem to disagree, if we make use of Eqs. (8) and (9) of
Ref. [36] in order to determine the value of hk2Ti1=2 at the
asymptotic limit, and take for the “traverse size parameter”
the value σπ ∼ 1 GeV−1 (upper limit of the range consid-
ered in Ref. [36]), we get hk2Ti1=2 ∼ 300 MeV. Therefore,
our result is found to be somewhat lower but not incom-
patible with that obtained in Ref. [36].
Now let us also consider a pseudoscalar pion lcwf,

ΦP
π ðx; kTÞ. The latter has been introduced in Ref. [51], with

the aim of obtaining constraints on the lcwf in a light cone
sum rule framework. In order to analyze this function in the
context of the nlNJL model, let us start by defining the
kT-integrated pseudoscalar function ϕP

π ðxÞ, which has
higher twist with respect to the axial one:

−
2

ffiffiffi
2

p hq̄qi
Pþfπ

ϕP
π ðxÞ ¼

Z
dz−

2π
eiP

þz−ðx−1
2
Þh0jψ̄

�
−
z
2

�
iγ5τ−ψ

×

�
z
2

�
jπ−ðPÞij

zþ¼0;~z⊥¼0

: (35)

It is seen that ϕP
π ðxÞ fulfills an approximate sum rule, which

becomes exact in the chiral limit:

Z
1

0

dxϕP
π ðxÞ ¼ 1þOðm2

πÞ: (36)

For this function, within the present approach one gets the
result

ϕP
π ðxÞ ¼

Z
d2kT
ð2πÞ2Φ

P
π ðx; kTÞ

¼ −
fπ

ffiffiffi
2

p
Nc

hq̄qi gπqq̄

×
Z

dwd2kT
ð2πÞ4

gkzkþzk−ðk2 þ m2
π
4
þmkþmk−Þ

ðk2þ þm2
kþÞðk2− þm2

k−
Þ ; (37)

hence, the pseudoscalar lcwf will be given by

ΦP
π ðx; kTÞ ¼ −

fπ
ffiffiffi
2

p
Nc

hq̄qi gπqq̄

×
Z

dw
ð2πÞ2

gkzkþzk−ðk2 þ m2
π
4
þmkþmk−Þ

ðk2þ þm2
kþÞðk2− þm2

k−
Þ :

(38)

In addition, with the aim of finding light cone sum rules, in
Refs. [19,51] the authors also consider the following kT
moments of the lcwf ΦA;P

π ðx; kTÞ:
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hkmT iA;P ¼
Z

dx
d2kT
ð2πÞ2 k

m
TΦ

A;P
π ðx; kTÞ; with m ¼ 2; 4:

(39)

It is important to remark that ΦA;P
π ðx; kTÞ are not

momentum density distributions. In fact, there is no
guarantee that these functions are positive definite.
Therefore, Eq. (39) is not related to observable quantities
and it may be useful only for theoretical considerations.
In the present approach, from the analytical expressions
in Eqs. (29) and (38) it is seen that for large kT the
functions ΦA;P

π ðx; kTÞ behave as

ΦA
π ðx; kTÞ⟶

kT→∞
k−5T ; ΦP

π ðx; kTÞ⟶
kT→∞

k−3T :

In view of these asymptotic behaviors, only the estimate
hk2Ti1=2A ¼ 445 MeV can be obtained, while hk4TiA and
hk2;4T iP are not well defined. One has to say that, in our
approach, only the nonperturbative kT dependence arises
naturally from the model calculation. As it is well known,
an additional perturbative dependence is found if one
takes into account that configurations with two quarks
carrying high kT are suppressed due to gluon radiation
[2]. This is the origin, for example, of the factor k2Tσ

2
π in

the exponent of Eq. (34). We have considered the
possibility of obtaining a prediction for hk4TiA and
hk2;4T iP by including a high kT suppression factor such
as e.g. these exponential functions in our lcwfs. However,
we have found that our results are quite sensitive to the
cutoff prescription; hence, we are not able to provide a
robust prediction for these quantities.
It is worth noticing that the wave functionsΦP

π ðx; kTÞ and
ΦA

π ðx; kTÞ are quite different from each other. From Fig. 4,
where we have plotted ϕP

π ðxÞ together with ϕA
π ðxÞ≡ ϕπðxÞ,

we observe that ϕP
π ðxÞ has less structure than ϕA

π ðxÞ. In fact,

ϕP
π ðxÞ appears to be close to a flat distribution, which

corresponds to the asymptotic limit ϕP
π ðxÞ ¼ 1. Moreover,

the kT dependence is also very different. This can be seen in
Fig. 5, where we show our results for the functions

ΦA
π ðx; kTÞ, ΦP

π ðx; kTÞ and Φð0Þ
π ðx; kTÞ as functions of kT

for some definite values of x. We also include the results for
the axial pion lcwf proposed in Ref. [36], Eq. (34), with
σπ ¼ 0.4 GeV−1. In the figure, the results are presented in
such a way that the curves corresponding to the lcwf in
Eq. (34) have the same value at kT ¼ 0 for all values of x. It
is clear that neither the shape nor the size of our functions

ΦA
π ðx; kTÞ and Φð0Þ

π ðx; kTÞ support the kT dependence
proposed in Ref. [36]. Instead, the latter shows a somewhat
qualitative agreement with our results forΦP

π ðx; kTÞ, at least
for values of x above say 0.1.

V. THE PION-PHOTON TRANSITION
FORM FACTOR

In this section we present the results for the π − γ TFF
obtained within our approach, i.e. via the πDA described in
Sec. III. Here, we have modified the expression in Eq. (1)
by adding subleading terms in the expansion in powers of
1=Q2. This procedure has been used already in Ref. [17] in
order to simulate e.g. contributions coming from higher
twist operators. We propose to include two additional terms
in the expansion, writing

FIG. 4 (color online). πDA (solid line) and light cone wave
function ϕP

π ðxÞ (dashed line), Eq. (35), in the nlNJL model.

FIG. 5 (color online). kT dependence of various distribution
amplitudes. Solid and dotted lines correspond to the pion axial
lcwf ΦA

π ðx; kTÞ, Eq. (29), and the function Φð0Þ
π ðx; kTÞ,

Eq. (31), respectively, both multiplied by a factor xð1 − xÞ=
½10ϕπðxÞ�. The dashed line stands for the pion pseudoscalar lcwf
ΦP

π ðx; kTÞ, Eq. (38), while the dashed-dotted line corresponds to
the pion axial lcwf considered in Ref. [36], Eq. (34), both
multiplied by xð1 − xÞ=ϕπðxÞ. We remark that the results for the
first two quantities are rescaled by a factor of 10 with respect to
the last two.
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Q2FðQ2Þ¼
ffiffiffi
2

p
fπ
3

�Z
1

0

dxTHðx;Q2;μÞϕπðx;μÞþ
C
Q2

þ D
Q4

�
;

(40)

whereC andD are constants to be determined by fitting our
expression to the experimental data. For the scale μ we will
take μ2 ¼ Q2.
In Fig. 6 we show our results forQ2FðQ2Þ. Long-dashed

and solid curves correspond to LO and NLO evolutions of
the πDA, respectively, whereas the dashed-dotted (short-
dashed) line stands for the contribution of the term C=Q2 þ
D=Q4 at LO (NLO). The values obtained for the parameters
C and D from a fit to all available data (i.e. including the
data from CELLO, CLEO, BABAR and BELLE experi-
ments), up to LO and NLO accuracy, are listed in the first
row of Table IV. Only the three data with Q2 > 1 GeV2 of
the CELLO collaboration have been retained in our fit.
Three main conclusions can be outlined from these

results: (i) the overall agreement between the fitted curve

and the data is not satisfactory; (ii) the values of the
parameters C and D are not stable when going from LO to
NLO; and (iii) the accuracy of the fit is rather worse at NLO
than at LO.
As it has been done in Ref. [32], we have also separately

considered the inclusion of the data from BABAR and those
from BELLE. From Table IV (second row) it is seen that if
one excludes the BELLE results from the full data set, the
picture does not change appreciably. On the other hand, if
one excludes the BABAR data the situation is somehow
different (see the third row in Table IV): while the agree-
ment with the data gets improved, problems (ii) and, in
particular, (iii), still remain. One can therefore conclude
that BELLE data can be easily adjusted in our scheme,
especially at LO, and that the corrections arising from NLO
contributions to the evolution equations go in the wrong
direction, in all cases under study.
In order to test this last statement, we have checked what

happens if, instead of the πDA from our nlNJL model,
we take as input a flat distribution ϕπðxÞ ¼ 1. In order to
avoid singularities, in this case we modify the kernel
THðx;Q2; μÞ, introducing a new parameter M [8]:

TNLO
H ðx;Q2; μÞ ¼ 1

xþ M2

Q2

�
1þ CF

αsðμÞ
4π

�
ln2x −

x ln x
1 − x

− 9þ ð3þ 2 ln xÞ lnQ
2

μ2

��
: (41)

We take here the scale μ0 ¼ 1 GeV [17], at which one
assumes that the quark model provides a good description
of low energy physics.
In Fig. 7 (see also the fourth row of Table IV) we show

the results for Q2FðQ2Þ obtained after inserting the
function in Eq. (41) into Eq. (40), for a flat distribution
ϕπðxÞ ¼ 1 [at the LO, only the first term into the brackets in
Eq. (41) has to be considered]. It is seen that the agreement
with the full set of experimental data becomes improved
with respect to the previous analyses (one should notice
anyway that a further parameter, M, has been included),
and that the parameters of the fit are more stable when

TABLE IV. Values of the parameters C,D andM [see Eqs. (40) and (41)], obtained from the fits to different experimental data sets for
the πTFF. The first three rows correspond to the πDA calculated within the nlNJL model, while entries in the last row are obtained from
a flat πDA.

πDA Data set Accuracy C [GeV2] D [GeV4] M [GeV] n∘ points χ2=n∘ points

nlNJL Celloþ Cleoþ Belleþ BABAR LO −1.82 0.29 � � � 50 1.9
NLO 1.56 −3.09 � � � 50 3.5

nlNJL Celloþ Cleoþ BABAR LO −1.80 0.26 � � � 35 2.4
NLO 1.49 −2.95 � � � 35 4.3

nlNJL Celloþ Cleoþ Belle LO −2.01 0.65 � � � 33 0.61
NLO 0.90 −1.91 � � � 33 1.09

Flat Celloþ Cleoþ Belleþ BABAR LO 1.82 −1.50 0.76 50 0.91
NLO 1.47 −1.08 0.57 50 0.96

FIG. 6 (color online). Values of Q2FðQ2Þ, Eq. (40), at LO
(long-dashed line) and NLO (solid line), in comparison with
experimental data. Dashed-dotted and short-dashed curves show
the contributions given by the term C=Q2 þD=Q4 at LO and
NLO, respectively, while the horizontal dotted line indicates the
asymptotic QCD limit.
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passing from LO to NLO. We stress, however, that the
important conclusion (iii) stated in the previous cases still
holds: the inclusion of NLO corrections does not help to
describe the experimental data. This becomes more evident
for virtualities Q2 above 10 GeV2.
Due to the regularization of TH in the limit x → 0, it is

difficult to compare our results for the flat distribution with
those obtained within approaches based on the parametri-
zation of the Gegenbauer expansion. For instance, one
could define an effective πDA ϕeff

π ðx;QÞ by the relation

�
1

x
þ 1

1− x

�
ϕeff
π ðx;QÞ ¼

�
1

xþM2

Q2

þ 1

1− xþM2

Q2

�
ϕπðx;QÞ;

now the problem is that it would not be guaranteed that
a0ðQÞ ¼ 1 in the Gegenbauer expansion, Eq. (21). Actually,
if we assume a flat distribution ϕπðx; μ0Þ ¼ 1, we get

Z
1

0

dxϕeff
π ðx; μ0Þ ¼ 1þ 2

M2

μ20

− 2
M2

μ20

�
1þM2

μ20

�
log

�
1þ μ20

M2

�
;

which is equal to 0.33 for M ¼ 0.76 GeV and to 0.44 for
M ¼ 0.58 GeV. Therefore, we cannot compare the coef-
ficients in the Gegenbauer expansion with those obtained in
Tables I, II and III.
Finally, it is interesting to notice that the conclusion

concerningtheNLOcorrectionsisalsovalidfor theasymptotic
behavior of the πDA. Indeed, taking ϕπðxÞ ¼ 6xð1 − xÞ we
find, at the LO,Q2FðQ2Þ ¼ ffiffiffi

2
p

fπ ¼ 0.185 GeV, and at the
NLO,Q2FðQ2Þ¼ ffiffiffi

2
p

fπ½1−0.53αsðQ2Þ�¼0.161ð0.164ÞGeV
for Q2 ¼ 10ð20Þ GeV2. Therefore, the NLO correction

reduces the πTFF by about a 13%, in a direction which is
opposite to that of the data.

VI. CONCLUSIONS

In this work, the πDA and the associated πTFF have been
evaluated within the framework of a nonlocal Nambu–Jona-
Lasinio model that has been shown to successfully describe
several pion observables [47,48]. In this approach, the
couplings between nonlocal quark currents ensure the
preservation of chiral, Poincaré and local electromagnetic
gauge invariances. The three main ingredients of the
calculation are the description of the pion as a bound state
of a Bethe-Salpeter equation, the usage of a prescription for
the introduction of the electroweak interaction vertices and,
eventually, the quark propagator, which shows the momen-
tum dependence obtained in lattice QCD. The calculated
πDA has to be therefore associated to the momentum scale
of the lattice data, namely 3 GeV [38]. In general, the
comparison of any observable related to the πDA (as e.g. the
πTFF) with experimental data will require a perturbative
evolution of the results obtained at this reference scale. Here,
this evolution has been carried out up to NLO accuracy.
Since the theoretical framework respects all basic sym-

metries, our πDA is shown to fulfill three fundamental
properties: it has the correct symmetry in the quark momen-
tum fraction, it is defined in the proper support and, above
all, it turns out to be naturally normalized, a feature which is
imposed in other schemes [19,22,29–36]. It is seen that our
πDA, already at the scale of 3 GeV, is not far from the
asymptotic distribution ϕπðxÞ ¼ 6xð1 − xÞ. In fact, we find
that the genuine nonlocal contributions push the result
towards this asymptotic behavior. Moreover, the pseudosca-
lar pion distribution amplitude is also found to approach its
corresponding asymptotic limit ϕP

π ðxÞ ¼ 1. Another out-
come of our results is that when the πDA is expanded in
Gegenbauer polynomials, in contrast with other calculations
[19,33,34] we find that the absolute values of the corre-
sponding coefficients an decrease rather slowly with n.
The last part of the paper is devoted to phenomenological

considerations. Our results for the functions Φπðx; kTÞ,
where kT is the quark transverse momentum, are compared
to those obtained within a light cone wave function
approach. It is found that the kT dependence obtained in
our framework turns out to be rather different from that
calculated in other works [36]. This feature could in
principle be checked in future experiments. Concerning
the evaluation of the πTFF, we have found that NLO
corrections in general lead to a suppression of Q2FðQ2Þ,
which represents a problem regarding the explanation of
the already challenging experimental scenario. In particu-
lar, in our nlNJL approach (which is based on the
evaluation of standard diagrams, and considers just general
assumptions such as chiral symmetry and lattice results), it
is very problematic to obtain a πTFF that crosses the
asymptotic limit as suggested by the pattern of the BABAR

FIG. 7 (color online). Values of Q2FðQ2Þ obtained from a flat
pion distribution amplitude, at LO (dashed line) and NLO
(dashed line), in comparison with experimental data. The
horizontal dotted line indicates the asymptotic QCD limit.
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data. This feature of our results is common to several other
calculations (see e.g. Refs. [23,25,26,32]). It should be
stressed that the present nlNJL scheme is quite severely
constrained and, thus, it is not easy to address a strategy to
reconcile it with the present status of the πTFF measure-
ments. A basic theoretical input of our calculation is
represented by the lattice data used to parametrize the
quark propagator [38,39]. In this sense, it appears that a
better description of the presently available πTFF data
within the present scheme would require that lattice results
were significantly updated in forthcoming analyses.
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APPENDIX A: DERIVATION OF THE πDA IN
THE NONLOCAL NJL MODEL

In this Appendix we provide some details on the
obtention of the πDA in Eq. (16). We start with the
Euclidean action in Eq. (6), and include a coupling with
an external axial gauge field aμ, as described in Sec. II B. In
order to deal with meson degrees of freedom, it is
convenient to bosonize the fermionic theory by introducing
scalar and pseudoscalar fields σ1;2ðyÞ and ~πðyÞ and inte-
grating out the fermion fields. This bosonized action can be
written as [47,48]

Sbos ¼ − ln det Dþ 1

2GS

Z
d4y½σ1ðyÞσ1ðyÞ þ σ2ðyÞσ2ðyÞ

þ ~πðyÞ · ~πðyÞ�; (A1)

where

D
�
yþ z

2
; y−

z
2

�
¼ γ0W

�
yþ z

2
; y

�
γ0

�
δð4ÞðzÞ½−i∂ þmc�

þ
�
GðzÞ½σ1ðyÞ þ i~τ · ~πðyÞ�

þF ðzÞσ2ðyÞ
i∂↔
2ϰp

��
W

�
y; y−

z
2

�
:

(A2)

As usual, we assume that the fields σ1;2 have nontrivial
translational invariant mean field values σ̄1 and ϰpσ̄2, while

the mean field values of pseudoscalar fields πi are zero.
Thus, we write

σ1ðyÞ ¼ σ̄1 þ δσ1ðyÞ; σ2ðyÞ ¼ ϰpσ̄2 þ δσ2ðyÞ;
~πðyÞ ¼ δ~πðyÞ: (A3)

Replacing in the bosonized effective action and expanding
in powers of meson fluctuations and the external field aμ,
we obtain

Sbos ¼ SMFA þ Squad þ Sπa þ � � � ; (A4)

where only the terms relevant for our calculation have been
explicitly written. Here, the mean field action per unit
volume reads

SMFA ¼ 1

2GS
ðσ̄21 þ ϰ2pσ̄

2
2Þ − 4Nc

Z
d4p
ð2πÞ4 lnD0; (A5)

withD0 ¼ ð−pþmpÞ=zp; see Eqs. (8) and (9) in Sec. II B.
The minimization of SMFA with respect to σ̄1;2 leads to

the corresponding Dyson-Schwinger equations, which
together with Eqs. (9) and (11) allow us to determine
the values of GS and ϰp. The quadratic piece of the bosonic
Euclidean action can be written as

SquadE ¼ 1

2

Z
d4p
ð2πÞ4

X

M¼σ;σ0;π

GMðp2ÞδMðpÞδMð−pÞ; (A6)

where the fields σ and σ0 are scalar meson mass eigenstates,
defined in such a way that there is no σ − σ0 mixing at the
level of the quadratic action. The explicit expressions for the
one-loop integrals GMðp2Þ, as well as those of the above-
mentioned Dyson-Schwinger equations, can be found in
Ref. [47]. Meson masses can be obtained by solving the
associated Bethe-Salpeter equations GMð−m2

MÞ ¼ 0, while
on-shell meson-quark coupling constants gMqq̄ are given by

gMqq̄
−2 ¼ dGMðp2Þ

dp2

����
p2¼−m2

M

: (A7)

Finally, the bilinear piece in δπ and aμ fields Sπa in Eq. (A4)
reads

Sπa ¼ Tr½D−1
0 DπD−1

0 Da� þ Tr½D−1
0 Dπa�; (A8)

where, Dπ , Da and Dπa stand for the terms in the expansion
of Eq. (A2) that are linear in δπi and/or aμ. The correspond-
ing expressions are long and will not be quoted here. The
πDA within the nlNJL model can then be obtained by taking
the functional derivative of Sπa with respect to δπi and aμ. It
is important to note that due to the bilocal character of the
gauge field aμ associated with the current in Eq. (3) an extra
delta function appears in momentum space. Namely, while
for the local case we would have
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Z
d4xψ̄ðyÞΓψðyÞeiq·y

¼
Z

d4p1

ð2πÞ4
d4p2

ð2πÞ4 ð2πÞ
4δð4Þðp2 þ q − p1Þψ̄p2

Γψp1
;

for a bilocal current of the type appearing in Eq. (3) we have
R dξ−

2π

R
d4xψ̄ðy − ξ=2ÞΓψðyþ ξ=2Þj

ξþ¼0;~ξT¼0
eiq·yeiP

þξ−x

¼
Z

d4p1

ð2πÞ4
d4p2

ð2πÞ4 ð2πÞ
4δð4Þðp2 þ q − p1Þδ

×

�
Pþx −

pþ
1 þ pþ

2

2

�
ψ̄p2

Γψp1
;

where Γ represents an operator carrying Dirac and flavor
indices. In this way, besides the delta function related
to four-momentum conservation one has an extra one-
dimensional delta that involves the þ components of the
momenta. The latter can be worked out in Minkowski space
[e.g. by integrating over the z component of the momentum
kμ ≡ 1

2
ðp1 þ p2Þμ], going then back to Euclidean space.

The contributions coming from the two terms in Eq. (A8)
can be represented diagrammatically as shown in Fig. 8,
where diagram (a) corresponds to the first term and diagram
(b) to the second one. Regarding the expressions in
Eqs. (17)–(19), diagram (b) gives rise to the last term of
F2 [see Eq. (19)] while diagram (a) accounts for F1 and the
remaining terms in F2.

APPENDIX B: RENORMALIZATION FACTORS
FOR THE QCD EVOLUTION OF THE πDA

We quote here the expressions for the renormalization
factors ELO

n , ENLO
n and dkn needed to calculate the evolution

of the coefficients anðμÞ in Eqs. (23) and (24). One has

ELO
n ðμ; μ0Þ ¼

�
αsðμÞ
αsðμ0Þ

�
γð0Þn =ð2β0Þ

;

ENLO
n ðμ; μ0Þ ¼ ELO

n ðμ; μ0Þ
�
1þ αsðμÞ − αsðμ0Þ

8π

γð0Þn

β0

×

�
γð1Þn

γð0Þn

−
β1
β0

��
; (B1)

where β0ðβ1Þ and γð0Þn ðγð1Þn Þ are the LO (NLO) coefficients
of the QCD β-function and the anomalous dimensions,
respectively. The first two coefficients of the β-function
are

β0 ¼ 11 −
2

3
nf; β1 ¼ 102 −

38

3
nf; (B2)

where nf is the number of flavors (we take here nf ¼ 4).
For the evolution of the strong coupling constant αs
we use

αsðμÞ ¼
4π

β0 lnðμ2=Λ2Þ
�
1 −

β1
β20

ln½lnðμ2=Λ2Þ�
lnðμ2=Λ2Þ

�
; (B3)

taking Λ ¼ 0.224 GeV (Λ ¼ 0.326 GeV) if the calculation
is carried out at the LO (NLO). The anomalous dimensions
γð0Þn are given by

γð0Þn ¼ 2CF

�
1 −

2

ðnþ 1Þðnþ 2Þ þ 4
Xnþ1

m¼2

1

m

�
; (B4)

while analytical expressions for γð1Þn can be found in
Refs. [54,55].
On the other hand, the off-diagonal mixing coefficients

dkn in Eq. (24) are given by

dknðμ;μ0Þ¼
Mk

n

γð0Þn −γð0Þk −2β0

�
1−

�
αsðμÞ
αsðμ0Þ

�½γð0Þn −γð0Þk −2β0�=2β0�
:

(B5)

Here, the matrix Mk
n is defined as

Mk
n ¼

ðkþ 1Þðkþ 2Þð2nþ 3Þ
ðnþ 1Þðnþ 2Þ ½γð0Þn − γð0Þk �

×

�
8CFAk

n − γð0Þk − 2β0
ðn − kÞðnþ kþ 3Þ þ 4CF

Ak
n − S1ðnþ 1ÞÞ
ðkþ 1Þðkþ 2Þ

�
;

(B6)

where

Ak
n ¼ S1

�
nþ kþ 2

2

�
− S1

�
n − k − 2

2

�
þ 2S1ðn − k − 1Þ

− S1ðnþ 1Þ; (B7)

with

S1ðnÞ ¼
Xn

j¼1

1

j
: (B8)

Numerical values of the coefficients Mk
n for n ≤ 12 are

given in Ref. [33].

(b)(a)

FIG. 8. Diagrammatic representation of the contributions to the
πDA. As usual, in diagram (a) the struck quark connects the two
open quark lines, whereas in diagram (b) the struck quark goes
from the open quark line to the pion-quark vertex.
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