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We investigate the effect of the medium on the thermal conductivity of a pion gas out of chemical
equilibrium by solving the relativistic transport equation in the Chapman-Enskog and relaxation time
approximations. Using an effective model for the ππ cross section involving ρ and σ meson exchange,
medium effects are incorporated through thermal one-loop self-energies. The temperature dependence of
the thermal conductivity is observed to be significantly affected.
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The observation of a large elliptic flow of hadrons in
heavy ion collisions at RHIC has led to the description of
quark-gluon plasma as a nearly perfect fluid [1]. This
interpretation is based on the small but finite value of the
shear viscosity to entropy density ratio required in a
relativistic hydrodynamic description of the collision.
The effects of dissipation on the dynamical evolution of
matter produced in relativistic heavy ion collisions have
thus been a major topic of discussion recently [2]. At the
microscopic level dissipative phenomena are studied by
considering small departures from equilibrium. In kinetic
theory the transport of momenta and heat as a result of
collisions is quantitatively expressed in terms of coeffi-
cients of viscosity and thermal conductivity [3,4]. A large
number of studies on the viscous coefficients have been
performed in the transport approach. The shear viscosity η
has been most commonly discussed followed by the bulk
viscosity ζ, for both partonic as well as hadronic systems
[5–25]. The interesting issue concerning the behavior of the
viscosities in the vicinity of the transition from partonic to
hadronicmatter has also beendiscussed [1,12,14,15,18–20].
While the value of η=s is expected to go through a minimum
near the critical temperature [1,18],ζ=s is believed tobe large
or diverging [12,15,19] at or near the transition.
The effects of heat flow in heavy ion collisions has

received much less attention. This is presumably on
account of the fact that the net baryon number in the
central rapidity region at the RHIC and LHC is very small.
However, at FAIR energies or in the low-energy runs at
RHIC, the baryon chemical potential is expected to be
significant and heat conduction by baryons may play a
more important role. On the other hand, a thermal system
consisting of pions can sustain heat conduction despite the
fact that the pions themselves do not carry baryon number
[5]. This is due to the fact that the total number of pions in
heavy ion collisions is essentially conserved. Pion number
changing reactions are not sustained towards the late stages,
where collisions are mostly elastic and the system under-
goes chemical freeze-out. As the system expands and cools,
a pion chemical potential develops in order to keep the pion

number fixed. Based on such a scenario, a few studies of
heat conduction by pions have been carried out. Using the
experimental ππ cross section, the thermal conductivity
of a pion gas was estimated in [5–7], whereas in [22] a
unitarized scattering amplitude was employed. The heat
conductivity was also obtained using the Kubo formula in
[13,23,26]. For the case of a classical gas, heat flow has
been studied recently in a transport model [24] and a fluid-
dynamical theory was derived [25]. Investigating the effect
of thermal conductivity on first-order phase transitions,
nontrivial fluctuation effects were observed in [27] which
may result in a nonmonotonic behavior of certain observ-
ables as a function of collisional energy and may be seen
from experimental analysis at RHIC and FAIR. A clear
picture of the behavior of thermal conductivity in the
vicinity of a phase transition is, however, yet to emerge.
In the kinetic theory approach the dynamics of inter-

action reside in the differential cross section which goes as
an input. In almost all estimations of the transport coef-
ficients, a vacuum cross section was employed. In [28,29] a
medium dependent cross section was used in the evaluation
of shear and bulk viscosities of a pion gas, which resulted in
a significant deviation from the results obtained with the ππ
cross section in vacuum.
In this work we study the temperature dependence

of the thermal conductivity of a pion gas. In particular,
our intention is to emphasize on the effect of the medium on
its temperature dependence brought in by the cross section.
To this end we employ an effective Lagrangian approach in
which the ππ scattering amplitude is obtained in terms of ρ
and σ meson exchange. Medium effects are then incorpo-
rated by introducing in-medium propagators dressed by one
loop self energies calculated in the framework of thermal
field theory. We use a temperature-dependent pion chemi-
cal potential and obtain the thermal conductivity for
temperatures in the range between chemical and kinetic
freeze-out in heavy ion collisions.
The thermal conductivity λ is obtained by solving the

Uehling-Uhlenbeck equation in the Chapman-Enskog
approximation to first order. This calculation is performed
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along the lines of [7,30] and is described elaborately
in [29]. Here we provide only the basics of the formalism.
We start with the transport equation for the phase-
space distribution fðx; pÞ of a relativistic pion gas which
is given by

pμ∂μfðx; pÞ ¼ C½f�: (1)

For binary elastic collisions pþ k → p0 þ k0, the collision
term C½f� is defined by

C½f� ¼ 1

2

Z
dΓkdΓp0 dΓk0 ½fðx; p0Þfðx; k0Þf1þ fðx; pÞg

× f1þ fðx; kÞg − fðx; pÞfðx; kÞf1þ fðx; p0Þg
× f1þ fðx; k0Þg�W; (2)

where

W ¼ ð2πÞ4δ4ðpþ k − p0 − k0Þ 1
2
jMj2;

dΓq ¼
d3q

ð2πÞ32Eq
:

For a pion gas slightly away from equilibrium, the phase
space distribution function can be expanded in the first
Chapman-Enskog approximation as

fðx; pÞ ¼ fð0Þðx; pÞ þ fð0Þðx; pÞ½1þ fð0Þðx; pÞ�ϕðx; pÞ;
(3)

where fð0Þðx; pÞ ¼ ½ep·uðxÞ−μðxÞ
TðxÞ − 1�−1 is the local equilibrium

Bose distribution function. The deviation function ϕðx; pÞ
then satisfies the following linearized transport equation

pμ∂μfð0Þðx; pÞ ¼ −L½ϕ� (4)

in which the collision term is given by

L½ϕ� ¼ fð0Þðx; pÞ 1
2

Z
dΓkdΓp0dΓk0fð0Þðx; kÞ

× f1þ fð0Þðx; p0Þgf1þ fð0Þðx; k0Þg
× ½ϕðx; pÞ þ ϕðx; kÞ − ϕðx; p0Þ − ϕðx; k0Þ�W: (5)

To solve this equation ϕ is generally expressed in the form

ϕ ¼ A∂νuν þ BμΔμνðT−1∂νT −DuνÞ − Cμνh∂μuνi; (6)

where D ¼ uμ∂μ and Δμν ¼ gμν − uμuν, with uμ being the
flowvelocity. The scalar and tensor processes denoted by the
first and third terms are connected with bulk and shear
viscosities respectively. The vector process given by the
second term corresponds to the transport phenomena related
to thermal conduction. Comparing with the expression for

energy four-flow, Iμ ¼ λð∂σT − TDUσÞΔμσ , the coefficient
of thermal conductivity λ can be defined as

λ ¼ 2

3T

Z
dΓpfð0Þð1þ fð0ÞÞBνpνðp · u − hÞ; (7)

whereh is the enthalpyper particle. Theunknowncoefficient
Bμ ¼ BΔμνpν can be obtained by solving the equation

L½Bμ� ¼ − 1

T
fð0Þð1þ fð0ÞÞΔμνpνðp · u − hÞ: (8)

Here we follow the procedure outlined in [7,30] in which
Bμ is expanded in terms of orthogonal Laguerre
polynomials of order 3=2. After some simplifications
(discussed in detail in Refs. [7,29]), the first approximation
to thermal conductivity comes out to be

λ ¼ T
3mπ

β21
b11

; (9)

where

β1 ¼ −3z2
�
1þ 5z−1 S

2
3ðzÞ

S12ðzÞ
−
�
S13ðzÞ
S12ðzÞ

�
2
�

b11 ¼ I1ðzÞ þ I2ðzÞ with z ¼ mπ=T: (10)

The integrals IαðzÞ are given by [28,29]

IαðzÞ ¼
8z5

½S12ðzÞ�2
eð−2μπ=TÞ

Z
∞

0

dψcosh3ψsinh7ψ

×
Z

π

0

dΘ sinΘ
�
1

2

dσ
dΩ

�
ðψ ;ΘÞ

Z
2π

0

dϕ

×
Z

∞

0

dχsinhð2αþ2Þχ
Z

π

0

dθ sin θ

×
e2z coshψ cosh χ

ðeE − 1ÞðeF − 1ÞðeG − 1ÞðeH − 1ÞMαðθ;ΘÞ;
(11)

and SαnðzÞ denotes integrals over Bose functions which
can be expressed in terms of an infinite series as
SαnðzÞ ¼

P∞
k¼1 e

kμ=Tk−αKnðkzÞ, with KnðxÞ denoting
the modified Bessel function of order n. The exponents
in the Bose functions and the functions Mαðθ;ΘÞ are,
respectively, given by

E ¼ zðcoshψ cosh χ − sinhψ sinh χ cos θÞ − μπ=T

F ¼ zðcoshψ cosh χ − sinhψ sinh χ cos θ0Þ − μπ=T

G ¼ Eþ 2z sinhψ sinh χ cos θ

H ¼ F þ 2z sinhψ sinh χ cos θ0; (12)
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M1ðθ;ΘÞ ¼ cos2θ þ cos2θ0 − 2 cos θ cos θ0 cosΘ;

M2ðθ;ΘÞ ¼ ½cos2θ − cos2θ0�2; (13)

where cos θ0 ¼ cos θ cosΘ − sin θ × sinΘ × cosϕ.
The ππ cross section is the key dynamical input for

evaluating transport coefficients. Here the scattering is
assumed to proceed via σ and ρ meson exchange in the
medium. From the effective interaction [31]

L ¼ gρ~ρμ · ~π × ∂μ~π þ 1

2
gσmσ~π · ~πσ; (14)

the matrix elements for ππ scattering are given by the
following expressions where the widths of the σ and ρ
mesons have been introduced in the propagators involved
in the corresponding s-channel processes. We thus have

MI¼0 ¼ 2g2ρ

�
s − u
t −m2

ρ
þ s − t
u −m2

ρ

�

þ g2σm2
σ

�
3

s −m2
σ þ imσΓσ

þ 1

t −m2
σ
þ 1

u −m2
σ

�

MI¼1 ¼ g2ρ

�
2ðt − uÞ

s −m2
ρ þ imρΓρ

þ t − s
u −m2

ρ
− u − s
t −m2

ρ

�

þ g2σm2
σ

�
1

t −m2
σ
− 1

u −m2
σ

�
: (15)

Defining the isospin averaged amplitude as jMj2 ¼
1
9

P
IjMIj2 and ignoring the nonresonant I ¼ 2 contribu-

tion, the cross section is found to agree very well [28,29]
with the estimate based on measured phase shifts given
in [6]. In this way it is ensured that the dynamical model is
normalized against experimental data, although this
approach of introducing the width is not quite in agreement
with low-energy theorems based on chiral symmetry.
To obtain the in-medium cross section we replace the

vacuum width in the above expressions by the ones in the
medium. The width is related to the imaginary part of
the self-energy through the relation [32]

ΓðT;MÞ ¼ −MImΠðT;MÞ; (16)

where Π denotes the one-loop self energy diagrams shown
in Fig. 1 and are evaluated using the real-time formalism of
thermal field theory. The σ meson self-energy is obtained
from the ππ loop diagram whereas in case of the ρ meson
the ππ, πω, πh1, πa1 graphs are evaluated using interactions

from chiral perturbation theory [33]. The longitudinal and
transverse parts of the ρ self-energy are defined as [34]

ΠT ¼ − 1

2

�
Πμ

μ þ q2

q̄2
Π00

�
;

ΠL ¼ 1

q̄2
Π00;

Π00 ≡ uμuνΠμν: (17)

Since the momentum dependence is weak, we take an
average over the polarizations. The imaginary part of the
self-energy obtained by evaluating the loop diagrams is
given by [35]

ImΠðq0; ~qÞ¼−π
Z

d3k
ð2πÞ34ωπωh

× ½N1fð1−fð0ÞðωπÞ−fð0ÞðωhÞÞδðq0−ωπ−ωhÞ
þðfð0ÞðωπÞ−fð0ÞðωhÞÞδðq0−ωπþωhÞg
þN2fðfð0ÞðωhÞ−fð0ÞðωπÞÞδðq0þωπ−ωhÞ
−ð1−fð0ÞðωπÞ−fð0ÞðωhÞÞδðq0þωπþωhÞg�;

(18)

where fð0ÞðωÞ ¼ 1
eðω−μπ Þ=T−1 is the Bose distribution

function with arguments ωπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

π

q
and

ωh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~q − ~kÞ2 þm2

h

q
. The terms N1 and N2 stem from

the vertex factors and the numerators of vector propagators,
details of which can be found in [35]. The angular
integration is done using the δ functions which define
the kinematic domains for occurrence of scattering and
decay processes that lead to loss or gain of ρ (or σ) mesons
in the medium. To account for the substantial 3π and
ρπ branching ratios of the heavy particles in the loop the
self-energy function is convoluted with their widths,

Πðq;mhÞ ¼
1

Nh

Z ðmhþ2ΓhÞ2

ðmh−2ΓhÞ2
dM2

×
1

π
Im

�
1

M2 −m2
h þ iMΓhðMÞ

�
Πðq;MÞ (19)

with

Nh ¼
Z ðmhþ2ΓhÞ2

ðmh−2ΓhÞ2
dM2

1

π
Im

�
1

M2 −m2
h þ iMΓhðMÞ

�
: (20)

The contribution from the loops with these unstable
particles can thus be looked upon as multipion effects in
ππ scattering.
It is generally accepted [36] that the hadronic gas

produced after the transition is in chemical equilibriumFIG. 1. The self-energy diagrams for h ¼ π,ω,h1,a1 mesons.
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where the chemical potential of pions for example is zero.
Chemical freeze-out for an evolving hadronic gas occurs
much earlier than kinetic freeze-out. The number-changing
inelastic collisions cease at chemical freeze-out and the
total pion number becomes fixed. Thereafter only elastic
collisions take place until the pions actually decouple later
at kinetic freeze-out. The pion chemical potential conse-
quently grows from zero to a maximum at kinetic freeze-
out so as to keep the total number of pions fixed. Here the
temperature-dependent pion chemical potential is taken
from Ref. [37], which implements the above scenario and is
parametrized as

μπðTÞ ¼ aþ bT þ cT2 þ dT3; (21)

with a ¼ 0.824, b ¼ 3.04, c ¼ −0.028, d ¼ 6.05 × 10−5,
with T, μπ in MeV.
We now plot in Fig. 2 the total ππ cross section defined

by σðsÞ ¼ 1
2

R
dΩ dσ

dΩ with dσ
dΩ ¼ jMj2

64π2s. The increase in the
widths of the exchanged ρ and σ on account of thermal
emission and absorption is reflected in a significant change
in both the magnitude and shape of the cross section as a
function of the c.m. energy. A rough estimate of the mean
free path of pions using the peak value of the in-medium
cross section comes out to be ∼1 − 2 fm at T ¼ 160 MeV.
A macroscopic length scale such as the typical size of the
system at this stage being much larger justifies the use of
the Chapman-Enskog method for solving the transport
equation.
We next turn to the results of thermal conductivity.

In Fig. 3 we plot λT as a function of T evaluated in the
Chapman-Enskog approach. The dashed line shows results
where the vacuum cross section is used in the integrals (11).
For a vanishing pion chemical potential this result agrees
with those of [6,7]. Replacing the vacuum widths by the
in-medium widths in the ρ and σ propagators in the

scattering amplitudes results in the long dashed line.
A substantial medium effect is seen even for μπ ¼ 0 and
this is seen to increase with increase of temperature. We
now introduce the temperature-dependent μπ both in the
cross section and elsewhere in Eqs. (10) and (11). This
yields the solid line. On comparing with the long-dashed
line the effect of chemical freeze-out is seen to be more at
lower temperatures since the value of μπðTÞ increases as
one approaches kinetic freeze-out.
At this stage it is worthwhile to compare the results with

those obtained using the so-called relaxation time approxi-
mation. This method is the simplest way to linearize the
transport equation and is widely used. In this approach
the distribution function fðx; pÞ is assumed to go over to
the equilibrium distribution fð0Þðx; pÞ over a time scale
usually referred to as the relaxation time τðpÞ, which is
actually given by the inverse of the collision frequencyωðpÞ.
For a binary elastic collision πðpÞ þ πðkÞ → πðp0Þ þ πðk0Þ
it is given by

ωðpÞ ¼
Z

dΓk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2

πÞ
p

Ep
fð0ÞðEkÞð1þ fð0ÞðEp0 ÞÞ

× ð1þ fð0ÞðEk0 ÞÞσðsÞ: (22)

We plot in Fig. 4 the mean (thermal averaged) relaxation
time as a function of temperature. This is given by
τðT; μπÞ ¼ 1=ω̄ðT; μπÞ, where

ω̄ðT; μπÞ ¼
Z

d3pfð0ÞðpÞωðpÞ=
Z

d3pfð0ÞðpÞ: (23)

The lower set of curves with filled circles corresponds
to a temperature-dependent chemical potential. The large
difference with the upper set of curves depicting the
situation at vanishing pion chemical potential especially
at lower temperatures shows the role played by μπ.
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FIG. 2. The ππ cross section as a function of center-of-mass
energy. The dashed and solid lines respectively indicate the cross
section obtained using the vacuum and in-medium widths of the ρ
and σ mesons.

0.1 0.12 0.14 0.16
T(GeV)

0.0025

0.0035

0.0045

0.0055

0.0065

0.0075

λT
(G

eV
3 )

vacuum [µπ= 0]

medium [µπ= 0]

medium [µπ= µπ(T)]

FIG. 3. λT as a function of T for ππ cross section in vacuum and
in medium evaluated in the Chapman-Enskog approximation.
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Accounting for the isospin degeneracy, the vacuum result
for μπ ¼ 0 agrees with the estimate of [6,7]. The solid line
in both cases shows a noticeable medium effect compared
to the vacuum.
It may be pointed out that the mean relaxation time

characterizes the rate of change of the distribution function
due to collisions and only serves as a orientational guide to
equilibrium [6]. On the other hand the relaxation time of flows
give the time scales over which momenta and heat are trans-
ported. They cannot be obtained in the Chapman-Enskog
formalism, where the neglect of all gradients of flows in the
conservation laws leads to infinite speeds for the flows [7].
The transport equation in the relaxation time approxi-

mation reduces to

∂f
∂t þ ~vp · ~∇f ¼ − ðf − fð0ÞÞ

τ
; (24)

from which the thermal conductivity comes out to be [5]

λ ¼ 2

3T2

Z
dΓp

p2

Ep
ðEp − hÞ2τðpÞfð0ÞðEpÞð1þ fð0ÞðEpÞÞ:

(25)

In Fig. 5 we have plotted λT versus T both for zero and a
temperature-dependent chemical potential. The substantial
effect of the medium is distinctly visible through the
difference between the dashed and solid lines in the two
sets. The separation between the set of curves with and
without circles shows the effect of the pion chemical
potential and as expected, is more at lower temperatures.

The value of λ for the various cases displayed in Figs. 3
and 5 lie within ∼0.4–1.2 in units of fm−2 at
T ¼ 160 MeV. Taking the peak value of the ππ cross
section as shown in Fig. 2, these values are within
reasonable agreement with those of [24].
To summarize, we have evaluated the thermal con-

ductivity of an interacting pion gas by solving the
relativistic transport equation in the Chapman-Enskog
and relaxation time approximations. In-medium effects
on the ππ cross section are incorporated through one-loop
self-energies of the exchanged ρ and σ mesons calculated
using thermal field theory. The effect of chemical freeze-
out is incorporated through a temperature-dependent
pion chemical potential which keeps the pion number
conserved. It is observed that the temperature depend-
ence of the thermal conductivity is significantly affected.
It will be interesting to observe the consequences on the
evolution of the late stages of heavy ion collisions by
including it in fluid-dynamical simulations.
It may be pointed out that a realistic hadron gas is

composed of several types of hadrons and in principle
should be considered for the evaluation of transport
coefficients. However, treating the πN gas as a binary
hadronic mixture, the viscosities and thermal conductivities
were found [6] to be close to those of a pion gas due to the
small concentration of nucleons. It may be worthwhile to
investigate the role of medium effects in such systems
especially for situations involving high baryon density.
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FIG. 4. The mean relaxation time with and without medium
effects.
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FIG. 5. λT as a function of T in the relaxation-time approxi-
mation. The set of curves with filled circles corresponds to
calculations done using a temperature-dependent pion chemical
potential.

MEDIUM EFFECTS ON THE THERMAL CONDUCTIVITY OF … PHYSICAL REVIEW D 89, 054013 (2014)

054013-5



[1] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, Phys. Rev.
Lett. 97, 152303 (2006).

[2] T. Ullrich, B. Wyslouch, and J. W. Harris, Nucl. Phys.
A904–905, 1c (2013).

[3] S. R. De Groot, W. A. Van Leeuwen, and C. G. Van Weert,
Relativistic Kinetic Theory, Principles And Applications
(North-Holland, Amsterdam, 1980).

[4] D. N. Zubarev, Non-Equilibrium Statistical Thermodynamics
(Consultants Bureau, New York, 1974).

[5] S. Gavin, Nucl. Phys. A435, 826 (1985).
[6] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke,

Phys. Rep. 227, 321 (1993).
[7] D. Davesne, Phys. Rev. C 53, 3069 (1996).
[8] A. Dobado and S. N. Santalla, Phys. Rev. D 65, 096011

(2002).
[9] A. Dobado and F. J. Llanes-Estrada, Phys. Rev. D 69,

116004 (2004).
[10] J. W. Chen, Y. H. Li, Y. F. Liu, and E. Nakano, Phys. Rev. D

76, 114011 (2007).
[11] K. Itakura, O. Morimatsu, and H. Otomo, Phys. Rev. D 77,

014014 (2008).
[12] D. Kharzeev and K. Tuchin, J. High Energy Phys. 09 (2008)

093.
[13] D. Fernandez-Fraile and A. Gomez Nicola, Eur. Phys. J. C

62, 37 (2009).
[14] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres-Rincon,

Phys. Rev. D 80, 114015 (2009).
[15] J.-W. Chen and J. Wang, Phys. Rev. C 79, 044913 (2009).
[16] J. Noronha-Hostler, J. Noronha, and C. Greiner, Phys. Rev.

Lett. 103, 172302 (2009); Phys. Rev. C 86, 024913 (2012).
[17] N. Demir and S. A. Bass, Phys. Rev. Lett. 102, 172302

(2009).
[18] C. Sasaki and K. Redlich, Nucl. Phys. A832 62 (2010);

Phys. Rev. C 79, 055207 (2009).

[19] D. Fernandez-Fraile and A. Gomez Nicola, Phys. Rev. Lett.
102, 121601 (2009).

[20] A. Dobado and J. M. Torres-Rincon, Phys. Rev. D 86,
074021 (2012).

[21] V.Ozvenchuk,O.Linnyk,M. I.Gorenstein,E. L.Bratkovskaya,
and W. Cassing, Phys. Rev. C 87, 064903 (2013).

[22] A. Dobado, F. J. Llanes-Estrada, and J. M. Torres Rincon,
arXiv:hep-ph/0702130.

[23] D. Fernandez-Fraile and A. G. Nicola, Int. J. Mod. Phys. E
16, 3010 (2007).

[24] M. Greif, F. Reining, I. Bouras, G. S. Denicol, Z. Xu, and
C. Greiner, Phys. Rev. E 87, 033019 (2013).

[25] G. S. Denicol, H. Niemi, I. Bouras, E. Molnar, Z. Xu,
D. H. Rischke, and C. Greiner, arXiv:1207.6811 [nucl-th].

[26] S. Sarkar, Adv. High Energy Phys. 2013, 627137 (2013).
[27] V. V. Skokov and D. N. Voskresensky, Nucl. Phys. A847,

253 (2010).
[28] S. Mitra, S. Ghosh, and S. Sarkar, Phys. Rev. C 85, 064917

(2012).
[29] S. Mitra and S. Sarkar, Phys. Rev. D 87, 094026 (2013).
[30] W. A. Van Leeuwen, P. H. Polak, and S. R. De Groot,

Physica (Amsterdam) 66, 455 (1973).
[31] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1

(1986).
[32] M. Le Bellac, Thermal Field Theory (Cambridge University

Press, Cambridge, England, 1996).
[33] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael,

Phys. Lett. B 223, 425 (1989).
[34] S. Ghosh, S. Sarkar, and S. Mallik, Eur. Phys. J. C 70, 251

(2010).
[35] S. Mallik and S. Sarkar, Eur. Phys. J. C 61, 489 (2009).
[36] H. Bebie, P. Gerber, J. L. Goity, and H. Leutwyler, Nucl.

Phys. B378, 95 (1992).
[37] T. Hirano and K. Tsuda, Phys. Rev. C 66, 054905 (2002).

SUKANYA MITRA AND SOURAV SARKAR PHYSICAL REVIEW D 89, 054013 (2014)

054013-6

http://dx.doi.org/10.1103/PhysRevLett.97.152303
http://dx.doi.org/10.1103/PhysRevLett.97.152303
http://dx.doi.org/10.1016/0375-9474(85)90190-3
http://dx.doi.org/10.1016/0370-1573(93)90092-R
http://dx.doi.org/10.1103/PhysRevC.53.3069
http://dx.doi.org/10.1103/PhysRevD.65.096011
http://dx.doi.org/10.1103/PhysRevD.65.096011
http://dx.doi.org/10.1103/PhysRevD.69.116004
http://dx.doi.org/10.1103/PhysRevD.69.116004
http://dx.doi.org/10.1103/PhysRevD.76.114011
http://dx.doi.org/10.1103/PhysRevD.76.114011
http://dx.doi.org/10.1103/PhysRevD.77.014014
http://dx.doi.org/10.1103/PhysRevD.77.014014
http://dx.doi.org/10.1088/1126-6708/2008/09/093
http://dx.doi.org/10.1088/1126-6708/2008/09/093
http://dx.doi.org/10.1140/epjc/s10052-009-0935-0
http://dx.doi.org/10.1140/epjc/s10052-009-0935-0
http://dx.doi.org/10.1103/PhysRevD.80.114015
http://dx.doi.org/10.1103/PhysRevC.79.044913
http://dx.doi.org/10.1103/PhysRevLett.103.172302
http://dx.doi.org/10.1103/PhysRevLett.103.172302
http://dx.doi.org/10.1103/PhysRevC.86.024913
http://dx.doi.org/10.1103/PhysRevLett.102.172302
http://dx.doi.org/10.1103/PhysRevLett.102.172302
http://dx.doi.org/10.1016/j.nuclphysa.2009.11.005
http://dx.doi.org/10.1103/PhysRevC.79.055207
http://dx.doi.org/10.1103/PhysRevLett.102.121601
http://dx.doi.org/10.1103/PhysRevLett.102.121601
http://dx.doi.org/10.1103/PhysRevD.86.074021
http://dx.doi.org/10.1103/PhysRevD.86.074021
http://dx.doi.org/10.1103/PhysRevC.87.064903
http://arXiv.org/abs/hep-ph/0702130
http://dx.doi.org/10.1142/S0218301307008938
http://dx.doi.org/10.1142/S0218301307008938
http://dx.doi.org/10.1103/PhysRevE.87.033019
http://arXiv.org/abs/1207.6811
http://dx.doi.org/10.1155/2013/627137
http://dx.doi.org/10.1016/j.nuclphysa.2010.07.006
http://dx.doi.org/10.1016/j.nuclphysa.2010.07.006
http://dx.doi.org/10.1103/PhysRevC.85.064917
http://dx.doi.org/10.1103/PhysRevC.85.064917
http://dx.doi.org/10.1103/PhysRevD.87.094026
http://dx.doi.org/10.1016/0031-8914(73)90294-2
http://dx.doi.org/10.1016/0370-2693(89)91627-4
http://dx.doi.org/10.1140/epjc/s10052-010-1446-8
http://dx.doi.org/10.1140/epjc/s10052-010-1446-8
http://dx.doi.org/10.1140/epjc/s10052-009-0990-6
http://dx.doi.org/10.1016/0550-3213(92)90005-V
http://dx.doi.org/10.1016/0550-3213(92)90005-V
http://dx.doi.org/10.1103/PhysRevC.66.054905

