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In this paper, by employing the kT factorization theorem, we calculate first the next-to-leading-order
(NLO) twist-3 contributions to the pion electromagnetic form factors in the πγ� → π process. From the
analytical and numerical calculations we find the following points: (a) for the leading-order (LO) twist-2,
twist-3, and the NLO twist-2 contributions, our results agree very well with those obtained in previous
works, (b) we extract out two factors Fð1Þ

T3 ðxi; t; Q2Þ and F̄ð1Þ
T3 ðxi; t; Q2Þ, which describe directly the NLO

twist-3 contributions to the pion electromagnetic form factors FþðQ2Þ, (c) the NLO twist-3 contribution is
negative in sign and cancels partially with the NLO twist-2 part, so the total NLO contribution can therefore
provide a roughly�20% corrections to the total LO contribution in the considered ranges ofQ2, and (d) the
theoretical predictions for Q2FþðQ2Þ in the low-Q2 region agree well with currently available data, which
can be improved by the inclusion of the NLO contributions.
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I. INTRODUCTION

The perturbative QCD (pQCD) factorization approach,
based on the kT factorization theorem [1–3], has been used
to deal with the inclusive and exclusive processes [4–7]. In
the kT factorization theorem, the end-point singularities are
removed by the small but nonzero transverse momentum kT
of the parton propagators. For many years, the application
of the kT factorization theorem was mainly at the leading-
order (LO) level. But the situation changed a lot recently. In
Refs. [8–10], the authors calculated the next-to-leading-
order (NLO) twist-2 contributions to the π transition form
factor, π electromagnetic form factor and B → π form
factor respectively, obtained the infrared finite kT depen-
dent NLO hard kernel, and therefore confirmed the
applicability of the kT factorization to these exclusive
processes at the NLO and the leading twist (twist-2) level.
This fact tell us that the kT factorization approach can also
be applied to the high-order contributions as mentioned
in Ref. [11].
In the framework of the pQCD factorization approach,

the contributions to the form factors include four parts.
(i) The leading-order contribution includes the leading-

order twist-2 (LO-T2) contribution and the leading-
order twist-3 (LO-T3) contribution.

(ii) The NLO contribution contains the NLO twist-2
(NLO-T2) contribution and the NLO twist-3 (NLO-
T3) contribution.

At present, the first three parts, namely the LO-T2, LO-T3,
and NLO-T2 contributions, have been evaluated in
Refs. [8–10], but the NLO-T3 contribution is still
absent now.

At leading-order level, the LO-T2 part is smaller than the
LO-T3 part, by a ratio of ∼34% against ∼66% as shown in
Refs. [9,12,13]. The NLO-T2 part is around 20%–30% of
the total leading-order contribution (i.e., LO-T2 plus LO-
T3 part) in the lowQ2 region. Since the LO-T3 contribution
is large, the remaining unknown fourth part, the NLO twist-
3 contribution, may be rather important and should be
calculated in order to obtain the pQCD predictions for
relevant form factors at the full NLO level, and to
demonstrate that the kT factorization theorem is an sys-
tematical tool.
In this paper we concentrate on the calculation for the

NLO twist-3 contribution to the π electromagnetic form
factor, which corresponds to the scattering process
πγ⋆ → π. Our work represents the first calculation for
the NLO twist-3 contribution to this quantity in the kT
factorization theorem.
We know that the collinear divergences would appear

when the massless gluon is emitted from the light external
line as the gluon is parallel to the initial- or the final-state
pion which are assumed to be massless. The soft diver-
gences would come from the exchange of the massless
gluon between two on-shell external lines. In this work
light partons are considered to be off-shell by k2T to regulate
the infrared divergences in both the QCD quark diagrams
and the effective diagrams for pion wave functions. It’s a
nontrivial work to verify that the collinear divergences from
the quark-level diagrams offset those from the pion wave
functions and the soft divergences cancel among quark-
level diagrams exactly at the twist-3 level as well as at the
leading twist-2 case [9]. As demonstrated in Refs. [9,10],
both the large double logarithms αs ln2ðkTÞ and αs ln2ðxiÞ,
here with xi being the parton momentum fraction of the*xiaozhenjun@njnu.edu.cn
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antiquark in the meson wave functions, could be absorbed
through the resummation technology. The double logarithm
αs ln2ðkTÞ would be absorbed into the π meson wave
functions and then been summed to all orders in the
coupling constant αs by the kT resummation [3]. The jet
function would be included when exist the end-point
singularity in the hard kernel, and then the double loga-
rithm αs ln2ðxiÞ would be summed to all orders by the
threshold resummation [14–16]. The renormalization scale
μ and the factorization scale μf are introduced in the high-
order corrections to the QCD quark diagrams and the
effective diagrams, respectively. With the appropriate
choice of the scale μ and μf, say setting them as the
internal hard scale as postulated in [9], the NLO corrections
are under control.
This paper is organized as follows. In Sec. II, we give a

brief review about the evaluations of the LO diagrams for
the process πγ� → π, for both the twist-2 part and twist-3
part. In Sec. III,Oðα2sÞQCD quark diagrams for the process
will be calculated with the inclusion of the twist-3 con-
tributions. The convolutions of OðαsÞ (NLO) effective
diagrams for the meson wave functions and OðαsÞ (LO)
hard kernel would also be presented in this section, then the
kT-dependent NLO hard kernel at twist-3 will be obtained.
Section IV contains the numerical analysis. With appro-
priate choices for the renormalization scale μ, the factori-
zation scale μf and the input meson wave functions, we
make the numerical calculations for all four parts of the LO
and NLO contributions to the pion electromagnetic form
factor in the πγ� → π process. Section V contains the
conclusions.

II. LO TWIST-2 AND TWIST-3 CONTRIBUTIONS

The leading-order hard kernels of the π electromagnetic
form factor as shown in Fig. 1 are calculated in this section.
The πγ⋆ → π form factors are defined via the matrix
element

hπðp2ÞjJμjπðp1Þi ¼ f1ðq2Þpμ
1 þ f2ðq2Þpμ

2

¼ Fþðq2Þðpμ
1 þ pμ

2Þ; (1)

where p1 (p2) refers to the momentum of the initial (final)
state pion, q ¼ p1 − p2 is the momentum transferred in the
weak vertex. Using the same definitions for the leading
case as being used in Ref. [9], the momentum p1 and p2 are
chosen as

p1 ¼ ðpþ
1 ; 0; 0TÞ; p2 ¼ ð0; p−

2 ; 0TÞ; (2)

with q2 ¼ −2p1 · p2 ¼ −Q2. According to the kT factori-
zation, k1 ¼ ðx1pþ

1 ; 0; k1TÞ in the initial pion meson and
k2 ¼ ð0; x2p−

2 ; k2TÞ in the final pion meson as labeled in
Fig. 1, and x1 and x2 are the momentum fractions. The
following hierarchy is postulated in the small-x region,

Q2 ≫ x2Q2 ∼ x1Q2 ≫ x1x2Q2 ≫ k21T; k
2
2T; (3)

The following Fierz identity is employed to factorize the
fermion flow:

IijIlk ¼
1

4
IikIlj þ

1

4
ðγ5Þikðγ5Þlj þ

1

4
ðγαÞikðγαÞlj

þ 1

4
ðγ5γαÞikðγαγ5Þlj þ

1

8
ðσαβγ5Þikðσαβγ5Þlj: (4)

The identity matrix I here is a four-dimensional matrix, the
structure γαγ5 in Eq. (4) contributes at the leading twist
(twist-2), while γ5 and σαβγ5 contribute at the twist-3 level.
The identity of the SUð3Þc group,

IijIlk ¼
1

Nc
IljIik þ 2ðTcÞljðTcÞik (5)

is also employed to factorize the color flow. In Eq. (5),
ði; j; l; kÞ are the color index, Nc ¼ 3 is the number of
the colors, and Tc is the Gel-Mann color matrix of
SUð3Þc. The first term in Eq. (5) corresponds to the
color-singlet state of the valence quark and the antiquark,
while the second term will be associated with the color-
octet state.
We here consider only the subdiagram Fig. 1(a) in detail,

where the quark and antiquark form a color-singlet state.
The hard kernels of the other subdiagrams can be obtained
by simpe kinetic replacements. The wave function
Φπðpi; xiÞ for the initial and final state pion can be written
as the following form [17–19],

Φπðp1; x1Þ ¼
iffiffiffiffiffiffiffiffi
2Nc

p γ5fp1ϕ
A
π ðx1Þ

þm0½ϕP
π ðx1Þ − ðnþn− − 1ÞϕT

π ðx1Þ�g; (6)

FIG. 1 (color online). Leading-order quark diagrams for the
πγ⋆ → π form factor with the symbol (filled circle) representing
the virtual photon vertex.
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Φπðp2; x2Þ ¼
iffiffiffiffiffiffiffiffi
2Nc

p γ5fp2ϕ
A
π ðx2Þ

þm0½ϕP
π ðx2Þ − ðn−nþ − 1ÞϕT

π ðx2Þ�g; (7)

where nþ ¼ ð1; 0; 0TÞ and n− ¼ ð0; 1; 0TÞ denote the unit
vector along with the positive and negative z-axis direction,
m0 ¼ 1.74 GeV is the chiral mass of pion, Nc is the
number of colors, ϕA

π ðxiÞ are the leading twist-2 pion
distribution amplitudes, while ϕP

π ðxiÞ and ϕT
π ðxiÞ are the

twist-3 pion distribution amplitudes.
Combining the decompositions in Eqs. (4) and (5), we

then can sandwich Fig. 1(a) with the structures

1

4Nc
p1γ5;

1

4Nc
γ5p2 (8)

from the initial and final state, respectively, in order to
obtain the hard kernel Hð0Þ at twist-2 level. For the
derivation of the twist-3 hard kernel, one should sandwich
Fig. 1(a) with the following two sets of structures:

�
1

4Nc
γ5;

1

4Nc
γ5

�
;

�
1

8Nc
σαβγ5;

1

8Nc
σαβγ5

�
: (9)

Then the LO twist-3 contribution to the hard kernel from
Fig. 1(a) can be written as [20]

Hð0Þ
a ðx1;k1T;x2;k2TÞ¼ð−2ieqÞ4παs

CF

16Nc
m2

0ϕ
P
π ðx2Þ

·

�
−4pμ

2½ϕP
π ðx1Þ−ϕT

π ðx1Þ�
ðp2−k1Þ2ðk1−k2Þ2

þ4x1p
μ
1½ϕP

π ðx1ÞþϕT
π ðx1Þ�

ðp2−k1Þ2ðk1−k2Þ2
�
; (10)

where αs is the strong coupling constant, CF ¼ 4=3 is the
color factor, and eq refers to the charge of the quark
interacting with the γ� in the πγ� → π process.
The corresponding LO twist-2 contribution to the hard

kernel takes the form of

Hð0Þ
a;T2ðx1; k1T; x2; k2TÞ ¼ ðieqÞ4παs

CF

16Nc
Q2ϕA

π ðx2ÞϕA
π ðx1Þ

·
4x1p

μ
1

ðp1 − k2Þ2ðk1 − k2Þ2
(11)

It is easy to see that all parts of the initial state pion, the
twist-2 ϕA

π ðx1Þ and twist-3 ϕP
π ðx1Þ and ϕT

π ðx1Þ, provide
contributions at the leading-order level, but only the
ϕA
π ðx2Þ and ϕP

π ðx2Þ of the final state pion contribute at
the LO level, because the contribution from the ϕT

π ðx2Þ
component becomes zero when it is contracting with
the gluon propagator. For the LO twist-3 hard kernel
Hð0Þ

a ðx1; k1T; x2; k2TÞ, one can see that it contains two
Lorentz structures: the pμ

2 term and x1p
μ
1 term, which both

should be included in the numerical calculations. For the
LO twist-2 hard kernel Hð0Þ

a; T2 as given in Eq. (11), it
depends on one term x1p

μ
1 only. From previous studies in

Ref. [9,12,13], we know that the LO twist-2 part is only
about half of the LO twist-3 part. So one generally expects
that the NLO twist-3 contribution may be large and
essential for considered transitions, which is also one of
the motivations of this paper.

III. NLO CORRECTIONS

Under the hierarchy as shown in Eq. (3), only those
terms that do not vanish in the limits of xi → 0 and kiT → 0
should be kept; this fact does simplify the expressions of
the NLO contributions greatly.
From the discussions at the end of Sec. I, we know that

both Lorentz structures x1p
μ
1 and pμ

2 will contribute. From
the hard kernel Hð0Þ

a ðx1; k1T; x2; k2TÞ as given in Eq. (10),
we define those two parts of the LO twist-3 contribution,
Hð0Þ

a ðx1pμ
1Þ and Hð0Þ

a ðpμ
2Þ, as

Hð0Þ
a ðx1pμ

1Þ≡ ð−2ieqÞ4παs
CF

16Nc
m2

0ϕ
P
π ðx2Þ

×
4x1p

μ
1½ϕP

π ðx1Þ − ϕT
π ðx1Þ�

ðp2 − k1Þ2ðk1 − k2Þ2
; (12)

Hð0Þ
a ðpμ

2Þ≡ ð−2ieqÞ4παs
CF

16Nc
m2

0ϕ
P
π ðx2Þ

×
−4pμ

2½ϕP
π ðx1Þ þ ϕT

π ðx1Þ�
ðp2 − k1Þ2ðk1 − k2Þ2

; (13)

Hð0Þ
a ¼ Hð0Þ

a ðx1pμ
1Þ þHð0Þ

a ðpμ
2Þ: (14)

For Figs. 1(b)–(d), one can find the corresponding LO
twist-3 contributions by simple replacements. For the sake
of simplicity, we will generally omit the subscript “a” in
Hð0Þ

a in the following sections, unless stated specifically.

FIG. 2 (color online). Self-energy corrections to Fig. 1(a).
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A. NLO twist-3 contributions of the QCD
quark diagrams

Now we calculate the NLO twist-3 contributions to
Fig. 1(a), which comes from the self-energy diagrams, the
vertex diagrams, the box and the pentagon diagrams, as
illustrated in Figs. 2, 3, and 4, respectively. After completing
the calculations for Fig. 1(a), we can obtain the results for
other three figures—Figs. 1(b)–(d)—by simple replacements.
The ultraviolet (UV) divergences are extracted in the

dimensional reduction [21] in order to avoid the ambiguity
from handing the matrix γ5. The infrared (IR) divergences
are identified as the logarithms ln δ1, ln δ2 and their
combinations, as defined in Ref. [9],

δ1 ¼
k21T
Q2

; δ2 ¼
k22T
Q2

; δ12 ¼
−ðk1 − k2Þ2

Q2
: (15)

The self-energy corrections obtained by evaluating the
one-loop Feynman diagrams in Figs. 2(a)–(f) are of the
form

Gð1Þ
2a ¼ −

αsCF

8π

�
1

ε
þ ln

4πμ2

δ1Q2eγE
þ 2

�
Hð0Þ;

Gð1Þ
2b ¼ −

αsCF

8π

�
1

ε
þ ln

4πμ2

δ1Q2eγE
þ 2

�
Hð0Þ; (16)

Gð1Þ
2c ¼−

αsCF

8π

�
1

ε
þ ln

4πμ2

δ2Q2eγE
þ2

�
Hð0Þ;

Gð1Þ
2d ¼−

αsCF

8π

�
1

ε
þ ln

4πμ2

δ2Q2eγE
þ2

�
Hð0Þ;

Gð1Þ
2e ¼−

αsCF

4π

�
1

ε
þ ln

4πμ2

x1Q2eγE
þ2

�
Hð0Þ;

Gð1Þ
2fþ2gþ2hþ2i¼

αs
4π

��
5

3
Nc−

2

3
Nf

��
1

ε
þ ln

4πμ2

δ12Q2eγE

��
Hð0Þ;

(17)

where 1=ε represents the UV pole term, μ is the renorm-
alization scale, γE is the Euler constant, Nc is the number of
quark color, Nf is the number of the active quarks flavors,
and Hð0Þ denotes the LO twist-3 hard kernel described in
Eq. (10). Figures 2(f)–(i) denote the self-energy correction
to the exchanged gluon.
It is easy to find that the NLO self-energy corrections

to the LO twist-3 hard kernels as listed in Eqs. (16) and
(17) are identical in form to those self-energy corrections
to the LO twist-2 hard kernels as given in Eqs. (6)–(9) in
Ref. [9]. The reason is that the self-energy diagrams don’t
involve the external lines and therefore are irrelevant with
the twist structures of the wave functions. It should be
note that an additional symmetry factor 1

2
appeared from

the choice of the gluon end point to attach the external
line in the self-energy correction Figs. 2(a)–(d). The

self-energy corrections to the external lines will be
canceled by the corresponding effective diagrams as
shown in Figs. (5) and (6). The self-energy correction
to the internal quark line as shown in Fig. 2(e) does not
generate any IR divergences.
The vertex corrections obtained by evaluating the one-

loop Feynman diagrams in Figs. 3(a)–(e) are of the form

Gð1Þ
3a ¼ αsCF

4π

�
1

ε
þ ln

4πμ2

Q2eγE
þ 1

2

�
Hð0Þ;

Gð1Þ
3b ¼−

αs
8πNc

�
1

ε
þ ln

4πμ2

x1Q2eγE
− 1

�
Hð0Þ

−
αs

8πNc

�
1− ln

δ2
x1

�
Hð0Þðx1pμ

1Þ;

Gð1Þ
3c ¼−

αs
8πNc

�
1

ε
þ ln

4πμ2

δ12Q2eγE

�
Hð0Þ

−
αs

8πNc

�
ln

δ2
δ12

ln
δ1
δ12

þ ln
δ1
δ12

þ ln
δ2
δ12

þ π2

3

�
Hð0Þðpμ

2Þ;

Gð1Þ
3d ¼ αsNc

8π

�
3

ε
þ 3 ln

4πμ2

δ12Q2eγE
þ 11

2

�
Hð0Þ

−
αsNc

8π

�
ln

δ1
δ12

þ ln
δ2
δ12

�
Hð0Þðpμ

2Þ

Gð1Þ
3e ¼ αsNc

8π

�
3

ε
þ 3 ln

4πμ2

x1Q2eγE
þ 11

2

�
Hð0Þ

−
αsNc

8π

�
ln
δ2
x1

lnx2þ ln
δ2
x1

�
Hð0Þðx1pμ

1Þ: (18)

It is easy to find that the NLO twist-3 corrections to the LO
hard kernel Hð0Þ in Eq. (14) have the UV divergence and
they have the same divergence behavior in the self-energy
and the vertex corrections. The summation of these UV
divergences leads to the same result as the one for the NLO
twist-2 case [9],

αs
4π

�
11 −

2

3
Nf

�
1

ε
; (19)

which meets the requirement of the universality of the wave
functions.

The amplitude Gð1Þ
3a has no IR divergence due to the fact

that the numerator in the amplitude of the collinear region is
dominated by the transverse contributions which are

negligible in Fig. 3(a). IR divergences in Gð1Þ
3c and Gð1Þ

3d

are only relevant with the hard kernel Hð0Þðpμ
2Þ, which is

induced by the singular gluon attaches to the down quark

lines. Similarly, IR divergences in Gð1Þ
3b and Gð1Þ

3e only occur
in the hard kernel Hð0Þðx1pμ

1Þ since the singular gluon is
attached to the up quark lines.
The amplitude Gð1Þ

3b should have collinear divergence
because the radiative gluon in Fig. 3(b) is attached to the
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light valence quark of the final state pion, and we find that
the IR contribution is regulated by ln δ2. Both the collinear

and soft divergences are produced in Gð1Þ
3c because the

radiative gluon in Fig. 3(c) is attached to the external light
valence antiquarks. The large double logarithm ln δ1 ln δ2
comes from the overlap of the IR divergences, and will be
canceled by the large double logarithm term from Fig. 4(f).
The radiative gluon in Fig. 3(d) is attached to the light

valence anti-quarks as well as the virtual LO hard gluon, so
the soft divergence and the large double logarithm aren’t
generated in Gð1Þ

3d . The radiative gluon in Fig. 3(e) is
attached only to the light valence quark as well as the
virtual LO hard gluon, and then Gð1Þ

3e just contains the
collinear divergence regulated by ln δ2 in the l∥P2 region.
The NLO twist-3 contributions from the box and

pentagon diagrams as shown in Fig. 4 are summarized as

Gð1Þ
4a ¼ −

αsNc

8π

�
ð1þ ln x1Þ ln δ1 −

�
1þ 3

2
ln x1

�
ln x2 þ

1

8
þ π2

12

�
Hð0Þðx1pμ

1Þ;

−
αsNc

8π

�
ð1þ ln x2Þ ln δ2 −

�
1þ 3

2
ln x2

�
ln x1 þ

1

8
þ π2

12

�
Hð0Þðx2pμ

2Þ;

Gð1Þ
4b ≡ 0;

Gð1Þ
4c ¼ −

αs
8πNc

�
ln
x1
δ2

ln
x2
δ1

þ ln2x2

�
Hð0Þðx1pμ

1Þ −
αs

8πNc

�
ln
x2
δ1

ln
x1
δ2

þ ln2x1

�
Hð0Þðx2pμ

2Þ;

Gð1Þ
4d ≡ 0;

Gð1Þ
4e ¼ αs

8πNc

�
ln δ1 ln δ2 þ ln δ1 þ

5

4

�
Hð0Þðx1pμ

1Þ;

Gð1Þ
4f ¼ −

αs
8πNc

�
ln

δ1
δ12

ln
δ2
δ12

− 2 ln 2 − 1

�
Hð0Þðpμ

2Þ: (20)

Because of the properties of the propagators in the above
four- and five-point integrals, there is no UV divergence
in the above amplitudes. Figures 4(b) and 4(d) are
two-particle reducible diagrams; their contribution should
be canceled by the corresponding effective diagrams,
Figs. 5(c) and 6(c), for the NLO initial and final state
meson wave functions due to the requirement of the
factorization theorem, so we can set them to zero safely.

The Hð0Þðx2pμ
2Þ terms appearing in Gð1Þ

4a and Gð1Þ
4c are

obtained from the evaluation of Figs. 4(a) and 4(c) only.
The LO hard kernel Hð0Þðx2pμ

2Þ has the same form as the
Hð0Þðx1pμ

1Þ as defined in Eq. (12) but with replacements of
x1 → x2 and p

μ
1 → pμ

2. IR regulators only appear to the hard
kernel Hð0Þðx1pμ

1Þ of Figs. 4(a)–(e), which are decided by
the fact that the left end point of the emission gluon is
attached to the up light external line. Similarly, Fig. 4(f)

FIG. 3 (color online). Vertex corrections to Fig. 1(a).

FIG. 4 (color online). Box and pentagon corrections to Fig. 1(a).
FIG. 5 (color online). The effective OðαsÞ diagrams for the
initial π meson wave function.
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only grows the IR regulators to the hard kernel Hð0Þðpμ
2Þ.

Note that the emission gluon in Figs. 4(c), 4(e), and 4(f) is
attached to external light lines, so its amplitude would
dominate in the collinear region and soft region, and then
the double logarithm would appear. The attaching of the
emission gluon in Fig. 4(a) to the initial external line and
the LO hard kernel reveals that only the IR regulator ln δ1 is

grown in the amplitude Gð1Þ
4a .

Now we just consider the IR parts regulated by ln δi,
which would not be canceled directly by their counterparts
from the effective diagrams of Fig. 5. These IR pieces

appear in Gð1Þ
3b;3c;3d;3e and Gð1Þ

4a;4c;4e;4f. We class these
amplitudes into two sets according to the hard kernels to
which those IR regulators ln δi give corrections. Then the

first set includes Gð1Þ
3c;3d and Gð1Þ

4f , while the second set

contains Gð1Þ
3b;3e and Gð1Þ

4a;4c;4e terms. These amplitudes are
calculated in the leading IR regions to fit in with the kT
factorization theorem.
We firstly evaluate the NLO twist-3 corrections to

Hð0Þðpμ
2Þ. The amplitudes Gð1Þ

3c;3d and Gð1Þ
4f are recalculated

by employing the phase space slicing method [22],

Gð1Þ
3c ðl→ 0Þ¼ αs

8πNc

�
ln

δ1
δ12

ln
δ2
δ12

þπ2

3

�
Hð0Þðpμ

2Þ;

Gð1Þ
3c ðl∥p1Þ¼

αs
8πNc

�
ln

δ1
δ12

ln
δ2
δ12

þ ln
δ1
δ12

�
Hð0Þðpμ

2Þ;

Gð1Þ
3c ðl∥p2Þ¼

αs
8πNc

�
ln

δ1
δ12

ln
δ2
δ12

þ ln
δ2
δ12

�
Hð0Þðpμ

2Þ; (21)

Gð1Þ
3d ðl∥p1Þ¼

αsNc

8π

�
− ln

δ1
δ12

�
Hð0Þðpμ

2Þ;

Gð1Þ
3d ðl∥p2Þ¼

αsNc

8π

�
− ln

δ2
δ12

�
Hð0Þðpμ

2Þ; (22)

Gð1Þ
4f ðl→ 0Þ ¼ −

αs
8πNc

�
ln

δ1
δ12

ln
δ2
δ12

þ π2

3

�
Hð0Þðpμ

2Þ;

Gð1Þ
4f ðl∥p1Þ ¼ −

αs
8πNc

�
ln

δ1
δ12

ln
δ2
δ12

þ π2

6
− 1

�
Hð0Þðpμ

2Þ;

Gð1Þ
4f ðl∥p2Þ ¼ −

αs
8πNc

�
ln

δ1
δ12

ln
δ2
δ12

þ π2

6
− 2 ln2

�
Hð0Þðpμ

2Þ:

(23)

By summing up all terms in Eqs. (21)–(23), one finds that
the soft contributions in the limit l → 0 from Figs. 3(c)
and 4(f) cancel each other, while the remaining collinear
contributions in the regions of l∥p1 and l∥p2 are of the
form

Gð1Þ
3cþ3dþ4fðl∥p1Þ ¼ −

αsCF

8π
½2 ln δ1�Hð0Þðpμ

2Þ; (24)

Gð1Þ
3cþ3dþ4fðl∥p2Þ ¼ −

αsCF

8π
½2 ln δ2�Hð0Þðpμ

2Þ: (25)

The IR contributions to NLO twist-3 corrections to
Hð0Þðx1pμ

1Þ can be obtained in a similar way,

Gð1Þ
3b ðl∥p2Þ ¼ −

αs
8πNc

�
1 − ln

δ2
x1

�
Hð0Þðx1pμ

1Þ; (26)

Gð1Þ
3e ðl∥p2Þ ¼ −

αsNc

8π

�
ln
δ2
x1

ðln x2 þ 1Þ
�
Hð0Þðx1pμ

1Þ; (27)

Gð1Þ
4a ðl∥p1Þ ¼ −

αsNc

8π

�
ln δ1ðlnx1 þ 1Þ− lnx2

�
3

2
lnx1 þ 1

�

þ π2

12
þ 1

8

�
Hð0Þðx1pμ

1Þ; (28)

Gð1Þ
4c ðl → 0Þ ¼ −

αs
8πNc

�
ln δ1 ln δ2 þ

π2

3

�
Hð0Þðx1pμ

1Þ;

Gð1Þ
4c ðl∥p1Þ ¼ −

αs
8πNc

�
ln δ1 ln

δ2
x1

þ π2

6

�
Hð0Þðx1pμ

1Þ;

Gð1Þ
4c ðl∥p2Þ ¼ −

αs
8πNc

�
ln δ2 ln

δ1
x2

þ ln x2ðln x2 þ ln x1Þ þ
π2

6

�
Hð0Þðx1pμ

1Þ; (29)

FIG. 6 (color online). The OðαsÞ subdiagrams for the final π
meson wave function.
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Gð1Þ
4e ðl → 0Þ ¼ αs

8πNc

�
ln δ1 ln δ2 þ

π2

3

�
Hð0Þðx1pμ

1Þ;

Gð1Þ
4e ðl∥p1Þ ¼

αs
8πNc

�
ln δ1 ln δ2 þ ln δ1 − ln x1 þ

π2

6
þ 3

�
Hð0Þðx1pμ

1Þ;

Gð1Þ
4e ðl∥p2Þ ¼

αs
8πNc

�
ln δ1 ln δ2 þ

3

2
ln x1 þ

π2

6
−
7

4

�
Hð0Þðx1pμ

1Þ: (30)

Again, the soft parts from Figs. 4(c) and 4(e) cancel each
other, while the remaining collinear contributions to the LO
hard kernelHð0Þðx1pμ

1Þ, after summing up the amplitudes as
given in Eqs. (26)–(30), are the following:

Gð1Þ
4aþ4cþ4eðl∥p1Þ ¼ −

αsCF

8π
½2 ln δ1ðln x1 þ 1Þ�

×Hð0Þðx1pμ
1Þ;

Gð1Þ
3bþ3eþ4cþ4eðl∥p2Þ ¼ −

αsCF

8π
½2 ln δ2ðln x2 þ 1Þ�

×Hð0Þðx1pμ
1Þ: (31)

Note that we have dropped the constant terms in Eqs. (25)
and (31), since we here consider the IR parts only. According
to previous studies in Refs. [8–10], we know that these IR
divergences could be absorbed into the NLO wave functions
of the pion mesons. This point will become clear after we
complete the calculations for the effective diagrams in Figs. 5
and 6. This absorption means that the kT factorization is
valid at the NLO level for the πγ� → π process.

Without the reducible diagrams Gð1Þ
2a;2b;2c;2d;4b;4d, the

summation for the NLO twist-3 contributions from all
the irreducible QCD quark diagrams as illustrated by
Figs. 2, 3, and 4 leads to the final result for Gð1Þ:

Gð1Þ ¼ αsCF

8π

�
29

2

�
1

ε
þ ln

4πμ2

Q2eγE

�
− 2 ln δ1ðln x1 þ 1Þ − 2 ln δ2ðln x2 þ 1Þ

−
21

8
ln ðx1x2Þ −

23

8
ln x1 −

1

4
ln2x2 −

9

4
ln x2 −

3π2

16
þ 721

32

�
Hð0Þðx1pμ

1Þ

þ αsCF

8π

�
29

2

�
1

ε
þ ln

4πμ2

Q2eγE

�
− 2 ln δ1 − 2 ln δ2 − 4 ln ðx1x2Þ − 5 ln x1 þ

π2

12
þ ln 2

2
þ 23

�
Hð0Þðpμ

2Þ; (32)

for Nf ¼ 6. The UV divergence in the above expres-
sion is the same one as in the pion electromagnetic
form factor [9], which determines the renormalization-
group (RG) evolution of the strong coupling constant
αs.

B. Convolution of the OðαsÞ wave functions
with the LO hard kernel

A basic argument of kT factorization is that the IR
divergences from the NLO corrections can also be
absorbed into the nonperturbative wave functions which
are universal. From this point, the convolution of the
NLO wave functions and the LO hard kernel Hð0Þ are

computed, and the resultant IR part should cancel the IR
divergences appeared in the NLO amplitude Gð1Þ as given
in Eq. (32).
The convolution of the NLO pion wave functions and

the LO hard kernel are calculated in this subsection. In
kT factorization theorem, the Φð1Þ

π;P and Φð1Þ
π;T collect the

OðαsÞ effective diagrams for the twist-3 transverse
momentum dependent (TMD) light-cone wave function
Φπ;P and Φπ;T , respectively [11,23]. In the πγ⋆ → π
process we calculate, only the OðαsÞ- order pseudoscalar
component Φð1Þ

π;P of the final state pion, but both the Φð1Þ
π;P

and Φð1Þ
π;T components of the initial pion should be

convoluted with the LO hard kernel,

Φπ;Pðx01; k01T ; x1; k1TÞ ¼
Z

dy−

2π

d2yT
ð2πÞ2 e

−ix0
1
Pþ
1
y−þik0

1T ·yT · h0∣q̄ðyÞγ5Wyðn1Þ†In1;y;0W0ðn1Þqð0Þ∣ūðP1 − k1Þdðk1Þi; (33)
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Φπ;Tðx01; k01T ; x1; k1TÞ ¼
Z

dy−

2π

d2yT
ð2πÞ2 e

−ix0
1
Pþ
1
y−þik0

1T ·yT · h0∣q̄ðyÞγ5ðnþn− − 1ÞWyðn1Þ†In1;y;0W0ðn1Þqð0Þ∣ūðP1 − k1Þdðk1Þi;

(34)

Φπ;Pðx2; k2T ; x02; k02TÞ ¼
Z

dzþ

2π

d2zT
ð2πÞ2 e

−ix0
2
P−
2
zþþik0

2T ·zT · h0∣q̄ðzÞWzðn2Þ†In2;z;0W0ðn2Þγ5qð0Þ∣uðP2 − k2Þd̄ðk2Þi; (35)

where y ¼ ð0; y−; yTÞ and z ¼ ðzþ; 0; zTÞ are the light-cone
coordinates of the antiquark field q̄ carrying the momentum
faction xi, respectively. The Wilson lines with the choice of
n2i ≠ 0 to avoid the light-cone singularity [10,24] are
defined as

Wyðn1Þ ¼ P exp

�
−igs

Z
∞

0

dλn1 · Aðyþ λn1Þ
�
; (36)

Wzðn2Þ ¼ P exp

�
−igs

Z
∞

0

dλn1 · Aðzþ λn2Þ
�
; (37)

where P is the path-ordering operator. The two Wilson
lines WyðniÞ (WzðniÞ) and W0ðniÞ are connected by a
vertical link Ini;y;0 (Ini;z;0) at infinity [25]. Then the
additional light-cone singularities from the region where
loop momentum l∥n−ðnþÞ [26] are regulated by the IR
regulator n21 ≠ 0 and n22 ≠ 0. The scales ξ21 ≡ 4ðn1 ·
p1Þ2=jn21j ¼ Q2jn−1 =nþ1 j and ξ22 ≡ 4ðn2 · p2Þ2=jn22j ¼
Q2jnþ2 =n−2 j are introduced to describe the wave functions
of the initial and final state pion respectively. It is
important to emphasize that the variation of the above
scales can be treated as a factorization scheme depend-
ence, which entered the hard kernel when taking the
difference of the quark diagrams in full QCD and the
effective diagrams for the wave functions in NLO calcu-
lations. Recently, the above scheme-dependent rapidity
logarithms were diminished by joint resummation [27] for
B meson wave functions [28], and for the pion wave
function and pion transition form factor [29]. In this paper
we minimize the above scheme-dependent scales by
adhering them to fixed n21 and n22.
The convolution of the OðαsÞ initial state wave function

as shown in Fig. 5 andHð0Þ over the integration variables x01
and k01T is of the form

Φð1Þ
π ⊗ Hð0Þ ≡

Z
dx01d

2k0
1TΦ

ð1Þ
π ðx1;k1T ; x01;k

0
1TÞHð0Þ

× ðx01;k0
1T ; x2;k2TÞ: (38)

When making this convolution, the n1 is chosen approx-
imately as the vector n− with a very small plus component
nþ1 to avoid the light-cone singularity. Note that the sign of
n−1 is positive while the sign of nþ1 can be positive or

negative for convenience. The results after making the
convolution for each figure in Fig. 5 are given in the
following with μf being the factorization scale:

Φð1Þ
5a ⊗ Hð0Þ ¼ −

αsCF

8π

�
1

ε
þ ln

4πμ2f
δ1Q2eγE

þ 2

�
Hð0Þ;

Φð1Þ
5b ⊗ Hð0Þ ¼ −

αsCF

8π

�
1

ε
þ ln

4πμ2f
δ1Q2eγE

þ 2

�
Hð0Þ;

Φð1Þ
5c ⊗ Hð0Þ ≡ 0;

Φð1Þ
5d ⊗ Hð0Þ ¼ αsCF

8π

�
1

ε
þ ln

4πμ2f
ξ21e

γE
− ln2ðδ1rQÞ

− 2 ln ðδ1rQÞ −
π2

3
þ 2

�
Hð0Þðx1pμ

1Þ;

Φð1Þ
5e ⊗ Hð0Þ ¼ αsCF

8π

�
ln2

�
δ1rQ
x1

�
þ π2

�
Hð0Þðx1pμ

1Þ;

Φð1Þ
5f ⊗ Hð0Þ ¼ αsCF

8π

�
1

ε
þ ln

4πμ2f
ξ21e

γE
− ln2

�
δ1rQ
x21

�

− 2 ln

�
δ1rQ
x21

�
−
π2

3
þ 2

�
Hð0Þðpμ

2Þ;

Φð1Þ
5g ⊗ Hð0Þ ¼ αsCF

8π

�
ln2

�
δ1rQ
x21

�
−
π2

3

�
Hð0Þðpμ

2Þ;

ðΦð1Þ
5h þ Φð1Þ

5i þ Φð1Þ
5j Þ ⊗ Hð0Þ

¼ αsCF

4π

�
1

ε
þ ln

4πμ2f
Q2eγE

− ln δ12

�
Hð0Þ: (39)

The dimensionless parameter rQ ¼ Q2=ξ21 is defined to
simplify the expressions as given in the above equation. In
Eq. (39) all the IR divergences are regulated by ln δ1 in the

convolution Φð1Þ
π ⊗ Hð0Þ. Figures 5(d),(e) just give the

corrections to the LO hard kernel Hð0Þðx1pμ
1Þ, while

Figs. 5(f) and 5(g) provide the corrections to the LO hard
kernel Hð0Þðpμ

2Þ, because the gluon attaches to the Wilson
line and the up external line in the former two subdiagrams
[Figs. 5(d) and 5(e)], but attaches to the Wilson line and the
down external line in the later two subdiagrams [Figs. 5(f)
and 5(g)]. The corrections from Figs. 5(a) and 5(b)
are canceled by those from Figs. 2(a) and 2(b). It is
unnecessary to calculate the reducible subdiagram
Fig. 5(c), since it will be canceled by Fig. 4(b) completely.
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Only the three-point integral was involved in the

convolution of Φð1Þ
5d ⊗ Hð0Þ and Φð1Þ

5f ⊗ Hð0Þ, because
there is no momenta flow into the LO hard kernel in
these two sundiagrams. A four-point integral should been

calculated in the convolution Φð1Þ
5e ⊗ Hð0Þ because the

momenta flow into the LO hard kernel and the

Hð0Þðx1pμ
1Þ cancels the denominator. The convolution

Φð1Þ
5g ⊗ Hð0Þ involves a five-point integral due to the flow

momenta and the correction to the LO hard kernel
Hð0Þðpμ

2Þ. After summing up all OðαsÞ contributions in
Fig. 5 except those from the reducible subdiagrams
Figs. 5(a)–(c), we find

Φð1Þ
π ⊗ Hð0Þ ¼ αsCF

8π

�
3

ε
þ 3 ln

4π

eγE
þ 3 ln

μ2f
Q2

− 2 ln ðδ1rQÞðln x1 þ 1Þ − 2 ln ðx1x2rQÞ þ
2π2

3
− 2

�
Hð0Þðx1pμ

1Þ

þ αsCF

8π

�
3

ε
þ 3 ln

4π

eγE
þ 3 ln

μ2f
Q2

− 2 ln ðδ1rQÞ − 2 ln ðx1x2rQÞ þ 4 ln x1 −
2π2

3
− 2

�
Hð0Þðpμ

2Þ; (40)

where rQ ¼ Q2=ξ21.
The convolution of the LO hard kernel Hð0Þ and the NLO outgoing pion meson function Φð1Þ

π over the integration
variables x02 and k02T is

Hð0Þ ⊗ Φð1Þ
π ≡

Z
dx02d

2k0
2TH

ð0Þðx1;k1T ; x02;k
0
2TÞΦð1Þ

π;Pðx02;k0
2T ; x2;k2TÞ: (41)

The unit vector n2 is chosen approximately as nþ with a very small minus component n−2 to avoid the light-cone singularity
in the convolution. Note that the sign of nþ2 is positive as Pþ

1 while the sign of n−2 is arbitrary for convenience.
In Fig. 6 we draw all subdiagrams that provide OðαsÞ NLO corrections to the outgoing pion wave functions. Analogous

to the case of Fig. 5, we here make the same evolutions for all subdiagrams in Fig. 6. The analytical results for each
subdiagram of Fig. 6 are listed in the following with μf being the factorization scale:

Hð0Þ ⊗ Φð1Þ
6a ¼ −

αsCF

8π

�
1

ε
þ ln

4πμ2f
δ2Q2eγE

þ 2

�
Hð0Þ;

Hð0Þ ⊗ Φð1Þ
6b ¼ −

αsCF

8π

�
1

ε
þ ln

4πμ2f
δ2Q2eγE

þ 2

�
Hð0Þ;

Hð0Þ ⊗ Φð1Þ
6c ≡ 0;

Hð0Þ ⊗ Φð1Þ
6d ¼ αsCF

8π

�
1

ε
þ ln

4πμ2f
ξ22e

γE
− ln2ðδ2γQÞ − 2 ln ðδ2γQÞ −

π2

3
þ 2

�
Hð0Þðx1pμ

1Þ; (42)

Hð0Þ ⊗ Φð1Þ
6e ¼ αsCF

8π

�
ln2

�
δ2rQ
x1

�
þ π2

�
Hð0Þðx1pμ

1Þ;

Hð0Þ ⊗ Φð1Þ
6f ¼ αsCF

8π

�
1

ε
þ ln

4πμ2f
ξ22e

γE
− ln2

�
δ2rQ
x22

�
− 2 ln

�
δ2rQ
x22

�
−
π2

3
þ 2

�
Hð0Þðpμ

2Þ;

Hð0Þ ⊗ Φð1Þ
6g ¼ αsCF

8π

�
ln2

�
δ2rQ
x22

�
−
π2

3

�
Hð0Þðpμ

2Þ;

Hð0Þ ⊗ ðΦð1Þ
6h þ Φð1Þ

6i þ Φð1Þ
6j Þ ¼

αsCF

4π

�
1

ε
þ ln

4πμ2f
Q2eγE

− ln δ12

�
Hð0Þ; (43)

where rQ ¼ Q2=ξ21. The most complex integral involved
in our calculation for Fig. 6 is the four-point integral,
since the relevant momentum fraction x02 only appears in
one propagator in the LO hard kernel Hð0Þ.
The total contributions from the convolution of the

LO hard kernel Hð0Þ and the NLO final pion meson

wave function are obtained by summing up all
contributions as listed in the above equation, and
we dropped the contributions from those reducible
subdiagrams Gð1Þða; b; cÞ. The summation from all
irreducible subdiagrams of Fig. 6 leads to the final
result:
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Hð0Þ ⊗ Φð1Þ
π ¼ αsCF

8π

�
3

ε
þ 3 ln

4π

eγE
þ 3 ln

μ2f
Q2

− 2 ln ðδ2rQÞðln x2 þ 1Þ − 2 ln ðx1x2rQÞ þ
2π2

3
− 2

�
Hð0Þðx1pμ

1Þ

þ αsCF

8π

�
3

ε
þ 3 ln

4π

eγE
þ 3 ln

μ2f
Q2

− 2 ln ðδ2rQÞ − 2 ln ðx1x2rQÞ þ 4 ln x2 −
2π2

3
− 2

�
Hð0Þðpμ

2Þ; (44)

where rQ ¼ Q2=ξ21.

C. The NLO twist-3 hard kernel

The IR-finite kT-dependent NLO twist-3 hard kernel for the πγ� → π form factor is derived by taking the difference
between the contributions from the quark diagrams in full QCD and the contributions from the effective diagrams for pion
wave functions [30]:

Hð1Þðx1;k1T ; x2;k2TÞ ¼ Gð1Þðx1;k1T ; x2;k2TÞ −
Z

dx01d
2k0

1TΦ
ð1Þ
π ðx1;k1T ; x01;k

0
1TÞHð0Þðx01;k0

1T ; x2;k2TÞ

−
Z

dx02d
2k0

2TH
ð0Þðx1;k1T ; x02;k

0
2TÞΦð1Þ

π;Pðx02;k0
2T ; x2;k2TÞ; (45)

where Φð1Þ
π ðx1;k1T ; x01;k

0
1TÞ include two parts,

Φð1Þ
π;Pðx1;k1T ; x01;k

0
1TÞ and Φð1Þ

π;Tðx1;k1T ; x01;k
0
1TÞ.

The bare coupling constant αs in Eqs. (32), (40), and (44)
can be rewritten as

αs ¼ αsðμfÞ þ δZðμfÞαsðμfÞ; (46)

in which the counterterm δZðμfÞ is defined in the modified
minimal subtraction scheme. Inserting Eq. (46) into
Eqs. (10), (32), (40), and (44) regularizes the UV poles

in Eq. (45) through the term δZðμfÞHð0Þ, and then the UV
poles in Eqs. (40) and (44) are regulated by the counterterm
of the quark field and by an additional counterterm in the
modified minimal subtraction scheme. The UV behavior of
the NLO twist-3 contributions is the same as the NLO
twist-2 ones, which satisfy the requirement of the univer-
sality of the pion wave functions.
Based on the above calculations, it is straightforward to

write down the NLO twist-3 hard kernel Hð1Þ for Fig. 1(a),
assuming ξ21 ≡ ξ22 ≡Q2,

Hð1Þ ¼ αsðμfÞCF

8π

�
21

2
ln

μ2

Q2
− 6 ln

μ2f
Q2

−
53

8
ln ðx1x2Þ −

23

8
ln x1 −

4

9
ln x2 −

1

4
ln2x2 −

137

48
π2 þ 337

32

�
Hð0Þðx1pμ

1Þ

þ αsðμfÞCF

8π

�
21

2
ln

μ2

Q2
− 6 ln

μ2f
Q2

− 8 ln ðx1x2Þ − ln x1 þ 4 ln x2 −
31

12
π2 þ 1

2
ln 2þ 11

�
Hð0Þðpμ

2Þ; (47)

where μ and μf are the renormalization scale and factori-
zation scale, respectively. Following the schemes in the
NLO analysis of the B → π transition form factor at the
leading twist [10], we here also set ξ22 ¼ Q2 in order to
obtain a simple expression as given in Eq. (47).
The additional double logarithm ln2 x1, derived from the

limit that the internal quark is on-shell due to the tiny
momentum fraction x1, should also be considered. It can be
absorbed into the jet function Jðx1Þ as in Refs. [14,15],

Jð1ÞHð0Þ ¼ −
1

2

αsðμfÞCF

4π

�
ln2x1 þ ln x1 þ

π2

3

�
Hð0Þðpμ

2Þ;

(48)

where the factor 1
2
reflects the different spin structure of the

twist-3 and twist-2 parts. There exists no jet function Jðx2Þ
because the momentum fraction x2 would not grow end-
point singularity. The NLO twist-3 hard kernel Hð1Þ in
Eq. (47) will become the following form after subtracting
out the jet function in Eq. (48),

Hð1Þðxi; μ; μf; Q2Þ → Hð1Þ − Jð1ÞHð0Þ

≡ Fð1Þ
T3;A1ðxi; μ; μf;Q2ÞHð0Þðx1pμ

1Þ
þ Fð1Þ

T3;A2ðxi; μ; μf; Q2ÞHð0Þðpμ
2Þ; (49)

where the two factors of the NLO twist-3 contributions for
Fig. 1(a) are of the form

Fð1Þ
T3;A1ðxi; μ; μf; Q2Þ ¼ αsðμfÞCF

8π

�
21

2
ln

μ2

Q2
− 6 ln

μ2f
Q2

−
53

8
ln ðx1x2Þ−

23

8
ln x1 −

4

9
ln x2 −

1

4
ln2x2 −

137

48
π2 þ 337

32

�
; (50)
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Fð1Þ
T3;A2ðxi; μ; μf; Q2Þ ¼ αsðμfÞCF

8π

�
21

2
ln

μ2

Q2
− 6 ln

μ2f
Q2

− 8 ln ðx1x2Þ þ ln2x1 þ 4 ln x2 −
27

12
π2 þ 1

2
ln 2þ 11

�
: (51)

The IR-finite and kT dependent NLO hard kernel
Hð1Þðμ; μf; xi; Q2Þ as given in Eq. (49) describe the NLO
twist-3 contribution to the LO twist-3 hard kernel Hð0Þ

a as
given in Eq. (6) for the Fig. 1(a). One can obtain the NLO
twist-3 corrections to the LO twist-3 hard kernelHð0Þ

b ,Hð0Þ
c ,

and Hð0Þ
d for the other three subdiagrams Figs. 1(b)–(d),

respectively, by simple replacements. For Fig. 1(b), for
example, the two factors of the NLO twist-3 contributions
Fð1Þ
T3;B1ðxi; μ; μf; Q2Þ and Fð1Þ

T3;B2ðxi; μ; μf; Q2Þ can be
obtained from those in Eqs. (50) and (51) by simple
replacements x1↔x2:

Fð1Þ
T3;B1ðxi; μ; μf; Q2Þ

¼ αsðμfÞCF

8π

�
21

2
ln

μ2

Q2
− 6 ln

μ2f
Q2

−
53

8
ln ðx1x2Þ

−
23

8
ln x2 −

4

9
ln x1 −

1

4
ln2x1 −

137

48
π2 þ 337

32

�
; (52)

Fð1Þ
T3;B2ðxi; μ; μf; Q2Þ

¼ αsðμfÞCF

8π

�
21

2
ln

μ2

Q2
− 6 ln

μ2f
Q2

− 8 ln ðx1x2Þ

þ ln2x2 þ 4 ln x1 −
27

12
π2 þ 1

2
ln 2þ 11

�
: (53)

We can also obtain the factors Fð1Þ
T3;C1 and Fð1Þ

T3;C2 for
subdiagrams Fig. 1(c) by the replacements x1 → x̄1 ¼ 1 −
x1 and x2 → x̄2 ¼ 1 − x2 from Eqs. (50) and (51). For
Fig. 1(d), finally, one finds the factors Fð1Þ

T3;D1 and Fð1Þ
T3;D2

from those in Eqs. (50) and (51) by the replacements x1 →
x̄2 and x2 → x̄1.

IV. NUMERICAL ANALYSIS

In this section, by employing the kT factorization
theorem, we will calculate the pion electromagnetic form
factor Fþðq2Þ of the πγ� → π process numerically. Besides
the LO twist-2 and twist-3 contributions, the NLO twist-2
contribution as given in Ref. [9] and the NLO twist-3
contributions evaluated in this paper are all taken into
account. We will compare the relative strength of the four
parts numerically.
In order to compare our results directly with the

theoretical predictions for the LO twist-2, LO twist-3,
and NLO twist-2 contributions to pion form factor as
presented in Ref. [9], we here first consider two different
choices for the pion distribution amplitudes (DAs): Set A:
the simple asymptotic pion DAs,

ϕA
π ðxÞ ¼

3fπffiffiffi
6

p xð1 − xÞ; ϕP
π ðxÞ ¼

fπ
2

ffiffiffi
6

p ;

ϕT
π ðxÞ ¼

fπ
2

ffiffiffi
6

p ð1 − 2xÞ; (54)

with the pion decay constant fπ ¼ 0.13 GeV, and Set B:
the nonasymptotic pion DAs, the same as those given in
Eq. (39) of Ref. [9],

ϕA
π ðxÞ ¼

3fπffiffiffi
6

p xð1 − xÞ½1þ 0.16C
3
2

2ðuÞ þ 0.04C
3
2

4ðuÞ�;

ϕP
π ðxÞ ¼

fπ
2

ffiffiffi
6

p ½1þ 0.59C
1
2

2ðuÞ þ 0.09C
1
2

4ðuÞ�;

ϕT
π ðxÞ ¼

fπ
2

ffiffiffi
6

p ð1 − 2xÞ½1þ 0.019ð1 − 10xþ 10x2Þ�; (55)

where u ¼ 1 − 2x, and the Gegenbauer polynomials
C1=2;3=2
2;4 ðuÞ can be found easily in Refs. [19,31].
In order to check the variations of the theoretical

predictions induced by using different nonasymptotic pion
DAs, we also consider the third choice of pion DAs, Set-C,
which are the pion DAs popularly used in recent years, for
example, in Refs. [32–34],

ϕA
π ðxÞ ¼

3fπffiffiffi
6

p xð1 − xÞ½1þ aπ2C
3
2

2ðuÞ þ aπ4C
3
2

4ðuÞ�;

ϕP
π ðxÞ ¼

fπ
2

ffiffiffi
6

p
�
1þ

�
30η3 −

5

2
ρ2π

�
C

1
2

2ðuÞ

− 3

�
η3ω3 þ

9

20
ρ2πð1þ 6aπ2Þ

�
C

1
2

4ðuÞ
�
;

ϕT
π ðxÞ ¼

fπ
2

ffiffiffi
6

p ð1 − 2xÞ
�
1þ 6

�
5η3 −

1

2
η3ω3 −

7

20
ρ2π

−
3

5
ρ2πaπ2

�
ð1 − 10xþ 10x2Þ

�
; (56)

where the Gegenbauer moments aπi , the parameters η3;ω3,
and ρπ are adopted from Refs. [19,31,32],

aπ2 ¼ 0.25; aπ4 ¼ −0.015; ρπ ¼ mπ=m0;

η3 ¼ 0.015; ω3 ¼ −3.0; (57)

with mπ ¼ 0.13, m0 ¼ 1.74 GeV. It is easy to see that the
asymptotic pion DAs in Eq. (54) are just the first (leading)
term of the nonasymptotic pion DAs as given in Eqs. (55)
and (56). We will make numerical calculations by employ-
ing these three sets of pion DAs respectively, for the sake of
comparison and for the examination of the effects of the
shape of the pion DAs.
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When both the LO twist-2 and LO twist-3 contributions are included, the LO form factor for the πγ⋆ → π process can be
written as [9,35]

FþðQ2ÞjLO ¼ 8

9
πQ2

Z
dx1dx2

Z
b1db1b2db2 · fx1ϕA

π ðx1ÞϕA
π ðx2Þ − 2r2πϕP

π ðx2Þ½ðx1 − 1ÞϕP
π ðx1Þ þ ðx1 þ 1ÞϕT

π ðx1Þ�g

· αsðtÞ · e−2SπðtÞ · Stðx2Þ · hðx1; x2; b1; b2Þ; (58)

where r2π ¼ m2
0=Q

2, the first term x1ϕA
π ðx1ÞϕA

π ðx2Þ leads
to the LO twist-2 contribution, while the second term
in the large bracket provides the LO twist-3 part.
The kT resummation factor SπðtÞ is adopted from
Refs. [35,36],

Sπðμ; biÞ ¼ s

�
xi

Qffiffiffi
2

p ; bi

�
þ s

�
x̄i

Qffiffiffi
2

p ; bi

�

þ 2

Z
μ

1=bi

dμ̄
μ̄
rQðgðμ̄ÞÞ; (59)

with i ¼ 1; 2 for the initial and final π meson, respectively.
The expressions of the function sðQ0; bÞ and the anomalous
dimension γq can be found in Ref. [36]. The threshold
resummationfactorStðxÞ inEq. (58) isadoptedfromRef. [12],

StðxÞ ¼
21þ2cΓð3=2þ cÞffiffiffi

π
p

Γð1þ cÞ ½xð1 − xÞ�c; (60)

and we here set the parameter c ¼ 0.3. The hard function
hðx1; x2; b1; b2Þ in Eq. (58) comes form the Fourier trans-
formation and can be written as [9]

hðx1; x2; b1; b2Þ ¼ K0ð
ffiffiffiffiffiffiffiffiffi
x1x2

p
Qb1Þ½θðb1 − b2ÞI0ð

ffiffiffiffiffi
x2

p
Qb2ÞK0ð

ffiffiffiffiffi
x2

p
Qb1Þ þ θðb2 − b1ÞI0ð

ffiffiffiffiffi
x2

p
Qb1ÞK0ð

ffiffiffiffiffi
x2

p
Qb2Þ�; (61)

where J0 is the Bessel function, and K0, K1, and I0 are
modified Bessel functions.
According to the discussions as presented in Ref. [9], we

get to know that the relative strength of the NLO twist-2
contribution to the LO twist-2 one has a moderate depend-
ence on the choice of the renormalization scale μ, the
factorization scale μf, and the hard scale t. One can see
from the curves in Fig. 6 of Ref. [9] that when one adopts
the conventional choice of the scales [5], i.e.,

μ ¼ μf ¼ t ¼ max ð ffiffiffiffiffi
x1

p
Q;

ffiffiffiffiffi
x2

p
Q; 1=b1; 1=b2Þ; (62)

where the hard scale t is the largest energy scale in Fig. 1,
the NLO twist-2 correction becomes less than 40% of the

LO twist-2 contribution as Q2 > 7 GeV2, or less than 20%
of the total LO contribution. This means that such a choice
can minimize the NLO twist-2 correction to the form
factors in consideration. We here also make the same
choices as given in Eq. (62) in our numerical calculations of
the NLO twist-2 and twist-3 contributions. For more details
about the choice of μ, μf, and hard scale t, one can
see Ref. [9].
When the LO twist-2, LO twist-3, NLO twist-2, and

NLO twist-3 contributions to the pion form factors are
all taken into account, the pion form factor Fþðq2Þ for
πγ⋆ → π process in the kT factorization can be writ-
ten as

FþðQ2ÞjNLO ¼ 8

9
πQ2

Z
dx1dx2

Z
b1db1b2db2 · fx1ϕA

π ðx1ÞϕA
π ðx2Þ · ½1þ Fð1Þ

T2 ðxi; t; Q2Þ�

− 2r2πx1ϕP
π ðx2Þ½1þ ·Fð1Þ

T3 ðxi; t; Q2Þ�ðϕP
π ðx1Þ þ ϕT

π ðx1ÞÞ
þ 2r2πϕP

π ðx2Þ½1þ F̄ð1Þ
T3 ðxi; t; Q2Þ� · ðϕP

π ðx1Þ − ϕT
π ðx1ÞÞg · αsðtÞ · e−2SπðtÞ · Stðx2Þ · hðx1; x2; b1; b2Þ; (63)

where the factor Fð1Þ
T2 ðxi; t; Q2Þ denotes the NLO twist-2 contribution as given in Ref. [9],

Fð1Þ
T2 ðxi; t; Q2Þ ¼ αsðtÞCF

4π

�
−
3

4
ln

t2

Q2
− ln2x1 − ln2x2 þ

45

8
ln x1 ln x2 þ

5

4
ln x1 þ

77

16
ln x2 þ

1

2
ln 2þ 5

48
π2 þ 53

4

�
: (64)

The factors Fð1Þ
T3 ðxi; t; Q2Þ and F̄ð1Þ

T3 ðxi; t; Q2Þ in Eq. (63) describe the NLO twist-3 contributions and have been defined in
Eqs. (50) and (51). By making the same choice of scales ðμ; μf; tÞ as the one in Eq. (62), these two factors become relatively
simple,

Fð1Þ
T3 ðxi; t; Q2Þ ¼ αsðtÞCF

4π

�
9

4
ln

t2

Q2
−
53

16
ln x1x2 −

23

16
ln x1 −

2

9
ln x2 −

1

8
ln2x2 −

137

96
π2 þ 337

64

�
; (65)
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F̄ð1Þ
T3 ðxi; t; Q2Þ ¼ αsðtÞCF

4π

�
9

4
ln

t2

Q2
− 4 ln ðx1x2Þ þ

1

2
ln2x1 þ 2 ln x2 −

27

24
π2 þ 1

4
ln 2þ 11

2

�
: (66)

By using the three sets of pion distribution amplitudes
ϕA;P;T
π ðxÞ as given in Eqs. (54), (55), and (56), respectively,

and fixing the scales as in Eq. (62), we calculate the four
different LO and NLO contributions to the pion form
factors and show the theoretical predictions in Tables I and
II, and in Figs. 7–10, respectively.
In Table I, we list the theoretical predictions for the

four kinds of contributions: the LO twist-2, LO twist-3,
NLO twist-2, and NLO twist-3 contributions to the pion
form factors Q2FþðQ2Þ for fixed values of Q2 ¼
ð1; 3; 5; 7; 10; 100Þ GeV2. In the numerical calculations,
three sets of different choices of pion DAs are used,
respectively, with the labels of Set-A, Set-B, and Set-C.
In order to compare the relative strengths of different

contributions directly, we define the following four ratios,

R1 ¼
Fþ
NLO-T2ðQ2Þ
Fþ
LO-T2ðQ2Þ ; R2 ¼

Fþ
NLO-T3ðQ2Þ
Fþ
LO-T3ðQ2Þ ;

R3 ¼
Fþ
NLOðQ2Þ
Fþ
LOðQ2Þ ; R4 ¼

Fþ
NLOðQ2Þ

Fþ
NLOðQ2Þ þ Fþ

LOðQ2Þ ; (67)

where R1 (R2) measures the ratio between NLO twist-2
(twist-3) and LO twist-2 (twist-3) contribution, R3

describes the relative strength between the NLO contribu-
tion and the LO ones, and finally R4 is the ratio of the NLO
contribution over the total contribution, with all four parts,
LO plus NLO contributions. In Table II, we present the
numerical values of the ratios of the different kinds of
contributions to FþðQ2Þ for fixed values of Q2 ¼
ð1; 3; 5; 7; 10; 100Þ GeV2 and for three different sets of
the pion DAs, respectively.

In Fig. 7, we show the Q2 dependence of the various
contributions to the pion form factors from different orders
and twists for 1 ≤ Q2 ≤ 100 GeV2, by using the asymp-
totic pion DAs as given in Eq. (54) and setting μ ¼ μf ¼ t.
Figure 7(b) shows the enlargement of Fig. 7(a) in the low-
Q2 region: 1 ≤ Q2 ≤ 10 GeV2. The experimental data
shown in Fig. 7(b) are taken from Refs. [37,38]. The
Figs. 8 and 9 also show the Q2 dependence of the various
contributions to the pion form factors, but using the
nonasymptotic pion DAs as given in Eqs. (55) and (56)
instead of the asymptotic ones in Eq. (54). In Fig. 10, we
show the Q2 dependence of the four ratios R1;2 and R3;4
for 1 ≤ Q2 ≤ 100 GeV2, assuming c ¼ 0.3 and μ ¼ μf ¼
t and employing the three different sets of the pion
DAs.
From the theoretical predictions for the pion form factors

from different orders and twists, as listed in Tables I and II,
and illustrated in Figs. 7–10, one can have the following
observations:

(i) For the LO twist-2 and NLO twist-2 contributions to
the pion form factors FþðQ2Þ obtained in this work
agree very well with those presented in Ref. [9]
when the same Set-A and Set-B pion DAs are used,
as can be seen easily from the numerical results in
Tables I and II, as well as in Figs. 7–9. Even when
the Set-C pion DAs as given in Eq. (56) were used,
the theoretical predictions for the LO twist-2 and
NLO twist-2 contributions are still well consistent
with those in Ref. [9], since the twist-2 ϕA

π ðxÞ in
Eqs. (55) and (56) are only slightly different. By
using aπ2 ¼ 0.25 and aπ4 ¼ −0.015, we find from
Eq. (56) directly that

FIG. 7 (color online). Contributions toQ2FþðQ2Þ from different orders and twists, using the asymptotic pion DAs as given in Eq. (54).
Figure 7(a) shows the Q2 dependence for 1 ≤ Q2 ≤ 100 GeV2, while 7(b) is the enlargement of 7(a) in the low-Q2 region,
1 ≤ Q2 ≤ 10 GeV2. The experiment data in 7(b) are taken from Refs. [37,38].

NLO TWIST-3 CONTRIBUTION TO THE PION … PHYSICAL REVIEW D 89, 054015 (2014)

054015-13



ϕA
π ðxÞ ¼

fπ
2

ffiffiffi
6

p ½1þ 0.25C
3
2

2ðuÞ − 0.015C
3
2

4ðuÞ�: (68)

The coefficient of the second term is aπ2 ¼ 0.25, close
to the 0.16 in the ϕA

π ðxÞ in Eq. (55).
(ii) For the LO twist-3 and NLO twist-3 contributions,

one can see from the numerical results in Table I
and the cures in Figs. 7–9 that these two

contributions are rather similar to each other in
both the magnitude and the shape when Set-A and
Set-C pion DAs are used, respectively. When the
Set-B pion DAs as given in Eq. (55) are employed,
however, the corresponding theoretical predictions
for both the LO twist-3 and NLO twist-3 con-
tributions become rather different from those
obtained by using the Set-C pion DAs. The reason

FIG. 8 (color online). The same as Fig. 7, but using the nonasymptotic pion DAs as given in Eq. (55).

FIG. 9 (color online). The same as Fig. 7, but using the nonasymptotic pion DAs as given in Eq. (56).

FIG. 10 (color online). Ratios of the NLO corrections over the LO contributions to the pion form factor, assuming
μ ¼ μf ¼ t. (a) the asymptotic pion DAs in Eq. (54) are used, (b) the nonasymptotic DAs in Eq. (55) are used, and (c) the
nonasymptotic DAs in Eq.(56) are used.
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is that there is a clear difference for the twist-3
DAs ϕP

π ðxÞ and ϕT
π ðxÞ in Eqs. (55) and (56),

specifically for ϕT
π ðxÞ. Using the Gegenbauer mo-

ments and other input parameters as given in
Eq. (57), we find numerically that

ϕP
π ðxÞ ¼

fπ
2

ffiffiffi
6

p ½1þ 0.43C
1
2

2ðuÞ þ 0.11C
1
2

4ðuÞ�;

ϕT
π ðxÞ ¼

fπ
2

ffiffiffi
6

p ð1 − 2xÞ½1þ 0.56ð1 − 10xþ 10x2Þ�:

(69)

One can see that the coefficients (0.43,0.11) of
ϕP
π ðxÞ in Eq. (69) are close to (0.59,0.09) in

Eq. (55), but the coefficient 0.56 of ϕT
π ðxÞ in

Eq. (69) is much larger than 0.019 in Eq. (55).
Because the coefficient 0.019 is too small, the twist-
3 nonasymptotic ϕT

π ðxÞ as given in Eq. (55) is in fact
the same one as the asymptotic ϕT

π ðxÞ as given in
Eq. (54). This is a little unreasonable in our opinion.

(iii) For the LO twist-2 contribution Fþ
LO-T2ðQ2Þ, the

theoretical prediction remains stable in the whole
range of 1 ≤ Q2 ≤ 100 GeV2 when asymptotic
ϕAðxÞ is used, while it becomes a little bit large

TABLE I. The theoretical predictions for contributions to Q2FþðQ2Þ from different orders and twists, for Q2 ¼
ð1; 3; 5; 7; 10; 100Þ GeV2 and for different cases, i.e., using different sets of pion DAs, respectively.

Q2FþðQ2Þ DAs 1 3 5 7 10 100

LO T-2 Set-A 0.078 0.070 0.080 0.085 0.089 0.086
Set-B 0.075 0.075 0.086 0.093 0.098 0.109
Set-C 0.071 0.076 0.089 0.095 0.102 0.116

NLO-T2 Set-A 0.102 0.039 0.035 0.034 0.033 0.022
Set-B 0.106 0.044 0.040 0.039 0.037 0.030
Set-C 0.106 0.047 0.043 0.041 0.040 0.033

LO-T3 Set-A 0.399 0.141 0.099 0.076 0.056 0.007
Set-B 0.905 0.558 0.491 0.447 0.405 0.207
Set-C 0.519 0.206 0.145 0.113 0.087 0.010

NLO-T3 Set-A −0.252 −0.059 −0.037 −0.028 −0.021 −0.003
Set-B −0.261 −0.155 −0.151 −0.148 −0.144 −0.104
Set-C −0.286 −0.073 −0.046 −0.034 −0.025 −0.002

Full LO Set-A 0.476 0.211 0.179 0.160 0.145 0.092
Set-B 0.981 0.633 0.571 0.540 0.504 0.316
Set-C 0.590 0.282 0.234 0.209 0.189 0.126

LOþ NLO Set-A 0.326 0.190 0.176 0.166 0.156 0.111
Set-B 0.825 0.522 0.466 0.431 0.397 0.242
Set-C 0.409 0.256 0.230 0.216 0.204 0.157

TABLE II. The ratios of the different contributions or their combinations as defined in Eq. (67), for Q2 ¼ ð1; 3; 5; 7; 10; 100Þ GeV2,
respectively.

Ratios DAs 1 3 5 7 10 100

R1 Set-A 1.303 0.549 0.440 0.398 0.367 0.256
Set-B 1.406 0.595 0.467 0.418 0.382 0.273
Set-C 1.488 0.616 0.481 0.430 0.393 0.284

R2 Set-A −0.633 −0.423 −0.376 −0.368 −0.372 −0.487
Set-B −0.288 −0.277 −0.307 −0.331 −0.356 −0.503
Set-C −0.552 −0.356 −0.319 −0.302 −0.288 −0.199

R3 Set-A −0.316 −0.099 −0.012 0.036 0.080 0.203
Set-B −0.158 −0.174 −0.191 −0.202 −0.212 −0.235
Set-C −0.306 −0.094 −0.016 0.032 0.080 0.247

R4 Set-A −0.462 −0.110 −0.013 0.035 0.074 0.169
Set-B −0.188 −0.211 −0.237 −0.254 −0.269 −0.307
Set-C −0.441 −0.103 −0.016 0.031 0.074 0.198
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along with the increase of Q2 when the other two
sets of pion DAs are employed, since the twist-2
ϕA
π ðxÞ in Eqs. (55) and (56) are very similar to

each other.
(iv) For the NLO twist-2 contribution, the value of

Q2Fþ
NLO-T2ðQ2Þ becomes smaller rapidly in the

low-Q2 region, say 1 ≤ Q2 ≤ 3 GeV2, and then
decreases slowly from ∼0.044 to 0.030 along with
the increase of Q2 from 3 to 100 GeV2. The ratio R1

is changing from ∼60% for Q2 ¼ 3 to ∼26%
for Q2 ¼ 100 GeV2.

(v) For the LO twist-3 contribution, the theoretical
predictions for Q2Fþ

LO-T3ðQ2Þ obtained by using
the Set-C pion DAs are about 15% larger than those
obtained when the asymptotic ϕP;T

π are used, but
much smaller than the ones from the Set-B pion DAs.
The reason is of course the special choice of ϕT

π ðxÞ in
the Set-B pion DAs. In the low-Q2 region of
Q2 < 10 GeV2, the LO twist-3 contribution becomes
small rapidly. From the numbers in Table I for the
case of the Set-C pion DAs, one can see that the ratio
between the LO twist-3 and LO twist-2 contribution
is approximately 7.3,1.6,0.9 for Q2 ¼ 1; 5; 10 GeV2,
respectively. This is rather different from the behavior
when the Set-B pion DAs are used, in which the LO
twist-3 part is always larger than the LO twist-2
contribution by a factor ≥ 4.1.

(vi) For the NLO twist-3 contribution, the theoretical
predictions for Q2Fþ

NLO-T3ðQ2Þ has an opposite sign
with its counterpart Q2Fþ

NLO-T2ðQ2Þ and largely
canceled each other. The NLO twist-3 contribution
calculated by using the Set-A and Set-C pion DAs
are similar in size (the difference is around 10%) in
the whole range of Q2 and become smaller rapidly
along with the increase of Q2, as illustrated by the
lowest dot-dash curves in Figs. 7 and 9. The
Q2Fþ

NLO-T3ðQ2Þ from the Set-B pion DAs is similar
in size with those for other two cases at the starting
point Q2 ¼ 1 GeV2, but remain basically stable in
the range of Q2 > 3 GeV2.

(vii) The ratio R1 from the three different sets of pion
DAs has similar value and Q2 dependence, as
illustrated by the upper dot curves in Fig. 10. The
other three ratios R2;3;4 as shown in Figs. 10(a) and
10(c) are also similar in size and in their Q2

dependence, but rather different from those obtained
by using the Set-B pion DAs. The ratio R2 in
Fig. 10(c), for example, is changing from −0.552
forQ2 ¼ 1 to −0.199 forQ2 ¼ 100 GeV2, while the
ratio R2 in Fig. 10(b) changes its value from −0.288
for Q2 ¼ 1 to −0.503 for Q2 ¼ 100 GeV2.

(viii) When the Set-C pion DAs are used, one can see from
Table II and Fig. 10(c) that (a) at twist-2 level, the
NLO twist-2 contribution can provide a strong
enhancement to the LO twist-2 part, from 30% to

60% in the range of 3 < Q2 ≤ 100 GeV2, (b) at
twist-3 level, the NLO twist-3 contribution is about
30% of the LO twist-3 part in magnitude in the range
of 3 < Q2 ≤ 10 GeV2, but has an opposite sign with
its LO counterpart in the whole range of Q2, which
leads to a partial cancelation of the LO and NLO
twist-3 contributions.

(ix) Because of the strong cancelation between the NLO
twist-2 and NLO twist-3 contributions, the total
NLO contribution to pion form factor FþðQ2Þ
becomes small in size with respect to the total LO
part, from about −31% for Q2 ¼ 1 to ∼25% for
Q2 ¼ 100 GeV2 when the Set-C pion DAs are used.
The ratio R3 changes its sign at the point
Q2 ∼ 6 GeV2, as shown by the solid curve in
Fig. 10(c). When the Set-B pion DAs are used,
however, the ratio R3 is always negative and keep
stable in size for the whole range of Q2.

V. CONCLUSION

In this paper, we made the first calculation for the NLO
twist-3 contributions to the pion electromagnetic form
factor for the πγ� → π process, by employing the kT
factorization theorem and using the nonasymptotic pion
distribution amplitudes: the leading twist-2 ϕA

π ðxÞ and the
twist-3 ϕP;T

π ðxÞ.
The UV divergences at the NLO twist-3 level are found

to be the same ones as the NLO twist-2 part, which
confirms the universality of the nonperturbative wave
functions. These UV divergences are renormalized into
the coupling constants and quark fields. Both the soft and
collinear divergences in the NLO QCD quark diagrams and
in the NLO effective diagrams for pion wave functions are
regulated by the off-shell momentum k2T of the light quark.
The soft divergences cancels themselves in the quark
diagrams and the collinear divergences cancels between
the QCD quark diagrams and the effective diagrams at
twist-3, in cooperation with the cancelation at the leading
twist-2 [9], verified the validity of the kT factorization for
the exclusive decays at the NLO level. The large double
logarithm ln2 xi in the NLO hard kernel are strongly
suppressed by the Sudakov factor, then the NLO correc-
tions are under control.
From the analytical calculations we obtained two factors

Fð1Þ
T3 ðxi; t; Q2Þ and F̄ð1Þ

T3 ðxi; t; Q2Þ, which describe directly
the NLO twist-3 contributions to the pion form factors
FþðQ2Þ as shown in Eq. (63). From the numerical results
and phenomenological analysis, we found the following
points:

(i) For the LO twist-2, twist-3, and NLO twist-2 con-
tributions, our results agree very well with those as
given in the previous work [9] for both the magnitude
and the Q2 dependence of the individual part.

(ii) The newly calculated NLO twist-3 contribution,
which is negative in sign and will interfere
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destructively with the NLO twist-2 part, leaves a
relatively small total NLO contribution, which
can result in roughly �20% corrections to the total
LO contribution in almost all considered ranges
of Q2.

(iii) The theoretical predictions for Q2FþðQ2Þ in the
low-Q2 region agree well with currently available
data. The inclusion of NLO contributions results
in a better agreement between the theory and the
experiments.

(iv) The theoretical predictions for the pion form factors
obtained by employing the kT factorization theorem
have a moderator dependence on the form and the

shape of the pion distribution amplitudes, this is the
main source of the theoretical uncertainty.
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