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In this paper, we examine the interaction of B̄N, B̄Δ, B̄�N, and B̄�Δ states, together with their coupled
channels, by using a mapping from the light meson sector. The assumption that the heavy quarks act as
spectators at the quark level automatically leads us to the results of the heavy quark spin symmetry for pion
exchange and reproduces the results of the Weinberg Tomozawa term, coming from light vector exchanges
in the extended local hidden gauge approach. With this dynamics we look for states dynamically generated
from the interaction and find two states with nearly zero width, which we associate to the Λbð5912Þ and
Λbð5920Þ states. The states couple mostly to B̄�N, which are degenerate with the Weinberg Tomozawa
interaction. The difference of masses between these two states, with J ¼ 1=2 and 3=2, respectively, is due
to pion exchange connecting these states to intermediate B̄N states. In addition to these two Λb states, we
find three more states with I ¼ 0, one of them nearly degenerate in two states of J ¼ 1=2, 3=2.
Furthermore, we also find eight more states in I ¼ 1, two of them degenerate in J ¼ 1=2, 3=2, and another
two degenerate in J ¼ 1=2, 3=2, 5=2.
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I. INTRODUCTION

Hadron physics in the charm and beauty sectors is
booming, with mounting activity in experiments BABAR,
CLEO, BELLE, BES, LHCb, and CDF [1–6] and theory
[7]. One of the issues that has attracted much attention is the
finding of hadronic states which cannot be interpreted in
the conventional picture of qq̄ for mesons and qqq for
baryons. Multiquark states, hybrids, or hadronic molecules
have been suggested in several works [8–18]. The molecu-
lar picture stands on firm grounds once the use of the chiral
unitary theory in the light quark sector, or its extension
through the local hidden gauge approach, has shown that
many mesonic and baryonic resonances are dynamically
generated from the interaction of more elementary hadron
components [19,20]. Concerning baryonic resonances with
charm or hidden charm, work on molecules has been done
in Refs. [21–29], while, in the beauty sector, baryon states
with beauty or hidden beauty have also been studied in
Refs. [30–33].
On the experimental side, Λb excited states have been

reported by the LHCb Collaboration in Ref. [34]. Two
states, Λbð5912Þ and Λbð5920Þ, are found in the experi-
ment, with widths smaller than 0.66 MeV in both cases.
Although no direct spin and parity have been determined,
the states are interpreted as orbitally excited states of
the ground state of the Λbð5619Þ. One of the states, the
Λbð5920Þ, has been confirmed by the CDF Collaboration in
Refs. [35,36]. The association to the orbitally excited states

of the Λbð5619Þ seems most natural, since predictions of
quark models had been done for these states, as the orbitally
excited Λb states with L ¼ 1 and JP ¼ 1=2−, 3=2− [37,38].
Compared to the observed results, the Λb masses, including
that of the ground state, are only off by about 30–35 MeV.
The closest work in spirit to the present one is that of

Ref. [31], where these states are dynamically generated
from the interaction of mesons and baryons. In Ref. [31],
the heavy quark spin symmetry (HQSS) is used as an
underlying symmetry. According to it, the B and B� states
are degenerate in the heavy quark limit, as well as the
JP ¼ 1=2þ, 3=2þ baryon states, which are then considered
together in a coupled channels approach. An extrapolation
of the Weinberg Tomozawa interaction in the light sector is
then used [28,31], with elements of an SU(6) spin-isospin
symmetry [39]. With suitable choices of the renormaliza-
tion scheme for the loops, good agreement with the masses
of the newly found Λb states is obtained. Our scheme takes
advantage of the study done in Refs. [29,32,40]. In those
works, it was found that the use of the extended local
hidden gauge approach to the heavy quark sector fully
respects the HQSS, but it provided a dynamics different
from the one of Ref. [31]. In particular, the connection
between B and B� states (or baryon states with JP ¼ 1=2þ,
3=2þ) requires pion exchange, or anomalous terms, which
are found to be subleading in the large heavy quark mass
counting and numerically small. Similar conclusions are
also found in Ref. [41]. In some works [42], pion exchange
is found to be relevant compared to vector meson exchange
(the dominant terms in the local hidden gauge approach),
but, as discussed in Ref. [40], this is in part due to the use of*liangwh@gxnu.edu.cn
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a type of form factor for vector mesons, not present when
the equivalent chiral amplitudes are constructed, that
suppresses the vector exchange.
With the dynamics of the extended local hidden gauge

approach, the number of coupled channels is small for each
quantum number, and we can get a good feeling of the basic
building blocks in the dynamically generated states that
appear. As we shall see, the two Λb excited states are
generated with masses close to the experimental ones, but,
more remarkable, the difference in the masses of the two
excited states agrees well with experiment. The widths
obtained are zero within our basis of coupled channels,
quite in agreement with the widths smaller than 0.66 MeV
found in the experiment. We also make predictions in other
isospin and spin sectors. On the formal aspects we show
how the dominant terms correspond to having a heavy
quark as a spectator and present an easy way to implement
the results of the heavy quark spin-flavor symmetry from
the impulse approximation at the quark level.

II. FORMALISM

We will look at the states πΣb, πΛb, ηΛb, ηΣb, and B̄N
which can couple to I ¼ 0, 1which we will investigate.
Similarly, we shall look at B̄�N and πΣ�

b, ηΣ�
b, B̄Δ, and

B̄�Δ, with Δ≡ Δð1232Þ and Σ�
b ¼ Σ�

bð5829Þ, belonging to
a decuplet of 3=2þ states. In the local hidden gauge
approach in SU(3) [43–45], the meson-baryon interaction
proceeds via the exchange of vector mesons as depicted in
Fig. 1. As discussed in Ref. [29], when we exchange a light
vector meson in Figs. 1(a) and 1(b), the heavy quarks of the
meson or the baryon are spectators, and hence the inter-
action does not depend on their spin nor its flavor. From the
technical point of view, the interaction of the diagrams
of Fig. 1 can be obtained by using SU(3) symmetry
considering u, d, b quarks, since we do not consider states
with strangeness or hidden strangeness. Thus, all matrix
elements of the interaction are formally identical (except
for the mass or energy dependence) to those found for the
interaction of the analogous states πΣ, πΛ, ηΛ, ηΣ, K̄N,
K̄�N, πΣ�, ηΣ�, K̄Δ, and K̄�Δ. This interaction has been
studied in Refs. [46,47].
The transition potential from channel i to channel j is

given by [48]

V ¼ −Cij
1

4f2
ð2 ffiffiffi

s
p

−MBi
−MBj

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBi

þEi

2MBi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBj

þEj

2MBj

s
;

(1)

with f the pion decay constant and MBi
and Ei (MBj

and
Ej) the mass and energy, respectively, of the baryon of the i
(j) channel. We take f ¼ fπ ¼ 93 MeV, since we
exchange light vector mesons. The Cij coefficients are
evaluated in Refs. [46,47], and we quote them below.
For pseudoscalar mesons and 1=2þ baryons, we have the

coupled channels B̄N, πΣb, and ηΛb in I ¼ 0, and the Cij
coefficients are given in Table I. In I ¼ 1, we have the
channels B̄N, πΣb, πΛb, and ηΣb, and the Cij coefficients
are given in Table II. As one can see, the interaction in
I ¼ 0 is stronger than that in I ¼ 1, and we have more
chances to bind states in I ¼ 0.
As discussed in Ref. [29], the mixing of states containing

baryons of the octet (in u, d, b) like Σb and of the decuplet
Σ�
b require pion exchange for their mixing, and this is

strongly suppressed in the heavy quark sector; hence, we
neglect the mixing in a first step, but we shall come back to
it in Sec. V. Then, if we consider a pseudoscalar meson and
a baryon of the decuplet, we have the results forCij given in
Tables III and IV [47]. We note that the strength of the
B̄Δ → B̄Δ coefficient is 4 times bigger than for B̄N → B̄N
and, thus, we expect larger bindings in this case.
The interaction B̄Δ and coupled channels with I ¼ 2 is

repulsive, and we do not consider it.
In coupled channels we will use the Bethe-Salpeter

equation

T ¼ ½1 − VG�−1V; (2)

with G the diagonal loop function for the propagating
intermediate meson-baryon channels. In Ref. [32], we
warned about potential dangers of using the dimensional
regularization for the G functions (see also Ref. [30]), since
for values of the energy below threshold G can soon
become positive, and then one can be misled to obtain
bound states with a positive (repulsive) potential when
1 − VG ¼ 0 [see Eq. (2) in one channel]. For this reason,
we also use here the cutoff regularization for G given by

FIG. 1. Diagrammatic representation of the pseudoscalar-baryon interaction (a) and vector-baryon interaction (b).
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GðsÞ ¼
Z

qmax

0

d3~q
ð2πÞ3

ωP þ ωB

2ωPωB

2MB

P02 − ðωP þ ωBÞ2 þ iε
;

(3)

where ωP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

P

p
, ωB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þM2

B

p
, and qmax is the

cutoff of the three-momentum. However, in Ref. [32], we
also took into account the form factor from vector meson
exchange, by introducing

fð~qÞ ¼ m2
V

~q2 þm2
V
; (4)

in which case we would have to replace Eq. (3) by

GðsÞ ¼
Z

d3~q
ð2πÞ3 fð~qÞ

ωP þ ωB

2ωPωB

2MB

P02 − ðωP þ ωBÞ2 þ iε
;

(5)

putting the extra fð~qÞ factor. We would like to make a
comment here, since in Ref. [32] we put f2ð~qÞ. From the

practical point of view, the differences between the two
choices are smaller than uncertainties we will accept from
other sources. From the theoretical point of view, while the
first loop implicit in Eq. (2), VGV, contains f2ð~qÞ, the
terms in the series go as VGV, VGVGV, VGVGVGV;…,
and the ratio of one term to the other is GV. Hence, it is
more appropriate to take just the one form factor of the
potential V and include it in the G function when
integrating over ~q.
Since the G function in Eq. (3) is logarithmically

divergent, the inclusion of fð~qÞ in Eq. (5) makes it already
convergent. Yet we will put an extra cutoff qmax that will
serve to fine-tune our T matrix and the binding of the states.
We shall fine-tune qmax in the integral of Eq. (3), and we
shall need values qmax smaller than MV ≈ 780 MeV.
Hence, from the practical point of view, we can even
neglect the factor fð~qÞ and effectively include its effects
with the use of a suited value of qmax.
Before closing this section, we must say two words

concerning the transition πΣb → B̄N. This is depicted in
Fig. 2, and it is mediated by B� exchange in the extended
local hidden gauge approach. In the strict large heavy quark
mass, counting this term would be neglected, because it
involves the exchange of a heavy vector B� and its
propagator would render this term negligible. However,
although suppressed, it is not so much as one would expect.
Indeed, the propagator will be

DB� ¼ 1

p2
B� −m2

B�
≡ 1

ðp0
π − p0

B̄Þ2 − ð~pπ − ~pB̄Þ2 −m2
B�
:

(6)

By contrast, in a diagonal transition B̄N → B̄N mediated
by ρ exchange, for instance, we would have

Dρ ≈
1

m2
V
: (7)

Close to the B̄N threshold, the ratio is

DB�

Dρ
≃ m2

V

ðp0
π − p0

B̄Þ2 − ~p2
π −m2

B�
≃ 1

4
: (8)

Since the nondiagonal terms have a smaller importance in
the process than the diagonal ones of the heavy mesons, we

TABLE I. Cij coefficients for B̄N and coupled channels with
I ¼ 0 and JP ¼ 1=2−.

Cij B̄N πΣb ηΛb

B̄N 3 −
ffiffi
3
2

q
3ffiffi
2

p

πΣb 4 0
ηΛb 0

TABLE II. Cij coefficients for B̄N and coupled channels with
I ¼ 1 and JP ¼ 1=2−.

Cij B̄N πΣb πΛb ηΣb

B̄N 1 −1 −
ffiffi
3
2

q
−

ffiffi
3
2

q
πΣb 2 0 0
πΛb 0 0
ηΣb 0

TABLE III. Cij coefficient for πΣ�
b with I ¼ 0 and JP ¼ 3=2−.

Cij πΣ�
b

πΣ�
b 4

TABLE IV. Cij coefficients for B̄Δ and coupled channels with
I ¼ 1 and JP ¼ 3=2−.

Cij B̄Δ πΣ�
b ηΣ�

b

B̄Δ 4 1
ffiffiffi
6

p
πΣ�

b 2 0
ηΣ�

b 0

FIG. 2. Transition potential from πΣb → B̄N.
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simply account for these transitions by multiplying by 1=4
the results obtained from Eq. (1) and the tables.

III. RESULTS FOR I ¼ 0

We first choose the single channel πΣ�
b in I ¼ 0 and look

for the binding energy. The state with L ¼ 0 has J ¼ 3=2.
First we find that with the normal potential and a wide
range of cutoffs (up to 3000 MeV) we do not find a bound
state. We must look at the reason for this in the fact that the
potential is indeed weak. This is so because the potential in
Eq. (1) is a relativistic form of k0 þ k00 (the sum of the
incoming and outgoing pion energies). The small mass of
the π makes its energy small close to threshold, and this
potential is subleading with respect to the one of B̄N where
the energies now are those of the B̄.
Next we try to see if by increasing the potential by a

factor of 1.5 or 2 and varying the cutoff we can obtain a
reasonable binding. The results are chosen in Table V. As
we can see, we have to increase the potential by a factor of 2
and go to very large cutoffs to obtain the desired value of
the binding of the Λbð5920Þ. We might think that an
increase by about a factor of 1.5 of the potential could
be accepted by recalling that such changes appear in
models like the Dyson-Schwinger approach [49] (see also
Ref. [29]). Indeed, with respect to the coupling we would
be using here, the DρD coupling used in Ref. [49], or in
Ref. [50] obtained with sum rules, is about a factor of 1.5
bigger. However, in the same work of Ref. [49], the
coupling is accompanied by a form factor which would
be equivalent to a cutoff qmax of about 700 MeV. Hence, we
cannot invoke simultaneously an increase of the potential
by a factor of 2 and a qmax of 3000 MeV, and the only
conclusion is that the πΣ�

b channel by itself cannot account
for the Λbð5920Þ state.
Next we repeat the same exercise with the single channel

B̄N and show the results in Table VI. What we see in
this table is that the binding grows spectacularly (and

unrealistically) for bigger V and qmax. Obviously, the large
value of the potential, as we mentioned above, is respon-
sible for this. At this point, we should mention that in the
study of the K̄N system in coupled channels a cutoff of
630 MeV was used in Ref. [46]. In the study of the
pseudoscalar mesons with the decuplet of baryons [47], a
value of qmax ¼ 700 MeV was used, while in Ref. [30] in
the study of baryons with hidden beauty a value of qmax ¼
800 MeV was used. We can also see in Table V that
changes in V can be accommodated by a change in qmax. In
what follows, we shall then use the potential that we get in
the approach, without the extra multiplicative factor, but
play with values of qmax around 700–850 MeV, in the range
of values used in previous works.
In most of the cases, we get energies where all the

coupled channels are closed and, hence, the width is zero.
When there are open channels, we look for poles in the
second Riemann sheet, which is obtained by changing the
G function as [51]

GII
l ð

ffiffiffi
s

p Þ ¼ GI
lð

ffiffiffi
s

p Þ þ i
ql

4π
ffiffiffi
s

p ; (9)

where ql is the on-shell momentum of the particles in the
open channel and GI

lð
ffiffiffi
s

p Þ is given by Eq. (3).
As an example, we show next the results without a form

factor of Eq. (4) for B̄N, just changing qmax, as shown in
Table VII.
Next we introduce the coupled channels that couple to

B̄N in I ¼ 0 (see Table I). The results that we obtained for
the energy are shown in Table VIII.
The results are interesting. We see now that we get two

states rather than one. In order to get a feeling of the
meaning of the states, we calculate the coupling of those
states to the different coupled channels. We show the results
in Table IX for qmax ¼ 800 MeV. We show the values of
the couplings (g2i is the residue of the matrix element Tii at
the pole) and of giGII

i , which, according to Ref. [52],
provides the wave function of the origin in coordinate
space, the magnitude that shows the relevance of the
channel in the short-range strong interactions. It is inter-
esting to see that there has been an appreciable mixture of
these channels. The lower-energy state that originally was
formed from B̄N alone now is still dominated by the B̄N
channel but with an appreciable mixture of πΣb and ηΛb.
On the other hand, the higher-energy state is shown to be
dominated by the πΣb channel. However, the coupling to
the B̄N state has been essential to obtain this state, since the
single channel πΣb does not produce it.

TABLE V. Energies for the πΣ�
b-only channel as a function of V

and qmax (unit, MeV).

qmax 800 1000 1200 1400 1600 1800 2000 3000

1.5V 5971 5965 5961 5956 5953 5950 5948 5942
2V 5955 5947 5940 5935 5932 5929 5927 5920

TABLE VI. Energies for the B̄N-only channel as a function of
V and qmax (unit, MeV).

qmax 700 800 1000 1200 1400 1600 1800 2000

1V 6074 6026 5933 5851 5782 5725 5678 5639
1.5V 5967 5896 5766 5658 5572 5504 5450 5406
2V 5871 5784 5630 5509 5415 5343 5287 5243

TABLE VII. Energies for a state of B̄N in I ¼ 0 as a function of
qmax (unit, MeV).

qmax 700 750 800 850

V 5987.5 5941.6 5893.5 5843.7

W. H. LIANG, C.W. XIAO, AND E. OSET PHYSICAL REVIEW D 89, 054023 (2014)

054023-4



If one compares the energy of the lower-energy state in
Table VIII with that of the single B̄N channel in Table VII,
we can see that for qmax ¼ 800 MeV the effect of the
coupled channels has been a reduction of about 40 MeV.
Hence, even if suppressed, the coupled channels to the B̄N
have a relevant role in the generation of states. In any
case, we see that neither of the states found can qualify as
the Λbð5912Þ or Λbð5920Þ. This is also the case for the
higher-energy state.
After this, we exploit another possibility, that these Λb

states come from B̄�N and coupled channels. The B̄�N can
lead to two spins, JP ¼ 1=2−, 3=2−, and within the local
hidden gauge approach the interaction is spin independent
[53]. Then we would get two degenerate states with spins
1=2 and 3=2. The 8 MeV difference between Λbð5912Þ and
Λbð5920Þ is small enough to fit into the category of
degenerate. The degeneracy is broken with the mixture
of the VB and PB states, which is done in Refs. [54–56],
but for the heavier mesons this mixture is smaller [29],
which can explain the small difference between the masses
of the two states. We shall come back to this point in the
next two sections.
The binding of B̄N in Table VII for qmax ∼

750–800 MeV is of the order of 300 MeV. While this is
only 5% of the total energy, it might surprise us that this
amount is about 3 times bigger than the one obtained in
Refs. [30,32] for hidden beauty baryons (BΣb is the
equivalent component), but this is easy to understand, both
qualitatively and quantitatively. Indeed, in the exchange of
light vectors between B̄ and N, the nucleon has three light
quarks, while in the exchange of a light vector between B
and Σb, the Σb has only two light quarks. There are, hence,
more chances to exchange a light vector between B̄N than
in BΣb. More quantitatively, if we take I ¼ 0 for B̄N, we
have two components: B̄0ðbd̄ÞnðuddÞ and B̄−ðbūÞpðuudÞ.

We have two d quarks from the n to accommodate the
exchange of a light qq̄ in the first component and two u
quarks in the second component. If we take BΣb in
I ¼ 1=2, which was found bound in Ref. [32], we have
the components B0ðb̄dÞΣþ

b ðuubÞ and Bþðb̄uÞΣ0
bðudbÞ. In

the first case we cannot exchange a light qq̄ vector, and
in the second case there is only one u quark in the Σ0

b that
can accommodate it. The strength of light vector exchange
in B̄N, I ¼ 0, should be much larger than in BΣb, I ¼ 1=2.
This is the case in practice, since, comparing Table I of the
present paper with Eqs. (2) and (12) of Ref. [32], we find
that the relevant Cij coefficient is 3 for B̄N and 1 for BΣb.
As a consequence, we have the about 3 times larger binding
found here with respect to the one of Refs. [30,32].

IV. VECTOR-BARYON CHANNELS

The transitions VB → VB for small momenta of the
vector mesons have formally the same expressions as the
corresponding PB → PB substituting the octet of pseudo-
scalars by the octet of vectors [53], with only one minor
change to account for the ϕ and ω SU(3) structure, which is
to replace each η by −

ffiffiffiffiffiffiffiffi
2=3

p
ϕ or

ffiffiffiffiffiffiffiffi
1=3

p
ω. The case of

vector interaction with the decuplet of baryons is similar
[57]. Tables I, II, and IV are changed now to Tables X, XI,

TABLE VIII. Energies for states in coupled channels B̄N, πΣb, and ηΛb in I ¼ 0 as a function of qmax (unit, MeV).

qmax 700 750 800 850

V 5935.3 5897.3 5851.4 5802.0
6005.8þ i23.8 5988.9þ i26.4 5976.9þ i24.4 5968.0þ i20.5

TABLE IX. The coupling constants to various channels for
certain poles in the J ¼ 1=2, I ¼ 0 sector.

5851.4þ i0 B̄N πΣb ηΛb

gi 16.20 0.96 1.47
giGII

i −20.55 −16.23 −14.31

5976.9þ i24.4 B̄N πΣb ηΛb

gi 5.88 − i0.24 1.52þ i0.75 0.75þ i0.02
giGII

i −9.60 − i0.16 −53.13 − i12.34 −9.33 − i0.85

TABLE X. Cij coefficients for B̄�N and coupled channels for
I ¼ 0 and JP ¼ 1=2−, 3=2−.

Cij B̄�N ρΣb ωΛb ϕΛb

B̄�N 3 −
ffiffi
3
2

q ffiffi
3
2

q
−

ffiffiffi
3

p

ρΣb 4 0 0
ωΛb 0 0
ϕΛb 0

TABLE XI. Cij coefficients for B̄�N and coupled channels for
I ¼ 1 and JP ¼ 1=2−, 3=2−.

Cij B̄�N ρΣb ρΛb ωΣb ϕΣb

B̄�N 1 −1 −
ffiffi
3
2

q
−

ffiffi
1
2

q
1

ρΣb 2 0 0 0
ρΛb 0 0 0
ωΣb 0 0
ϕΣb 0
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and XII, respectively. Once again, we penalize with a factor
of 1=4 the transitions from a heavy vector to a light vector
as we did before for the pseudoscalar mesons.
We take again the case of I ¼ 0 of Table X and show the

results that are obtained in Table XIII for a B̄�N single
channel and in Table XIV for coupled channels. Once
again, we see that the consideration of coupled channels
leads to two states. In order to see the meaning of the states,
we calculate again the couplings to the different channels
for qmax ¼ 800 MeV, and the results are shown in
Table XV. There we can see that the state that couples
strongly to B̄�N is the one with lower energy. The higher-
energy state couples mostly to ρΣb.
It is interesting to compare the results of Tables VII and

XIII for the states that couple mostly to B̄N and B̄�N. If we
calculate with a single channel, we find a difference in
energies between these two levels of 45 MeV, the same as
between mB� and mB. However, when we include the

coupled channels, we see some changes. If we compare
Tables XIII and XIV at qmax ¼ 800 MeV, the effect of the
coupled channels is a reduction of the mass of the lower
state by about 20 MeV rather than 40 MeV in the case of
B̄N. The difference in the masses of the πΣb or ρΣb is one
of the reasons for it, but also the interaction of these two
channels is different. Indeed, the VVV vertices or PPV
vertices go as the sum of the external energies, as we saw,
but now we have the much larger energy of the ρ instead of
the energy of the π.

V. BREAKING THE J ¼ 1=2−, 3=2− DEGENERACY
IN THE B̄�N SECTOR

In this section, we shall break the degeneracy of the
1=2−, 3=2− states of the B̄�N sector. For this purpose, we
follow the approach of Ref. [54] and mix states of B̄�N and
B̄N in both sectors. We test first that, in the coupled
channels like the B̄�N sector, the important contribution
comes from B̄�N → X → B̄�N, where X stands for the
other coupled channels. The extra interaction of the X
channels among themselves is negligible compared to that
of the dominant B̄�N channel because of the big value of
the B̄� energy entering in the interaction. This means that it
is sufficient to evaluate the contribution of the box diagrams
of Fig. 3, in analogy to the box diagrams evaluated in
Ref. [54], and add this contribution δV to the B̄N or B̄�N
potential. By using the doublets of isospin ðBþ; B0Þ,
ðB̄0;−B−Þ, the Λb state in the B̄N basis is given by

jB̄N; I ¼ 0i ¼ 1ffiffiffi
2

p ðjB̄0ni þ jB−piÞ; (10)

and analogously for B̄�N. The B̄N → B̄�N transition in
I ¼ 0 is given by the diagrams in Fig. 4.
The VPπ vertex in SU(3) is given by the Lagrangian

LVPP ¼ −igh½P; ∂μP�Vμi; (11)

where P and Vμ are the ordinary meson octet and vector
nonet SU(3) matrix, respectively, of the corresponding
fields

TABLE XII. Cij coefficients for B̄�Δ and coupled channels for
I ¼ 1 and JP ¼ 1=2−, 3=2−, 5=2−.

Cij B̄�Δ ρΣ�
b ωΣ�

b ϕΣ�
b

B̄�Δ 4 1
ffiffiffi
2

p
−2

ρΣ�
b 2 0 0

ωΣ�
b 0 0

ϕΣ�
b 0

TABLE XIII. Energies for a state of B̄�N in I ¼ 0 as a function
of qmax (unit, MeV).

qmax 700 750 800 850

V 6033.1 5987.2 5939.0 5889.3

TABLE XIV. Energies for states in coupled channels B̄�N, ρΣb,
ωΛb, and ϕΛb in I ¼ 0 as a function of qmax (unit, MeV).

qmax 700 750 800 850

V 6019.2 5970.6 5919.8 5867.6
6364.6þ i0.8 6333.3þ i0.8 6303.0þ i0.6 6274.1þ i0.3

TABLE XV. The coupling constants to various channels for certain poles in the J ¼ 1=2, 3=2, I ¼ 0 sector.

5919.8þ i0 B̄�N ρΣb ωΛb ϕΛb

gi 16.81 1.04 0.94 1.33
giGII

i −22.01 −5.46 −6.16 −5.67

6303.0þ i0.6 B̄�N ρΣb ωΛb ϕΛb

gi 0.37þ i0.27 5.14þ i0.01 0.15þ i0.01 0.21þ i0.02
giGII

i −2.73 − i0.27 −46.81 − i0.13 −2.22 − i0.22 −1.50 − i0.15
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P ¼

0
BBB@

π0ffiffi
2

p þ η8ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p K0

K− K̄0 − 2η8ffiffi
6

p

1
CCCA; (12)

Vμ ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ

1
CCCA

μ

; (13)

and g ¼ mV=2fπ with mV ≈ 780 MeV, fπ ¼ 93 MeV.
One can extend the Lagrangian Eq. (11) to the SU(4)
space, as done in Ref. [40], but it is unnecessary. It is more
intuitive and rigorous to follow the derivation below, which
allows us to directly connect with the results of heavy quark
spin-flavor symmetry [58]. Indeed, all we need to do is to
invoke that the leading terms correspond to light meson
exchange, in which case the heavy quark plays the role of a
spectator at the quark level.
Let us then compare the K�þ → K0πþ and B�þ → B0πþ

transitions as shown in Fig. 5. As we can see in the figure,
the transitions are identical and governed by the light
quarks, with the s̄ quark in K�þ and b̄ quark in B�þ playing
the role of a spectator. The transition amplitudes are thus
identical at the quark microscopic level, but we must take
into account that when used at the macroscopic level of the
K�þ or B�þ there are normalization factors ð2ωÞ−1=2 which
are different for the K�þ, K0 or B�þ, B0 fields. This is taken
easily into account by constructing the S matrix at the
macroscopic level. At the microscopic level we have (we
follow Mandlþ Shaw normalization of the fields [59])

Smic ¼ 1 − it

ffiffiffiffiffiffiffiffiffi
2mL

2EL

s ffiffiffiffiffiffiffiffiffi
2m0

L

2E0
L

s ffiffiffiffiffiffiffiffi
1

2ωπ

s
1

V3=2 ð2πÞ4δðPin − PoutÞ;

(14)

with mL, EL, m0
L, and E0

L the masses (constituent) of the
incoming and outgoing light quarks, V the volume of
the box where states are normalized to unity, and ωπ the
pion energy. At the macroscopic level we have for the K�þ
and B�þ

Smac
K� ¼ 1− itK�

1ffiffiffiffiffiffiffiffiffiffi
2ωK�

p 1ffiffiffiffiffiffiffiffiffi
2ωK

p 1ffiffiffiffiffiffiffiffi
2ωπ

p 1

V3=2 ð2πÞ4δðPin−PoutÞ;
(15)

Smac
B� ¼ 1− itB�

1ffiffiffiffiffiffiffiffiffiffi
2ωB�

p 1ffiffiffiffiffiffiffiffiffi
2ωB

p 1ffiffiffiffiffiffiffiffi
2ωπ

p 1

V3=2 ð2πÞ4δðPin−PoutÞ:
(16)

FIG. 3. Diagrammatic representation of the B̄�N in the intermediate state (left) and the B̄N in the intermediate state (right).

FIG. 4. Diagrammatic representation of the transition B̄N → B̄�N in I ¼ 0.

FIG. 5. Diagram of the transition K�þ → K0πþ (left) and
B�þ → B0πþ (right).
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These considerations are commonplace in the study of
three-body systems in the fixed center approximation
[60,61]. Equations (14–16) allow one to relate tB� and
tK� with the macroscopic t amplitude, but, since we have
tK� given by the effective Lagrangian of Eq. (11), we can
obtain tB� in terms of tK� by means of

tB�

tK�
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mB�mB

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mK�mK

p ≃ mB�

mK�
: (17)

For a B� at rest, as we shall assume in our evaluations, t is
proportional to ~ϵ · ~q, with ~q the pion momentum and ~ϵ the
polarization vector of the vector meson (corrections of the
order of j~pB� j=mB� coming next can be safety neglected). It
is interesting to compare what we get in our approach to the
results of Ref. [58]. In Ref. [58], the width for B�þ → B0πþ
(or D�þ → D0πþ) is given by

Γ ¼ g2H
6π ~f2π

j~pπj3; (18)

with gH the coupling appearing in the heavy hadron
Lagrangian and ~fπ ¼

ffiffiffi
2

p
fπ . For the same amplitude,

our approach, considering Eq. (17), is given by

Γ ¼ 1

6π

1

m2
B�
g2
�
mB�

mK�

�
2

j~pπj3: (19)

By taking g2=m2
K� ¼ ðmV=2fπmK� Þ2 ≡ 1

4f2π
, we have the

relationship

g2H
2

≡ 1

4
; gH ¼ 1ffiffiffi

2
p : (20)

The same result would appear if we use another heavy
vector decay like D�. Our approach, with the consideration
of the field normalizations, leads to a gH independent of
flavor and furthermore provides a value for it of ð ffiffiffi

2
p Þ−1.

This value is in good agreement with the latest lattice QCD
result [62] for the B� → Bπ decay

gH ¼ 0.57� 0.1: (21)

After this reformulation of the essence of the heavy quark
symmetry, let us take a step forward and see what happens
for the exchange of light vector mesons in the local hidden
gauge approach. In Fig. 1, the PPV (or VVV) upper vertex
gives rise to ωp þ ω0

p [the factor 2
ffiffiffi
s

p
−MB1 −MB2 of

Eq. (1) is the relativistic version of this magnitude]. If we
compare now K̄N → K̄N with B̄N → B̄N, the ratio of
amplitudes is given again by Eq. (17), substituting the
energies by those involved here:

t0B
t0K

¼ ωB

ωK
; (22)

but now t0K is proportional to ωK þ ω0
K in the local hidden

gauge approach, and thus

t0B ∝
ωB

ωK
· 2ωK ≡ 2ωB: (23)

Hence, the t0B amplitude in this case is the same one as t0K
but substituting ωK by ωB. This is exactly what the
extension of the local hidden gauge approach to the B
sector gives if one simply substitutes the s quark by the b
quark in the SU(3) Lagrangian [40], and it avoids having to
invoke SU(4) arguments as often is done to justify this
result.
Now we come back to the evaluation of the box diagrams

of Fig. 3. The vertex for the I ¼ 0 transition B̄N → B̄�N of
Fig. 4, considering the Yukawa coupling for the πNN
vertex, is given by

−it ¼ −
3ffiffiffi
2

p g
mB�

mK�
ðqþ PinÞμϵμ

1

q2 −m2
π

Dþ F
2fπ

~σ · ~q;

(24)

with D ¼ 0.75 and F ¼ 0.51 [63], and, since Pin ¼ qþ
Pout and Pout · ϵ ¼ 0 plus ϵ0 ≈ 0, we get effectively

−it ¼ 6ffiffiffi
2

p g
mB�

mK�
~q · ~ϵ

1

q2 −m2
π

Dþ F
2fπ

~σ · ~q: (25)

In addition to the pion exchange of Fig. 4, we have the
Kroll-Ruderman contact term, depicted in Fig. 6. Following
Refs. [54,64], in order to get the Kroll-Ruderman term, we
must substitute in Eq. (24) ϵμðqþ PinÞμ 1

q2−m2
π
~σ · ~q by

−~σ · ~q. Then, we must evaluate the diagrams of Fig. 7,
and we obtain

δV ¼ δVPP þ 2δVPC þ δVCC; (26)

where

FIG. 6. Diagram of the Kroll-Ruderman term.
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−iδVPP ¼
Z

d4q
ð2πÞ4

�
mB�

mK�

�
2

× g

�
6ffiffiffi
2

p ~ϵ · ~q
1

q02 − ~q2 −m2
π

Dþ F
2fπ

~σ · ~q

�

× ð−gÞ
�

6ffiffiffi
2

p ~ϵ · ~q
1

q02 − ~q2 −m2
π

Dþ F
2fπ

~σ · ~q

�

× i
1

2ωB� ð~qÞ
1

P0
in − q0 − ωB� ð~qÞ þ iϵ

× i
MN

ENð~qÞ
1

K0
in þ q0 − ENð~qÞ þ iϵ

; (27)

−iδVPC ¼
Z

d4q
ð2πÞ4

�
mB�

mK�

�
2

g

�
3ffiffiffi
2

p Dþ F
2fπ

~σ · ~ϵ

�

× ð−gÞ
�

6ffiffiffi
2

p ~ϵ · ~q
1

q02 − ~q2 −m2
π

Dþ F
2fπ

~σ · ~q

�

× i
1

2ωB� ð~qÞ
1

P0
in − q0 − ωB� ð~qÞ þ iϵ

× i
MN

ENð~qÞ
1

K0
in þ q0 − ENð~qÞ þ iϵ

; (28)

−iδVCC ¼
Z

d4q
ð2πÞ4

�
mB�

mK�

�
2

g

�
3ffiffiffi
2

p Dþ F
2fπ

~σ · ~ϵ

�

× ð−gÞ
�

3ffiffiffi
2

p Dþ F
2fπ

~σ · ~ϵ
�

× i
1

2ωB� ð~qÞ
1

P0
in − q0 − ωB� ð~qÞ þ iϵ

× i
MN

ENð~qÞ
1

K0
in þ q0 − ENð~qÞ þ iϵ

: (29)

Equations (26–29) can be further simplified by
considering that ð~σ · ~qÞð~σ · ~qÞ ¼ ~q2, resorting to symmetry
properties

qiqj →
1

3
~q2δij; (30)

and further considering that, as shown in Ref. [54],

hPNj~σ · ~ϵjVNi≡ ffiffiffi
3

p
δJ;1=2: (31)

Thus in the B̄N → B̄�N → B̄N transition, in L ¼ 0, we
have J ¼ 1=2, and the Kroll-Ruderman term contributes
together with the pion in flight term (pion exchange).
In the B̄�N → B̄N → B̄�N, we can have L ¼ 0, 2 in the

intermediate B̄N states. Now in B̄�N we can have J ¼ 1=2,
3=2. If J ¼ 1=2, then L ¼ 0 for the B̄N intermediate states,
and both the pion in flight and Kroll-Ruderman terms
contribute. The formulas are then formally the same as for
the B̄N → B̄�N → B̄N box diagram, changing appropri-
ately the masses. However, if we have J ¼ 3=2, then the
Kroll-Ruderman term does not contribute, and the pion in
flight δVPP with L ¼ 2 contributes the same as for L ¼ 0.
Furthermore, before we had the vertices ð~ϵ · ~qÞð~ϵ · ~qÞ and
we must sum over polarizations of the ~ϵ, so one gets the
factor ~q2, but in the B̄�N → B̄N → B̄�N transition we have
ð~ϵ · ~qÞð~ϵ0 · ~q0Þ and ~ϵ, ~ϵ0 are the external polarization vectors.
The symmetry of the integral allows us to use Eq. (30), and
then we get 1

3
~q2~ϵ · ~ϵ0, so we get a factor of 1

3
in the PP term

of Eq. (27). The scalar ~ϵ · ~ϵ0 factor tells us that this term is
the same for J ¼ 1=2, 3=2.
One further step to simplify the equations comes from

performing the q0 integration analytically. After all this is
done, we obtain the following results for the B̄�N → B̄N →
B̄�N box diagram:

J ¼ 1=2∶ δV ¼ FAC

� ∂
∂m2

π
I01 þ 2I02 þ I03

�
; (32)

J ¼ 3=2∶ δV ¼ FAC

� ∂
∂m2

π
I01

�
; (33)

where

I01 ¼
Z

d3q
ð2πÞ3

4

3
~q4

1

2ωBð~qÞ
MN

ENð~qÞ
Num
Den

; (34)

I02 ¼
Z

d3q
ð2πÞ3 2~q

2
1

2ωBð~qÞ
MN

ENð~qÞ
Num
Den

; (35)

I03 ¼
Z

d3q
ð2πÞ3

3

2ωBð~qÞ
MN

ENð~qÞ
×

1

P0
in þ K0

in − ENð~qÞ − ωBð~qÞ þ iϵ
; (36)

with

FIG. 7. All of the diagrams for the B̄�N in the intermediate state.
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FAC ¼ 9

2
g2
�
mB�

mK�

�
2
�
F þD
2fπ

�
2

; (37)

Num ¼ K0
in − ENð~qÞ − 2ωπð~qÞ − ωBð~qÞ þ P0

in; (38)

Den ¼ 2ωπð~qÞ½P0
in − ωπð~qÞ − ωBð~qÞ þ iϵ�

× ½K0
in − ENð~qÞ − ωπð~qÞ þ iϵ�

× ½P0
in þ K0

in − ENð~qÞ − ωBð~qÞ þ iϵ�; (39)

with P0
in, K

0
in the incoming B̄�, N energies.

For the case of the B̄N → B̄�N → B̄N box diagram, we
have only the J ¼ 1=2 case, and the formula is like the
former one for J ¼ 1=2 exchanging accordingly the masses
of B�↔B and considering the factor of 3 extra in VPP.
Thus, we have

J ¼ 1=2∶ δV ¼ FAC

� ∂
∂m2

π
I1 þ 2I2 þ I3

�
; (40)

where

I1 ¼
Z

d3q
ð2πÞ3 4~q

4
1

2ωB� ð~qÞ
MN

ENð~qÞ
Num
Den

; (41)

I2 ¼
Z

d3q
ð2πÞ3 2~q

2
1

2ωB� ð~qÞ
MN

ENð~qÞ
Num
Den

; (42)

I3 ¼
Z

d3q
ð2πÞ3

3

2ωB� ð~qÞ
MN

ENð~qÞ
×

1

P0
in þ K0

in − ENð~qÞ − ωB�ð~qÞ þ iϵ
; (43)

with Num and Den having the same expressions but in
terms of the proper energies and masses. In the Yukawa
vertex, it is customary to include a monopole form factor to
agree with the NN peripheral partial waves [65], and thus
we introduce a factor of

FFð~qÞ ¼
�

Λ2

Λ2 þ ~q2

�
2

; (44)

with Λ≃ 1 GeV, which we include in the integrands of
Eqs. (34–36), (41–43).
To go to the second Riemann sheet with the box

contribution δV, we can do a similar thing as in Eq. (9).
Yet, when

ffiffiffi
s

p
is real, GII

l ≡ ðGI
lÞ�, and this is also the case,

quite accurately, when we are close to the real axis. In view
of this, and the small contribution of the intermediate B̄N
states to the width, we use the prescription δV → ðδVÞ� to
go to the second Riemann sheet. In practice, this is
equivalent to changing þiϵ → −iϵ in the factors of Den
of Eq. (39).1

Once the formalism has been described, we show the
results of including δV in the approach in Tables XVI
and XVII.
It is interesting to compare the results of Table XVI with

those of Table XIV. At 750 MeV the box diagram reduces
the mass of the state by about 30 MeV for J ¼ 1=2 and
20 MeV for J ¼ 3=2. We can see that the value of the
masses is rather sensitive to the value qmax used. However,
it is interesting to remark that the splitting of energies
between the J ¼ 1=2 and J ¼ 3=2 levels is about 10 MeV,
rather independent of the cutoff used. We can thus see that
the mixing of B̄�N and B̄N states leads naturally to two
states, nearly degenerate in spin, only separated by about
10 MeV, like the Λbð5912Þ and Λbð5920Þ. If we fine-tune
qmax to get the right binding, we find qmax ¼ 776 MeV,
where the energy of the J ¼ 1=2 state is 5910 MeV, and the

TABLE XVI. Poles with a box diagram in coupled channels B̄�N, ρΣb, ωΛb, and ϕΛb in I ¼ 0 as a function of V and
qmax (unit, MeV).

qmax 700 750 776 800 850

J ¼ 1=2
5991.9þ i0 5939.2þ i0 5910.7þ i0 5884.0þ i0 5827.4þ i0
6364.2þ i1.4 6332.6þ i1.4 6316.6þ i1.4 6301.1þ i1.4 6273.0þ i1.2

J ¼ 3=2
5998.8þ i0 5948.0þ i0 5920.7þ i0 5895.1þ i0 5840.9þ i0
6363.5þ i2.1 6331.7þ i2.0 6315.7þ i1.9 6301.2þ i1.7 6272.1þ i1.2

TABLE XVII. Poles with a box diagram in coupled channels B̄N, πΣb, and ηΛb in I ¼ 0 as a function of V and qmax (unit, MeV).

qmax 700 750 776 800 850

J ¼ 1=2
5902.6þ i0 5850.1þ i0 5820.9þ i0 5793.3þ i0 5734.4þ i0
5985.6þ i29.1 5974.1þ i26.8 5969.5þ i24.6 5965.8þ i22.3 5959.5þ i17.3

1In this case, only the last factor of Eq. (39) can produce a
singularity, and the analytical structure is like the one G. For the
B̄�Δ → B̄N → B̄�Δ case, that we shall study later, also the
second-to-last factor can lead to a singularity from Δ → πN,
but the binding of the B̄�Δ state does not give much phase space
for it. Hence, we apply the same rule. At the end, we check that
the width that comes out from the complex pole coincides with
that of jTj2 in the real axis.
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one of the J ¼ 3=2 state 5920 MeV. We also observe that
the higher-energy state, around 6300 MeV, has been
practically not affected by the box diagram, which is most
logical since this state couples weakly to B̄�N.
For the B̄N state of Table XVII, comparing it with the

results of Table VIII, the box diagram has reduced the energy
by about 50 MeV at qmax ¼ 750 MeV. The upper level
energy is increased by about 15 MeV for this value of qmax.

VI. I ¼ 1 STATES

With the cutoff obtained to reproduce the mass of the
Λbð5912Þ state, we proceed now to evaluate the states
corresponding to Tables II, IV, XI, and XII, which
are mostly bound states of B̄NðI ¼ 1; JP ¼ 1=2−Þ,
B̄ΔðI ¼ 1; JP ¼ 3=2−Þ, B̄�NðI ¼ 1; JP ¼ 1=2−; 3=2−Þ,
and B̄�ΔðI ¼ 1; JP ¼ 1=2−; 3=2−; 5=2−Þ. The results can
be seen in Tables XVIII–XXI with qmax ¼ 776 MeV,
together with the couplings to the different coupled
channels.

With respect to their thresholds, the binding energies for
the B̄N channel are now smaller than for I ¼ 0, as we
anticipated in view of the smaller Cij coefficients, but for
B̄Δ the binding is bigger than for the B̄N state, as discussed
earlier. We again see that we get two states in each one of
the cases but also notice that there is more mixture of the
states than for I ¼ 0. In the case of the B̄N channels, the
lower state is clearly dominated by πΣb. For the B̄Δ
channels, the upper state is dominated by πΣ�

b. For the
B̄�N channels, the lower state is dominated by B̄�N and the
higher one by ρΣb. For the B̄�Δ channels, the lower state is
dominated by B̄�Δ and the upper one by ρΣ�

b.

VII. BOX DIAGRAM FOR I ¼ 1 STATES

We now evaluate the contribution of the box diagram to
the I ¼ 1 states made from B̄N, B̄�N, B̄Δ, and B̄�Δ.
(a) B̄N, I ¼ 1.—The isospin I ¼ 1 state is now

jB̄N; I ¼ 1; I3 ¼ 0i ¼ 1ffiffiffi
2

p ðjB̄0ni − jB̄−piÞ: (45)

TABLE XVIII. The coupling constants to various channels for certain poles in the I ¼ 1 sector of B̄N and coupled channels.

6002.8þ i66.2 B̄N πΣb πΛb ηΣb

gi 5.69þ i1.62 1.80þ i1.00 0.39þ i0.21 0.37þ i0.20
giGII

i −8.60 − i4.12 −72.70 − i12.65 −16.12þ i5.73 −2.95 − i2.01

6179.4þ i61.4 B̄N πΣb πΛb ηΣb

gi 6.76 − i3.03 0.30þ i0.80 1.11 − i0.03 1.07 − i0.03
giGII

i −21.71þ i1.38 −30.00 − i13.31 −14.96þ i47.71 −12.74 − i1.63

TABLE XIX. The coupling constants to various channels for
certain poles in the I ¼ 1 sector of B̄Δ and coupled channels.

5971.9þ i0 B̄Δ πΣ�
b ηΣ�

b

gi 10.79 0.61 0.85
giGII

i −10.89 −16.51 −6.69

6073.0þ i77.2 B̄Δ πΣ�
b ηΣ�

b

gi 7.67 − i5.14 1.43þ i1.36 0.81 − i0.36
giGII

i −9.59þ i4.83 −70.37 − i20.89 −7.87þ i2.27

TABLE XX. The coupling constants to various channels for certain poles in the I ¼ 1 sector of B̄�N and coupled channels.

6202.1þ i0 B̄�N ρΣb ρΛb ωΣb ϕΣb

gi 7.29 1.22 1.05 0.59 0.83
giGII

i −20.66 −8.67 −11.20 −4.11 −3.62

6477.2þ i5.0 B̄�N ρΣb ρΛb ωΣb ϕΣb

gi 0.21 − i0.62 3.68 − i0.08 0.25þ i0.12 0.14þ i0.07 0.20þ i0.10
giGII

i 4.23þ i2.05 −50.58þ i0.19 −9.39þ i2.89 −1.85 − i0.94 −1.29 − i0.64

TABLE XXI. The coupling constants to various channels for
certain poles in the I ¼ 1 sector of B̄�Δ and coupled channels.

6049.2þ i0 B̄�Δ ρΣ�
b ωΣ�

b ϕΣ�
b

gi 21.14 0.85 1.03 1.46
giGII

i −22.11 −4.70 −5.66 −5.30

6491.9þ i0 B̄�Δ ρΣ�
b ωΣ�

b ϕΣ�
b

gi 0.66 3.76 0.13 0.18
giGII

i −2.19 −50.69 −1.71 −1.20
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The counting of isospin done before can be repeated,
and we simply find that a factor of 3ffiffi

2
p gets converted in

1ffiffi
2

p in the B̄N → B̄�N transition. We thus get a factor of

9 smaller contribution than for I ¼ 0 from the box,
and we neglect it.

(b) B̄�N, I ¼ 1.—We have the same suppression factor as
before, and we also neglect it.

(c) B̄Δ, I ¼ 1.—The state of B̄Δ with I ¼ 1 is given by

jB̄Δ; I ¼ 1; I3 ¼ 1i ¼
ffiffiffi
3

4

r
jB̄−Δþþi þ

ffiffiffi
1

4

r
jB̄0Δþi:

(46)

The diagram under contribution is now in Fig. 8. We
must also substitute f

mπ
~σ · ~qτλ in the case of nucleons

by fΔ
mπ

~SΔ · ~qTλ
Δ, where ~SΔ and ~TΔ are the ordinary spin

and isospin matrices, respectively, of the Δ.

We have [66]

fΔ
f

¼ 4

5

�
where

f
mπ

¼ F þD
2f

�
: (47)

Using the appropriate Clebsch-Gordan coefficient for
~TΔ, we find that the term corresponding to the box in
Fig. 8 is now given by

δV ¼ FAC
∂ ~I1
∂m2

π
; (48)

where

~I1 ¼
5

9

Z
d3q
ð2πÞ3 4~q

4
1

2ωB� ð~qÞ
MΔ

EΔð~qÞ
Num
Den

; (49)

with Num and Den the expressions of Eqs. (38) and
(39), respectively, but putting the appropriate masses.

(d) B̄�Δ, I ¼ 1.—In this case, we proceed as before, and
everything is formulated in the same way but now
I01 → ~I01, with

~I01 ¼
5

9

Z
d3q
ð2πÞ3

4

3
~q4

1

2ωBð~qÞ
MΔ

EΔð~qÞ
Num
Den

: (50)

To reach this formula, we have made an average over the
spins of the initial Δ, taking the same initial and final third
spin component of the Δ. This is in consonance with the
fact that, since we have a reduction factor of about 1=2, the
splitting of spin levels is now smaller than for B̄�N, and
accepting uncertainties larger than 5 MeV we do not worry
about it. Consequently, we do not evaluate the I2, I3, I02, and
I03 terms that produced the spin splitting.

VIII. FURTHER DECAY CHANNELS
OF B̄Δ AND B̄�Δ

In this section, we evaluate the box diagram correspond-
ing to Fig. 9. We thus consider the intermediate B̄N or B̄�N
channels. Should the binding B̄Δ and B̄�Δ states be not
bigger than the Δ and N mass differences, B̄N and B̄�N
would provide decay channels of the states. In principle, we
should also consider the B̄Δ and B̄�Δ intermediate states
for the B̄N and B̄�N states, but, considering the binding,
these intermediate states are about 600 MeV away in
energy, and we do not consider them. The changes are
also simple: We must substitute

f
mπ

~σ · ~qτλ →
fπNΔ

mπ

~S · ~qTλ; (51)

where now ~Sð~TÞ is the transition spin (isospin) operator
from spin (isospin) 3=2 to 1=2, with the normalization for
Sþμ in the spherical basis

h3=2MjSþμ j1=2mi ¼ Cð1=2 1 3=2;mμMÞ; (52)

FIG. 8. Diagrammatic representation of the transition of
B̄Δ → B̄�Δ → B̄Δ.

FIG. 9. Diagrammatic representation of the B̄�N in the intermediate state (left) and the B̄N in the intermediate state (right).
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with Cð·Þ a Clebsch-Gordan coefficient, and we have the
property [67]

X
M

SijMihMjSj ¼
2

3
δij − i

1

3
ϵijkσk; (53)

for Si, Sj in the Cartesian basis. Also from Ref. [67], we
take fπNΔ=f ¼ 2.25. For the isospin transition, in addition
to the I ¼ 1 B̄Δ state of Eq. (46), we need

jB̄N; I ¼ 1; I3 ¼ 1i ¼ jB̄0pi: (54)

The π0pΔþ vertex for Tλ
Δ gives us

ffiffiffiffiffiffiffiffi
2=3

p
, and the πþpΔþþ

gives us ð−1Þ (recall phase used jπþi ¼ −j1; 1i).
Once again, making the average over Δ spins as before,

we obtain the results for δV2 given by the same formalism
as before, substituting

I1 → ~I1¼
8

81

�
fπNΔ

f

�
2
Z

d3q
ð2πÞ3 4~q

4
1

2ωB�ð~qÞ
MN

ENð~qÞ
Num
Den

;

(55)

for the B̄Δ → B̄�N → B̄Δ process, and

I01 → ~I01 ¼
8

81

�
fπNΔ

f

�
2
Z

d3q
ð2πÞ3

4

3
~q4

1

2ωBð~qÞ
MN

ENð~qÞ
Num
Den

;

(56)

for the B̄�Δ → B̄N → B̄�Δ process, with Num and Den
given by Eqs. (38) and (39), respectively, but substituting
the masses by the appropriate ones.
We show our results with the contribution of box

diagrams, seen in Figs. 8 and 9, in Tables XXII and
XXIII for the B̄Δ and B̄�Δ and their coupled channels.
We can see that the effect of the box with B̄Δ or B̄�Δ

intermediate states is a reduction of the mass of the lower

state by about 10–15MeV,with an extra reduction of about 15–
25 MeV from the box with intermediate B̄N and B̄�N states.
The upper state is not much modified by the box diagrams.

IX. SUMMARY OF THE RESULTS

Finally, since we have many intermediate results, we
summarize here the final results that we get for the states,
with qmax ¼ 776 MeV, which we used to fix one of the Λb
energies. The results are shown in Table XXIV, where we
also write for a quick intuition the main channel of the state.
In summary, we predict six states with I ¼ 0, two of

them corresponding to the Λbð5912Þ and Λbð5920Þ, and
eight states with I ¼ 1. The energies of the states range
from about 5800 to 6500 MeV.
It is interesting to compare the results obtained here with

those of Ref. [31]. In this later work, the same interaction as
here is used for the main diagonal channels, but the transition
between different coupled channels is not obtained through
vector or pion exchange as done here, but by invoking a
combined SU(6) and heavy quark spin symmetry. In
Ref. [31], the states of I ¼ 1 are not investigated, but for
I ¼ 0 four states are obtained; two of them, with J ¼ 1=2,
3=2, are also associated to the Λbð5912Þ and Λbð5920Þ. In
spite of the differences in the input, there are common features
in the results. The two states associated to the Λbð5912Þ and
Λbð5920Þ exhibit, as here, a substantial coupling to B̄�N.
There is also a 1=2− state in Ref. [31] at 5797MeVwhich we
find at 5820 MeV, only 33 MeV higher, and another state at
6009 MeV that we find at 5969 MeV, 40 MeV below. The
mostly ρΣb state found here at 6316 MeV, basically degen-
erate in J ¼ 1=2,3=2,was either not foundor not searched for
in Ref. [31] because of its higher mass. The qualitative
agreement between the results of the two approaches is
remarkable and gives further support to the common pre-
dictions. In addition,we have investigated states of I ¼ 1, and

TABLE XXII. Poles with a box diagram in the I ¼ 1 sector of
B̄Δ and its coupled channels with qmax ¼ 776 MeV: δV1 is the
B̄�Δ box, and δV2 is the B̄�N box (unit, MeV).

No box V þ δV1 V þ δV2 V þ δV1 þ δV2

5971.9þ i0 5957.8þ i0 5949.4þ i0 5932.9þ i0
6073.0þ i77.2 6069.1þ i80.7 6066.3þ i81.7 6063.8þ i83.5

TABLE XXIII. Poles with a box diagram in the I ¼ 1 sector of
B̄�Δ and its coupled channels with qmax ¼ 776 MeV: δV1 is the
B̄Δ box, and δV2 is the B̄N box (unit, MeV).

No box V þ δV1 V þ δV2 V þ δV1 þ δV2

6049.2þ i0 6039.1þ i0 6032.2þ i0 6022.9þ i0
6491.9þ i0 6491.4þ i0 6493.0þ i1.0 6491.7þ i0.8

TABLE XXIV. Energies and widths of the states obtained and
the channels to which the states couple most strongly.

Main channel J I ðE;ΓÞ [MeV] Exp.

B̄N 1=2 0 5820.9, 0
πΣb 1=2 0 5969.5, 49.2
B̄�N 1=2 0 5910.7, 0 Λbð5912Þ
B̄�N 3=2 0 5920.7, 0 Λbð5920Þ
ρΣb 1=2 0 6316.6, 2.8
ρΣb 3=2 0 6315.7, 3.8
B̄N, πΣb 1=2 1 6179.4, 122.8
πΣb 1=2 1 6002.8, 132.4
B̄Δ, πΣ�

b 3=2 1 5932.9, 0
πΣ�

b 3=2 1 6063.8, 167.0
B̄�N 1=2, 3=2 1 6202.2, 0
ρΣb 1=2, 3=2 1 6477.2, 10.0
B̄�Δ 1=2, 3=2, 5=2 1 6022.9, 0
ρΣ�

b 1=2, 3=2, 5=2 1 6491.7, 1.6
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we find quite a few, some of them narrow enough for a clear
experimental observation.

X. CONCLUSIONS

In this work, we studied the interaction of B̄N, B̄Δ, B̄�N,
and B̄�Δ states with its coupled channels by using
dynamics mapped from the light quark sector to the heavy
one. The starting point was to assume that the heavy quarks
act as spectators in the dominant terms of the interaction.
Then we studied pion exchange and vector exchange and
obtained the results of pion exchange in the heavy quark
spin symmetric approach combined with results of lattice
QCD. The same procedure led us to the standard interaction
of the extended local hidden gauge approach from the
exchange of light vector mesons. With these elements of
the interaction, supplemented with the subleading terms, in
the large heavy quark mass counting, obtained from the
exchange of heavy mesons in the local hidden gauge
approach, we studied the interaction of the B̄N, B̄Δ,
B̄�N, and B̄�Δ with their coupled channels πΣb, πΛb,
and ηΣb (for the B̄N); πΣ�

b and ηΣ�
b (for the B̄Δ); ρΣb, ωΛb,

ϕΛb, ρΣ�
b, ωΣ�

b, and ϕΣ�
b (for the B̄

�N); and ρΣ�
b, ωΣ�

b, and
ϕΣ�

b (for the B̄�Δ), and we searched for poles of the
scattering matrix in different states of spin and isospin. We
found six states in I ¼ 0, with one of them degenerate in
spin J ¼ 1=2, 3=2, and eight states in I ¼ 1, less bound,
two of them degenerate in spin J ¼ 1=2, 3=2, and two more
degenerate in spin J ¼ 1=2, 3=2, 5=2. The couplings of the
states to the different channels were evaluated, together
with their wave function at the origin, in order to get a
feeling of which are the largest building blocks in those
molecular states. In particular, when studying the inter-
action of B̄�N with its coupled channels, we found two
states in I ¼ 0, degenerate in spin J ¼ 1=2, 3=2, which
couple mostly to B̄�N. The degeneracy is broken when the

pion exchange is considered, allowing a mixture with
intermediate B̄N states. Then we find that the mass of
the states is close to 5910 MeV for natural values of the
regularizing cutoff. More important, the splitting between
the two states when the pion exchange is considered is
found to be of the order of 10 MeV, rather independent of
the cutoff used. This feature was considered relevant in
view of the existence of the Λbð5912Þ and Λbð5920Þ states,
which are separated by this amount of energy. A fine-tuning
of the cutoff was then done to match the exact energy of one
of these states, and then it was used subsequently to make
predictions in all the other sectors of spin and isospin,
leading to the states reported above. We think that the use of
realistic dynamics, with strict fulfilment of heavy quark
spin-flavor symmetry, makes the results obtained here
rather accurate and should serve as a guideline for future
experimental searches of baryon states with open beauty.
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