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It is shown that the large Nc limit of QCD with quarks in the two-index antisymmetric color
representation [QCD(AS)] has narrow tetraquark states with exotic flavor quantum numbers. They decay
into mesons with a width that is parametrically Oð1=N2

cÞ. Tetraquarks with nonexotic quantum numbers
mix at leading order with mesons of the same overall quantum numbers. QCD(AS) at Nc ¼ 3 corresponds
to ordinary QCD; its large Nc limit represents an alternative starting point for a 1=Nc expansion to the
standard one with quarks in the fundamental color representation.
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Our understanding of QCD has been greatly aided by the
study of the large Nc (number of color charges) limit and
the 1=Nc expansion introduced by ’t Hooft 40 years ago
[1]. The limit takes Nc → ∞ and the coupling constant
g → 0 in such a way as to keep g2Nc fixed. In a few special
cases, such as QCD in 1þ 1 dimensions [2] or QCD in the
limit of heavy quark masses [3,4], the approach can be used
as a basis for direct quantitative calculations of observables.
However, typically the approach has been more useful in
providing a qualitative understanding of many aspects of
hadronic phenomena.
It has generally been thought that exotic hadrons are

qualitatively understood in large Nc QCD, where by
“exotic” one means hadrons that do not fit into a classi-
fication scheme based upon a simple quark model.
Quantum-number exotic hadrons are ones that, by quantum
numbers, cannot be q̄q or qqq states. It has long been
known that glueballs exist as long-lived particles (i.e.,
resonances that are parametrically narrow) at large Nc and
that, in this limit, they do not mix with mesons [3]. It has
also been known since the late 1990s that quantum-number
exotic “hybrid mesons”—mesons with quantum numbers
that cannot be constructed out of a pure q̄q state in a simple
quark model but require a “valence gluon,” such as
JPC ¼ 1−þ—must exist as long-lived particles [5]. It has
also long been believed that at large Nc tetraquarks—states
composed of two quarks and two antiquarks—are forbid-
den at large Nc [3,6].
While the commonly understood situation regarding

glueballs and hybrids remains uncontroversial, recently
Weinberg pointed out that the standard argument against
the existence of resonant tetraquark states is not valid [7]. It
is useful to summarize why tetraquarks were thought to be
impossible at large Nc. Witten and Coleman [3,6] both

point out that, when a correlation function for a tetraquark
source of the form J ¼ q̄qq̄q is computed, the leading-
order contribution is OðN2

cÞ and consists of two discon-
nected quark loops, each one of which has the quantum
numbers of an ordinary meson, and when cut, has a color-
singlet q̄q structure. From this argument, it was concluded
that tetraquark sources produce only two-meson states and
nothing else. However, as Weinberg observed, this con-
clusion does not follow: The leading connected contribu-
tion is OðN1

cÞ and is not of a two-meson character; nothing
in this argument excludes a tetraquark pole associated
with it.
A nice way to see that Weinberg’s critique is correct

is to consider the case in which the tetraquark source is a
vector-isovector of the form JμaðxÞ¼ ϵabcðq̄ðxÞγ5τbqðxÞÞ∂μ

ðq̄ðxÞγ5τcqðxÞÞ, which has the quantum numbers of the ρ
meson. Its leading-order two-point correlation function is
indeed represented as a disconnected OðN2

cÞ diagram
consistent with two pions in a vector-isovector configura-
tion. However, one cannot conclude from this fact that there
is no narrow vector-isovector hadron in the theory. Indeed,
the ρmeson exists, couples to the source, and contributes to
the correlation function at OðN1

cÞ. Similarly, in the case
of a quantum-number exotic tetraquark channel (i.e., one
whose quantum numbers cannot be obtained from a pure
q̄q state), one cannot conclude just based on the fact that the
disconnected part of the correlator couples to two mesons
that no tetraquark state exists.
Witten [3] gives a second argument that tetraquarks

cannot exist as narrow resonances at large Nc: Meson-
meson interactions are weak, with scattering amplitudes
scaling as N−1

c , and hence a two-meson interacting state
does not have the strength to form a bound or resonant
tetraquark. However, this argument is also spurious.
Consider again two pions with vector-isovector quantum
numbers. Despite the fact that the interaction is weak at
large Nc, they do in fact resonate into a narrow ρ meson.
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In a similar manner, narrow [width OðN−1
c Þ] quantum-

number exotic tetraquarks coupled to two mesons with a
strength OðN−1=2

c Þ are fully compatible with meson-meson
interactions whose scattering amplitudes scale as N−1

c .
For many observables, the large Nc world is known to

behave similarly to the physical world of Nc ¼ 3. Thus,
one may be more likely to interpret some scalar mesons
such as the f0(980) as tetraquarks (as has been commonly
suggested over the years [8–16]), if tetraquarks exist at
large Nc. Weinberg’s analysis has sparked some interesting
work on tetraquarks at large Nc. Two notable results are
the observation by Knecht and Peris [17] that, if narrow
tetraquarks do exist at large Nc, the parametric dependence
of the width on Nc depends upon the flavor content of the
state, and Lebed’s demonstration [18] that the existence of
narrow tetraquarks requires a rather subtle Nc dependence
of the coupling of paired bilinear sources to the tetraquark
state in the limit in which the bilinear sources approach the
same spatial point.
Weinberg’s analysis does not resolve a central question.

It shows that previous attempts to rule out tetraquarks at
largeNc are flawed, but it does not show that tetraquarks do
exist. The purpose of the present note is to show that, while
the status of tetraquarks in the most common extrapolation
from Nc ¼ 3 to large Nc remains unresolved at present,
there exists a different but equally valid extrapolation in
which narrow tetraquarks can be shown necessarily to exist.
The extrapolation in question puts the quarks into the two-
index antisymmetric color representation [19–23] (rather
than the color fundamental representation), and so is often
denoted QCD(AS). At Nc ¼ 3 the two-index antisymmet-
ric representation is three dimensional, and the theory is
identical to QCD. However, the extrapolation to large Nc is
different and forms the basis for a distinct 1=Nc expansion.
A principal difference between the two expansions is that
quark loops are not suppressed in QCD(AS), which leads
to a different Nc counting for hadronic vertices involving
mesons and to leading-order glueball-meson mixing. There
has been considerable interest in QCD(AS) at large Nc due
to its beautiful formal properties, including the emergence
of various dualities [20–23]. At least for the case of baryons
[24–26], it can be shown that mass relations based on QCD
(AS) have considerable phenomenological predictive
power [27,28], as do relations based on the more standard
variant. In general, one expects the expansion that does the
better job describing the data for Nc ¼ 3 to depend upon
the observable.
Since QCD(AS) includes quark loops at leading order,

one expects that “ordinary” mesons and tetraquarks might
be mixed. Thus, distinguishing between mesons and
tetraquarks can be problematic. Here we focus on “true”
tetraquarks—namely, ones that, at leading order in the
1=Nc expansion, contain only components with at least
two quarks and two antiquarks, and show that such states
must exist as narrow hadrons at large Nc in QCD(AS). We

accomplish this separation by considering states with so-
called exotic quantum numbers—states that, by construc-
tion, cannot be composed of a single q̄q pair, such as an
isospin-two hadron.
The basic strategy is to use the same sort of diagram-

matic analysis commonly used in standard large Nc studies
of hadrons and to make appropriate modifications. One can
repeat the standard double-line color-flow analysis of ’t
Hooft [1], but now quarks as well as gluons are represented
by double lines. In contrast to the adjoint-representation
gluons, for the quarks both color lines flow in the same
direction. Consider the two-point correlation function for a
tetraquark source operator of the following sort:

JðxÞ ¼
X

A;B;a;b;c;d

CA;Bq̄abðxÞΓAqbcðxÞq̄cdðxÞΓBqdaðxÞ;

(1)

where lowercase letters represent fundamental color
indices, the quark fields are antisymmetric in color
ðqab ¼ −qbaÞ, explicit flavor and Dirac indices for the
quarks are suppressed, and ΓA;B represent matrices in Dirac
and flavor space. Spin and flavor quantum numbers are
fixed by the choice of CAB. The key point is that the source
J as a whole is a color singlet, but the colors couple the
quarks in such a way that one cannot split J into two color
singlets for Nc > 3. Note that color-fundamental quarks
cannot be entangled in this way for any Nc, since Fierz
reordering always allows such quarks with contracted color
indices to be combined into color-singlet bilinears.
The two-point correlation function of the J’s is domi-

nated at large Nc by planar diagrams connecting the two
sources. As the sources involve four separate color indices
that are summed over, one expects that these diagrams scale
at leading order as N4

c, which is indeed the case. As an
example, consider diagram (a) in Fig. 1, which contains six
coupling constants. The color flow is shown in diagram (b),
which has seven color loops. The seven color loops yield a
factor of N7

c while the six coupling constants contribute a
factor of N−3

c , yielding an overall scaling of N4
c, as

advertised. More generally, any diagram can be constructed
by starting with a skeleton of no gluons and the minimum
number of quark loops, and then adding in planar gluons or
planar quark loops one at a time. Each of them adds a color
loop (a factor ofNc) and two coupling constants (a factor of
N−1

c ), and hence does not alter the Nc counting.
The central issue is the color structure of the states

created by the source. Consider diagram (a) of Fig. 1 in
more detail. The vertical line represents a possible cut that
exposes the intermediate state created. Its color structure is
illustrated in diagram (b); we see that the color structure
of the quarks and gluons making up that state is
q̄abAb

cqcdAd
eAe

fq̄fgqga. The key point is that it is a
single-color trace object. It cannot be split into two separate
color-singlet combinations except due to subleading
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contributions in 1=Nc in which two colors accidentally
coincide. If one assumes confinement so that all quarks and
gluons are bound into hadrons, this observation means that
contributions from this cut of this diagram correspond to a
single hadron. Moreover, it is easy to see that this result is
generic: All cuts of all leading-order diagrams using the
source J have a single-color trace structure. Thus, one
concludes that the correlation function at leading order is
saturated by single-hadron states; this result is indicated
by diagram (c) of Fig. 1. If the source creates states that
include ones with exotic quantum numbers, one concludes
that at large Nc quantum-number exotic tetraquarks must
exist as narrow hadrons in the theory. This is the principal
result of this paper.
The parametric dependence upon Nc of the interaction of

tetraquarks with themselves and with other hadrons can be

determined by studying higher-point correlation functions.
Note that from the analysis above, J creates a free
[propagator ∼N0

c] tetraquark with an amplitude ∼N2
c in

QCD(AS), while standard meson and glueball sources
create hadrons with an amplitude of ∼N1

c. Consider, as a
concrete example, the tetraquark-meson-meson vertex. One
might think that a typical diagram contributing to three-
point function can be obtained from a typical contribution
to the tetraquark two-point function by simply removing a
tetraquark source and adding two meson sources. However,
this cannot be done: The tetraquark source J scrambles the
colors of the various sources. To reconnect the colors when
removing J, one needs to add at least one gluon exchange,
as in going from the diagrams in Fig. 1 to those in Fig. 2.
Note that, in adding the gluon, one does not change the
number of color loops as compared to the two-point
function [there are still seven in diagram (b) of Fig. 2],

(a)

(c)

(b)

FIG. 1. Diagram (a) indicates a typical planar Feynman dia-
gram that contributes to the leading-order (in Nc) two-point
correlation function for sources of the form of Eq. (1). The circle
with a cross indicates the source. Diagram (b) shows the ’t Hooft
color-flow diagram associated with diagram (a). Diagram (c) is a
hadronic-level depiction, indicating that the leading-order behav-
ior is associated with the propagation of single hadron states.
The vertical short-dashed lines indicate a cut of the diagram
associated with one particular intermediate state.

(a)

(b)

(c)

FIG. 2. Diagram (a) indicates a typical planar Feynman dia-
gram that contributes to the leading-order (in Nc) three-point
correlation function for a tetraquark source of the form of Eq. (1)
and two quark bilinear sources. The large circle with a cross
indicates the tetraquark source, while the smaller ones indicate
the bilinear sources. Diagram (b) shows the ’t Hooft color-flow
diagram associated with diagram (a). Diagram (c) is a hadronic-
level depiction of the leading-order behavior.
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but the graph has two additional coupling constants [there
are eight in diagram (a) of Fig. 2], which costs an additional
factor ofN−1

c . Thus, the overall Nc scaling of the diagram is
N3

c. This scaling is generic; the leading contribution to
three-point functions with one tetraquark source and two
ordinary meson sources is N3

c.
At the hadronic level, this correlation function is domi-

nated by a single tetraquark created by the source J with
amplitude ∼N2

c and each meson source producing a single
meson with amplitude ∼Nc, for a total of N4

c. The hadrons
propagate and interact at a vertex, as in diagram (c) of
Fig. 2. Together, the amplitudes for creating the hadrons
(∼N4

c) folded in with the propagation of each hadron (∼N0
c)

and the tetraquark-meson-meson interaction vertex must
yield the full correlation function (∼N3

c). Thus, the tetra-
quark-meson-meson interaction vertex must scale as 1=Nc,
and the decay width of a tetraquark into two mesons scales
as 1=N2

c—which turns out to be the leading behavior for
the tetraquark width: As noted earlier, at large Nc the
tetraquark becomes stable. Using similar reasoning, it is
easy to show that Γn, a general hadronic vertex with n
hadrons (tetraquarks, glueballs, hybrids, and mesons),
scales with Nc as

Γn ∼ N2−n
c : (2)

In deriving Eq. (2), the key first step is to show that the
Nc scaling of a diagramD containing nT tetraquark sources
and any number of meson, hybrid, and gluon sources
scales as

D ∼ N2þnT
c : (3)

One consequence of Eq. (2) is that glueballs, hybrids, and
mesons all mix at leading order in QCD(AS), if allowed by
quantum numbers (as can be seen from the two-point
functions). Since the tetraquarks are exotic they do not mix
with other hadrons. Note that tetraquarks sourced by a
variant of Eq. (1) in which the bilinears are separately color
singlets may still have exotic quantum numbers, but they
would mix with conventional two-meson states at leading
order, as discussed above.
The analysis goes through without substantial formal

changes for the case of nonexotic quantum numbers, and
Eq. (2) continues to hold. However, tetraquarks and mesons
with nonexotic overall quantum numbers can mix at
leading order, as indicated by Eq. (2). This is hardly

surprising: Quark loops are not suppressed in QCD(AS).
A q̄q pair of the same flavor in a tetraquark can annihilate
into a gluon, leaving behind a single q̄q pair. In the case of
nonexotic quantum numbers, such a pair necessarily
occurs. Thus, it is generally not possible to distinguish
between tetraquarks and mesons with nonexotic quantum
numbers.
One might hope that, if the theory has an exact flavor

symmetry, there exist true tetraquarks with nonexotic
overall quantum numbers that (at leading order) only
contain components with two or more q̄q pairs and thus
do not mix at leading order with ordinary mesons. This
scenario requires that the annihilation amplitude somehow
cancels due to symmetry. However, such configurations do
not appear to exist. Such a tetraquark would be natural for a
source in which the color is in the configuration of Eq. (1),
while the flavor is in a configuration such that neither q̄q
pair has a flavor-singlet component. At first sight, con-
structing such a state seems easy: For the case of two
degenerate flavors, simply put each pair into an isovector
configuration and then combine them to total isospin zero
or one, yielding nonexotic overall quantum numbers.
However, there are two distinct ways to form q̄q pairs
since each quark could pair with either antiquark; to prevent
annihilation of a pair, the flavor configuration must be
such that, with either pairing, no flavor singlet component
exists for either pair. But no flavor configuration with this
property exists.
This discussion suggests that the question of whether the

f0ð980Þ or other mesons are tetraquarks is not entirely well
posed at large Nc in QCD(AS); such states are mixed with
both tetraquark and ordinary mesonic components, and the
mixing is not parametrically suppressed. However, a
scenario in which the mixing is numerically small and
the state is dominated by the tetraquark configuration is
fully consistent with what is known about QCD(AS) at
large Nc. Finally, it should be noted that this type of
analysis does not only imply tetraquarks. Hexaquarks,
octaquarks and higher configurations with exotic quantum
numbers exist as narrow states in QCD(AS) at large Nc,
while such states with nonexotic quantum numbers mix
with ordinary hadrons.
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