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The Cabibbo-Kobayashi-Maskawa matrix element jVubj is not well determined yet. It can be
extracted from both inclusive or exclusive decays, like B → πðρÞlν̄l. However, the exclusive
determination from B → ρlν̄l, in particular, suffers from a large model dependence. In this paper,
we propose to extract jVubj from the four-body semileptonic decay B → ππlν̄l, where the form factors
for the pion-pion system are treated in dispersion theory. This is a model-independent approach that
takes into account the ππ rescattering effects, as well as the effect of the ρ meson. We demonstrate that
both finite-width effects of the ρ meson as well as scalar ππ contributions can be considered completely
in this way.
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I. INTRODUCTION

Precisely determining the elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [1] plays a very
important role in testing the Standard Model. Any devia-
tions from the unitarity of the CKM matrix would be
viewed as a sign of new physics. The element jVubj has
been measured from inclusive charmless semileptonic B
decay as well as from the exclusive decays B → πðρÞlν̄l.
For a review on the determination of jVubj, see Ref. [2].
The value of jVubj preferred by the current global analysis
of CKM data is about 15% smaller than the one from
inclusive charmless semileptonic B decays [3–5], a prob-
lem unresolved to date. Furthermore, the inclusive
determinations of jVubj are about two standard deviations
larger than those obtained from B → πlν̄, presently with a
smaller uncertainty. The value of jVubj predicted from
the measured CKM angle sin 2β, however, is closer to
the exclusive result [6], and it should be stressed that
various theoretical extractions based on exclusive decays
are remarkably consistent among each other [3,7–10].
These discrepancies prompted a reexamination of the
sources of theoretical uncertainty in the inclusive deter-
mination [11,12].
In the present paper, we investigate the four-body

semileptonic decay mode B− → πþπ−l−ν̄l (which we will
abbreviate as Bl4 for short) and propose a method that
allows one to extract jVubj in a model-independent way. As
a major step forward to a reliable treatment of the hadron-
physics aspects of this decay, we use an approach based on
dispersion theory without the need to explicitly match on

specific resonance contributions or to separate these from
the nonresonant background. This presents a significant
improvement compared to previous studies of B → ρlν̄l
[13] and should serve as a valuable cross-check for the
inclusive determination. In the future the distributions
derived below could be used directly in the Monte Carlo
generators of the experiments.
We include the kinematic range for invariant masses of

the ππ pair below the KK̄ threshold in our analysis and
expand the form factors for the full Bl4 transition matrix
element in ππ partial waves up to P waves; D and higher
partial waves have been checked to be negligible at these
energies. While this model-independent description of the
form factor dependence on the ππ invariant mass is in
principle general and holds for arbitrary dilepton invariant
masses, in practice we make use of matching to heavy-
meson chiral perturbation theory to fix the normalization of
the matrix element—a prerequisite for the extraction of
jVubj. This scheme applies in the kinematics, where heavy-
quark effective field theory is valid, i.e. for very large
dilepton invariant masses. We point to Ref. [14] for a lucid
illustration of the different effective theories applicable in
different kinematic regimes for this decay.
This manuscript is organized as follows. In Sec. II the

kinematics for the process of the four-body semileptonic B
decay is reviewed, and the form factors for the hadronic
transition of B → ππlν̄l are defined. In Sec. III, we show in
detail how to treat these form factors within dispersion
theory: the analytic properties are summarized in Sec. III A
and the required pole terms calculated in heavy-meson
chiral perturbation theory in Sec. III B, before we provide
the expressions for the various form factors in the Omnès
representation in Sec. III C. We discuss the required
matching to leading-order heavy-meson chiral perturbation
theory in Sec. III D. Numerical results are discussed in
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Sec. IV, and we summarize our findings in Sec. V. Some
technical details are relegated to the Appendixes.

II. KINEMATICS, FORM FACTORS, PARTIAL
WAVES, DECAY RATES

The kinematics of the process B−ðpBÞ → πþðpþÞπ−×
ðp−Þl−ðplÞν̄lðpνÞ are described in terms of the five
variables displayed in Fig. 1 [15–17]:

(i) the effective mass squared of the pion pair s ¼
ðpþ þ p−Þ2 ¼ M2

ππ;
(ii) the effective mass squared of the dilepton pair sl ¼

ðpl þ pνÞ2;
(iii) the angle θπ of the πþ in the πþπ− center-of-mass

frame Σ2π with respect to the dipion line of flight in
the B− rest frame ΣB;

(iv) the angle θl of the charged lepton l in the lepton
center-of-mass system Σlν with respect to the di-
lepton line of flight in ΣB;

(v) the angle ϕ between the dipion and dilepton planes.
Two additional Mandelstam variables are defined as

t ¼ ðpB − pþÞ2; u ¼ ðpB − p−Þ2;
Σ0 ≡ sþ tþ u ¼ 2M2

π þm2
B þ sl: (1)

We define the combinations of four vectors P ¼ pþ þ p−,
Q ¼ pþ − p−, L ¼ pl þ pν, and make use of the kin-
ematical relations

ðPLÞ≡ P · L ¼ m2
B − s − sl

2
; t − u ¼ −2σπX cos θπ;

(2)

where

σπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
π

s

r
; X ¼ 1

2
λ1=2ðm2

B; s; slÞ; (3)

and the Källén triangle function is given by λða; b; cÞ ¼
a2 þ b2 þ c2 − 2ðabþ acþ bcÞ.
We decompose the matrix element in terms of form

factors according to

T ¼ GFffiffiffi
2

p V�
ubv̄ðpνÞγμð1 − γ5ÞuðplÞIμ;

Iμ ¼ hπþðpþÞπ−ðp−Þjūγμð1 − γ5ÞbjB−ðpBÞi
¼ −

i
mB

ðPμF þQμGþ LμRÞ −
H
m3

B
ϵμνρσLνPρQσ; (4)

where GF ¼ 1.166365 × 10−5 GeV−2 is the Fermi con-
stant, and we use the convention ϵ0123 ¼ 1. The first three
terms correspond to the axial current part, whereas the last
term corresponds to the vector current. The dimensionless
form factors F, G, H, and R are analytic functions of three
independent variables, e.g. s, sl, and t − u. Their partial-
wave expansions for fixed sl read [15,17]

F ¼
X
l≥0

Plðcos θπÞfl −
σπðPLÞ

X
cos θπG;

G ¼
X
l≥1

P0
lðcos θπÞgl; H ¼

X
l≥1

P0
lðcos θπÞhl;

R ¼
X
l≥0

Plðcos θπÞrl þ
σπs
X

cos θπG; (5)

where PlðzÞ are the standard Legendre polynomials and
P0
lðzÞ ¼ dPlðzÞ=dz. An alternative set of form factors is

given by

F1 ¼ X · F þ σπðPLÞ cos θπG; F2 ¼ G; F3 ¼ H;

F4 ¼ −ðPLÞF − slR − σπX cos θπG; (6)

whose partial-wave expansions

F1 ¼ X
X
l≥0

Plðcos θπÞfl; F2 ¼
X
l≥1

P0
lðcos θπÞgl;

F3 ¼
X
l≥1

P0
lðcos θπÞhl; F4 ¼

X
l≥0

Plðcos θπÞ~rl;

~rl ¼ −ððPLÞfl þ slrlÞ; (7)

directly follow from Eqs. (5) and (6). Note that all partial
waves fl, gl, hl, rl (~rl) are functions of s and sl. The lowest
angular-momentum ππ state contributing to the form
factors F2 and F3 is the P-wave state, whereas the form
factors F1 and F4 start with S waves. For the partial-wave
decomposition up to P waves, we can therefore write

F1 ¼ X½f0ðs; slÞ þ f1ðs; slÞ cos θπ þ � � ��;
F2 ¼ g1ðs; slÞ þ � � � ; F3 ¼ h1ðs; slÞ þ � � � ;
F4 ¼ ~r0ðs; slÞ þ ~r1ðs; slÞ cos θπ þ � � � ; (8)

where the ellipses denote higher partial waves. In the
following, we sometimes suppress the dependence on sl in
order to ease notation.

FIG. 1. Illustration of the kinematical variables for Bl4.
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The decay rate, after integration over the angles ϕ and θl,
reads

dΓ ¼ G2
FjVubj2Nðs; slÞJ3ðs; sl; θπÞdsdsld cos θπ;

J3ðs; sl; θπÞ ¼
2þ zl
3

jF1j2 þ zljF4j2 þ
ð2þ zlÞσ2πssl

3

×

�
jF2j2 þ

X2

m4
B
jF3j2

�
sin2θπ; (9)

with

zl ¼
m2

l

sl
; Nðs; slÞ ¼

ð1 − zlÞ2σπX
2ð4πÞ5m5

B

: (10)

In most of the available phase space (including the
kinematic regime where chiral perturbation theory can
be applied), the mass of the lepton can be neglected (i.e.
zl ≪ 1), and the contribution of F4 to the decay rate is
therefore invisible in particular for Be4 decays, since it is
always associated with a factor of zl. We will not analyze
the form factor F4 and its partial waves ~ri in the following.
Integrating Eq. (9) over cos θπ yields the partial decay rate
dΓ=ðdsdslÞ; neglecting terms of order zl and inserting the
partial-wave expansions Eq. (7), we find

dΓ
dsdsl

¼ G2
FjVubj2Nðs; slÞJ2ðs; slÞ;

J2ðs; slÞ ¼
Z

1

−1
d cos θπJ3ðs; sl; cos θπÞ

¼ 4X2

3

�
jf0ðsÞj2 þ

1

3
jf1ðsÞj2

�

þ 8

9
σ2πssl

�
jg1ðsÞj2 þ

X2

m4
B
jh1ðsÞj2

�
þ � � � ; (11)

where the ellipsis denotes the neglected D and higher
waves. Interference terms between different partial waves
vanish upon angular integration, such that the partial-wave
contributions to the decay rate can be easily read off.

III. FORM FACTORS IN DISPERSION THEORY

A. Analytic properties

The principle of maximal analyticity, which states that
amplitudes possess no other singularities than those stem-
ming from unitarity and crossing [18], tells us that the
partial-wave amplitudes fl, gl, and hl have the following
analytic properties.

(i) At fixed sl, they are analytic in the complex s plane,
cut along the real axis for s ≥ 4M2

π and s ≤ 0. The
presence of left-hand cuts s ≤ 0 follows from the
relations

t ¼ Σ0 − s
2

− σπX cos θπ;

tðcos θπ ¼ −1; s < 0Þ ≥ ðmB þMπÞ2 (12)

(and equivalent expressions for u), since the form
factors F, G, and H have cuts for t;u≥ðmBþMπÞ2.

(ii) In the interval 0 ≤ s ≤ 4M2
π , they are real.

(iii) In the interval 4M2
π ≤ s ≤ 16M2

π, Watson’s theorem
[19] is satisfied and therefore the phases of the
partial-wave amplitudes ðfl; gl; hlÞ coincide with the
corresponding pion–pion scattering phases.

(iv) For the crossed (t and u) channels, due to the lack
of experimental information on πB phase shifts,
we will approximate the πB interaction by B�
pole terms.

In practice, the range of validity of Watson’s theorem can
be extended to a larger domain, e.g. for the S wave to
s ≤ sK ¼ 4M2

K ≈ 1 GeV2, since inelasticities due to four
or more pions are strongly suppressed both by phase
space and by chiral symmetry. As pointed out e.g. in
Refs. [20,21], chiral perturbation theory predicts the
inelasticity parameter of the ππ S and P waves to be of
order p8 below the KK̄ threshold, while the corresponding
scattering phase shifts are of order p2. Phenomenological
analyses of the ππ interactions show that final states
containing more than two particles start playing a signifi-
cant role only well above the KK̄ threshold sK [22]. Here
we refrain from performing a coupled-channel study, which
limits the applicability of our approach to the region below
sK. The subtleties associated with the strong onset of
inelasticities in the S wave in the vicinity of sK (very
close to the f0ð980Þ resonance) for scalar form factors of
the pion will be briefly discussed in Sec. IV A.

B. Heavy-meson chiral perturbation theory

In the process B− → πþπ−l−ν̄l, u-channel contributions
contain pole terms, while t-channel contributions do not.
We obtain the pole terms by computing the leading-order
diagrams (b) and (c) of Fig. 2 in the framework of heavy-
meson chiral perturbation theory [23–25]. Let us briefly
review the heavy-meson chiral Lagrangian. Define the
heavy-meson field and its conjugate as

Ha ¼
1þ v
2

ðP�
aμγ

μ − Paγ5Þ; H̄a ¼ γ0H†
aγ0; (13)

where P�
aμ is the field operator that annihilates a P�

a meson
with velocity v, satisfying vμP�

aμ ¼ 0, and Pa annihilates
a Pa meson of velocity v. For the B meson family, we have

ðP1; P2; P3Þ ¼ ðB−; B̄0; B̄0
sÞ;

ðP�
1; P

�
2; P

�
3Þ ¼ ðB�−; B̄�0; B̄�0

s Þ; (14)

which have dimension ½mass�3=2. The light pseudoscalar
Goldstone boson fields are organized in
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u ¼ exp

�
iϕ
2fπ

�
; (15)

with

ϕ ¼
ffiffiffi
2

p
2
6664

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η

3
7775: (16)

fπ ≃ 92.2 MeV is the pion decay constant [26]. Based on
these building blocks, the leading-order Lagrangian
describing the interactions of the B family and the
Goldstone bosons reads [23]

L ¼ −iTrH̄avμ∂μHa þ
1

2
TrH̄aHbvμðu†∂μuþ u∂μu†Þba

þ ig
2
TrH̄aHbγνγ5ðu†∂νu − u∂νu†Þba: (17)

Determining the coupling g ¼ gB�Bπ ¼ gB�B�π , using
heavy-quark symmetry, from the partial decay width for
D�þ → D0πþ leads to g ¼ gD�Dπ ¼ 0.58� 0.07, with the
error given by the uncertainty in the width of the D�þ. This
is in surprisingly good agreement with the most recent
lattice simulations, which find gB�Bπ ¼ 0.516� 0.052 [27]
and gB�Bπ ¼ 0.569� 0.076 [28] (we have added different
error sources in quadrature for simplicity in both cases). In
the present analysis, we stick to the experimental number
extracted from D�þ decays for illustration. The dominant
parts of the Bl4 amplitude will depend on g in a very simple
manner (being directly proportional either to g or to g2),
thus suggesting a straightforward strategy towards an
extraction of jVubj via lattice calculations of gB�Bπ .
To improve on the analytic properties of the amplitudes

calculated in heavy-meson chiral perturbation theory, we

include the effect of the B� − B mass splitting, defined by
Δ ¼ mB� −mB (which is of Oð1=mQÞ), in the propagators,
which in the heavy-meson approximation are of the form

i
2v · k

for the pseudoscalarBmeson;

−iðgμν − vμvνÞ
2ðv · k − ΔÞ for the vectorB�; (18)

where k is the small residual momentum of the propagating
B or B�. We do not otherwise include heavy-quark-
symmetry-breaking effects, and stick to Eq. (17) for the
determination of the interaction vertices.
The left-handed current Lνa ¼ q̄aγνð1 − γ5ÞQ, with qa

denoting a light and Q the heavy quark, is written in chiral
perturbation theory as

Lνa ¼
i

ffiffiffiffiffiffiffi
mB

p
fB

2
Tr½γνð1 − γ5ÞHbu

†
ba� þ � � � ; (19)

where the ellipsis denotes terms with derivatives, factors of
the light-quark mass matrix mq, or factors of 1=mQ.
Computing the trace, one can write it explicitly as

Lνa ¼ i
ffiffiffiffiffiffiffi
mB

p
fBðP�

bν − vνPbÞu†ba þ � � � : (20)

fB is the B meson decay constant; averaging the most recent
lattice calculations with 2þ 1 dynamical quark flavors leads
to the very precise value fB ¼ 190.5� 4.2 MeV [29]. The
whole Bl4 decay amplitude is proportional to fB, such that
any uncertainty on this parameter directly translates into
a contribution to the error in the extraction of jVubj.
We briefly discuss the chiral power counting of the Bl4

amplitudes and form factors. If we denote soft pion
momenta, or derivatives acting on the pion field, by p
generically, the current of Eq. (19) is Oðp0Þ, and so we
expect to be the leading-order amplitude resulting from the
diagrams in Fig. 2. Equation (4) then suggests the leading
contributions to the form factors F, G, H, and R to be of
chiral orders p−1, p−1, p−2, and p0, respectively (remember
that the dilepton momentum Lμ is large, of order mB); the
alternative form factors F1 and F4 both are Oðp0Þ.
The results for the individual diagrams of Fig. 2 are given

in Appendix A. In order to ensure that we do not miss
any effects of the nontrivial analytic structure of triangle
graphs, resulting from the B� pole terms once rescattering
between the two outgoing pions is taken into account, we
keep the full relativistic form of the denominator part of the
propagator. The latter is connected with the above heavy-
meson approximation Eq. (18) by [30]

i
2v · k

→
−imB

ðpB − kÞ2 −m2
B
;

i
2ðv · kþ ΔÞ →

−imB�

ðpB − kÞ2 −m2
B�
; (21)

(a) (b)

(d)(c)

FIG. 2. Leading-order diagrams forB → ππ matrix elements of the
hadronic current. Diagrams (b) and (c) contain u-channel pole terms.
Solid double lines and dashed lines represent heavy mesons and
pseudo-Goldstone bosons, respectively. The shaded square denotes
an insertion of the left-handed leptonic current. Diagram (c) involves
both BB�π and B�B�π vertices. Diagrams (a) and (d) are suppressed
in the chiral expansion as long as the lepton mass is neglected.
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where pB ¼ mBv is the on-shell B meson momentum.
Written in terms of s and sl, the pole terms can then be
easily identified as

Fpole ¼ Rpole − Gpole; Rpole ¼ α

u −m2
B�
;

Fpole
2 ¼ Gpole ¼ β

u −m2
B�
; Fpole

3 ¼ Hpole ¼ γ

u −m2
B�
;

Fpole
1 ¼ X · Fpole þ σπðPLÞ cos θπGpole

¼ Xðα − βÞ þ σπðPLÞ cos θπβ
u −m2

B�
; (22)

using the abbreviations

α≡ −
g2fBm2

BmB�

f2πðm2
B − slÞ

ðs − 2M2
πÞ;

β≡ −
gfBm2

BmB�

2f2π
; γ ≡ −

g2fBm3
Bm

2
B�

f2πðm2
B� − slÞ

: (23)

All pole contributions start to contribute at the expected
leading chiral orders. We note, though, that α ¼ OðpÞ is
subleading to β ¼ Oðp0Þ in Fpole and Fpole

1 and can be
neglected; they are indeed partially an artifact of the
translation of the heavy-meson formalism back into rela-
tivistic kinematics in the calculation of Ref. [24]. We will
use the contributions ∝ α in the partial waves fi later on to
illustrate potential higher-order effects, although these are
neither complete nor necessarily dominant amongst the
subleading contributions (cf. the discussion of the scaling
behavior of higher-order terms in the current in Ref. [31]).
For the purpose of the (s-channel) partial-wave projections
to be performed later, the u-channel pole can be written in
terms of s and cos θπ ,

uðs; cos θπÞ −m2
B� ¼ σπXðcos θπ þ yÞ;

y ¼ Σ0 − s − 2m2
B�

2σπX
: (24)

Finally, the remaining, nonpole, parts of the amplitude
can also be extracted from the expressions in Appendix A.
There are nonvanishing contributions to the form factor F1

only, which in view of the required partial-wave expansion,
we write as

F1ðsÞχPT − Fpole
1

X
¼ M0ðsÞχPT þ

2σπ cos θπ
X

M1ðsÞχPT;

M0ðsÞχPT ¼ −
ð1 − gÞ2fBmB

4f2π
;

M1ðsÞχPT ¼ ð1 − g2ÞfBmB

4f2πðm2
B − slÞ

X2: (25)

M0ðsÞχPT and M1ðsÞχPT are found to be of chiral orders p0

and p, respectively, and therefore suppressed by one order
compared to the pole terms [31], as explained in
Appendix A. We will use these expressions in Sec. III D
to match the polynomial parts of the dispersive represen-
tations of the corresponding amplitudes, but again rather in
order to illustrate potential uncertainties due to subleading
effects: these contributions are not complete even at the
chiral order at which they occur.
To conclude this section, we point out that in order for

the chiral counting scheme to work consistently, we have to
assume the lepton invariant mass squared sl to be large, of
the order of m2

B. This limits the kinematic range of
applicability of our approach to match the dispersive
representation derived in the following to heavy-meson
chiral perturbation theory.

C. Omnès representation

Having fixed the tree-level decay amplitude and in
particular the pole terms, we proceed to analyze the effects
of pion-pion rescattering using dispersion relations. This
will give access to the s dependence of the decay form
factors (roughly up to 1 GeV, as detailed in Sec. III A) in a
model-independent way. We will resort to the formalism
based on Omnès representations as introduced in Ref. [32].
For its application to the closely related process of Kl4
decays, see Refs. [33,34]. Note, however, that everything
discussed in the following is to be understood at fixed sl:
dispersion theory as applied here does not allow us to
improve on the form factor dependence on the dilepton
invariant mass, beyond what the chiral representation in the
previous section includes. We emphasize once more that
the dispersive aspect of our analysis is in principle
independent of the matching to heavy-meson chiral per-
turbation theory: the validity of any theoretical description
of the different form factors in the soft-pion limit (s ≈ 0)
can be extended at least to the whole kinematic region of
elastic ππ scattering with this method.
We may write an alternative form of the partial-wave

expansion Eq. (8) for the pole-term-subtracted amplitudes,
neglecting terms beyond P waves,

F1ðs; t; uÞ
X

¼ Fpole
1

X
þM0ðsÞ −

ðt − uÞ
X2

M1ðsÞ;
F2ðs; t; uÞ ¼ Fpole

2 þ U1ðsÞ;
F3ðs; t; uÞ ¼ Fpole

3 þ V1ðsÞ: (26)

Here and in the following we suppress the dependence on
sl, which is kept fixed. The additional factor of X2 in the
definition of M1 avoids the introduction of kinematic
singularities at the zeros of X (in particular at the limit
of the physical decay region s ¼ ðmB − ffiffiffiffi

sl
p Þ2). The

functions M0, M1, U1, and V1 defined this way possess
right-hand unitarity branch cuts as their only nontrivial
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analytic structure and no poles. Since the pole terms
Fpole
1 =X, Fpole

2 , Fpole
3 are real, one immediately finds

Imf0ðsÞ ¼ ImM0ðsÞ; Im

�
X
2σπ

f1

�
¼ ImM1ðsÞ;

Img1ðsÞ ¼ ImU1ðsÞ; Imh1ðsÞ ¼ ImV1ðsÞ; (27)

which allows us to write

f0ðsÞ¼M0ðsÞþM̂0ðsÞ; f1ðsÞ¼
2σπ
X

ðM1ðsÞþM̂1ðsÞÞ;
g1ðsÞ¼U1ðsÞþÛ1ðsÞ; h1ðsÞ¼V1ðsÞþ V̂1ðsÞ: (28)

The real “hat functions” M̂0ðsÞ, M̂1ðsÞ, Û1ðsÞ, and V̂1ðsÞ
are the partial-wave projections of the pole terms given in
Eqs. (22)–(23), which explicitly read

M̂0ðsÞ ¼
ξQ0ðyÞ þ ðPLÞβ

X2
; M̂1ðsÞ ¼ −

3ξ

2σπX
Q1ðyÞ;

ξ ¼ X
σπ

ðα − βÞ − ðPLÞyβ;

Û1ðsÞ ¼
β

σπX
ðQ0ðyÞ −Q2ðyÞÞ;

V̂1ðsÞ ¼
γ

σπX
ðQ0ðyÞ −Q2ðyÞÞ; (29)

where theQlðyÞ are Legendre functions of the second kind,

QlðyÞ ¼
1

2

Z
1

−1

dz
y − z

PlðzÞ: (30)

Explicitly, the first three of these read

Q0ðyÞ ¼
1

2
log

yþ 1

y − 1
; Q1ðyÞ ¼ yQ0ðyÞ − 1;

Q2ðyÞ ¼
3y2 − 1

2
Q0ðyÞ −

3

2
y: (31)

We have projected onto the partial waves of F2 and F3

[whose partial-wave expansions proceed in derivatives of
Legendre polynomials—see Eq. (7)] using

Z
1

−1
P0
iðzÞ½Pj−1ðzÞ − Pjþ1ðzÞ�dz ¼ 2δij: (32)

Note that, in order to show that the partial-wave-projected
pole terms above indeed are real everywhere along the
right-hand cut, i.e. for all s ≥ 4M2

π , care has to be taken
about the correct analytic continuation. For example, X,
only defined unambiguously in the physical decay region in
Eq. (3), is continued according to [35,36]

X ¼

8>><
>>:

jXj; s ∈ ½4M2
π; ðmB − ffiffiffiffi

sl
p Þ2�;

ijXj; s ∈ ½ðmB − ffiffiffiffi
sl

p Þ2; ðmB þ ffiffiffiffi
sl

p Þ2�
−jXj; s ∈ ½ðmB þ ffiffiffiffi

sl
p Þ2;∞Þ

(33)

(where the last range is of no practical relevance for
our dispersive integrals). Furthermore, in the range of
ðmB − ffiffiffiffi

sl
p Þ2 < s < ðmB þ ffiffiffiffi

sl
p Þ2, the argument y of the

Legendre functions of the second kind becomes purely
imaginary; the lowest one can be expressed as
Q0ðyÞ ¼ iðπ=2 − arctan jyjÞ. In particular, no singularities
arise at the zeros of X, s ¼ ðmB � ffiffiffiffi

sl
p Þ2. Physically, the

reality of the pole terms is based on the fact that the B�
cannot go on its mass shell in any kinematic configuration.
In the elastic regime, the right-hand cut of the partial

waves fi (i ¼ 0; 1), g1, h1 for s > 4M2
π is given by

discontinuity equations relating them to the elastic ππ
partial-wave amplitudes tiiðsÞ, i ¼ 0; 1,1 according to

discfiðsÞ¼fiðsþ iϵÞ−fiðs− iϵÞ¼2iImfiðsÞ
¼2iσπfiðsÞ½tiiðsÞ�� ¼fiðsÞe−iδiiðsÞ sinδiiðsÞ; (34)

where we have expressed tiiðsÞ in terms of the correspond-
ing phase shift δiiðsÞ in the usual way. Analogous equations
hold for g1 and h1. Equation (34) implies Watson’s
theorem: the phase of the partial wave equals the elastic
phase shift. From Eqs. (27) and (28), one finds

ImMiðsÞ ¼ ðMiðsÞ þ M̂iðsÞÞe−iδiiðsÞ sin δiiðsÞ (35)

and similarly for U1ðsÞ, V1ðsÞ.
Equation (35) demonstrates that the hat functions con-

stitute inhomogeneities in the discontinuity equations. The
solution is given by [32]

MiðsÞ ¼ Ωi
iðsÞ

�
Pn−1ðsÞ

þ sn

π

Z
∞

4M2
π

M̂iðs0Þ sin δiiðs0Þds0
jΩi

iðs0Þjðs0 − s − iϵÞs0n
�
; (36)

where Pn−1ðsÞ is a subtraction polynomial of degree n − 1,
and the Omnès function is defined as [37]

ΩI
lðsÞ ¼ exp

�
s
π

Z
∞

4M2
π

δIlðs0Þds0
s0ðs0 − s − iϵÞ

�
: (37)

The standard Omnès solution Pn−1ðsÞΩi
iðsÞ of the homo-

geneous discontinuity equation (M̂i ¼ 0), valid for form
factors without any left-hand pole or cut structures, is
modified by a dispersion integral over the inhomogeneities
M̂i, which in the present case are given by the partial-wave-
projected pole terms.

1We use this somewhat unusual notation owing to the fact that
we only consider S and Pwaves, and no isospin I ¼ 2 is allowed.
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The minimal order of the subtraction polynomial is
dictated by the requirement of the dispersive integral to
converge. First we note that, if the phase δIlðsÞ asymptoti-
cally approaches a constant value cπ, then the correspond-
ing Omnès function falls off asymptotically ∼s−c. We will
assume both ππ input phases to approach π for large
energies,

δ00ðsÞ → π; δ11ðsÞ → π; (38)

such that Ω0
0ðsÞ, Ω1

1ðsÞ ∼ 1=s for large s.
A more problematic question concerns the behavior of

the hat functions for large s. In principle, this is entirely
determined by the partial-wave-projected B� pole terms as
given in Eq. (29). However, as we have decided to include
the relativistic pole graphs, these explicitly contain the scale
mB, and the asymptotic behavior is only reached forffiffiffi
s

p
≫ mB—far too high a scale, given that we realistically

know the pion-pion phase shifts only up to well below
2 GeV, and that we presently neglect all inelastic contri-
butions, which set in above 1 GeV.We can formally remedy
this problem by just considering the large-s behavior of the
heavy-meson approximation of the pole terms,2 in which
mB only features parametrically as a prefactor; being aware
that corrections to the heavy-meson approximation scale
like

ffiffiffi
s

p
=mB, which is not a very small quantity in the

region of 1 GeV≲ ffiffiffi
s

p ≲ 2 GeV, say. In the heavy-meson
approximation, i.e., at leading order in an expansion of
1=mB, the inhomogeneities of Eq. (29) behave according to

M̂0ðsÞ ∼ s−1=2; M̂1ðsÞ ∼ s0;

Û1ðsÞ ∼ s−1=2; V̂1ðsÞ ∼ s−1=2: (39)

Together with the large-s behavior of the Omnès functions,
we conclude that the representation for M1ðsÞ requires at
least two subtractions, while for M0ðsÞ, U1ðsÞ, and V1ðsÞ,
one subtraction each seems to be sufficient. However,
looking at the behavior of the various hat functions in
the low-energy region in Fig. 3 (for a special value of
sl ¼ ðmB − 1 GeVÞ2), we note that the falling of M̂0ðsÞ,
Û1ðsÞ, and V̂1ðsÞ barely seems to set in in the kinematical
region s≲ 1 GeV2 where we have to assume the spectral
function to be saturated, while M̂1ðsÞ even grows at those
energies instead of approaching a constant value. It seems
therefore advisable to oversubtract all the dispersive rep-
resentations once, such as to allow for two subtraction
constants each for M0ðsÞ, U1ðsÞ, and V1ðsÞ, and three for
M1ðsÞ. This way, inelastic contributions at higher energies
that we do not take into account explicitly should also be
more effectively suppressed. The complete set of dispersion
relations of the Omnès type therefore reads

M0ðsÞ ¼ Ω0
0ðsÞ

�
a0 þ a1s

þ s2

π

Z
∞

4M2
π

M̂0ðs0Þ sin δ00ðs0Þds0
jΩ0

0ðs0Þjðs0 − s − iϵÞs02
�
;

M1ðsÞ ¼ Ω1
1ðsÞ

�
a00 þ a01sþ a02s

2

þ s3

π

Z
∞

4M2
π

M̂1ðs0Þ sin δ11ðs0Þds0
jΩ1

1ðs0Þjðs0 − s − iϵÞs03
�
;

U1ðsÞ ¼ Ω1
1ðsÞ

�
b0 þ b1s

þ s2

π

Z
∞

4M2
π

Û1ðs0Þ sin δ11ðs0Þds0
jΩ1

1ðs0Þjðs0 − s − iϵÞs02
�
;

V1ðsÞ ¼ Ω1
1ðsÞ

�
c0 þ c1s

þ s2

π

Z
∞

4M2
π

V̂1ðs0Þ sin δ11ðs0Þds0
jΩ1

1ðs0Þjðs0 − s − iϵÞs02
�
: (40)

The subtraction constants are a priori unknown, and need
to be determined either by further theoretical input, or
by fitting to experimental data. It is easy to check that
the functions M0ðsÞ;…; V1ðsÞ themselves do not satisfy
Watson’s theorem; however, taking into account Eq. (28),
the partial-wave amplitudes f0 ðf1; g1; h1Þ do; i.e., their
phases equal the elastic scattering phases δ00 (δ11).
We add a few further remarks concerning Fig. 3. All of

the partial-wave-projected pole terms display singular

0.0 0.2 0.4 0.6 0.8 1.0 1.2
s [GeV2]

-200

0

200

400

600

FIG. 3 (color online). Hat functions M̂0ðsÞ (yellow band
with full lines), M̂1ðsÞ (blue band with full lines), Û1ðsÞ (red
dashed line), and V̂1ðsÞ (green dot-dashed line), for
sl ¼ ðmB − 1 GeVÞ2. We also show the polynomial contributions
to the form factor F1=X, for S (yellow band with dashed lines)
and P wave (blue band with dashed lines), which are seen to be
strongly suppressed. M̂1ðsÞ as well as the P-wave polynomial
M1ðsÞχPT are given in units of GeV−2, all other functions are
dimensionless.

2Remember that we made use of the relativistic pole terms
mainly to ensure the correct analytic properties at low energies,
i.e. in the near-threshold region.
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behavior of square-root type at s ¼ 0 (suppressed as s3=2 in
the case of M̂1ðsÞ; note that also M̂0ðsÞ has a square-root
singularity, which is hard to discern in Fig. 3 due to the axis
scaling). These left-hand singularities obviously carry over
to the partial waves: close to the ππ threshold, the partial-
wave amplitudes cannot be represented by simple scalar or
vector form factors.
The uncertainty bands for M̂iðsÞ, i ¼ 0; 1, in Fig. 3

indicate the effect of the (incomplete) higher-order con-
tribution ∝ α in Eq. (29), suppressed by 1=mB and found to
be surprisingly small. We do not include the uncertainty
due to the overall scaling with the coupling constant g,
which translates directly into an uncertainty of a projected
extraction of jVubj, but does not (at this order) affect the
shape of the distributions. The inhomogeneities scale with g
according to M̂iðsÞ, Û1ðsÞ ∝ g, V̂1ðsÞ ∝ g2.
The dispersive method using inhomogeneities as

described above has by now been used for a variety of
low-energy processes, such as η → 3π [32,38], ω=ϕ → 3π
[39], K → ππ [40], Kl4 [33,34], γγ → ππ [41,42], or γπ →
ππ [43,44]. In several of those cases, the inhomogeneities
(given in terms of hat functions), which incorporate left-
hand-cut structures, and the amplitudes given in terms of
Omnès-type solutions with a right-hand cut only are calcu-
lated iteratively from each other, until convergence is
reached. In our present analysis, the ansatz is comparably
simpler, as the left-hand cut is approximated by pole terms,
whose partial-wave projections then determine the inhomo-
geneities.This is closely related to themethodofRef. [41] for
γγ → ππ,where the left-hand structures are approximatedby
Born terms and resonance contributions to γπ → γπ.

D. Matching the subtraction constants

We need to consider two essentially different contribu-
tions to the subtraction constants in the representation
Eq. (40), writing them formally as

ai ¼ āi þ âi; (41)

and similar decompositions for the a0i, bi, and ci. We
discuss the contributions âi etc. first. We argue in
Appendix B that for inhomogeneities of essentially con-
stant ðM̂0; Û1; V̂1Þ or approximately linear (M̂1) behavior
over a large part of the kinematical region of interest, the
coefficients of the highest power in the subtraction poly-
nomials (a1, a02, b1, and c1) need to be adjusted in order to
provide a reasonable high-energy behavior.3 These

coefficients are given by the derivative of the corresponding
Omnès function at s ¼ 0, multiplied with the constant/the
derivative of the inhomogeneity in question. Obviously, the
hat functions are not exactly constant/linear: to the contrary,
they include square-root singularities at s ¼ 0 due to the
left-hand cut. There is, therefore, necessarily an uncertainty
due to the choice of a “matching point” sm at which to
evaluate these “constants,”

â1 ¼ M̂0ðsmÞ × _Ω0
0ð0Þ; â02 ¼

M̂1ðsmÞ
sm

× _Ω1
1ð0Þ;

b̂1 ¼ Û1ðsmÞ × _Ω1
1ð0Þ; ĉ1 ¼ V̂1ðsmÞ × _Ω1

1ð0Þ: (42)

We choose sm ¼ M2
ρ, due to the expected strong enhance-

ment of the distribution at the ρ resonance peak. Here,
_ΩI
lð0Þ ¼ dΩI

lðsÞ=dsjs¼0. All other subtraction constants do
not receive “hat” contributions.
The second contribution to the subtraction constants,

dominantly to those of low polynomial order in s, stems
from matching to the nonpole part of the chiral amplitude
Eq. (25), which yields (for fixed sl) a polynomial con-
tribution in s. In this exploratory study we use the leading-
order expressions only. We expect the chiral expansion to
converge best at the sub-threshold point s ¼ 0, as opposed
to, e.g., the ππ threshold [47].
As we match the dispersive representation Eq. (40) to the

leading chiral tree-level amplitude, which does not contain
any rescattering or loop corrections, we identify the
subtraction constants ā0−1, ā00−2 by setting the scattering
phases to zero, i.e., Ωi

iðsÞ≡ 1, and the dispersive integrals
over the inhomogeneities vanish. At s ¼ 0, we find from
Eq. (25)

ā0¼−
ð1−gÞ2fBmB

4f2π
; ā1¼0;

ā00¼
ð1−g2ÞfBmB

16f2π
ðm2

B−slÞ;

ā01¼−
ð1−g2ÞfBmB

8f2π

m2
Bþsl

m2
B−sl

; ā02¼
ð1−g2ÞfBmB

16f2πðm2
B−slÞ

: (43)

The term ∝ ā02s
2, stemming from the expansion of X2, is

chirally suppressed and could as well be neglected. F2 and
F3 at leading order coincide with their pole terms, thus the
matching implies that the parameters b̄i and c̄i vanish.
In order to illustrate the relative importance of the

(partial-wave-projected) pole terms relative to the subtrac-
tion polynomial—that is, the decompositions MiðsÞ þ
M̂iðsÞ on tree level, for i ¼ 0; 1—we also show these
for sl ¼ ðmB − 1 GeVÞ2 in Fig. 3. We verify the expected
dominance of the pole terms/the hat functions in f0ðsÞ and
f1ðsÞ, as suggested by power counting arguments. For the
uncertainty bands of the polynomial corrections with mixed
dependence on g, we have varied this coupling within its
assumed uncertainty, g ¼ 0.58� 0.07.

3This can be corroborated to some extent by arguments from
Brodsky-Lepage quark counting rules [45] and soft-collinear
effective theory [46], albeit in kinematic regions with completely
different scaling of sl with respect to m2

B (taken as fixed and not
particularly large here). Assuming the large-s behavior of the
different form factors and partial waves is independent thereof,
we indeed need to require the leading powers in s to cancel
between the dispersion integrals over the inhomogeneities and the
subtraction polynomial.
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Remember that g1ðsÞ and h1ðsÞ consist of B� pole terms
only at leading order: this pole dominance should have very
favorable consequences for the reliability of the form factor
prediction, as the pole contributions are essentially fixed by
the coupling constant g (as well as fB) beyond the chiral
expansion; the latter affects only the precision of the
polynomial contribution. Next-to-leading-order corrections
to the residues of the pole terms seem to have surprisingly
little effect.

IV. RESULTS

A. Scattering phase input

The ππ phase shifts are known to sufficient accuracy in
the region s≲ s0 ≡ ð1.4 GeVÞ2 (cf. Refs. [48,49]). In order
to ensure the assumed asymptotic behavior δ00ðsÞ, δ11ðsÞ →
π for s → ∞, we continue the phases beyond s0 according
to the prescription [50]

δiiðs≥s0Þ¼πþðδiiðs0Þ−πÞf
�
s
s0

�
; fðxÞ¼ 2

1þx3=2
: (44)

There is a further subtlety concerning the S-wave phase
shift: as we have discussed in Sec. III A, the elastic
approximation breaks down at the KK̄ threshold sK with
the occurrence of the f0ð980Þ resonance. Both the phase of
the partial wave arg t00ðsÞ and, e.g., the phase of the
nonstrange scalar form factor of the pion argFS

πðsÞ differ
significantly from δ00ðsÞ in this region: they quickly drop
and then roughly follow the energy dependence of δ00ðsÞ
again, with δ00ðsÞ − arg t00ðsÞ ≈ δ00ðsÞ − argFS

πðsÞ ≈ π [51].
Therefore a single-channel approximation to the pion scalar
form factor only works for s < sK if a phase of the form of
either arg t00ðsÞ or argFS

πðsÞ are used as input to the Omnès
function instead of δ00ðsÞ. We use such a form factor phase
taken from Ref. [52]. Obviously, we cannot provide a
reliable description of pion-pion rescattering effects where
the inherent two-channel nature of the problem becomes
important, hence our dispersive description is confined to
below sK.
With the phase shift input thus continued formally up to

infinity, the Omnès integrals can be fully performed. We
have checked that different continuation prescriptions from
the one given in Eq. (44) above s0 have very little impact on
the physics at low energies, i.e., below 1 GeV.
The phase input allows us to evaluate the derivatives of

the Omnès functions required in Eq. (42) via the sum rules

_ΩI
lð0Þ ¼

1

π

Z
∞

4M2
π

ds0
δIlðs0Þ
s02

; (45)

leading to _Ω0
0ð0Þ ¼ 2.5 GeV−2, _Ω1

1ð0Þ ¼ 1.8 GeV−2. This
corresponds to squared radii of the pion scalar and vector
form factors hr2Si ¼ 0.58 fm2, hr2Vi ¼ 0.42 fm2, both only

around 5% below the central values of more sophisticated
evaluations [53–55].
In order to ensure numerically stable results, we perform

the dispersion integrals over the inhomogeneities Eq. (40)
up to

ffiffiffi
s

p ¼ 3 GeV. This upper limit of the integration does
not have any real physical significance: it merely represents
an attempt to sum up the high-energy remainder of the
integral to reasonable approximation, and does not mean
we pretend to understand ππ interactions at such scales.

B. Subtraction constants, spectrum

We illustrate the results of our discussion for a sample
value of sl ¼ ðmB − 1 GeVÞ2, which means the kinemat-
ically allowed range in the invariant mass of the pion pair
extends to

ffiffiffi
s

p ¼ 1 GeV. Evaluating the (nonvanishing)
subtraction constants obtained from matching to the non-
pole, polynomial parts of the chiral tree-level amplitude,
Eq. (43), we find

ā0 ¼ −5.3� 1.8; ā00 ¼ ð48� 6Þ GeV2;

ā01 ¼ −48� 6; ā02 ¼ ð0.5� 0.1Þ GeV−2; (46)

where the errors refer to the uncertainty in g only. The “hat”
contributions to the subtractions of Eq. (42), at sl ¼
ðmB − 1 GeVÞ2, are found to be

â1 ¼ ð−363…− 330Þ
�

g
0.58

�
GeV−2;

â02 ¼ ð888…924Þ
�

g
0.58

�
GeV−2;

b̂1 ¼ 332

�
g

0.58

�
GeV−2; ĉ1 ¼ 1078

�
g

0.58

�
2

GeV−2;

(47)

where we have displayed the scaling with g explicitly and
shown the range of parameters in the F1 partial waves due
to the higher-order corrections discussed above.
For demonstration, we plot the partial decay rate in Fig. 4

for the dilepton invariant mass sl ¼ ðmB − 1 GeVÞ2. We
find that the S-wave contribution leads to a significant
enhancement of the spectrum at low ππ invariant masses,
beyond what might be considered ρ dominance. The near-
threshold dominance of the Swave was already pointed out
in Ref. [31] in the context of heavy-meson chiral pertur-
bation theory. Concerning the different P waves, we find
that the kinematical prefactor X2=m4

B strongly suppresses
the partial wave h1 or the form factor F3 for the values of sl
considered here. Of the other two, g1 yields a contribution
to the differential rate roughly twice as large as f1.
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V. DISCUSSION AND SUMMARY

We wish to emphasize that matching to chiral perturba-
tion theory at leading order can only be considered an
estimate, and mainly serves for illustration purposes here.
Higher-order corrections are expected to be significant.
Ultimately, the subtraction constants that influence the
shape ought to be determined by fits to experimental data;
they can be thought of as parametrizing a “background
polynomial,” beyond the dominant pole terms, albeit with
completely correct rescattering corrections, obeying
Watson’s theorem. The necessary theoretical normalization
of the form factors is essentially provided at s ¼ M2

ρ, via
Eq. (42); its stability under higher-order corrections still
merits further investigation in order to provide a theoretical
uncertainty for jVubj extracted from Bl4 decays.
To summarize, we have provided a description of the

form factors for the decay B− → πþπ−l−ν̄l using dispersion
theory, which should lead to an improved method to
measure jVubj. Pion-pion final-state interactions have been
included nonperturbatively in the elastic approximation,
while left-hand-cut structures in the πB interaction are
approximated by B� pole terms. We stress that our
formalism allows, for the first time, to use the full
information for ππ invariant masses below 1 GeV, without
the need to refer to particular parametrization for selected
resonances such as the ρð770Þ [or the f0ð980Þ]; it allows
for a full exhaustion of the corresponding spectra.
Improved experimental data to allow for such an analysis
to be performed in practice is therefore highly desirable.
As an outlook concerning theoretical improvement, we

have hinted at the possibility to extend the present analysis
to lower values of the dilepton invariant mass sl, beyond the
range of applicability of heavy-meson chiral perturbation
theory, but still making use of dispersion relation for the

dependence on the dipion invariant mass s. One promising
constraint could be obtained from soft-pion theorems [56],
which relate linear combinations of Bl4 form factors at
s ¼ M2

π, but arbitrary sl, to B → πlν (Bl3) form factors at
same sl. Given reliable phenomenological information on
the form factors for Bl3, this may provide precisely (part of)
the matching information needed to extend the dispersive
method of this paper to lower values of sl.
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APPENDIX A: TREE-LEVEL AMPLITUDES IN
HEAVY-MESON CHIRAL PERTURBATION

THEORY

Calculating the tree-level diagrams in Fig. 2 in heavy-
meson chiral perturbation theory, one obtains the correspond-
ing amplitudes [24] [A −D, in obvious correspondence to
diagrams (a)–(d)],

A¼ ifB
4f2π

pμ
B; B¼ ipμ

− Bð1Þ þ ipμ
B Bð2Þ;

Bð2Þ ¼−
gfB
2f2π

v ·p−

v ·p−þΔ
¼−

v ·p−

mB
Bð1Þ;

C¼ ipμ
B Cð1Þ þϵμαβγpBαp−βpþγCð2Þ;

Cð1Þ ¼−
g2fB
2f2π

pþ ·p−−ðv ·pþÞðv ·p−Þ
½v ·ðpþþp−Þ�½v ·p−þΔ� ;

Cð2Þ ¼−
g2fB
2f2π

1

½v ·ðpþþp−ÞþΔ�½v ·p−þΔ� ;

D¼ ipμ
B Dð1Þ; Dð1Þ ¼−

fB
4f2π

v ·ðpþ−p−Þ
v ·ðpþþp−Þ

: (A1)

Identifying the contributions to the individual decay form
factors, we find for these as the leading-order (LO) results

FLO¼RLO−GLO; GLO¼mB

2
Bð1Þ; HLO¼−

m3
B

2
Cð2Þ;

RLO¼−
mBfB
4f2π

−mBðBð2Þ þCð1Þ þDð1ÞÞ: (A2)

From these, it is then straightforward to identify the pole
contributions given in Eq. (22), as well as the nonpole pieces
of Eq. (25).
It is obvious that all diagrams (a)–(d) are formally of

Oðp0Þ in terms of soft pion momenta. Note, however, that
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FIG. 4 (color online). Differential decay width dΓ=dsdsl
divided by jVubj2 for the example value of sl ¼
ðmB − 1 GeVÞ2, decomposed into S- and P-wave contributions.
For details, see discussion in main text.
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all pieces proportional to pμ
B ¼ Pμ þ Lμ are effectively

suppressed: the part ∝ Lμ enters the form factor R, which is
suppressed by the small lepton mass and neglected
throughout the main text, while the part ∝ Pμ leads to a
chiral suppression by one order (and is at least partially an
artifact of the heavy-meson approximation anyway). As a
consequence, the only leading contributions are given by
the amplitudes Bð1Þ and Cð2Þ in the above, and hence the B�
pole graphs. This was already pointed out in Ref. [31].

APPENDIX B: DISPERSVE REPRESENTATION
FOR POLYNOMIAL INHOMOGENEITIES

Consider a partial wave fðsÞ given at tree level as a
constant, ftreeðsÞ ¼ A. In this case, we can write down the
dispersive representation including final-state interactions
right away, if we assume a certain high-energy behavior of
the amplitude, as

fðsÞ ¼ AΩðsÞ; (B1)

with the Omnès function ΩðsÞ. Here, we assume (as in the
main text) an Omnès function falling according to 1=s,
i.e. given by a phase shift approaching π asymptotically,
and a partial wave that vanishes in the same way for large
s. This assumption prevents us from multiplying ΩðsÞ with
a polynomial of higher degree.
However, in the spirit of the solution discussed in the

main text, it should also be possible to treat this constant as
an inhomogeneity and reconstruct the same solution from
the corresponding formalism. Our solution is then of the
form

fðsÞ ¼ AþΩðsÞ
�
aþ a0sþ s2

π

Z
∞

4M2
π

A sinδðs0Þds0
jΩðs0Þjs02ðs0 − sÞ

�
;

(B2)

where we have chosen the minimal number of subtractions
(two) required to make the dispersion integral converge.
Note that the subtraction constants a, a0 are not a priori
fixed from the tree-level input; we can set a ¼ 0 by
requiring the normalization of the amplitude at s ¼ 0 to
match the tree-level input. The integral in Eq. (B2) can be
performed explicitly, using a dispersive representation of
the inverse of the Omnès function,

Ω−1ðsÞ ¼ 1 − _Ωð0Þs − s2

π

Z
∞

4M2
π

sin δðs0Þds0
jΩðs0Þjs02ðs0 − sÞ ; (B3)

where _Ωð0Þ ¼ dΩðsÞ=dsjs¼0. As a result, we find

fðsÞ ¼ ΩðsÞfAþ ½a0 − A _Ωð0Þ�sg: (B4)

Therefore, Eq. (B1) is reproduced if we choose a ¼ 0,
a0 ¼ A _Ωð0Þ. We essentially apply the same requirement on
the high-energy behavior as in Eq. (B1): terms that do not
vanish for large s are only canceled for this specific choice
of a0.
More generally, if we match to a tree-level amplitude of

the form Asn, demanding the same leading behavior near
s ¼ 0 such that all subtraction terms ∝ sm≤n can be put
to zero, the solution using this tree-level input as an
inhomogeneity,

Asn þ ΩðsÞ
�
a0snþ1 þ snþ2

π

Z
∞

4M2
π

As0n sin δðs0Þds0
jΩðs0Þjs0nþ2ðs0 − sÞ

�
;

(B5)

agrees with the “canonical” solution AsnΩðsÞ, with the
“correct” high-energy behavior, only if a0 ¼ A _Ωð0Þ.
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