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Radiative emission of neutrino pair from atomic states is a new tool to experimentally investigate
undetermined neutrino parameters such as the smallest neutrino mass, the nature of neutrino masses
(Majorana vs Dirac), and their CP properties. We study effects of neutrino pair emission either from inner
core electrons or from the nucleus in which the zeroth component of quark or electron vector current gives
rise to large coupling. Both the overall rate and the spectral shape of photon energy are given for a few cases
of interesting target atoms. Calculated rates exceed those of previously considered target atoms by many
orders of magnitude.
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I. INTRODUCTION

Recent developments of neutrino oscillation experiments
have achieved remarkable success: Many elements of the
fundamental neutrino mass matrix have been determined,
including all three mixing angles and two mass squared
differences [1]. However, they left undetermined the
absolute scale of neutrino masses (or equivalently the
smallest neutrino mass), the nature of masses (Dirac or
Majorana type), and their CP properties. Conventional
targets in ongoing experiments exploring these undeter-
mined neutrino properties and parameters have been nuclei.
Direct measurement of the end point spectrum of beta
decay, such as tritium [2], and (neutrinoless) double beta
decay [3] are two main methods to resolve these
outstanding problems.
Some time ago we proposed to use atomic transitions for

improved exploration of undetermined neutrino properties
[4,5]. The idea is to exploit the fact that atomic level
spacings are much closer to expected neutrino masses, and
many experimental methods are available to manipulate
atomic transitions. The process we use is macrocoherent
atomic deexcitation: jei → jgi þ γ þ νiνj where νi; i ¼
1; 2; 3 are neutrino mass eigenstates. By measuring the
photon energy spectral shape (different from the one of
spontaneous decay) one can determine locations of six
thresholds at ωij ≡ ϵeg=2 − ðmi þmjÞ2=ð2ϵegÞ (ϵeg is the
atomic level spacing) associated with the pair emission
νiνj, and determine all neutrino masses with precision, if
the macrocoherence we proposed [6] works as expected.
The Majorana vs Dirac distinction is made possible due to
the interference effect of identical Majorana fermions [4].
The key idea to enhance otherwise small weak rates for

atomic electrons is the use of macrocoherence, which may
change rates ∝ nV ¼ N (the total number of target atoms)

to rates ∝ n2V. Here n is the number density of target atoms
within some unit volume of a macroscopic region such as
cm−3, related neither to the small atomic size nor the
wavelength of emitted photon, and may be taken much
larger.
A prerequisite for an experimental success is thus the

development of macrocoherence, which is triggered by
two laser fields accompanying target polarization [6].
Macrocoherent radiative emission of neutrino pair has
been called RENP for brevity. In our preceding works
neutrino pair emission from valence electrons alone has
been considered, the emission vertex being M1 (magnetic
dipole) type (actually the spin current). The interaction of
electron with neutrino contains both charged Wand neutral
Z exchange diagrams, and the axial vector part of electron
current contributed to this form.
Macrocoherence that gives rise to a large enhancement

∝ n2V is related to the additional effect of momentum
conservation in atomic process in the following way. The
RENP rate of a macroscopic body of targets is obtained
from the squared amplitude, jPN

i Mieið
~kþ~p1þ~p2Þ·~xj2 where

~k is the photon momentum and ~pi is momenta of the
emitted neutrino pair. In the spontaneous decay the phase
factor inMi at each atomic site i is random and, due to the
large atomic mass the atomic recoil, may be neglected.
Thus, in the spontaneous decay one has the continuous
photon energy spectrum starting from the energy difference
ϵeg of atomic levels. If the phase coherence works as in the
case of macrocoherent RENP, the phase factor in Mi is
slowly varying, or is almost constant for the whole body of
target atoms. One then has the enhanced rate at the point of
the phase space of ~kþ ~p1 þ ~p2 ¼ 0. Thus, the momentum-
conserving portion of the energy spectrum is enhanced
with the factor ∝ n2V. This gives rise to the photon
energy spectrum with stepwise increase at thresholds,
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ωij, providing the advantage of resolving the neutrino mass
thresholds. The spontaneous part of radiative emission of
neutrinopair has avery small rate and is completely negligible
compared to the macrocoherent RENP. The development of
macrocoherence is achieved by the two-photon process
called paired superradiance (PSR) and is described by a
master equation [5] that describes both the evolving atomic
polarization and trigger electromagnetic fields.
In the present work we examine new types of neutrino pair

emission: emissions from core electrons and nucleus instead
of valence electrons, both arising from the zeroth component
of avectorcurrentofmonopolenature.The relevantmonopole
current counts the number of constituents, hence one may
expect a large contribution from heavy atoms. A similar
enhancement due to the nuclear monopole current has been
used in experiments that have established atomic parity
violation [7–10]. The nuclear monopole interaction that gives
rise to the largest rates is not sensitive toMajoranaCP phases
(but is sensitive to Majorana vs Dirac distinction), while
smaller rates of pair emission from valence electrons have a
sensitivity to CP phases. It seems that for complete determi-
nation of the neutrino mass matrix one needs a variety of
targets, presumably with different technological strategies.
We shall give the photon energy spectrum of RENP for

Cs and Xe. Alkali atoms are chosen as the simplest atom to
show our fundamental ideas, and Xe is interesting as it
leaves room for the possibility of performing RENP
experiments in the gas target. Different targets have special
features of merits and demerits. Further detailed study is
necessary to select the best candidate atoms.
The present work is organized as follows. In Sec. II the

important idea of Coulomb-assisted RENP, which gives
rise to enhancement by a high power of Z, is explained and
formulated. In Sec. III, the RENP spectral rate that gives the
largest rate is given and some numerical example of the
spectral shape is illustrated. Finally, we summarize present
work in Sec. IV. In two Appendices, we give a rudimentary
account of the Thomas-Fermi model used for the estimate
of Coulomb integral in heavy atoms, and we calculate the
phase space integration over neutrino momenta.

II. COULOMB-ASSISTED NEUTRINO
PAIR EMISSION FROM NUCLEUS

AND CORE ELECTRONS

The four-Fermi interaction of neutrinos with atomic
electrons and quarks in nucleus is given by

Hw ¼ hnj
Z

dx3ðHe
2νðxÞ þHq

2νðxÞÞjn0i; (1)

He
2ν ¼

GFffiffiffi
2

p
�
ν̄eγ

αð1− γ5Þνeēγαð1− γ5Þe

−
1

2

X
i

ν̄iγ
αð1− γ5Þνiēγαð1− 4sin2θW − γ5Þe

�
; (2)

Hq
2ν ¼

GFffiffiffi
2

p
X
i

ν̄i γαð1 − γ5Þνijαq; (3)

jαq ¼
1

2
ðūγαð1 − γ5Þu − d̄γαð1 − γ5ÞdÞ

− 2sin2θW

�
2

3
ūγαu −

1

3
d̄γαd

�
: (4)

As usual, the electron neutrino νe is a mixture of three mass
eigenstates, νi; νe ¼

P
iUeiνi. The neutrino interaction

with quarks for RENP is mediated only by Z-exchange
interaction.
We shall first consider neutrino interaction with atomic

electrons, arising from the termHe
2ν. Atomic electrons may

be treated as nonrelativistic and this gives two main
contributions: the spin three-vector e†~σe from the four-
axial vector current and the monopole charge density e†e
from the four-vector current. For transitions in heavy atoms
the monopole contribution from all electrons within the
closed shell is expected to be large, since there are (of
order) Z electrons, unlike a single or a few valence
electrons. The contribution of the spin vector term ∝ ~σ
cancels among most of the core electrons. In what follows,
we shall therefore consider as the dominant contribution the
monopole weak interaction of the form written in terms of
two component spinor fields,

He
2ν ¼

GFffiffiffi
2

p e†e
X
ij

bijν
†
jð1 − γ5Þνi þO

�
1

me

�
; (5)

bij ¼ UeiU�
ej −

1

2
δijð1− 4sin2θWÞ; 1− 4sin2θW ∼ 0.044:

(6)

We consider the neutrino pair emission from one of core
electrons in a state jci and dipole (E1) photon emission
from an excited state jv0i, first without the Coulomb
interaction. In the nonrelativistic perturbation theory there
are two ways in time sequence in which monopole core
emission of vertex bijhcjci ¼ bij and E1 vertex hvj~d · ~Ejv0i
are arranged. When the contributions from these two
diagrams are added, they give amplitudes of the form

bijhvj~d · ~Ejv0i
�

1

ϵv0 − ϵv − ω
þ 1

−E2ν

�
; (7)

with E2ν the total energy of two neutrinos. Two terms in the
bracket of this equation are the usual energy denominator
factor in the second order perturbation theory. The energy
conservation for the process jv0i → jvi þ γ þ νiνj gives
E2ν ¼ ϵv0 − ϵv − ω, hence these two contributions exactly
cancel.
Radiative neutrino pair emission from core electrons

thus becomes effective only when it is accompanied by
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Coulomb interaction between core electrons and valence
electrons, which is needed to emit a photon. We shall thus
consider the third order perturbation of Coulomb-assisted
neutrino pair emission, which has matrix elements between
two antisymmetrized wave functions of valence and core
electrons (E1 vertex omitted for the moment),

X
c

hcjHe
2νjci

�
n; c

���� α

r12

����n0; c
�
;

X
c

�
n; c

���� α

r12

����n0; c
�
hcjHe

2νjci; (8)

where r12 is the distance between two electrons. The
quantum number of a single electron wave function, c,
refers to one of the core electrons, while n; n0 (which may
or may not be the same) refers to the valence electrons.
In performing spatial integration of the neutrino emission

vertex He
2ν, one essentially obtains the integrated electron

number density of the core, since the wave vectors of plane
neutrino wave functions hardly change within a single atom
due to the much larger wavelength of emitted neutrinos.
Hence, hcjHe

2νjci ¼ the weak coupling constants × two
plane wave functions of neutrino pair at a target site. The
remaining part is the Coulomb integral and its exchange
integral between valence and core electrons,

�
n; c

���� α

r12

����n0; c
�

¼
Z

d3r1d3r2ψ�
nð~r1Þψ�

cð~r2Þ
α

j~r1 − ~r2j
× ψn0 ð~r1Þψcð~r2Þ
þ ðexchange Coulomb integralÞ: (9)

The exchange Coulomb integral turns out to be numerically
much smaller, hence it is neglected. We shall use the
Thomas-Fermi model [11] for an estimate of this quantity
in heavy atoms. In the Appendix we give a basic explan-
ation of the Thomas-Fermi model and how to compute the
Coulomb integral in the model. The result for the Coulomb
integral is summarized as

Jc ≡
X
c

�
n; c

���� α

r12

����n0; c
�

¼ 210=3

ð3πÞ2=3 Z
4=3 1

2
α2meJ c;

(10)

J c ∼ 0.23; J2c ∼ 50Z8=3 eV2: (11)

In the Thomas-Fermi model dependence on the valence
principal quantum numbers, n; n0, is weak and we shall
ignore it.
We next consider Coulomb-assisted neutrino pair emis-

sion from the nucleus, which turns out larger than that from
core electrons. [The cancellation without Coulomb inter-
action works in this case too, in much the same way as in
Eq. (7).] The relevant Z-exchange interaction arises from

zeroth components of the quark current (4), which is
conveniently written in terms of proton and neutron number
densities,

Hq
2ν ∼

GFffiffiffi
2

p
X
i

ν†i ð1 − γ5Þνij0q; (12)

j0q ¼ −
1

2
j0n þ

1

2
ð1 − 4sin2θWÞj0p; (13)

where j0n; j0p are neutron and proton number densities.
Coulomb-assisted pair emission for valence electron tran-
sition, jni → jn0i, contains

Qw

X
i

ν†i νi

�
n0
����Zαr

����n
�
; Qw ¼ N − 0.044Z; (14)

where N;Z is the neutron and the proton number of
nucleus. The nucleus is assumed to be a point charge.
The Thomas-Fermi model gives an estimate of the

Coulomb integral of this type. Its Z dependence is given by

JN ≡
�
n0
����Zαr

����n
�
∼

27=3

ð3πÞ2=3 Z
4=3α2meJ N;

J N ¼
Z

∞

0

dx
χðxÞ3=2
x1=2

: (15)

Numerically, we find that

J N ∼ 1.6; ðQwJNÞ2 ∼ 2.5 × 103Q2
wZ8=3 eV2: (16)

The ratio of two Coulomb integrals—the one from the
nucleus to the one from core electrons—is of order 50Q2

w,
thus the pair emission from nucleus dominates the process.
RENP of some atomic processes, however, has no con-
tribution of pair emission from the nucleus, and the pair
emission from core electrons may become dominant. The
enhancement factor of rates from nuclear monopole pair
emission is roughly ðQwJNÞ2 divided by squared energy
spacing of atomic process.
The Thomas-Fermi model overestimates these Coulomb

integrals compared with more precise calculations, since
electrons are distributed more towards the center. We
improved the model following [12] such that the potential
is given by a sum of the inner core part of total charge
ðZ − 1Þe provided by the Thomas-Fermi model and the
shielded nuclear Coulomb potential of −α=r. The non-
relativistic Schrödinger equation was then solved with this
potential for a valence electron. This method gives a value
for Ce JN smaller by a factor ∼2.5 than the Thomas-Fermi
result. Nevertheless, we shall use the Thomas-Fermi
estimate for Coulomb integrals in the rest of this work,
for simplicity.
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The nuclear monopole contribution is insensitive to
the elements of neutrino mixing matrix Uei, since its
contribution does not involve W-exchange interaction.

III. SPECTRUM RATE OF RENP

The Coulomb-assisted neutrino pair emission from
nucleus or core electrons may be combined with E1
(electric dipole) transition from valence electrons. This is
expected to give the largest RENP rate. We shall illustrate
the calculation of Coulomb-assisted radiative emission of
neutrino pair from the nucleus, taking alkali atoms of one
valence electron.
With the Coulomb assistance, there are six types of

diagrams equally contributing in absolute magnitudes, as
shown in Figs. 1–3. There is a partial cancellations among
six contributions: Contributions from the rightmost dia-
gram of Fig. 1 and the two diagrams of Fig. 3 give a sum of
the form

Qwhn0sj~d · ~Ejnpihn0sjVCjnsi

×

�
−

1

ðϵn0s − ϵnp þ ωÞðϵnp − ϵns − ωÞ

þ 1

ðϵn0s − ϵnsÞðϵnp − ϵns − ωÞ

þ 1

ðϵn0s − ϵnsÞðϵn0s − ϵnp þ ωÞ
�
; (17)

which vanishes exactly. The contributions of the rest are
∝ Qwhnsj~d · ~Ejn0pihn0pjVCjnpi, as given below in FðωÞ
of Eq. (19).
The RENP spectrum formula for alkali atomic transition

jn0pi → jnsi þ γ þ νν; n0 ¼ nþ 1 is given by

Γγ2νðω; tÞ ¼ Γ0F2ðωÞIðωÞηωðtÞ; Γ0 ¼
3

4
G2

Fn
3Vϵeg;

(18)

FðωÞ ¼ QwJNðϵðn0pÞ − ϵðnsÞÞ
ϵðn0pÞ − ϵðnpÞ

1ffiffiffiffiffiffi
3π

p

×
dn0pns

ðϵðn0pÞ − ϵðnpÞ þ ωÞðϵðnpÞ − ϵðnsÞ − ωÞ ;

dab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π

γab
ðϵa − ϵbÞ3

r
; (19)

IðωÞ ¼
X
i

ΔiðωÞIiðωÞθðωii − ωÞ; ωii ¼
ϵeg
2

−
2m2

i

ϵeg
;

(20)

IiðωÞ ¼
ω2

3
þ 2m2

iω
2

3ϵegðϵeg − 2ωÞ þm2
i ð1þ δMÞ;

ΔiðωÞ ¼
�
1 −

4m2
i

ϵegðϵeg − 2ωÞ
�

1=2

; (21)

with δM ¼ 1 for the Majorana case and 0 for the Dirac case.
The relation between transition dipole dab and transition
rate γab (A coefficient) has been used.
The photon energy spectrum from RENP is continuous

below the threshold, slightly below the half of the energy
difference of initial and final states, ϵeg=2 − 2m2

0=ϵeg with
m0 the smallest neutrino mass, hence is separated from the
familiar D1 line of alkali atoms at ϵeg. The spontaneous
(and not macrocoherent) emission spectrum of two-photon
decay jei → jgi þ γ þ γ is continuous starting from ϵeg=2,
but has negligible rates.
The overall rate scale is given by Γ0, which has the

dimension of mass, or s−1, in our natural unit of ℏ ¼ c ¼ 1.
Numerically, this value is

Γ0 ∼ 54 m Hz
ϵeg
eV

�
n

1021 cm−3

�
3 V
102 cm3

�
100 MHz

eV3

�
−1
:

(22)

As a reference parameter set, we took a target number
density n ¼ 1021 cm−3, a target volume V ¼ 102 cm3, A
coefficients, γab, in 100 MHz unit, and an available energy
ϵeg ¼ 1 eV, along with all energies in the eV unit. The rate

e

A

np n’p ns
e

A

np n’s ns

FIG. 1 (color online). First RENP diagrams for alkali atoms.
Red dashed line is for Coulomb interaction between valence
electron and nucleus.

e

A

np n’p nse

A

np n’p ns

FIG. 2 (color online). Second RENP diagrams for alkali atoms.

e

A

np n’s ns
e

A

np n’s ns

FIG. 3 (color online). Third RENP diagrams for alkali atoms.
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dependence on these parameters is as explicitly indicated in
this equation.
The extra factor n of the number density in the overall

rate Γ0 arises, since we replaced the field strength E2 by its
maximally stored energy density ϵegn times the field
storage fraction ηωðtÞ. The factor ϵegn is equal to the
atomic energy density stored in the upper level jei. The
large factor n may be partially compensated by a small
value of ηωðtÞ, and it is not clear that Γ0 ∝ n3 automatically
follows. But in accordance with the general idea of the
macrocoherence the enhancement larger than n2V is
guaranteed in all cases. In any event the dependence ∝
n3 is a dynamical question which is resolved by more
systematic simulations.
The spectral shape given by this formula is substantially

different from the case of valence RENP in the preceding
works of the spin current [5], in particular in the low-energy
limit ω → 0. The reason for this is the presence of the
nuclear monopole current in the neutrino emission vertex,
which is different from the spin current in the valence
RENP. The calculation leading to the spectral rate IðωÞ is
sketched in the Appendix.
The factor ηωðtÞ is the extractable fraction of field

intensity ϵegn stored in the initial upper level jei. The
storage and development of target polarization is induced
by two trigger laser irradiation of ω1 þ ω2 ¼ ϵðn0pÞ−
ϵðnsÞ;ω1 < ω2. The storage is due to a second-order
QED process, for instance M1 × E1 type of two-photon
paired superradiance via virtual intermediate state n0p1=2 →
n0p3=2 → ns1=2 in alkali atoms. The calculation of ηωðtÞ
requires numerical solution of the master equation for
developing fields and target polarization given in [5,6].
Usually, ηωðtÞ is much less than unity, and depends on
experimental conditions. In the present work we use a
conservative value of ηωðtÞ in the range 10−6 [13]. The
macrocoherent development of field at frequency ω and
macroscopic polarization between n0p and ns up to a
time range of several to ten nanoseconds is a prerequi-
site for experimental success of RENP. The macro-
coherence is expected to decay after the phase relaxation
time T2.
We shall present the RENP spectrum rates for Cs and Xe,

although the enhancement due to the monopole current is
universal and may be applied to other target atoms as well.
We shall first comment on how experiments may be
performed. Typical RENP experiments use several lasers
for trigger and excitation. For instance, two continuous
wave (CW) lasers of different frequencies, ωi;ω1 þ ω2 ¼
ϵeg with ϵeg the energy difference between the initial jei
state and the final jgi state, are used as triggers in counter-
propagating directions (taken along z axis), while two
excitation lasers of Raman type of frequencies, ωp;ωs with
ωp − ωs ¼ ϵeg, are irradiated in pulses. Measured variables
at the time of excitation pulse irradiation are the number
of events at each trigger frequency ω1. By repeating

measurements at different trigger frequency combinations,
one obtains the photon energy spectrum at different
frequencies ω ¼ ω1ð< ω2Þ accompanying the neutrino
pair. The single photon process, even if it can exist, is
distinguished from RENP in the difference of energy
spectrum: The RENP photon spectrum is continuous and
starts slightly below half of the level difference by an
amount of 2m2

0=ϵeg of the smallest neutrino mass m0, while
the macrocoherent single photon decay is monochromatic
at the level difference.
In Figs. 4 and 5 we plot the spectral shape for 133Cs. Cs

data used are states jei¼6P1=2ð1.3859 eVÞ;jgi¼6S1=2ð0Þ
and A coefficient 7.93×105 s−1 for 7P1=2ð2.6986Þ→6S1=2,
taken from NIST [14]. For the smallest neutrino mass as
large as 0.1 eV, as in this example, the Majorana vs Dirac
distinction is possible by Cs RENP, but for smaller mass
values it becomes difficult, requiring a large statistics data
of RENP. The situation for MD distinction is improved for
smaller atomic spacings [15].
As another example we take Xe atomic deexcitation

from 6s3P1 transition. This is an electron-hole system

0.1 0.2 0.3 0.4 0.5 0.6
photon energy eV

5. 10 6

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

Cs RENP spectrum

FIG. 4 (color online). Cs RENP spectrum from deexcitation
of energy level at 6P1=2ð1.3859 eVÞ, assuming the smallest
neutrino mass of 0.1 eV in the normal hierarchical (NH) mass
pattern, the Majorana case in solid red and the Dirac case in
dashed blue, taking other masses and mixing angles consistent
with neutrino oscillation experiments. The actual Cs RENP
rate is obtained by multiplying 1.5 × 105ðn=1021 cm−3Þ3×
ðV=102 cm3ÞðηωðtÞ=10−6Þ Hz.

0.672 0.674 0.676 0.678
photon energy eV

5. 10 6

0.00001

0.000015

0.00002

0.000025

0.00003

Cs RENP spectrum

FIG. 5 (color online). Threshold region corresponding to Fig. 4.
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consisting of a valence electron of 6s,7s,6p and a hole of
5p, its quantum number being much like a two-valence
electron system. We shall use a different scheme from that
considered in [5] to utilize the nuclear monopole contri-
bution. Data used are energy levels of 6s3P1ð8.437 eVÞ for
the initial state and 7s3P1ð10.593 eVÞ, and its A coefficient,
γ7s5p ¼ 8.51 × 107 s−1. The RENP rate of 131Xe from
nuclear pair emission is given by

Γγ2νðω; tÞ ¼ Γ0F2
XðωÞIðωÞηωðtÞ;

FXðωÞ ¼
QwJNðϵ7s − ϵ6sÞ

ϵ7s − ϵ5p

1ffiffiffiffiffiffi
3π

p

×
d7s5p

ðϵ7s − ϵ6s þ ωÞðϵ6s − ϵ5p − ωÞ : (23)

Abbreviated notations are used, paying attention to single
electron transitions; for instance, 7s here means the atomic
state 5p57s and 5p is an orbital in the closed shell 5p6 with
ϵ5p ¼ 0 by definition of the energy origin.
Its spectral shape is given in Fig. 6, which shows

that neutrino mass differences of this size and dif-
ferent hierarchical mass patterns can be differentiated.
MD distinction is impossible with assumed neutrino
masses. Although the RENP rate is much smaller due
to the assumed atom density appropriate for a gas
target, the gas target has a number of merits compared
with solid targets, such as a larger phase relaxation
time T2.

IV. SUMMARY

We have presented a new enhancement mechanism of
RENP due to the monopole vertex of neutrino pair
emission from inner core electrons and nucleus in heavy
atoms. The enhancement factor for RENP rates is very

large, depending on the atomic number ∝ Z8=3 for pair
emission from core electrons and ∝ Q2

wZ8=3 for pair
emission from the nucleus, where Qw ∼ N − 0.044Z is
the electroweak neutral charge of the nucleus. Both rates
and spectral shapes of emitted photon energy have been
calculated and examples of Cs and Xe RENP have been
provided. The new mechanism of monopole current opens
a variety of possibilities in the selection of ideal RENP
targets.
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APPENDIX A: COULOMB INTEGRAL IN THE
THOMAS-FERMI MODEL

In the Thomas-Fermi model [11] one assumes the
degenerate Fermi gas of electrons at each point of the
atom, and relates the Fermi momentum to the number
density. The kinetic energy at the Fermi momentum is
balanced against the potential energy exerted to the
electron. In other words, the pressure gradient of degen-
erate gas is balanced against the electrostatic potential. This
gives a relation of the electron number density neðrÞ to the
potential φðrÞ.

ð3π2neðrÞÞ2=3
2me

− eφðrÞ ¼ 0: (A1)

The spherical symmetry is assumed.
The second important equation is the Poisson equation,

relating the electron number density to the potential.
Combined with the density-potential relation above, one
arrives at a self-consistent equation for the potential

1

r
d2

dr2
ðrφÞ ¼ e

3π2
ð2meeφÞ3=2: (A2)

It is convenient to introduce dimensionless units of

χ ¼ 4π

Ze
rφ; r ¼ bx; (A3)

b ¼ ð3πÞ2=3
27=3

Z−1=3

αme
∼ 0.8853Z−1=3aB: (A4)

The Thomas-Fermi equation is written for χðxÞ,

x1=2
d2χ
d2x

¼ χ3=2: (A5)

4.206 4.208 4.210 4.212 4.214 4.216 4.218
photon energy eV

2. 10 6

4. 10 6

6. 10 6

8. 10 6

0.00001

0.000012

Xe RENP spectrum: NH vs IH

FIG. 6 (color online). Threshold region of Xe spectral shape for
Dirac and Majorana RENP. The actual rate should be multiplied
by ∼4 × 103 Hz for Xe gas density of 7 × 1019 cm−3, volume
102 cm3, and ηω ¼ 10−6. The case of Majorana NH of the
smallest mass 0.1 eV is depicted in solid red and Majorana IH
case of the same mass is depicted in dotted black. Majorana and
Dirac cases are degenerate with this resolution.
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The asymptotic behavior with x → ∞ is worked out, to
give χðxÞ → 144=x3. The boundary condition at the
origin is set from the physical setup, the nuclear
charge, which dictates χðxÞ → 1 as x → 0, along with
χ0ð0Þ ¼ 0. The problem thus becomes an eigenvalue
problem. The eigenfunction satisfies χðxÞ ¼ 1 − c1xþ
� � � ; c1 ∼ 1.588 as x → 0 [11]. The electron number
density is given by

ne ¼
32

9π3
Z2ðαmeÞ3

�
χ

x

�
3=2

: (A6)

The Coulomb interaction between a valence electron and
all core electrons in the closed shell is given by

Z
d3r1d3r2jψnð~r1Þj2neð~r2Þ

α

j~r1 − ~r2j
≡ JC: (A7)

We may assume that dependence of this quantity on the
quantum number of the valence electron n is weak, and
define the Coulomb integral as αJ. This quantity is given in
dimensionless units

JC ¼ ð4πÞ2
ð6π4Þ2=3 Z

4=3 1

2
α2meJ ∼ 31 eVZ4=3J ; (A8)

J ¼
Z

∞

0

dx1x
−1=2
1 ðχðx1ÞÞ3=2

Z
x1

0

dx2x
1=2
2 ðχðx2ÞÞ3=2:

(A9)

Avalue of J ∼ 0.23 is obtained by numerically solving the
Thomas-Fermi equation and by integrating the results, to
give

ðJCÞ2 ∼ 50Z8=3 eV2: (A10)

Another important integral used in the text is the
Coulomb integral between the valence electron and the
nucleus, which is

Zα
Z

d3r1d3r2
jψNð~r2Þj2neð~r1Þ

j~r1 − ~r2j
∼ α

Z
d3r

neðrÞ
r

; (A11)

in the small nucleus limit. The estimate of this quantity in
the Thomas-Fermi model is

27=3

ð3πÞ2=3 Z
4=3α2me

Z
∞

0

dx
χðxÞ3=2
x1=2

∼ 31 eVZ4=3: (A12)

APPENDIX B: PHASE SPACE INTEGRAL OVER
NEUTRINO MOMENTA

We start from the two-neutrino emission vertex (5), its
square to be multiplied by E1 photon emission factor

ð~d · ~EÞ2 from the valence electron and by the Coulomb
factor F of Eq. (19) for rates. Here we concentrate on
summation over helicities and momenta of two emitted
neutrinos.
Using the helicity summation formula of [4],

X
hi

jjν · je;qAj2 ¼
1

2

�
1þ ~p1 · ~p2

E1E2

þ δM
m1m2

E1E2

�

× je;q0 ðje;q0 Þ†jAj2 þ � � � ; (B1)

where je;q0 is the zeroth component electron/quark current,
and ðEi; ~piÞ are neutrino four-momenta. The function A
refers to all the rest of amplitudes including QED vertex,
energy denominators, and all coupling constants. In pre-

vious works on valence RENP, the three-vector part ∝ ~je of
electron current (spin current),

X
hi

jjν · jeAj2 ¼
1

2

�
1 −

~p1 · ~p2

E1E2

− δM
m1m2

E1E2

�
~je · ~j

†
ejAj2

þ ~p1 · ~j
e ~p2 · ~jjAj2
E1E2

þ � � � ; (B2)

has been relevant. The difference of the sign� ~p1·~p2

E1E2
appears

in the suppressed region of the spectrum: For the
monopole current (B1) the low-energy limit ω ∼ 0 neu-
trino momenta are nearly balanced, ~p1 ∼ −~p2, and there is
more suppression in the low-energy limit for the monop-
ole case. In Eqs. (B1) and (B2) we neglected time reversal
odd terms.
In the phase space integral of neutrino momenta,

Z
d3p1d3p2

ð2πÞ2 δðE1 þ E2 þ ω − ϵegÞδð~p1 þ ~p2 þ ~kÞð� � �Þ;

(B3)

one of the momentum integration is used to eliminate the
delta function of the momentum conservation. The result-
ing energy conservation is used to fix the relative angle
factor cos θ between the photon and the remaining neutrino

momenta, ~p1 · ~k ¼ p1ω cos θ. Noting the Jacobian factor
E2=pω from the variable change to the cosine angle, one
obtains a one-dimensional integral over the neutrino
energy E1,

IijðωÞ
ΔijðωÞ
2π

≡ 1

2πω

Z
Eþ

E−

dE1E1E2

1

2

×

�
1þ ~p1 · ~p2

E1E2

þ δM
m1m2

E1E2

�
;

E2 ¼ ϵeg − ω − E1: (B4)
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The angle factor constraint j cos θj ≤ 1 places a constraint
on the range of neutrino energy integration,

E� ¼ 1

2

�
ðϵeg − ωÞ

�
1þ m2

i −m2
j

ϵegðϵeg − 2ωÞ
�
� ωΔijðωÞ

�
;

(B5)

ΔijðωÞ ¼
��

1−
ðmi þmjÞ2
ϵegðϵeg − 2ωÞ

��
1−

ðmi −mjÞ2
ϵegðϵeg − 2ωÞ

��
1=2

:

(B6)

The integrand is a quadratic function of neutrino energy
[15], and it is easily integrated to give

IijðωÞ ¼
ω2

3
þ 1

2
ðm2

i þm2
jÞ þ

1

3

ω2ðm2
i þm2

jÞ
ϵegðϵeg − 2ωÞ

−
3

4

ðϵeg − ωÞ2
ϵ2egðϵeg − 2ωÞ2 ðm

2
i −m2

jÞ2 þ δMmimj: (B7)

The result, IiðωÞ ¼ IiiðωÞ, is needed in Eq. (21) and in
other places of the text.
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