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The role of the axial anomaly in the chiral phase transition at finite temperature and quark chemical
potential is investigated within a nonperturbative functional renormalization group approach. The flow
equation for the grand potential is solved to leading order in a derivative expansion of a three-flavor quark-
meson model truncation. The results are compared with a standard and an extended mean-field analysis,
which facilitates the exploration of the influence of bosonic and fermionic fluctuations, respectively, on the
phase transition. The influence of Uð1ÞA-symmetry breaking on the chiral transition, the location of a
possible critical end point in the phase diagram and the quark mass sensitivity are studied in detail.
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I. INTRODUCTION

Quantum chromodynamics (QCD) with Nf flavors of
massless quarks has a global UðNfÞL ×UðNfÞR symmetry
which is spontaneously broken in the low-energy hadronic
sector of QCD by the formation of nonvanishing chiral
condensates. The included axialUð1ÞA symmetry is violated
by quantization yielding the axial or chiral anomaly [1]
which is related to theUð1ÞA problem [2–4]. The large mass
of the η0 meson can be explained by an instanton-induced ’t
Hooft determinant [5] and is linked to the topological
susceptibility of the pure gauge sector of QCD [6].
At high temperatures and baryon densities QCD predicts

a transition from ordinary hadronic matter to a chirally
symmetric phase, whose detailed symmetry restoration
pattern is not yet fully clarified. At baryon densities a few
times of normal nuclear density and relatively low temper-
atures a color-flavor locked phase is expected to appear
whereas the situation at smaller intermediate densities is less
clear [7] and inhomogeneous phasesmight additionally arise
[8]. A deeper understanding of the nature of the chiral phase
transition is not only important on the theoretical side, but
also plays a crucial role in relativistic heavy-ion experiments
[9]. On the one hand, it is well established that the Uð1ÞA
symmetry is restored at sufficiently high temperatures
and chemical potentials [10]. On the other hand, it is an
open issuewhether an effectiveUð1ÞA-symmetry restoration
occurs at the chiral transition temperature for three physical
quark masses. For related two- and three-flavor investiga-
tions in the chiral limit see e.g. [11].
Recent analyses of experimental data by the PHENIX

and STAR collaborations at the Relativistic Heavy Ion
Collider have revealed a drop in the η0-meson mass at the

chiral crossover temperature [12]. This observation is
interpreted as a sign of an effective Uð1ÞA-symmetry
restoration already at the chiral transition temperature [13].
Similar conclusions can be drawn from several recent

lattice QCD investigations [14,15]. Unfortunately, these
investigations are still hampered by a sign problem at
finite chemical potential, e.g. [16]. Other nonperturbative
approaches without a sign problem are based on continuum
methods such as the functional renormalization group
(FRG) [17]. Recently, functional methods have been
prosperously applied to the Uð1ÞA problem, see e.g.
[18], the low-energy QCD sector at finite temperature
and chemical potentials, e.g. [19] as well as QCD-like
effective theories. Usually, such effective investigations
are performed with two flavors, assuming a strong axial
anomaly and taking only the ðσ; ~πÞ multiplet into account
[20–22], see [23] for a more elaborate one-flavor approach.
In view of recent lattice and experimental observations the
assumption of a strong axial anomaly seems to be not
justified, at least in the vicinity of the chiral transition.
However, it has been shown in purely bosonic theories
that the chiral transition crucially depends on the fate of
Uð1ÞA-symmetry violating operators at the chiral transition
[24–26]. As a consequence, the proper implementation of
the Uð1ÞA anomaly is also important in model investiga-
tions at intermediate chemical potentials. In particular, this
might affect a possibly existing critical end point in the
QCD phase diagram [27,28].
This work is an extension of previous analyses within

effective linear sigma models with two [22] and three quark
flavors [29] to the more realistic case where the three-flavor
dynamics on the chiral phase transition is included beyond
mean-field approximations. The restoration of the chiral
SUð3ÞL × SUð3ÞR as well as the axial Uð1ÞA symmetry
with temperature and quark chemical potential are
addressed. The breaking of the Uð1ÞA symmetry in the
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Lagrangian is implemented by an effective Kobayashi-
Maskawa-’t Hooft determinant [5,30] which models the
axial Uð1ÞA anomaly.
The outline of this work is as follows: In Sec. II we

examine a UðNfÞ ×UðNfÞ-symmetric chiral quark-meson
model with axial Uð1ÞA-symmetry breaking. In order to
study the influence of thermal and quantum fluctuations
on the chiral phase transition including the axial anomaly
various approximations of the grand potential are consid-
ered. In Sec. III we briefly summarize the mean-field
approximation of the grand potential of the three-flavor
model, where mesonic fluctuations are ignored, cf. [29].
These fluctuations are included with the functional renorm-
alization group method which we discuss in a leading-order
derivative expansion of the effective action in Sec. IV.
Our numerical results on the chiral phase transition, the
dependency on the axial anomaly and the quark mass
sensitivity are collected in Sec. V. We conclude and
summarize in Sec. VI. Technical details of the FRG
implementation are given in the Appendices.

II. Uð1ÞA-SYMMETRY BREAKING
IN CHIRAL MODELS

Quark-meson models often serve as an effective descrip-
tion of low-energy QCD with Nf quark flavors. They
consist of a chirally invariant linear sigma model, typically
for (pseudo)scalar mesonic degrees of freedom, Σ, a Yukawa-
type quark-meson vertex and a bilinear quark action [31].
In general, the Euclidean Lagrangian of the mesonic

sector with a global chiral UðNfÞL ×UðNfÞR flavor
symmetry has the form [32–34]

Lm ¼ tr½∂μΣ∂μΣ†� þUðfρigÞ; (1)

where the potential U is a function of chiral invariants ρi
defined by

ρi ¼ tr½ðΣΣ†Þi�; i ¼ 1;…; Nf: (2)

It is also possible to construct higher chiral invariants with
i > Nf, but these invariants can be expressed in terms of
the lower ones with i ≤ Nf [20]. In addition, only the
invariants ρ1 and ρ2 correspond to renormalizable inter-
actions in four spacetime dimensions and ρ1 is the only
invariant quadratic in the fields.
The (Nf × Nf)-matrix field Σ parametrizes the scalar σa

and the pseudoscalar πa meson multiplets

Σ ¼ Taðσa þ iπaÞ; (3)

where the N2
f Hermitian generators of theUðNfÞ symmetry

are normalized by tr½TaTb� ¼ δab=2. For three flavors the
generators are Ta ¼ λa=2 with the standard Gell-Mann

matrices λa and λ0 ¼ ffiffiffiffiffiffiffiffi
2=3

p
1. Explicit chiral symmetry

breaking can be implemented by adding

tr½CðΣþ Σ†Þ�; C ¼ Taca (4)

to the Lagrangian (1) yielding nonvanishing Goldstone
boson masses. Adjusting the constant parameters
ca, different explicit symmetry breaking patterns are
possible [33].
As mentioned in the Introduction, the (axial) Uð1ÞA-

symmetry breaking can be implemented in the effective
Lagrangianon the tree level by adding the lowest-dimensional
Uð1ÞA-symmetry violating operator, the Kobayashi-
Maskawa-’t Hooft interaction term [5,30]

ξ ¼ det½Σ� þ det½Σ†� (5)

to the Lagrangian which represents a determinant in flavor
space. On the quark level, this interaction corresponds to a
flavor-andchirality-mixing2Nf-pointlikeinteractionwithNf
incoming andNf outgoingquarks. Fromaphenomenological
point of view this term is important to properly describe,
for example, the η- and η0-meson mass splitting [4,35]. It
breaks the axial Uð1ÞA symmetry, but is invariant under the
SUðNfÞL × SUðNfÞR andUð1ÞV symmetry. However, other
axial symmetry breaking terms are possible, cf. e.g. [20]. For
example, a Uð1ÞA-symmetry breaking term proportional to
(det½Σ� − det½Σ†�) would violate the discrete Σ → Σ† sym-
metry and isdiscardeddue to the requiredCP invarianceof the
model. TheUð1ÞA-symmetry breaking term via Eq. (5) scales
with the meson (quark) fields to the power Nf (2Nf), which
leads to qualitative differences as the number of flavors is
increased [20,30]. In the mesonic formulation, the Nf ¼ 1
case yields a linear explicit breaking term, whereas for
Nf ¼ 2 the determinant corresponds to amesonic mass term.
Important Nf-dependent effects on the chiral transition are
anticipated.
We focus on three quark flavors q ¼ ðu; d; sÞ with an

exact SUð2Þ isospin symmetry in the light quark sector, i.e.
two light flavors are degenerate with mu ¼ md ≡ml. The
renormalizable and chirally symmetric potential with the
Uð1ÞA anomaly is expanded as

Uðρ1; ρ2; ξÞ ¼ m2ρ1 þ λ1ρ
2
1 þ λ2ρ2 − cξ; (6)

where we have introduced four parameters m2, λ1, λ2 and c
with values such that the potential is bounded from below.
The parameter c represents the strength of the cubicUð1ÞA-
symmetry violating determinant and is temperature and
density dependent in general [28]. In the instanton picture
the anomaly strength in the vacuum is proportional to the
instanton density and can be estimated perturbatively [5].
In total, without the Kobayashi-Maskawa-’t Hooft term,

MARIO MITTER AND BERND-JOCHEN SCHAEFER PHYSICAL REVIEW D 89, 054027 (2014)

054027-2



i.e. for c ¼ 0, the model has a Uð1ÞV × SUðNfÞL ×
SUðNfÞR × UAð1Þ symmetry which reduces to a Uð1ÞV ×
SUðNfÞL × SUðNfÞR symmetry for nonvanishing c apart
from multiple covering of the groups. The potential is of
order OðΣ4Þ and all invariants obey the discrete sym-
metry Σ → Σ†.
Finally, the quark-meson (QM) model is obtained by

coupling quarks in the fundamental representation of
SUðNfÞ to the mesonic sector which yields the
Lagrangian LQM ¼ LQ þ LM. In the quark Lagrangian

Lq ¼ q̄ð∂ þ μ̂γ4 þ hΣ5Þq; (7)

a flavor- and chirally invariant Yukawa interaction with
strength h of the mesons to the quarks has been introduced
where

Σ5 ¼ Taðσa þ iγ5πaÞ: (8)

The quark chemical potential matrix μ̂ is diagonal in flavor
space μ̂ ¼ diagðμl; μl; μsÞ and we will consider in the
following only one flavor symmetric quark chemical
potential μ≡ μl ¼ μs.
Appropriate order parameters for spontaneous chiral

symmetry breaking are the quark condensates that are
related via bosonization to vacuum expectation values of
the corresponding scalar-isoscalar mesonic fields. For three
quark flavors the corresponding nonvanishing condensates
that carry the proper quantum numbers of the vacuum are
hσaiwith a ¼ 0, 3, 8. For an exact SUð2Þ isospin symmetry
hσ3i vanishes and only the remaining two condensates are
independent.
As argued in [29], it is advantageous to rotate the scalar

singlet-octet (0–8) basis into the nonstrange-strange (x–y)
basis by

�
σx

σy

�
¼ 1ffiffiffi

3
p

� ffiffiffi
2

p
1

1 −
ffiffiffi
2

p
��

σ0

σ8

�
: (9)

In this case, the explicit symmetry breaking term simplifies
to tr½CðΣþ Σ†Þ� → cxσx þ cyσy with the modified non-
strange cx and strange cy explicit symmetry parameters.
For the vacuum expectation value we obtain hΣi ¼
diagðhσxi=2; hσxi=2; hσyi=

ffiffiffi
2

p Þ.

III. MEAN-FIELD APPROXIMATION

We begin with a mean-field analysis of the three-flavor
model and derive the grand potential. In the mean-field
approximation (MFA) of the path integral for the grand
potential, certain quantum and thermal fluctuations are
neglected. In case of the quark-meson model the mesonic
quantum fields are usually replaced by constant classical
expectation values. Only the integration over the fermionic
degrees of freedom is performed, which additionally yields
a divergent vacuum contribution to the grand potential.

In the standard MFA this vacuum term is simply ignored.
However, the quark-meson model is renormalizable and the
inclusion of the divergent vacuum contribution to the grand
potential is possible. The consideration of the vacuum
terms represents a first step beyond the standard MFA, see
[36,37] for the influence of the vacuum fluctuations on the
thermodynamics and [38,39] for corresponding investiga-
tions in other models. In the following we will employ the
standard (no-sea) MFAwhere the vacuum term in the grand
potential is omitted, in order to straightforwardly compare
our results with previous works. Later on we will confront
our MFA analysis with various renormalization group
results where the vacuum terms are included.
In the no-sea MFA the resulting grand potential consists

of two contributions: the purely mesonic potential V with
a linear explicit chiral symmetry breaking term and the
quark/antiquark contribution Ωq̄q

ΩMFðT; μÞ ¼ Ωq̄qðT; μ; Σ̄Þ þ VðΣ̄Þ (10)

evaluated at the minimum Σ̄≡ hΣi of the potential.
Explicitly, the mesonic potential is given by

VðΣÞ ¼ m2

2
ðσ2x þ σ2yÞ − cxσx − cyσy −

c

2
ffiffiffi
2

p σ2xσy

þ 2λ1 þ λ2
8

σ4x þ
λ1
2
σ2xσ

2
y þ

λ1 þ λ2
4

σ4y; (11)

and the quark/antiquark contribution without the vacuum
term reads

Ωq̄q ¼ −2NcT
XNf

f¼1

Z
d3p
ð2πÞ3 fln ½1þ e−ðEp;fþμÞ=T �

þ ln ½1þ e−ðEp;f−μÞ=T �g: (12)

The quark/antiquark single-quasiparticle energies are
defined by E2

p;f ¼ ~p2 þm2
f with the field-dependent eigen-

values m2
f of the mass matrix h2ΣΣ†, which yield the

constituent quark masses, when evaluated at the minimum
Σ̄. In the nonstrange-strange (x–y) basis and for SUð2Þ
isospin symmetry the masses simplify to

ml ¼ h
σx
2
; ms ¼ h

σyffiffiffi
2

p ; (13)

where the index l labels the two degenerate light (up and
down) flavors and the index s stands for the strange flavor.
Finally, the two order parameters for the nonstrange and

strange chiral phase transitions hσxi and hσyi are obtained
as the (global) minimum of the grand potential (10) and
are functions of the temperature and quark chemical
potential, cf. [29].

FLUCTUATIONS AND THE AXIAL ANOMALY WITH THREE … PHYSICAL REVIEW D 89, 054027 (2014)

054027-3



IV. FUNCTIONAL RENORMALIZATION
GROUP ANALYSIS

For the nonperturbative analysis of the three-flavor
model we employ a FRG equation. One possible imple-
mentation of the Wilsonian renormalization group idea is
based on the effective average action approach pioneered
by Wetterich [40]. The scale evolution of the effective
average action Γk½Φ� with arbitrary field content Φ includ-
ing fermionic and bosonic fields is governed by

∂tΓk½Φ� ¼
1

2
TrfðΓð2Þ

k ½Φ� þ RkÞ−1∂tRkg; (14)

where t ¼ ln k denotes the logarithm of the renormalization
group (RG) scale k. The trace involves an integration over
momentaor coordinates, aswell as a summationover internal
spaces such asDirac, color and flavor indices.Γð2Þ

k represents
the second functional derivative of Γk with respect to the
fields Φ which together with the regulator Rk defines the
inverse average propagator in Eq. (14). BecauseRk serves as
a scale-dependent infrared mass for momenta smaller than k
slow modes decouple from the further evolution while high
momenta are not affected.Hence,Γk interpolates between the
microscopic theory at large momenta and the macroscopic
physics in the infrared (IR), k → 0, where the full effective
action Γ≡ Γk→0 represents the generating functional of one-
particle irreducible diagrams including all quantum fluctua-
tions. Note that the appearance of the full propagator turns
the one-loop structure of Eq. (14) into an exact identity and
thus includes nonperturbative effects as well as arbitrarily
high loop orders.
Without any truncations the evolved flow equations are

independent of the renormalization scheme, i.e., of the
choice of the regulator function Rk. However, the solution
of the functional equation requires some truncations which
result in a regulator dependency. This truncation-induced
dependence of physical observables on the regulator can be
minimized by choosing optimized regulators [41]. In this
work, a modified three-dimensional version of the opti-
mized regulator by Litim [41] is employed. For bosonic
fields the optimized regulator reads

Rk;Bð~pÞ ¼ ~p2

�
k2

~p2
− 1

�
Θ
�
1 −

~p2

k2

�
; (15)

and for fermions

Rk;Fð~pÞ ¼ i~p

� ffiffiffiffiffi
k2

~p2

s
− 1

�
Θ
�
1 −

~p2

k2

�
: (16)

This choice is particularly convenient for finite temperature
calculations since the optimized flows at finite temperature
factorize [41,42] and the arising summation over the
Matsubara frequencies in the flow equations can be carried
out analytically.
The flow equation for Γk must be supplemented with an

initial condition Γk→Λ corresponding to the microscopic
theory that is in principle given by QCD at some high initial
scale Λ. Here, we chose an initial scale of the order of
Λ ≈ 1 GeV close to the threshold scale where the original
QCD degrees of freedom can be substituted by effective
degrees of freedom, cf. e.g. [43]. This is implemented by
the following three-flavor quark-meson model truncation:

ΓΛ ¼
Z

d4xq̄ð∂ þ μγ4 þ hΣ5Þqþ tr½∂μΣ∂μΣ†�

þUΛðρ1; ~ρ2; ξÞ: (17)

The meson multiplets Σ and the fields Σ5 are given by
Eqs. (3) and (8). In the effective potential UΛ a modified
chiral invariant ~ρ2 ¼ ρ2 −

ρ2
1

3
has been defined which

simplifies some expressions. In the nonstrange-strange
(x–y) basis the chiral invariants are explicitly given by

ρ1 ¼
1

2
ðσ2x þ σ2yÞ;

~ρ2 ¼
1

24
ðσ2x − 2σ2yÞ2;

ξ ¼ σ2xσy

2
ffiffiffi
2

p : (18)

This ansatz for the effective action Eq. (17) corresponds to
a derivative expansion at leading order with a standard
kinetic term for the meson fields. No scale dependence in
the scalar wave-function renormalizations and Yukawa
coupling between the quarks and mesons is taken into
account. Finally, this yields the following dimensionful
flow equation for the grand potential:

∂tUkðT; μ;ΣÞ ¼
k5

12π2

�X2N2
f

b¼1

1

Eb
coth

�
Eb

2T

�
− 2Nc

XNf

f¼1

1

Ef

�
tanh

�
Ef þ μ

2T

�
þ tanh

�
Ef − μ

2T

���
; (19)

with the bosonic (b) and fermionic (f) quasiparticle energies

Ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
; i ¼ b; f: (20)

The masses for the quarks simplify in the (x–y) basis
according toEq. (13) and the equations for themesonmasses

are collected in Appendix B. In contrast to the two-flavor
case [20–22], the isospin symmetric potential Uk now
depends on two condensates σx and σy denoted by Σ in
Eq. (19), in analogy to the mean-field potential in Eq. (10).
The right-hand side of the flow equation is composed

of a sum of temperature-dependent threshold functions
for each degree of freedom. Due to the SUð2Þ isospin
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symmetry some masses of the meson multiplets degenerate
and hence yield the same contribution in the flow
equation (19).

V. RESULTS AND DISCUSSION

In this section we discuss and compare the phase
structure of the (2þ 1)-flavor quark-meson model in
different approximations. We focus on the chiral phase
transition at finite temperature and flavor symmetric
chemical potential and consider homogeneous chiral
condensates. Any inhomogeneities which might be of
relevance at low temperatures and intermediate quark
densities, see e.g. [8], are thus excluded. We thoroughly
investigate the interplay of quantum and thermal fluctua-
tions with the anomalous Uð1ÞA-symmetry breaking via
Eq. (5). Consequences for the location of the critical end
point in the phase diagram as well as the order of the chiral
transition in the limit of vanishing light quark masses are
discussed. We compare results obtained with a full FRG
analysis, a MFA and with a modified FRG approximation
where meson loop contributions are dropped. The latter
approximation is equivalent to the so-called extended
mean-field approximation where the renormalized fer-
mionic vacuum sea term is included in the grand potential
(eMFA), see [36,37] and Sec. III. Further technical details
concerning the numerical solution of the flow equation can
be found in the Appendices A and B. All parameters of the
model are fixed in such a way that experimental observ-
ables like the pion decay constant and meson masses are
reproduced in the vacuum, see Appendix A 2 for details.

A. Chiral crossover and axial anomaly

First we investigate the Uð1ÞA-symmetry breaking and
the influence of thermal fluctuations on the chiral crossover
at vanishing chemical potential μ ¼ 0. In Fig. 1 we show
FRG results for the (pseudo)scalar nonstrange and η, η0-
meson masses as a function of the temperature T. In the left

panel the Uð1ÞA symmetry is broken via Eq. (5). Without
this Uð1ÞA-symmetry breaking (right panel) the η0-meson
mass degenerates always with the pion mass and the two
sets of light chiral partners ðσ; ~πÞ and ð~a0; η0Þ collapse in the
chirally symmetric phase.
In agreement with experiment [12], we find for a broken

Uð1ÞA symmetry that the mass of the η0 meson drops
around the chiral crossover. The drop of the mass at the
chiral transition is a consequence of the Kobayashi-
Maskawa-’t Hooft term, Eq. (5), for three flavors. It is
cubic in the fields σx, σy and hence the anomalous
contribution to m2

η0 depends linearly on the condensates
hσxi and hσyi which both melt at the crossover. This is
demonstrated in Fig. 2, where both condensates, including
the anomaly (left panel) and without the anomaly (right
panel), are shown as a function of the temperature for
vanishing chemical potential. In the standard MFA the
condensates decrease faster than in approximations includ-
ing fluctuations. The value of the pseudocritical temper-
ature defined by the inflection point of the nonstrange
condensates varies by 10% without the anomaly and by
20% including the anomaly. The largest shift of the critical
temperature in comparison to the standard MFA is seen
with the full FRG: fluctuations smoothen and push the
nonstrange transition to higher temperatures. This trend is
similar to previous two-flavor investigations, see e.g. [44].
Furthermore, the slope of the crossover is modified by

mesonic fluctuations and depends on the axial Uð1ÞA
anomaly. Interestingly, without the anomaly (right panel)
the extended MFA and FRG results for the nonstrange
condensate almost coincide for all temperatures. With a
determinant, on the other hand, the crossover is washed out
even further by the mesonic fluctuations.
The strange sector is only mildly affected by the

Kobayashi-Maskawa-’t Hooft determinant and the strange
condensate melts only moderately, see Fig. 2. Independent
of the used approximation the rather slow melting of the
strange condensate might be related, at least partially, to the
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FIG. 1 (color online). Meson masses obtained with the FRG as a function of the temperature for vanishing chemical potentials with,
(a), and without, (b), Uð1ÞA-symmetry breaking.
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fit procedure of the model parameters. It has been observed
previously that for low values of the sigma-meson mass, all
condensates vanish in the SUð3Þ chiral limit. As a conse-
quence, spontaneous chiral symmetry breaking is lost [29]
and the value of the strange condensate is mainly governed
by the large and temperature-independent explicit sym-
metry breaking parameter cy. Correspondingly, we expect
a considerably smaller temperature dependence of the
strange sector compared to the light one.
Finally, the strange condensate melts even slower when

mesonic fluctuations are taken into account. This might
lead to the conclusion that the temperature dependence of a
Uð1ÞA-symmetry breaking term is mostly driven by the
nonstrange sector. Work in this direction is in progress [45].

B. Finite density and the critical end point

In the followingwe explore how the location of the critical
end point (CEP) in the phase diagram is affected by
fluctuations with and without anomalous Uð1ÞA-symmetry
breaking.The locationof theCEPalso depends considerably
on the chosen value of the σ-meson mass [29]. To eliminate
this mσ dependence, we fix the value to mσ ¼ 480 MeV,
unless stated otherwise.
Results for the location of the CEP obtained with our

various approximations to the grand potential are summa-
rized in Table I. In agreement with previous investigations
[29], we find that in a standard mean-field approximation
the CEP is pushed towards smaller chemical potentials
and higher temperatures if the Uð1ÞA-symmetry violation
is taken into account. Adding the fermionic vacuum

contribution to the potential, this behavior with respect
to the anomaly does not change qualitatively, although the
CEP is pushed towards considerably larger densities and
smaller temperatures. In contrast, by additionally taking
mesonic fluctuations into account, the dependency on the
anomalous Uð1ÞA-symmetry breaking is reversed. With a
constant Kobayashi-Maskawa-’t Hooft determinant, the
end point is pushed towards larger chemical potentials
and smaller temperatures. It is remarkable that the end point
without anomaly, but with mesonic fluctuations is located
at larger temperatures and smaller chemical potentials than
for the eMFA.
Although it is well established that Uð1ÞA-symmetry

breaking terms are suppressed at asymptotically large
temperatures and chemical potentials [10], it is not fully
settled whether this also holds at intermediate temperatures
and chemical potentials [46]. Recent lattice investigations
indicate, however, that the Uð1ÞA symmetry might already
be effectively restored at temperatures slightly above the
chiral crossover [14,15]. Then our findings also have
consequences on the location of the CEP in two-flavor
investigations. In such studies one usually assumes maxi-
mal Uð1ÞA-symmetry breaking by considering only the
ðσ; ~πÞ mesons. The ðη; ~aÞ mesons decouple due to their
assumed large masses, which are induced by the large
Kobayashi-Maskawa-’t Hooft determinant [20]. If, how-
ever, the Uð1ÞA symmetry is restored with chiral symmetry,
we expect that the critical end point is shifted towards larger
temperatures and lower chemical potentials also in a two-
flavor scenario. Thus, a direct confirmation of this scenario
requires investigations which also include the ðη; ~aÞmesons
[45]. This also concerns phase structure studies in terms of
QCD degrees of freedom, e.g. [19].
In Fig. 3 both condensates with (left) and without

anomaly (right) are plotted in the vicinity of the critical
point as a function of the chemical potential. Similar to the
crossover at μ ¼ 0, the strange condensate melts consid-
erably less than the light condensate around the CEP in all
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FIG. 2 (color online). Nonstrange hσxi and strange hσyi condensates for vanishing chemical potentials with, (a), and without, (b),
Uð1ÞA-symmetry breaking in different approximations (solid lines, FRG; dotted lines, standard MFA; dashed lines, extended MFA).

TABLE I. Critical end point coordinates ðTc; μcÞ in units of
MeV for different approximations with and without anomaly.

c [MeV] MFA eMFA FRG

4807.84 (98, 155) (35, 293) (17, 295)
0 (93, 173) (31, 298) (43, 280)
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approximations. Interestingly, the two condensates seem to
be related to each other at criticality. We found a scaling
between both condensates that is demonstrated in Fig. 3
with dashed and dotted lines which are obtained by the
ansatz hσxi ¼ α1 þ α2hσyi with the two constant fit param-
eters αi. In particular, with Uð1ÞA-symmetry breaking (left
panel) we see an almost perfect scaling in both regions
while without anomaly (right panel) the scaling depends on
which phase we use to fit the parameters.
The dependency of the CEP location in the phase

diagram on the Uð1ÞA symmetry and also on the sigma
massmσ is demonstrated in Fig. 4, where the FRG result for
the quark number susceptibility in the vicinity of the critical
point normalized with the quark chemical potential is
shown as a function of the chemical potential. In this
figure two different CEP scenarios are compared with each
other. First, fixing the sigma mass to mσ ¼ 480 MeV
(solid, red and dashed, blue lines) the point is pushed
towards the temperature axis for aUð1ÞA-symmetric theory.

Second, reducing the sigma mass to mσ ¼ 400 MeV but
fixing the Uð1ÞA-symmetry breaking the CEP is also
pushed towards the temperature axis (solid, red and dotted,
green lines).

C. Chiral limits

Finally, we investigate the quark mass sensitivity of the
chiral transition including the anomaly and examine vari-
ous chiral limits.
Based on RG arguments for a purely bosonic theory,

the chiral transition is of first order in the SUð3Þ-
symmetric chiral limit, whereas the order of the transition
in the two-flavor chiral limit depends on the implemen-
tation of the Uð1ÞA-symmetry breaking [24]. For a
Uð1ÞA-symmetric two-flavor system with Uð2ÞL ×Uð2ÞR
symmetry a first-order transition is expected in the chiral
limit, see e.g. [47,48]. With an axial Uð1ÞA-symmetry
breaking the order can change to second order if the
coupling strength of the Kobayashi-Maskawa-’t Hooft
determinant is only moderately temperature dependent.
Therefore, a temperature-independent, i.e. constant,
Uð1ÞA-symmetry breaking can smoothen the transition
from first to second order in the two-flavor chiral limit,
whereas the opposite happens for three flavors and the
first-order transition becomes even stronger in the corre-
sponding chiral limit.
Relative to the anomalous Uð1ÞA-symmetry implemen-

tation, several scenarios in the light and strange quark mass
ðml;msÞ plane can now arise. Around the SUð3Þ-symmet-
ric chiral limit with ðml;msÞ ¼ ð0; 0Þ there might be a finite
region of first-order transitions with a second-order boun-
dary line, which terminates at a finite value of a tricritical
strange mass,m�

s , from which a second-order transition line
is extended to the two-flavor chiral limit. The precise
location and even the existence of such a tricritical strange
quark massm�

s is not yet fully settled. However, there could
also be a first-order region connecting the SUð3Þ and the
two-flavor chiral limits along the ðml ¼ 0Þ line, see e.g.
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FIG. 3 (color online). Nonstrange condensates in the vicinity of the critical point as a function of the chemical potential
(mσ ¼ 480 MeV) with (a), and without, (b), Uð1ÞA-symmetry breaking. Dotted and dashed lines are fit functions. See text for details.
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FIG. 4 (color online). Quark number susceptibility in the
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green). For comparison, the Uð1ÞA-symmetric susceptibility for
mσ ¼ 480 MeV (dashed, blue) is also shown.
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[29,49]. Then, there should not be a critical value of the
strange quark massm�

s , but a critical light quark massm�
l in

the two-flavor case.
Independent of the Uð1ÞA-symmetry breaking, a first-

order transition is seen in quark-meson models in standard
mean-field approximations in the two-flavor as well as in
the SUð3Þ-symmetric chiral limit, see e.g. [22,29]. For an
explicit symmetry breaking strength cy ¼ cy;phys that leads
to a strange constituent quark mass of ms ¼ 430 MeV we
also find a first-order transition in the nonstrange chiral
limit, see Fig. 5, where both order parameters in different
approximations are plotted in the nonstrange chiral limit.
However, as already argued in [37], the first-order tran-
sition might be misleading and an artifact of the used
mean-field approximation. Going beyond mean-field
approximations by taking the vacuum fluctuations of the
quarks into account (eMFA), this behavior is changed and a
second-order transition is observed, which is independent
of the axial anomaly (see dashed lines in the figure). When
mesonic fluctuations are considered in addition via a full
FRG treatment, the order of the transition depends on the
anomaly. Including the Kobayashi-Maskawa-’t Hooft
determinant, a second-order transition is found while for
a Uð1ÞA-symmetric theory the transition becomes first
order (solid lines).
This agrees with the picture that the chiral transition

is mostly driven by two-flavor dynamics, i.e., the
nonstrange chiral limit behaves qualitatively more like
the SUð2Þ-symmetric chiral limit than the SUð3Þ-symmetric
chiral limit. As a consequence, the Uð1ÞA-symmetry
violating and temperature-independent determinant acts
like a mass term, which leads to a second-order transition
as in [24].
Without the Kobayashi-Maskawa-’t Hooft term we have

also investigated the shape of the first-order region by
varying the explicit symmetry breaking parameter cy
around its physical value cy;phys. In this way we have

determined with the FRG the corresponding c�x that leads
to a second-order chiral transition. Since the value of the
critical c�x also depends on the chosen coarse graining scale
in the infrared [50], we can only determine a qualitative
picture of the first-order region. For example, in Fig. 5 an
infrared cutoff of the order of 100 MeV has been employed.
Schematically, we find that the critical c�x grows with cy
around its physical value cy;phys. A similar behavior has
also been found in a purely mesonic study [26] and is
consistent with the scenario that the first-order region is
extended along the ðml ¼ 0Þ line without anomalous
Uð1ÞA-symmetry breaking.
For the second-order transition, we find critical expo-

nents which lie in theOð4Þ-universality class. For example,
we find β ¼ 0.39, as demonstrated in Fig. 6, where the
scaling of the order parameter over several orders of
magnitude is displayed. Since the anomalous dimension
vanishes in leading-order derivative expansion of the
average effective action, η≡ 0, the remaining critical
exponents are given by (hyper)scaling relations. The
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FIG. 5 (color online). Nonstrange hσxi and strange hσyi condensates in the nonstrange chiral limit for μ ¼ 0 obtained in different
approximations similar to Fig. 2 for vanishing chemical potentials with, (a), and without, (b), Uð1ÞA-symmetry breaking (solid lines,
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Oð4Þ critical exponents are a consequence of the finite
Kobayashi-Maskawa-’t Hooft coupling at the critical
temperature. If, however, the Uð1ÞA symmetry were
effectively restored at the chiral transition, we would
expect critical exponents in the Uð2ÞL ×Uð2ÞR=Uð2ÞV
universality class in case of a second-order transition
[48,49,51].

VI. SUMMARY AND CONCLUSIONS

We have investigated the consequences of anomalous
Uð1ÞA-symmetry breaking in the presence of quantum and
thermal fluctuations in a three-flavor effective description
for QCD with a focus on the phase structure. With an
effective quark-meson model a drop of the anomalous mass
of the η0 meson at the chiral crossover temperature is found
which agrees well with recent experiments. In analogy to a
corresponding two-flavor description fluctuations weaken
the chiral crossover and the chiral condensates decrease less
rapidly. In particular, the strange condensate melts consid-
erably slower when fluctuations are taken into account.
This leads to the conclusion that the chiral dynamic around
the crossover is predominantly governed by the light quark
sector.
At finite quark chemical potential, mesonic fluctuations

lead to a considerable effect in the presence of an
anomalous Uð1ÞA-symmetry breaking realized by a
Kobayashi-Maskawa-’t Hooft determinant in the
Lagrangian. Without anomalous Uð1ÞA-symmetry break-
ing the end point is pushed to significantly larger temper-
atures and smaller chemical potentials. This strong
dependency of the CEP location on Uð1ÞA-symmetry
breaking is opposite to what is found in corresponding
mean-field investigations. Hence, for future investigations
on the existence/location of a possible critical end point
in the QCD phase diagram it is crucial to consider
all quantum and thermal fluctuations with a proper
Uð1ÞA-symmetry breaking and its possible effective
restoration.
Finally, we have investigated the order of the chiral

transition for vanishing light, but physical strange
quark masses. In standard mean-field approximations
we found, independently of the anomalous Uð1ÞA-
symmetry breaking, a first-order transition and a second-
order transition if the vacuum term is included. However,
with mesonic fluctuations the transition is of first order
without the axial Uð1ÞA anomaly and of second order with
the anomaly lying in the Oð4Þ-universality class. This
demonstrates once more the importance of the interrelation
of mesonic fluctuations with the chiral Uð1ÞA anomaly.
Furthermore, in agreement with other model studies with-
out quarks, e.g. [26], we found for growing light quark
masses that the first-order region in the (ml, ms) plane is
extended to larger strange quark masses if the anomaly is
neglected.
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APPENDIX A: NUMERICAL
IMPLEMENTATIONS

In this appendix some technical details of the used two-
dimensional grid and Taylor expansion technique for the
numerical solution of the flow equation are given. At the
end of this appendix the procedure for fixing the initial
parameters for the flow equations is summarized.

1. Two-dimensional grid and Taylor technique

For the construction of the two-dimensional grid we
define the positive variables

x ¼ σ2x; y ¼ 2σ2y − σ2x: (A1)

Clamped cubic splines are used to evaluate the required
first- and second-order derivatives of the effective potential
as a function of x and y, see also [39]. Derivatives of the
effective potential with respect to the chiral invariants are
obtained by applying the chain rule.
For comparison, a Taylor expansion of the effective

potential in the variables ρ1 and ~ρ2 is performed to order
Oðρ3i Þ around the k-dependent minimum. The scale
dependence of the minimum is used to replace the flow
of the Taylor coefficients a10 and a01 via the conditions

∂σxUkjmin ¼ ∂σyUkjmin ¼ 0: (A2)

The convergence properties of such expansion schemes
have been studied in, e.g., [52,53].
In both numerical approaches, the right-hand side of the

flow equation (19) requires the knowledge of the eigen-
values of the Hessian of the effective potential with respect
to all mesonic fields Σ. The Hessian is given in terms of
derivatives of the effective potential with respect to the
chiral invariants ρ1 and ~ρ2. The resulting expressions are
summarized in Appendix B. Then, the flow equation
becomes a coupled set of nonlinear ordinary differential
equations for either the values of the effective potential at
the interpolated grid points or for the Taylor expansion
coefficients (beta functions), which can be solved with
standard numerical methods. A numerical comparison of
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both techniques is given in Fig. 7, where the meson masses
are plotted as a function of the temperature for μ ¼ 0.
Both methods agree very well, at least for small chemical
potentials, see also [44].

2. Initial condition

In order to solve the flow equation the initial action has
to be specified at a given UV scale. Explicitly, as initial
potential at Λ ¼ 1 GeV we use the expression

UΛ ¼ ~UΛðρ1; ~ρ2Þ − cξ − cxσx − cyσy (A3)

with

~UΛðρ1; ~ρ2Þ ¼ a10;Λρ1 þ
a20;Λ
2

ρ21 þ a01;Λ ~ρ2

and fix the Yukawa coupling h such that physical values for
the pion and kaon decay constants fπ and fK , the pion and
kaon masses mπ and mK , the combined η and η0 masses
m2

η þm2
η0 , the sigma mass mσ and the light constituent

quark mass ml are obtained in the infrared. In contrast to a
mean-field treatment [29] it is not possible to choose
arbitrary values for the mesonic potential in the infrared.
Especially, the sigma-meson mass is restricted to values
between approximately 400 and 600 MeV for physical
pion masses mπ ≈ 140 MeV. We use h ¼ 6.5, cx ¼
ð120.73 MeVÞ3 and cy ¼ ð336.41 MeVÞ3 together with
a10;Λ, a01;Λ and a20;Λ as given in Table II. Fixing the

parameters in the vacuum, the finite temperature results are
then predictions.

APPENDIX B: MESON MASSES

In this appendix the explicit expressions for the mesonic
screening masses are collected. They are derived from the
potential

UkðΣÞ ¼ ~Ukðρ1; ~ρ2Þ − cξ − cxσx − cyσy; (B1)

with isospin symmetry, i.e., for hσ3i ¼ 0.
The squared masses are defined by the eigenvalues

of the Hessian matrix of the effective potential ∇2
ΣUk ¼∇2

Σ
~Uk − c∇2

Σξ with

∇2
Σ
~Uk ¼ ð∂ρ1

~UkÞ∇2
Σρ1 þ ð∂ ~ρ2

~UkÞ∇2
Σ ~ρ2

þ ð∂2
ρ1
~UkÞð∇Σρ1ÞT∇Σρ1 − c∇2

Σξ

þ ð∂2
~ρ2
~UkÞð∇Σ ~ρ2ÞT∇Σ ~ρ2

þ ð∂ρ1∂ ~ρ2
~UkÞ½ð∇Σρ1ÞT∇Σ ~ρ2 þ ð∇Σ ~ρ2ÞT∇Σρ1�:

(B2)

Hence, the mesonic masses can be calculated from deriv-
atives of ~Uk with respect to the invariants ρ1 and ~ρ2 together
with the gradient and Hessian of the invariants with respect
to Σ ¼ ðσx; σ1;…; σ7; σy; π0;…; π8Þ. The latter are given
by

ð∇Σρ1Þ1 ¼ σx; ð∇Σρ1Þ8 ¼ σy; (B3)

ð∇2
Σρ1Þi;i ¼ 1; i ¼ 1;…; 18; (B4)

ð∇Σ ~ρ2Þ1 ¼ σx
ðσ2x − 2σ2yÞ

6
;

ð∇Σ ~ρ2Þ8 ¼ −σy
ðσ2x − 2σ2yÞ

3
; (B5)

ð∇2
Σ ~ρ2Þ1;1 ¼

3σ2x − 2σ2y
6

;

ð∇2
Σ ~ρ2Þ9;9 ¼

−σ2x þ 6σ2y
3

;

ð∇2
Σ ~ρ2Þ1;9 ¼ −

2σxσy
3

; (B6a)

ð∇2
Σ ~ρ2Þi;i¼

7σ2x−2σ2y
6

; i¼2;3;4;

ð∇2
Σ ~ρ2Þi;i¼

σ2xþ
ffiffiffiffiffi
18

p
σxσyþ4σ2y
6

; i¼5;…;8; (B6b)

TABLE II. Parameters for the initial potential.

mσ [MeV] c [MeV] a10;Λ [MeV2] a01;Λ a20;Λ

480 0 ð178.88Þ2 140 25
400 4807.84 ð972.63Þ2 50 2.5
480 4807.84 ð867.76Þ2 50 12
560 4807.84 ð542.22Þ2 50 36
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FIG. 7 (color online). Meson masses obtained with the grid
method (solid lines) and with the Taylor expansion technique
(crosses).
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ð∇2
Σ ~ρ2Þ10;10 ¼ 0;

ð∇2
Σ ~ρ2Þ18;18 ¼

−σ2x þ 2σ2y
6

;

ð∇2
Σ ~ρ2Þ10;18 ¼

σ2x − 2σ2y

3
ffiffiffi
2

p ; (B6c)

ð∇2
Σ ~ρ2Þi;i ¼

σ2x − 2σ2y
6

; i ¼ 11; 12; 13;

ð∇2
Σ ~ρ2Þi;i ¼

σ2x −
ffiffiffiffiffi
18

p
σxσy þ 4σ2y
6

; i ¼ 14;…; 17;

(B6d)

ð∇2
ΣξÞ1;1 ¼

σyffiffiffi
2

p ;

ð∇2
ΣξÞ9;9 ¼ 0;

ð∇2
ΣξÞ1;9 ¼

σxffiffiffi
2

p ; (B7a)

ð∇2
ΣξÞi;i ¼ −

σyffiffiffi
2

p ; i ¼ 2; 3; 4;

ð∇2
ΣξÞi;i ¼ −

σx
2
; i ¼ 5;…; 8; (B7b)

ð∇2
ΣξÞ10;10 ¼

−2σx −
ffiffiffi
2

p
σy

3
;

ð∇2
ΣξÞ18;18 ¼

5σx −
ffiffiffi
2

p
σy

6
;

ð∇2
ΣξÞ10;18 ¼

ffiffiffi
2

p
σx − 2σy
6

; (B7c)

ð∇2
ΣξÞi;i ¼

σyffiffiffi
2

p ; i ¼ 11; 12; 13;

ð∇2
ΣξÞi;i ¼

σx
2
; i ¼ 14;…; 17; (B7d)

where the subscripts i denote the components of the vectors
and matrices, respectively. Hence, the Hessian splits into a
(pseudo)scalar (9 × 9)-mass matrix (M2

ps) M2
s

∇2
ΣUk ¼

�
M2

s 0

0 M2
ps

�
; (B8)

where the only nonvanishing off-diagonal entries in each
submatrix are the 1, 9 components.
Note that in a mean-field treatment there is an additional

quark contribution to the effective potential, which also
modifies the Hessian, see Ref. [29] for explicit expressions.
For a renormalization group treatment, on the other hand,
these contributions are naturally included in the IR solution
of the potential Uk→0.
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