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We study the two-body hadronic D → PV decays, where P (V) denotes a pseudoscalar (vector) meson,
in the factorization-assisted topological-amplitude approach proposed in our previous work. This approach
is based on the factorization of short-distance and long-distance dynamics into Wilson coefficients and
hadronic matrix elements of four-fermion operators, respectively, with the latter being parametrized in
terms of several nonperturbative quantities. We further take into account the ρ-ω mixing effect, which
improves the global fit to the branching ratios involving the ρ0 and ω mesons. Combining short-distance
dynamics associated with penguin operators and the hadronic parameters determined from the global fit to
branching ratios, we predict direct CP asymmetries. In particular, the direct CP asymmetries in the
D0 → K0K̄�0, K̄0K�0, Dþ → πþρ0, and Dþ

s → Kþω, Kþϕ decays are found to be of Oð10−3Þ, which can
be observed at the LHCb and future Belle II experiment. We also predict the CP asymmetry observables of
some neutral D meson decays.
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I. INTRODUCTION

Recent measurements of direct CP asymmetries in two-
body hadronic D meson decays have stimulated great
theoretical efforts on their study. The difference between
the direct CP asymmetries of the D0 → KþK− and
D0 → πþπ− decays, ΔACP≡ACPðKþK−Þ−ACPðπþπ−Þ¼
½−0.82�0.21ðstatÞ�0.11ðsystÞ�%, was observed by LHCb
[1] and confirmed by other collaborations. For example,
the CDF and Belle measurement gave ΔACP ¼ ½−0.62�
0.21ðstatÞ � 0.10ðsystÞ�% [2] and ΔACP ¼ ½−0.87�
0.41ðstatÞ � 0.06ðsystÞ�% [3], respectively. The quantity
ΔACP is expected to be much smaller in the Standard
Model (SM) because the responsible penguin contributions
are suppressed by both the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements and the Wilson coefficients [4,5],
ACP ∼ ðjV�

cbVubj=jV�
csVusjÞ

ðαs=πÞ ∼ 10−4. The dramatic deviation of the data from the
expectation has been investigated in the SM and in new
physics models by employing different approaches.
To predict direct CP asymmetries, a reliable evaluation

of the penguin contributions to two-body hadronic
D meson decays is necessary. In Refs. [6,7] the tree
amplitudes were determined by fitting the topology

parametrization to measured branching ratios, while the
penguin amplitudes were calculated in the QCD-improved
factorization [8,9]. It has been noticed that the penguin
amplitudes derived from the QCD-improved factorization
lead to a tinyΔACP of order 10−5 [7]. Allowing the penguin
amplitudes to be of the same order as the tree ones
discretionally, ΔACP reaches −0.13% ∼Oð10−3Þ [7]. In
another work [10] also based on the topology parametriza-
tion, the penguin contribution via an internal b quark was
identified as the major source of CP violation, since it
cannot be related to the tree amplitudes. This penguin
contribution, including its strong phase, was constrained by
the LHCb data and then adopted to predict direct CP
asymmetries of other decay modes. Therefore, it is difficult
to tell whether the large ΔACP ∼Oð10−2Þ arise from new
physics [11–18], if one follows the approaches in the
literature.
To estimate the penguin contribution precisely, we

have proposed a theoretical framework for two-body
hadronic D meson decays, named as the factorization-
assisted topological-amplitude (FAT) approach [19], which
combines the conventional naive factorization hypothesis
and topological-amplitude parametrization. It is based on
the factorization of short-distance (long-distance) dynamics
into Wilson coefficients (hadronic matrix elements of four-
fermion operators, i.e., topological amplitudes). Because of
the small charm quark mass just above 1 GeV, a perturba-
tion theory for the hadronic matrix elements may not be
reliable. The idea is to identify as complete as possible
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the important sources of nonperturbative dynamics in the
hadronic matrix elements and parametrize them in the
framework of the factorization hypothesis. Fitting our
parametrization to abundant data of D meson decay
branching ratios, all the nonperturbative parameters can
be determined. Once the nonperturbative parameters have
been determined, the replacement of the Wilson coeffi-
cients works for estimating the penguin contributions. For
those penguin amplitudes, which cannot be related to
tree amplitudes through the above replacement, we have
shown that they are either factorizable or suppressed by the
helicity conservation. If they are factorizable, such as the
scalar penguin annihilation contribution, data from other
processes can be used for their determination. We are then
able to predict the direct CP asymmetries in D meson
decays without ambiguity.
The FAT approach has been applied to the study of the

D → PP decays [19], where P represents a pseudoscalar
meson. It has been shown that our framework greatly
improves the global fit to the measured D → PP branching
ratios. Inparticular,wehaveobtainedΔACP ¼−1.00×10−3,
which discriminates the opposite postulations on large
(small) directCP asymmetries in singlyCabibbo-suppressed
D meson decays [20] ([21]). After the publication of our
work, the LHCb collaboration updated the data [22],

ΔACP ¼ ½−0.34� 0.15ðstatÞ � 0.10ðsystÞ�%; (1)

where the central value is lower than the previous one.
Two sources ofDmeson production have been employed by
the LHCb in the measurements of ΔACP: the D�þ → D0πþ
channel with the flavor of the neutral D meson being
determined by the emitted pion and semileptonic b-hadron
decays where the flavor of the neutralDmeson is tagged by
the accompanying charged lepton. The former, from more
data collected in the fall of 2011, led to Eq. (1) with lower
statistical uncertainty. The latter from almost one-third of the
samples of the D� analysis gave [23]

ΔACP ¼ ½þ0.49� 0.30ðstatÞ � 0.14ðsystÞ�%: (2)

The sign flip of the central value indicates that the direct CP
asymmetry in theD0 → KþK−, πþπ− decays may be small,
so it could fluctuate into negative or positive values.
In this paper we shall extend the FAT approach to the

D → PV decays with V denoting a vector meson. Their
data of branching ratios are also abundant enough for fixing
nonperturbative parameters, and their direct CP asymme-
tries are of great phenomenological importance and inter-
est. Compared to Ref. [19], we further take into account the
ρ-ω mixing effect, which improves the global fit to the
branching ratios involving the ρ0 and ω mesons. It will
be shown that the measured branching ratios of the Dþ

s
decays into KþK̄�0, K̄0K�þ, πþρ0, and πþω, which could
not be accommodated simultaneously in the diagrammatic

approach [24], are explained. This overall improvement
between the predictions and the data is attributed to the
SU(3) symmetry breaking effects included in our topo-
logical-amplitude parametrization. Besides, the direct CP
asymmetries in the D0 → K0K̄�0, K̄0K�0, Dþ → πþρ0, and
Dþ

s → Kþω, Kþϕ modes reach 10−3, which can be
observed at the LHCb or future Belle II. We also calculate
the CP asymmetry observables of some neutral D meson
decays. Our predictions presented in this work would help
analyze CP asymmetries in three-body D meson decays.
For example, the result for the D0 → π0ρ0 mode is relevant
to the D0 → πþπ−π0 channel.
In Sec. II we construct our parametrization of the tree

contributions to the D → PV branching ratios in the FAT
approach. In Sec. III the penguin contributions from the
operators O3–6, from O1;2 through the quark loops, and
from the magnetic penguin O8g are formulated. The direct
CP asymmetries in the D → PV decays are then predicted.
Section IV is the conclusion. We discuss the scalar penguin
contributions in Appendix A and the ρ-ω mixing in
Appendix B.

II. BRANCHING RATIOS

In the FAT approach the hadronic matrix elements
of the four-fermion operators, including the emission,
W-annihilation, and W-exchange amplitudes, are parame-
trized into the magnitudes χ’s and the strong phases ϕ’s.
An important ingredient is the Glauber strong phase factor
[25] associated with a pion in the nonfactorizable annihi-
lation amplitudes, which might originate from the unique
role of the pion as a Nambu—Goldstone boson and a
quark-antiquark bound state simultaneously. The Glauber
phase modifies the relative angle and the interference
between the annihilation and emission amplitudes involv-
ing pions. The predicted D0 → πþπ− (D0 → KþK−)
branching ratio is then reduced (enhanced), and the the
long-standing puzzle related to these branching ratios
[24,26] is resolved. In this work, we only consider the
tree contributions to the branching ratios and neglect the
penguin ones which are suppressed by Wilson coefficients
and CKM matrix elements.

A. Parametrization of tree amplitudes

In this subsection we parametrize the tree contribu-
tions which dominate the D → PV branching ratios. The
relevant effective weak Hamiltonian is given by

Heff ¼
GFffiffiffi
2

p VCKM½C1ðμÞO1ðμÞ þ C2ðμÞO2ðμÞ�; (3)

where GF is the Fermi coupling constant, VCKM represents
the product of the corresponding CKM matrix elements,
and C1;2 are the Wilson coefficients. The current-current
operators are defined by
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O1 ¼ ðūαq2βÞV−Aðq̄1βcαÞV−A;
O2 ¼ ðūαq2αÞV−Aðq̄1βcβÞV−A; (4)

with q1;2 being the d or s quark, α, β being the color indices,
and ðq̄q0ÞV−A representing q̄γμð1 − γ5Þq0. The relevant
eight topological diagrams are displayed in Fig. 1, where
TPðVÞ represents the color-favored tree amplitude with the
D → PðVÞ transition,CPðVÞ represents the color-suppressed
tree amplitude with the D → PðVÞ transition, EPðVÞ repre-
sents the W-exchange amplitude with the pseudoscalar
(vector) meson containing the antiquark from the weak
vertex, and APðVÞ represents the W-annihilation amplitude
with the pseudoscalar (vector) meson containing the a
ntiquark from the weak vertex.
For the emission type, we ignore the nonfactorizable

contributions to the color-favored amplitudes because the
factorizable ones dominate. The amplitudes TP and CP are
formulated as [19]

TPðCPÞ¼
GFffiffiffi
2

p VCKMa1ðμÞðaP2 ðμÞÞfVmVFDP
1 ðm2

VÞ2ðεV ·pDÞ;
(5)

where fV ðmV; εVÞ is the decay constant (mass, polariza-
tion vector) of the vector meson, FDP

1 is the D → P
transition form factor, and pD is the D meson momentum.
The amplitudes TV and CV are formulated as

TVðCVÞ¼
GFffiffiffi
2

p VCKMa1ðμÞðaV2 ðμÞÞfPmVADV
0 ðm2

PÞ2ðεV ·pDÞ;
(6)

where fP is the decay constant of the pseudoscalar
meson and ADV

0 is the D → V transition form factor. The

associated scale-dependent Wilson coefficients a1 and a
P;V
2

are given by

a1ðμÞ ¼ C2ðμÞ þ
C1ðμÞ
NC

;

aPðVÞ2 ðμÞ ¼ C1ðμÞ þ C2ðμÞ
�

1

NC
þ χCPðVÞe

iϕC
PðVÞ

�
; (7)

with NC being the number of colors. The parameters
χCP;V and ϕC

P;V describe the magnitudes and the strong
phases of the nonfactorizable contributions in the color-
suppressed amplitudes, since final-state interaction (FSI)
and resonance effects cannot be neglected in D meson
decays. We set the scale of the Wilson coefficients to the
energy release in individual decay modes as suggested
by the perturbative QCD (PQCD) approach [27]: it
depends on masses of final states and on the scale Λ
that characterizes the soft degrees of freedom in the D
meson [19],

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛmDð1 − r2VðPÞÞ

q
; (8)

rVðPÞ ¼ mVðPÞ=mD being the mass ratio of the vector
(pseudoscalar) meson emitted from the weak vertex over
the D meson. The evolution of the Wilson coefficients for
c quark decays can be found in Ref. [19].
Because the factorizable contributions to the

annihilation-type amplitudes are down by helicity suppres-
sion [28], only the nonfactorizable contributions are con-
sidered. The W-exchange and W-annihilation amplitudes
are parametrized as

EP;V ¼
GFffiffiffi
2

p VCKMC2ðμÞχEqðsÞeiϕ
E
qðsÞfDmD

fP
fπ

fV
fρ

ðεV ·pDÞ; (9)

AP;V¼
GFffiffiffi
2

p VCKMC1ðμÞχAqðsÞeiϕ
A
qðsÞfDmD

fP
fπ

fV
fρ

ðεV ·pDÞ; (10)

where fD, fπ , and fρ are the decay constants of the D
meson, π meson, and ρ meson, respectively. The param-
eters χE;Aq;s and ϕE;A

q;s characterize the strengths and the
strong phases of the corresponding amplitudes, with the
subscripts q and s differentiating the strongly produced
light-quark (u or d) and strange-quark pair. The ratios
over fπ and fρ in Eqs. (9) and (10) take into account the
SUð3Þ breaking effects from the decay constants. As in
the emission-type amplitudes, the scale of the Wilson
coefficients,

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛmDð1 − r2PÞð1 − r2VÞ

q
; (11)

also depends on the initial- and final-state masses.
As shown above, we have followed the parametrization

for the D → PP decays [19] by considering the non-
factorizable amplitudes χq and χs in this work. Note that

FIG. 1. Eight topological diagrams contributing to theD → PV
decays with (a) the color-favored tree amplitude TPðVÞ, (b) the
color-suppressed tree amplitude CPðVÞ, (c) the W-exchange
amplitude EPðVÞ, and (d) the W-annihilation amplitude APðVÞ.
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χP and χV were adopted in Ref. [24], which describe the
nonfactorizable contributions with the spectator antiquark
going into the P and V mesons, respectively. However, as
χP and χV appear together in someD → PV modes, such as
Dþ → πþω, their difference reflects the isospin symmetry
breaking, which ought to be tiny. Certainly, they do not
always appear together. For example, only χP appears in the
D0 → πþρ− decay. Viewing that χP and χV may violate
the isospin symmetry, we prefer χq and χs, whose differ-
ence reflects the SU(3) symmetry breaking that could be
significant. It turns out that the parametrization with
χq and χs has a lower χ2 in the global fit than the
parametrization with χP and χV does. That is, the SU(3)
symmetry breaking is more crucial than the isospin
symmetry breaking in D-meson decays.
It was proposed in Ref. [29] that a kind of soft gluons,

named the Glauber gluons, exist in two-body heavy meson
decays, which may lead to additional strong phases in the
nonfactorizable amplitudes. The multiple Fock states of a
pion have been proposed to reconcile its simultaneous roles
as a qq̄ bound state and a Nambu—Goldstone boson [30].
It was then speculated that the Glauber effect becomes
significant due to the huge soft cloud formed by higher
Fock states of a pion [29]. According to Ref. [19], we
multiply a phase factor expðiSπÞ to the nonfactorizable
annihilation-type amplitudes, as a pion is involved in the
final state, while leaving the emission-type amplitudes
unchanged, in which the factorizable contributions usually
dominate. In summary, our parametrization of theD → PV
decays is composed of 14 global free parameters: the soft
scale Λ; the magnitudes of the nonfactorizable amplitudes,
χCP;V and χE;Aq;s ; the strong phases of the nonfactorizable

amplitudes, ϕC
P;V and ϕE;A

q;s ; and the Glauber phase,
Sπ . Compared to the D → PP analysis [19], there are only
two more free parameters.

B. Numerical analysis

The partial decay width of a D → PV mode is
expressed as

ΓðD → PVÞ ¼ jp⃗V j
8πm2

D

X
pol

jAj2; (12)

or equivalently as

ΓðD → PVÞ ¼ jp⃗V j3
8πm2

V
j ~Aj2; (13)

which are related to each other via A ¼ ~Aðε · pDÞ and the
summation over the polarization states of the vector boson,P

poljε · pDj2 ¼ ðm2
D=m

2
VÞjp⃗V j2. Note that only the longi-

tudinal polarization state of the vector meson contributes to
the D → PV decays. We perform the global fits based on
the above two formulas and find the same solutions. This is
in contrast to the observation in Ref. [24], where different
solutions were obtained from Eqs. (12) and (13). For the

decay constants of the pseudoscalar and vector mesons and
the D → P transition form factors FDP

1 in Eq. (5), we take
the same values as in Ref. [31]. The D → V transition form
factors ADV

0 ðq2Þ’s have been calculated with poor precision:
their values at q2 ¼ 0 range from about 0.6 to 0.8 [32] and
are chosen as in Table I. Our fits include all the channels
with measured branching ratios except Dþ

s → η0ρþ, i.e.,
33 experimental data of branching ratios in total. The
Dþ

s → η0ρþ mode is excluded for the following reason. It is
the only η0-involved decay with a measured branching ratio,
and the input of the Dþ

s → η0 transition form factor is
uncertain, whose variation easily changes the fit to this
mode. Therefore, its data, with less satisfactory quality,
does not constrain the relevant parameters effectively.
The global fit leads to the nonperturbative parameters

Λ ¼ 0.44 GeV; Sπ ¼ −0.96;
χCP ¼ −0.40; ϕC

P ¼ −0.53; χCV ¼ −0.53;
ϕC
V ¼ −0.25; χEq ¼ 0.25; ϕE

q ¼ 1.73;

χAq ¼ 0.11; ϕA
q ¼ −0.35; χEs ¼ 0.29;

ϕE
s ¼ 3.11; χAs ¼ 0.10; ϕA

s ¼ 1.60; (14)

with the fitted χ2 ¼ 2.8 per degree of freedom. Since the
weak phases associated with the tree contributions are tiny,
roughly the same branching ratios will be obtained, if the
strong phases in Eq. (14) flip the sign. We select the above
outcomes to keep the strong phases of the emission-type
amplitudes in consistence with those in Ref. [19]. The value
of Λ is in the correct order of magnitude for characterizing
the soft degrees of freedom in theDmeson and close to that
derived from the D → PP fit [19]. The Glauber phase Sπ is
not very different from what was obtained in the D → PP
analysis [19] and is consistent with the value extracted from
the data for the direct CP asymmetries in the B → πK
decays [29].
The branching ratios of the Cabibbo-favored, singly

Cabibbo-suppressed, and doubly Cabibbo-suppressed
D → PV decays corresponding to the parameters in
Eq. (14) are listed in Tables II, III, and IV, respectively.
Our results are also compared with the experimental data
[33] and with those from other theoretical approaches, such
as the fit based on the diagrammatic approach [24], the
calculations including the FSI effects of nearby resonances
[34], and the combination of the generalized factorization
and the pole model [31]. Our results in the column Br(FAT)
basically agree with the data. Note that the branching ratios
BrðDþ

s → η0ρþÞ ¼ ð12:5� 2.2Þ% given by the Particle
Data Group [33] was from an old measurement [35]. It

TABLE I. Values of D → V transition form factors ADV
0 ð0Þ.

D → ρ D → K� D → ω Ds → K� Ds → ϕ
0.76 0.73 0.70 0.76 0.78
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was then questioned for exceeding the inclusive η0 fraction
ð11:7� 1.8Þ% [33], which includes all η0 involved modes.
This controversy was resolved by the recent CLEOc
measurement with the branching fraction BrðDþ

s →η0ρþÞ¼
ð5.6�1.1Þ% [36], which is closer to our prediction.
It was noticed in Refs. [31,34] that the prediction for the

Dþ
s → πþρ0 branching ratio is much larger than the data,

while the Dþ
s → πþω branching ratio, predicted to be zero,

is sizable in experiments. The inconsistence observed in
Refs. [31,34] was explained via the topological amplitudes
of these two modes:

AðDþ
s → πþρ0Þ ¼ 1ffiffiffi

2
p ðAP − AVÞ; (15)

AðDþ
s → πþωÞ ¼ 1ffiffiffi

2
p ðAP þ AVÞ: (16)

The factorizable W-annihilation contributions Af
P and Af

V
obey Af

P ¼ −Af
V, which holds in the pole-dominant model

[31] because of the antisymmetric space wave function
of the two P-wave final states and can also be derived in
the PQCD approach [37]. Then the two contributions are
constructive in the πþρ0 mode and destructive in the
πþω mode, contrary to the implication of the data. In
our approach only the nonfactorizable contributions are
considered due to the helicity suppression of the factoriz-
able ones as shown in Eq. (10), such that the relation AP ¼
AV leads to the vanishing Dþ

s → πþρ0 branching ratio [see
the value in the column Br(FAT) of Table II]. The difference

between our prediction and those in Refs. [31,34] for
the Dþ

s → π0ρþ branching ratio can be understood in the
same way.
In the diagrammatic approach [24], where the global

fit was performed only for the Cabibbo-favored modes
with the flavor SU(3) symmetry, it is impossible to find a
reasonable solution to the Dþ

s → πþρ0, πþω, KþK̄�0, and
K̄0K�þ data simultaneously. Besides, the fit in Ref. [31]
indicated that the Dþ

s → K̄0K�þ branching ratio is much
lower than the Dþ

s → KþK̄�0 one. This is also the case
observed in the naive factorization, because of the form
factor relation FDK

1 ≈ ADK�
0 , but with the decay constant

fK < fK� . Note that the Dþ
s → πþρ0 and πþω decays

involve the W-annihilation amplitudes with strongly pro-
duced light-quark pairs, while the Dþ

s → KþK̄�0 and
K̄0K�þ decays involve strongly produced strange-quark
pairs. Since we have included the significant SU(3)
breaking effects from the nonfactorizable contributions
in Eq. (10), better agreement between the predictions
and the data for the above modes has been attained in
our global fit.
It is seen that some ω-involved branching ratios have

been overestimated compared to the corresponding ρ0-
involved ones. For example, the predicted D0 → π0ω
branching ratio in the column Br(FAT) of Table III
exceeds the upper bound from the experimental value,
BrðD0 → π0ωÞ < 0.26 × 10−3, while theD0 → π0ρ0 one is
slightly lower. The predictedDþ → πþρ0 and Dþ

s → Kþρ0
branching ratios are also lower than the data, while the
Dþ → πþω and Dþ

s → Kþω ones may be overestimated.

TABLE II. Branching ratios for the Cabibbo-favored D → PV decays in units of percentage. Our results without (FAT) and with the
ρ-ω mixing (FAT[mix]) are compared to the experimental data [33], the fitted results from the diagrammatic approach [24], the results
including the FSI effects [34], and the calculations from the combination of the generalized factorization and the pole model [31]. The
involved amplitudes of the decays are also shown, with those outside the parentheses being dominant.

Modes Amplitudes Br(FSI) Br(diagrammatic) Br(pole) Br(FAT) Br(FAT[mix]) Br(exp)

D0 → πþK�− TV , ðEPÞ 4.69 5.91� 0.70 3.1� 1.0 6.21 6.09 5.44þ0.70−0.53
D0 → π0K̄�0 CP, ðEPÞ 3.49 2.82� 0.34 2.9� 1.0 3.42 3.25 3.44� 0.35
D0 → K̄0ρ0 CV , ðEVÞ 0.88 1.54� 1.15 1.7� 0.7 1.31 1.17 1.26þ0.14−0.16
D0 → K̄0ω CV , ðEVÞ 2.16 2.26� 1.38 2.5� 0.7 2.26 2.22 2.22� 0.12
D0 → K̄0ϕ EP 0.90 0.868� 0.139 0.8� 0.2 0.800 0.800 0.834� 0.074
D0 → K−ρþ TP, ðEVÞ 11.19 10:8� 2.2 8.8� 2.2 9.6 9.6 10:8� 0.7
D0 → ηK̄�0 CP, ðEP; EVÞ 0.51 0.96� 0.32 0.7� 0.2 0.55 0.57 0.96� 0.30
D0 → η0K̄�0 CP, ðEP; EVÞ 0.005 0.012� 0.003 0.016� 0.005 0.018 0.018 < 0.11
Dþ → πþK̄�0 TV , CP 0.64 1.83� 0.49 1.4� 1.3 1.70 1.70 1.51� 0.16
Dþ → K̄0ρþ TP, CV 11.77 9.2� 6.7 15:1� 3.8 6.4 6.0 9.6� 2.0
Dþ

s → πþρ0 AP, AV 0.080 0.4� 0.4 0 0.004 0.020� 0.012
Dþ

s → πþω AP, AV 0.0 0 0.30 0.26 0.25� 0.07
Dþ

s → πþϕ TV 2.89 4.38� 0.35 4.3� 0.6 3.4 3.4 4.5� 0.4
Dþ

s → π0ρþ AP, AV 0.080 0.4� 0.4 0 0
Dþ

s → KþK̄�0 CP, ðAVÞ 3.86 4.2� 1.7 4.08 4.07 3.95� 0.2
Dþ

s → K̄0K�þ CV , ðAPÞ 3.37 1.0� 0.6 2.5 3.1 5.4� 1.2
Dþ

s → ηρþ TP, ðAP; AVÞ 9.49 8.3� 1.3 8.2 8.8 8.9� 0.8
Dþ

s → η0ρþ TP, ðAP; AVÞ 2.61 3.0� 0.5 1.7 1.6 5.6� 1.1a

adata from Ref. [36]
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The above observation implies that the inclusion of
the ρ-ω mixing effect may improve the consistency
between the predictions and the data for these decays.
We notice the similar pattern in the D → PP analysis [19]:
for the D → π0K decays, whose branching ratios are
larger, our predictions are consistent with the data. For
the D0 → π0π0 decay, whose branching ratio is smaller, it
was underestimated. Taking into account the π-η-η0 mixing,
for which the mixing matrix element M12 is negative [38],
the predicted D0 → π0π0 branching ratio can be increased
and match the data better. We point out thatM12 is negative
in the ρ-ω mixing [38], so its effect on the ω-involved
modes is opposite and in the desired tendency. It is
intriguing that both the D → PP and D → PV decays
exhibit the meson mixing mechanism.
Motivated by the above argument, we include the ρ-ω

mixing defined by

jρ0i ¼ jρ0I i − εjωIi;
jωi ¼ εjρ0I i þ jωIi; (17)

up to Oðε2Þ corrections, where jρ0I i and jωIi denote the
isospin eigenstates. The decay constants of the jρ0I i and

jωIi states are related to those of the physical states in
Appendix B, through the evaluation of the V0 → eþe−
decay width. Choosing the mixing angle ε ¼ 0.12, which is
reasonable viewing the large uncertainty of this parameter
[39], we obtain another set of nonperturbative parameters,

Λ ¼ 0.44 GeV; Sπ ¼ −0.85;
χCP ¼ −0.40; ϕC

P ¼ −0.53; χCV ¼ −0.63;
ϕC
V ¼ −0.42; χEq ¼ 0.26; ϕE

q ¼ 1.74;

χAq ¼ 0.17; ϕA
q ¼ −0.77; χEs ¼ 0.29;

ϕE
s ¼ 3.10; χAs ¼ 0.10; ϕA

s ¼ 1.61; (18)

with the fitted χ2 ¼ 2.3 per degree of freedom. The
corresponding D → PV branching ratios are listed in the
column Br(FAT[mix]) of Tables II, III, and IV. After
including the mixing, the predicted D0 → π0ω branching
ratio is reduced to 0.18 × 10−3 mainly due to the lower ω
meson decay constant and is below the observed upper
bound. The branching ratios of most other ω-involved
modes are also decreased considerably. On the contrary, the
branching ratios of most ρ0-involved modes are enhanced,

TABLE III. Same as Table II for the singly Cabibbo-suppressed D → PV decays in units of 10−3.

Modes Amplitudes Br(FSI) Br(diagrammatic) Br(pole) Br(FAT) Br(FAT[mix]) Br(exp)

D0 → πþρ− TV , ðEPÞ 6.5 3.92� 0.46 3.5� 0.6 4.74 4.66 4.96� 0.24
D0 → π0ρ0 CP, CV , ðEP; EVÞ 1.7 2.96� 0.98 1.4� 0.6 3.55 3.83 3.72� 0.22
D0 → π0ω CP, CV , ðEP; EVÞ 0.08 0.10� 0.18 0.08� 0.02 0.85 0.18 < 0.26
D0 → π0ϕ CP 1.1 1.22� 0.08 1.0� 0.3 1.11 1.11 1.31� 0.10
D0 → π−ρþ TP, ðEVÞ 8.2 8.34� 1.69 10:2� 1.5 10.2 10.0 9.8� 0.4
D0 → KþK�− TV , ðEPÞ 2.8 1.99� 0.24 1.6� 0.3 1.72 1.73 1.56� 0.12
D0 → K0K̄�0 EP, EV 0.99 0.29� 0.22 0.16� 0.05 1.1 1.1 < 1
D0 → K̄0K�0 EP, EV 0.99 0.29� 0.22 0.16� 0.05 1.1 1.1 < 0.56
D0 → K−K�þ TP, ðEVÞ 4.5 4.25� 0.86 4.7� 0.8 4.37 4.37 4.38� 0.21
D0 → ηρ0 CP, CV , ðEP; EVÞ 0.24 1.11� 0.86 0.05� 0.01 0.54 0.45
D0 → ηω CP, CV , ðEP; EVÞ 1.9 3.08� 1.42 1.2� 0.3 2.4 2.0
D0 → ηϕ CP, ðEP; EVÞ 0.57 0.31� 0.10 0.23� 0.06 0.19 0.18 0.14� 0.05
D0 → η0ρ0 CP, CV , ðEP; EVÞ 0.10 0.14� 0.02 0.08� 0.02 0.21 0.27
D0 → η0ω CP, CV , ðEP; EVÞ 0.001 0.07� 0.02 0.0001� 0.0001 0.04 0.02
Dþ → πþρ0 TV , CP, ðAP; AVÞ 1.7 0.8� 0.7 0.42 0.58 0.81� 0.15
Dþ → πþω TV , CP, ðAP; AVÞ 0.35 0.3� 0.3 0.95 0.80 < 0.34
Dþ → πþϕ CP 5.9 6.21� 0.43 5.1� 1.4 5.65 5.65 5.42þ0.22−0.24
Dþ → π0ρþ TP, CV , ðAP; AVÞ 3.7 3.5� 1.6 2.7 2.5
Dþ → KþK�0 TV , ðAVÞ 2.5 4.1� 1.0 3.61 3.60 3.675þ0.14−0.21
Dþ → K̄0K�þ TP, ðAPÞ 1.70 12:4� 2.4 11 11 32� 14
Dþ → ηρþ TP, CV , ðAP; AVÞ 0.002 0.4� 0.4 0.7 2.2 < 15
Dþ → η0ρþ TP, CV , ðAP; AVÞ 1.3 0.8� 0.1 0.7 0.8
Dþ

s → πþK�0 TV , ðAVÞ 3.3 1.5� 0.7 2.52 2.35 2.25� 0.39
Dþ

s → π0K�þ CV , ðAVÞ 0.29 0.1� 0.1 0.8 1.0
Dþ

s → Kþρ0 CP, ðAPÞ 2.4 1.0� 0.6 1.9 2.5 2.7� 0.5
Dþ

s → Kþω CP, ðAPÞ 0.72 1.8� 0.7 0.6 0.07 < 2.4
Dþ

s → Kþϕ TV , CP, ðAVÞ 0.15 0.3� 0.3 0.166 0.166 0.184� 0.045
Dþ

s → K0ρþ TP, ðAPÞ 19.5 7.5� 2.1 9.1 9.6
Dþ

s → ηK�þ TP, CV , ðAP; AVÞ 0.24 1.0� 0.4 0.2 0.2
Dþ

s → η0K�þ TP, CV , ðAP; AVÞ 0.24 0.6� 0.2 0.2 0.2
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since the ρ meson decay constant is increased. However,
some of them are lowered, such as the branching ratios
ofD0 → K̄0ρ0 andD0 → ηρ0. The mixing effect has only a
minor correction to the ρ0 meson decay constant, which is
overcome by the changes of the parameters in Eq. (18).
Note that the Dþ → πþω branching ratio around
8.0 × 10−4 is still higher than the experimental upper
bound 3.4 × 10−4 even after including the ρ-ω mixing.
With the very limited number of free parameters in our
global fit, this outcome is acceptable.
To improve the global fit, we can include the non-

factorizable contributions to the amplitude T or the factor-
izable contributions to the amplitudes E and A, both of
which are expected to be small and have been neglected.
With four more free parameters introduced in each case, the
χ2 is reduced from 44.4 to 36.6 and 36.3, respectively.
The additional contributions turn out to be tiny and change
the results for the branching ratios by only about 7%. The
original parameters remain almost the same, implying that
the additionally introduced parameters are indeed less
important. Improvement can also be achieved by tuning
the inputs of the form factors and the mixing angle, but it
will not be pursued in this paper.

III. DIRECT CP ASYMMETRIES

In this section we predict the direct CP asymmetries of
the D → PV decays, which are defined by

ACP ¼ ΓðD → PVÞ − ΓðD̄ → P̄ V̄Þ
ΓðD → PVÞ þ ΓðD̄ → P̄ V̄Þ (19)

by estimating the penguin contributions in the FAT
approach. The quark-loop and magnetic penguin contribu-
tions are included and absorbed into the Wilson coefficients

of the penguin operators. It has been found that the strong
phases from the quark loops and from the scalar penguin
annihilation dominate the direct CP asymmetries [19].

A. Parametrization of penguin amplitudes

The effective weak Hamiltonian for the penguin
contributions is written as

ΔHeff ¼ −GFffiffiffi
2

p V�
cbVub

�X6
i¼3

CiðμÞOiðμÞ þ C8gðμÞO8gðμÞ
�
;

(20)

where the QCD-penguin and chromomagnetic-penguin
operators are defined by

O3 ¼ ΣqðūαcαÞV−Aðq̄βqβÞV−A;
O4 ¼ ΣqðūαcβÞV−Aðq̄βqαÞV−A;
O5 ¼ ΣqðūαcαÞV−Aðq̄βqβÞVþA;

O6 ¼ ΣqðūαcβÞV−Aðq̄βqαÞVþA;

O8g ¼
gs
8π2

mcūσμνð1þ γ5ÞTaGaμνc; (21)

with mc being the charm quark mass, Ta being a color
matrix, and Gaμν being the gluon field tensor. The eight
topological penguin diagrams for the D → PV decays are
displayed in Fig. 2, in which the color-favored penguin
amplitude PTPðVÞ, the color-suppressed penguin amplitude
PCPðVÞ, the gluon-annihilation penguin amplitude PEPðVÞ,
and the gluon-exchange penguin amplitude PAPðVÞ corre-
spond to the tree amplitudes TPðVÞ, CPðVÞ, EPðVÞ, and APðVÞ,
respectively.
The contributions from the (V − A) (V − A) operatorsO3;4

can be simply obtained by substituting the associatedWilson

TABLE IV. Same as Table II for the doubly Cabibbo-suppressedD → PV decays in units of 10−4, except with the absence of Br(FSI).

Modes Amplitudes Br(diagrammatic) Br(pole) Br(FAT) Br(FAT[mix]) Br(exp)

D0 → π0K�0 CP, ðEVÞ 0.54� 0.18 0.8� 0.3 1.0 0.9
D0 → π−K�þ TP, ðEVÞ 3.59� 0.72 2.7� 0.6 4.82 4.72 3.39� 1.41
D0 → Kþρ− TV , ðEPÞ 1.45� 0.17 0.9� 0.3 1.4 1.5
D0 → K0ρ0 CV , ðEPÞ 0.91� 0.51 0.5� 0.2 0.4 0.3
D0 → K0ω CV , ðEPÞ 0.58� 0.40 0.7� 0.2 0.6 0.6
D0 → K0ϕ EV 0.06� 0.05 0.20� 0.06 0.2 0.2
D0 → ηK�0 CP, ðEP; EVÞ 0.33 0.08 0.2 0.2
D0 → η0K�0 CP, ðEP; EVÞ 0.0040� 0.0006 0.004� 0.001 0.005 0.005
Dþ → πþK�0 CP, ðAVÞ 2.2� 0.9 3.33 3.33 3.75� 0.60
Dþ → π0K�þ TP, ðAVÞ 4.0� 0.9 4.0 3.9
Dþ → Kþρ0 TV , ðAPÞ 0.5� 0.4 1.9 2.4 2.0� 0.5
Dþ → Kþω TV , ðAPÞ 1.8� 0.5 0.9 0.7
Dþ → Kþϕ AV 0.2� 0.2 0.01 0.02
Dþ → K0ρþ CV , ðAPÞ 0.5� 0.4 2.3 3.3
Dþ → ηK�þ TP, ðAP; AVÞ 1.4� 0.2 1.0 1.0
Dþ → η0K�þ TP, ðAP; AVÞ 0.020� 0.007 0.01 0.01
Dþ

s → KþK�0 TV , CP 0.20� 0.05 0.2� 0.2 0.23 0.23 0.90� 0.53
Dþ

s → K0K�þ TP, CV 1.17� 0.86 2.3� 0.6 1.2 1.1
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coefficients andCKMmatrix elements in the tree amplitudes,
while the contributions from the (V − A) (V þ A) operators
O5;6 need to be treated separately. The nonfactorizable
contributions to the color-favored penguin amplitudes are
ignoredas in the color-favored tree amplitudes. Since avector
meson cannot be generated from the scalar or pseudoscalar
operator, PTP does not receive contributions fromO5 orO6.
The penguin amplitude PTV is expressed as

PTV ¼ −GFffiffiffi
2

p V�
cbVub½a4ðμÞhVjðq̄cÞV−AjDihPjðūqÞV−Aj0i

− 2a6ðμÞhVjðq̄cÞS−PjDihPjðūqÞSþPj0i�

¼ −GFffiffiffi
2

p V�
cbVub½a4ðμÞ − rXa6ðμÞ�

× fPmVADV
0 ðm2

PÞ2ðε · pDÞ; (22)

with the chiral factor rX ¼ 2mP
0 =mc and the Wilson

coefficients a4 ¼ C4 þ C3=Nc and a6 ¼ C6 þ C5=Nc.
A remark is in order. The penguin operators, with a sum

over light quark flavors, form a U-spin singlet, but the tree
operators do not. It is then expected from symmetry
considerations that the penguin matrix elements may have
magnitudes and strong phases different from those of the
tree ones. Take the Dþ

s → πþK�0 channel as an example.
The s̄s quark pair in O3;4 can also contribute to this
decay through final-state rescattering s̄s → d̄d, that then
introduces an additional source of strong phases and
differentiates theO3;4 amplitudes from theO1;2 amplitudes.
However, our formalism relies on the factorization of
short-distance and long-distance dynamics, so the weak
vertex is regarded as a hard vertex. The s and s̄ quarks
emitted from the penguin operator fly back to back, and

the chance for them to have rescattering is small; namely,
final-state rescattering is regarded as a subleading effect.
We then have specific quark flavors for the external
lines of the decay, to which the tree operators O1 ¼
ðūαdβÞV−Aðd̄βcαÞV−A and O2 ¼ ðūαdαÞV−Aðd̄βcβÞV−A, and
only the d̄d components of the penguin operators, O3 ¼
ðūαcαÞV−Aðd̄βdβÞV−A and O4 ¼ ðūαcβÞV−Aðd̄βdαÞV−A, con-
tribute (not considering O5;6 here). The above O1ð2Þ and
O3ð4Þ are identical according to the Fiertz identity, and they
lead to the same hadronic matrix elements.
The factorizable contributions to PCP;V from O5;6 are

easily derived with the relations between the (V þ A) and
(V − A) currents used, hVjðq̄1q2ÞVþAj0i¼hVjðq̄1q2ÞV−Aj0i
and hPjðq̄1q2ÞVþAj0i ¼ −hPjðq̄1q2ÞV−Aj0i. The nonfactor-
izable contributions from O4 and O6 are related to the tree
contributions in the following way. Since the hadronic
matrix element of the (V − A) (V − A) operator has been
parametrized as the product of ð1=Nc þ χCeiϕ

CÞ, the decay
constant, and the form factor as shown in Eqs. (5)–(7), the
nonfactorizable contributions from O2 and O4 carry the
same strong phase ϕC. It has been confirmed by PQCD
analytical formulas for two-body hadronic D meson
decays [40] that the nonfactorizable contributions from
O4 and O6 to PCV are identical without including the
Wilson coefficients C4ðμÞ and C6ðμÞ. Relative to PCV , an
additional negative sign is added to the contribution from
O6 to PCP. We then arrive at the parametrization of the
color-suppressed penguin amplitudes

PCP ¼ − GFffiffiffi
2

p V�
cbVub½aP3 ðμÞ þ aP5 ðμÞ�

× fVmVFDP
1 ðm2

VÞ2ðε · pDÞ;

PCV ¼ − GFffiffiffi
2

p V�
cbVub½aV3 ðμÞ − aV5 ðμÞ�

× fPmVADV
0 ðm2

PÞ2ðε · pDÞ; (23)

with the Wilson coefficients

aPðVÞ3 ðμÞ ¼ C3ðμÞ þ C4ðμÞ
�

1

Nc
þ χCPðVÞe

iϕC
PðVÞ

�
;

aPðVÞ5 ðμÞ ¼ C5ðμÞ þ C6ðμÞ
�

1

Nc
− χCPðVÞe

iϕC
PðVÞ

�
: (24)

All the factorizable contributions to the annihilation-type
penguin diagrams are neglected because of the helicity
suppression, except those to the diagrams PAP;V fromO5;6.
They are expressed as

PAf
PðVÞ ¼−GFffiffiffi

2
p V�

cbVuba6ðμÞhVPðPVÞjðūcÞV−Aðq̄qÞVþAjDi

¼−GFffiffiffi
2

p V�
cbVuba6ðμÞð−2ÞhVPðPVÞj

× ðūqÞSþPj0ih0jðq̄cÞS−PjDi; (25)

FIG. 2. Topological penguin diagrams contributing to the
D → PV decays with (a) the color-favored penguin amplitude
PTPðVÞ, (b) the color-suppressed penguin amplitude PCPðVÞ,
(c) the gluon-annihilation penguin amplitude PEPðVÞ, and
(d) the gluon-exchange penguin amplitude PAPðVÞ.
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after the Fierz transformation and the factorization hypothesis are applied. In the pole resonance model, Eq. (25) becomes

PAf
P ¼ −GFffiffiffi

2
p V�

cbVuba6ðμÞð−2ÞhVPjHsjP�i 1

m2
D −m2

P�
hP�jðūqÞSþPj0ih0jðq̄cÞS−PjDi

¼ 2
GFffiffiffi
2

p V�
cbVuba6ðμÞð2gPPVpD · ϵVÞ

1

m2
D −m2

P�
ðfP�m0

P� Þ
�
fD

m2
D

mc

�
;

PAf
V ¼ −GFffiffiffi

2
p V�

cbVuba6ðμÞð−2ÞhPVjHsjP�i 1

m2
D −m2

P�
hP�jðūqÞSþPj0ih0jðq̄cÞS−PjDi

¼ 2
GFffiffiffi
2

p V�
cbVuba6ðμÞð−2gPPVpD · ϵVÞ

1

m2
D −m2

P�
ðfP�m0

P� Þ
�
fD

m2
D

mc

�
; (26)

where P� represents the pole resonant pseudoscalar meson
andHs is the corresponding strong Hamiltonian. The corres-
ponding effective coupling constants gPPV’s are obtained
from ρ → ππ, K�ð892Þ0 → πþK−, and ϕ → KþK−, as
handled in Ref. [31]. We set gPPV to be gq ¼ 4.2, if none
of the three strongly coupledmesons contains s quarks, to be
gs ¼ 4.6 if two of them contain s quarks, and to be gss ¼ 4.5
if all of them contain s quarks.
The PQCD approach [40] suggests that the nonfactor-

izable contributions to PAP;V from O5 almost vanish,
leading to the parametrization

PAnf
P ∝ C3ðμÞχAqðsÞeiϕ

A
qðsÞ ;

PAnf
V ∝ C3ðμÞχAqðsÞeiϕ

A
qðsÞ : (27)

The sum of Eqs. (26) and (27) completes the parametriza-
tion of the amplitudes PAP;V , which turn out to carry strong
phases different from those of the tree amplitudes AP;V
in Eq. (10). For the nonfactorizable contributions to the
amplitudes PEP;V , the PQCD approach [40] suggests that
the dominant pieces from O4 and O6 are formulated in the
same way as

PEP ∝ ½C4ðμÞ − C6ðμÞ�χEqðsÞeiϕ
E
qðsÞ ;

PEV ∝ ½C4ðμÞ − C6ðμÞ�χEqðsÞeiϕ
E
qðsÞ : (28)

The quark-loop contributions from the tree operators can
be absorbed into the Wilson coefficients as [8]

C3;5ðμÞ → C3;5 − αsðμÞ
8πNc

X
q¼d;s

λq
λb

Cqðμ; hl2iÞ;

C4;6ðμÞ → C4;6 þ
αsðμÞ
8π

X
q¼d;s

λq
λb

Cqðμ; hl2iÞ; (29)

where hl2i is the averaged invariant mass squared of the
virtual gluon emitted from the quark loop; λq is defined as
V�
cqVuq for the quark q ¼ d, s or b; and the function Cq is

given by

Cqðμ; hl2iÞ ¼
�
−2

3
− 4

Z
1

0

dxxð1− xÞ lnm
2
q− xð1− xÞhl2i

μ2

�

×C2ðμÞ; (30)

with the quark mass mq. We set the value of hl2i to be
ðPP=2þ PV=2Þ2 ¼ m2

D=4 by assuming that each spectator
of a light meson is likely to carry half of the meson
momentum.We have checked that our predictions for direct
CP asymmetries stayed stable as hl2i ranges from m2

D=25
to m2

D. The chromomagnetic-penguin contribution can be
further absorbed into the Wilson coefficients, leading to [8]

C3;5ðμÞ → C3;5 − αsðμÞ
8πNc

X
q¼d;s

λq
λb

Cqðμ; hl2iÞ

þ 1

Nc

αsðμÞ
4π

m2
c

hl2i ½C8gðμÞ þ C5ðμÞ�;

C4;6ðμÞ → C4;6 þ
αsðμÞ
8π

X
q¼d;s

λq
λb

Cqðμ; hl2iÞ

− αsðμÞ
4π

m2
c

hl2i ½C8gðμÞ þ C5ðμÞ�: (31)

B. Penguin-induced CP violation

We list the predicted direct CP asymmetries in the
D → PV decays without and with various corrections
(QCD-penguins, chromomagnetic penguins, quark loops,
pole resonances, and ρ − ω mixing) in Table V. For the D0

decays, the direct CP asymmetries cannot be measured
directly in experiments owing to the D0-D̄0 mixing.
However, we can obtain the time-integrated CP asymme-
tries by adding the contributions from the indirect CP
asymmetries to the direct ones, as done in Ref. [1]. It can be
found from Table V that the D0 → K0K̄�0 and D0 →
K̄0K�0 modes do not receive contributions from the quark
loops or the chromomagnetic penguins, since these two
contributions to the Wilson coefficients C4ðμÞ and C6ðμÞ
cancel exactly with each other in the amplitudes PEP;V . We
can also find that the direct CP asymmetries of the ω-
involved modes change considerably with the ρ-ω mixing
effect. Similarly to the case of branching ratios, the mixing
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effect lowers the ω meson decay constant, which has
considerable influence on both the tree and penguin
amplitudes of the ω-involved modes.
The D → PP analysis has indicated that the direct CP

asymmetries of the D0 → πþπ− and KþK− decays reach
Oð10−4Þ [19]. It seems that the direct CP asymmetries of
the corresponding D → PV decays, such as D0 → πþρ−,
π−ρþ, KþK�−, and K−K�þ, should be of the same order.
However, tiny values for these four modes are predicted as
shown in Table V. We investigate the D0 → πþρ− decay
specifically, whose direct CP asymmetry receives contri-
butions mainly from the penguin amplitudes PTV
and PAV (for which the nonfactorizable contributions
are negligible). According to Eqs. (22) and (26), PTV
and PAV carry nearly the same magnitude and phase, but
with an opposite sign between them (the corresponding two
amplitudes in D0 → πþπ− have the same sign). Therefore,
it is numerically coincident that they cancel each other,
PAV þ PTV ≈ 0. The small direct CP asymmetries in these
decays are then understood.
The direct CP asymmetries in several modes, including

D0 → K0K̄�0, K̄0K�0, ηρ0, η0ω, Dþ → πþρ0, ηρþ, and

Dþ
s → Kþω, Kþϕ, ηK�þ, reach Oð10−3Þ as shown by

Table V, which are expected to be observed at the LHCb or
Belle II in the future. In particular, the detecting efficiency
of the final states in theDþ → πþρ0 andDþ

s → Kþω, Kþϕ
decays is high. The direct CP asymmetry in theDþ → πþϕ
mode has been recently measured by the LHCb, and the
datum ð−0.04� 0.14� 0.13Þ% [41] is consistent with
zero as predicted in the FAT approach.
The contributions from new physics to electroweak

interactions can be easily absorbed into the Wilson coef-
ficients in the FAT approach. Given a new-physics model,
we can calculate how the Wilson coefficients are modified
in order to match the observed direct CP asymmetries and
then use the new Wilson coefficients to predict direct CP
asymmetries in other modes. For example, if a new-physics
model has a considerable impact only on the chromomag-
netic penguin operator O8g, which is allowed by the
constraints from the D0-D̄0 mixing [42], we extract C8g ≈
11 from the first measurement of ΔACP by LHCb [1]. Then
we predict the direct CP asymmetries in the D → PV
modes and find that two of them are hopefully measured:
about 1% for Dþ → πþρ0 and about −1% for Dþ

s → Kþϕ.

TABLE V. Direct CP asymmetries for the D → PV decays in units of 10−3. The results excluding and including various corrections
(QCD-penguins, chromomagnetic penguins, quark loops, pole resonances, and ρ-ω mixing) one by one are listed. The relevant
amplitudes of the decays are also shown, with those outside the parentheses being dominant.

Modes Amplitudes ACP (tree) ACP (+penguin) ACP (+cm,ql) ACP (+pole) ACP(mixing)

D0 → πþρ− PT, PA, ðPEÞ 0 −0.03 0.02 −0.02 −0.03
D0 → π0ρ0 PT, PC, ðPE; PAÞ 0 −0.01 −0.02 −0.02 −0.03
D0 → π0ω PT, PC, ðPE; PAÞ 0 0.0002 0.04 0.04 0.02
D0 → π0ϕ PC 0 −0.0002 −0.0002 −0.0002 −0.0002
D0 → π−ρþ PT, PA, ðPEÞ 0 0.01 −0.04 −0.01 −0.01
D0 → KþK�− PT, PA, ðPEÞ 0 0.05 −0.03 −0.01 −0.01
D0 → K0K̄�0 PE −0.7 −0.7 −0.7 −0.7 −0.7
D0 → K̄0K�0 PE −0.7 −0.7 −0.7 −0.7 −0.7
D0 → K−K�þ PT, PA, ðPEÞ 0 −0.04 0.03 0 0
D0 → ηρ0 PT, PC, ðPE; PAÞ 0.8 0.8 0.8 0.8 1.0
D0 → ηω PT, PC, ðPE; PAÞ −0.2 −0.1 −0.2 −0.2 −0.1
D0 → ηϕ PC, ðPEÞ 0 0.003 0.003 0.003 0.003
D0 → η0ρ0 PT, PC, ðPE; PAÞ −0.5 −0.3 −0.2 −0.2 −0.1
D0 → η0ω PT, PC, ðPE; PAÞ 1.8 1.2 1.2 1.2 2.2
Dþ → πþρ0 PT, PC, PA 0 −0.5 −0.5 0.7 0.5
Dþ → πþω PT, PC, ðPAÞ 0 0.06 0.03 0.03 −0.05
Dþ → πþϕ PC 0 −0.0001 −0.0001 −0.0001 −0.0001
Dþ → π0ρþ PT, PC, PA 0 0.03 −0.2 0.2 0.2
Dþ → KþK̄�0 PT, PA 0.1 0.5 0.1 0.2 0.2
Dþ → K̄0K�þ PT, PA 0.08 0.07 0.15 0.04 0.04
Dþ → ηρþ PT, PC, ðPAÞ −0.7 −0.7 −0.7 −0.7 −0.6
Dþ → η0ρþ PT, PC, ðPAÞ 0.2 0.1 0.3 0.3 0.5
Dþ

s → πþK�0 PT, PA 0.2 0.2 0.2 −0.2 −0.1
Dþ

s → π0K�þ PT, PC, PA 0.2 0.2 0.3 −0.3 −0.2
Dþ

s → Kþρ0 PT, PC, PA −0.01 −0.05 −0.1 0.3 0.3
Dþ

s → Kþω PT, PC, PA 0.03 0.09 0.2 −0.6 −2.3
Dþ

s → Kþϕ PT, PC, PA 0 0.4 0.3 −0.8 −0.8
Dþ

s → K0ρþ PT, PA 0.04 0.03 −0.02 0.2 0.3
Dþ

s → ηK�þ PT, PC, PA 0.5 0.4 0.8 −0.3 1.1
Dþ

s → η0K�þ PT, PC, PA −0.1 −0.1 −0.2 −0.4 −0.5
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For those decays for which the tree amplitudes do not
contribute to the CP asymmetries, their CP asymmetries
are proportional to the penguin amplitudes [34]. In other
words, they are simply proportional to the QCD-penguin
Wilson coefficients C3–6ðμÞ. In some new physics models,
these coefficients are synchronously varied and will
become about 1 order larger in order to accommodate
the measured ΔACP. As a consequence, the direct CP
asymmetries of most modes listed in Table V will be
enhanced by 1 order of magnitude. Specifically, the direct
CP asymmetry of the Dþ → πþρ0 decay can reach
1% level.
As shown at the end of Sec. II, the neglected contribu-

tions, such as the nonfactorizable T and the factorizable E
and A, lead to small corrections to the branching ratios. The
corrections from the corresponding penguin contributions,
parametrized in a similar way, then modify the predicted
direct CP asymmetries. Their effects can be used to
estimate the uncertainties for predictions in our approach,
which are found to be about 17%. Besides, the signs of the
predicted direct CP asymmetries never flip. This level of
precision should be acceptable, considering the tremendous
difficulty to analyze D meson decays theoretically.
Finally, the CP asymmetry observables of some neutral

D meson decays with the final states f, which follow the
definitions in Ref. [43], are listed in Table VI. The ρ-ω
mixing has a negligible influence on these observables. The
other neutral D meson decays are not considered, since
their time evolution effect is tiny.

IV. SUMMARY

In this paper we have analyzed the branching ratios and
direct CP asymmetries of the D → PV decays in the FAT
approach, which was proposed in Ref. [19]. Briefly speak-
ing, we have improved the topology parametrization by
taking into account mode-dependent QCD dynamics, for
instance, the evolution of the Wilson coefficients with the
energy release in individual modes, flavor SU(3) symmetry
breaking effects, and strong phases from FSI and from the
Glauber gluons in nonfactorizable annihilation-type ampli-
tudes. The ρ-ω mixing effect has been included, which
improves the global fit to the branching ratios involving the
ρ0 and ω mesons. The puzzle from the Dþ

s → πþρ0, πþω
branching ratios observed in the previous studies has been
also resolved. Combining the short-distance dynamics
associated with the penguin operators and the hadronic

parameters determined from the global fit to the measured
branching ratios, we have predicted the direct CP asym-
metries in the D → PV decays. The parametrization of
some nonfactorizable contributions from the operator O6

was guided by the PQCD analysis for two-body hadronicD
meson decays. Fortunately, these contributions do not
dominate our predictions for the direct CP asymmetries
in most of the D → PV modes. It was found that the direct
CP asymmetries in the D0 → K0K̄�0, K̄0K�0, Dþ → πþρ0,
and Dþ

s → Kþω, Kþϕ decays reach Oð10−3Þ, which may
be observed at the LHCb or Belle II. The CP asymmetry
observables of some neutral D meson decays have also
been calculated. Many of our predictions can be confronted
with future data.
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APPENDIX A: STRONG MATRIX ELEMENTS

In this appendix we determine the relative sign between
the hadronic matrix elements hPVjHsjP�i (with the
pseudoscalar meson P being emitted) and hVPjHsjP�i
(with the vector meson V being emitted) in Eq. (26). Since
the strong vertex Hs ∝ iVμðP1∂μP2 − P2∂μP1Þ is antisym-
metric under the exchange of the mesons P1 and P2, we
need to differentiate P1 and P2 to avoid a wrong sign. It is
achieved by comparing an emission amplitude in the pole
resonance model to that in the naive factorization method.
We use the emission amplitude for the decayD0 → ρþπ− to
fix the sign of hVPjHsjP�i and use that of the decay D0 →
πþρ− to fix the sign of hPVjHsjP�i. We consider the
following decay amplitudes:

hρþπ−jHeff jD0i ¼ hρþjðūdÞV−Aj0ih0jðd̄cÞV−AjD�þi

×
1

m2
ρ−m2

D�
hD�þπ−jHsjD0i

¼ fρmρfD�mD�
1

m2
D� −m2

ρ
hD�þπ−jHsjD0i;

hπþρ−jHeff jD0i ¼ hπþjðūdÞV−Aj0ih0jðd̄cÞV−AjDþi

×
1

m2
π −m2

B
hDþρ−jHsjD0i

¼−fπfDm2
π

1

m2
D−m2

π
hDþρ−jHsjD0i:

(A1)

For the emission amplitudes to get positive values as in the
naive factorization, hD�þπ−jHsjD0i should be positive and

TABLE VI. CP asymmetry observables of some neutral D
meson decays.

Modes Cf Sf Sf̄ Df Df̄

D0 → πþρ− −0.4 −0.1 −0.1 0.9 0.9
D0 → π−ρþ 0.4 0.1 0.1 0.9 0.9
D0 → KþK�− −0.4 −0.2 −0.2 0.9 0.9
D0 → K−K�þ 0.4 0.2 0.2 0.9 0.9
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hDþρ−jHsjD0i should be negative. Therefore, we have the
strong matrix elements

hVPjHsjP�i ¼ 2gPPVpD · ϵV;

hPVjHsjP�i ¼ −2gPPVpD · ϵV: (A2)

APPENDIX B: ρ-ω MIXING

In this appendix we formulate the ρ-ω mixing and its
effect on the decay constants of the ρ0 and ω mesons.
As elaborated in Sec. II, this mixing plays an important role
in the evaluation of the branching ratio and the direct CP
asymmetry of a decay mode involving ρ0 or ω. The isospin
eigenstates introduced in Eq. (17) are written as

jρ0I i ¼
1ffiffiffi
2

p ðjūui − jd̄diÞ;

jωIi ¼
1ffiffiffi
2

p ðjūui þ jd̄diÞ: (B1)

The decay constants f0ρ and f0ω of the isospin eigenstates are
defined via

h0j 1ffiffiffi
2

p ðūγμu − d̄γμdÞjρ0i ¼ f0ρmρε
ρ
μ;

h0j 1ffiffiffi
2

p ðūγμuþ d̄γμdÞjωi ¼ f0ωmωε
ω
μ ; (B2)

where mρ;ω and ερ;ω are the the physical masses and
polarization vectors, respectively.
We can obtain the decay constant of a light neutral vector

meson V0 through the V0 → eþe− decay width, which
occurs through the electromagnetic current

jemμ ¼ QuūγμuþQdd̄γμd

¼ 1

3
ffiffiffi
2

p jI¼0
μ þ 1ffiffiffi

2
p jI¼1

μ ; (B3)

with the quark charges Qu;d and the isospin currents
jI¼0;1
μ ¼ ðūγμu� d̄γμdÞ=

ffiffiffi
2

p
. The V0 → eþe− amplitude

is proportional to the matrix element h0jjemμ jV0i, for which
we have, from Eq. (17),

h0jjemμ jρ0i ¼
�

1ffiffiffi
2

p f0ρmρ − ϵ

3
ffiffiffi
2

p f0ωmω

�
ερμ ≡ T ρε

ρ
μ;

h0jjemμ jωi ¼
�

1

3
ffiffiffi
2

p f0ωmω þ ϵffiffiffi
2

p f0ρmρ

�
εωμ ≡ T ωε

ω
μ : (B4)

The decay width is then expressed as

ΓðV0 → eþe−Þ ¼ 4π

3

α2

m3
V
jT V j2; (B5)

with the fine structure constant α. The decay constant of the
physical ρ0ðωÞ meson, fρðωÞ, can be read off the exper-
imental measurements of Γρ0ðωÞ. Therefore, the physical
decay constants are related to those for the isospin
eigenstates via

���� 1ffiffiffi
2

p fρmρ

����
2

¼
���� 1ffiffiffi

2
p f0ρmρ − ϵ

3
ffiffiffi
2

p f0ωmω

����
2

;

���� 1

3
ffiffiffi
2

p fωmω

����
2

¼
���� 1

3
ffiffiffi
2

p f0ωmω þ ϵffiffiffi
2

p f0ρmρ

����
2

: (B6)

Then, we obtain the decay constants for the isospin
eigenstates,

f0ρ ¼ fρ þ
ϵ

3

mω

mρ
fω;

f0ω ¼ fω − 3ϵ
mρ

mω
fρ; (B7)

where the higher-order terms in ϵ have been neglected.
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