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Several intriguing aspects of neutrino oscillation phenomenology like the origin of small neutrino
masses, the absolute neutrino mass scale, the neutrino mass hierarchy, i.e., normal or inverted, and
the nature of neutrinos, i.e., Dirac or Majorana, etc. have been addressed from a general perspective.
We show how the fundamental considerations of unitary transformations, naturalness, and the
seesaw mechanism suffice to determine the texture structure of fermion Yukawa couplings and
discuss the significance of the effective mass in OvBf decay for the texture structure of these

couplings.
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I. INTRODUCTION

Unlike the quark sector, the recent measurement of large
615 [1] along with indications of a nonmaximal 6,5 [2],
point towards an absence of symmetry in the lepton sector
[3], indicating that the masses and flavor mixing schemes
for quarks and leptons are significantly different. This
makes the task of constructing the corresponding mass
matrices more challenging, especially if the fermion mass
matrices are to be considered in a unified framework [4].
In the absence of a compelling theory of fermion flavor
dynamics from the “top-down” perspective, several phe-
nomenological “bottom-up” approaches have been widely
adopted [5], including radiative mechanisms, texture zeros,
family symmetries, and the seesaw mechanism, etc. Among
these, the “texture zero” ansatz initiated by Weinberg and
Fritzsch [6] has been quite successful in explaining the
fermion masses and flavor mixing patterns. As a result,
several texture zero possibilities of lepton mass matrices
have been investigated in the literature [7].

Difficulty in implementing this approach arises from
large redundancy in fermion mass matrices in the SM
framework, wherein the flavor structure of these matrices
is not constrained by the gauge symmetry. As a result
these matrices are arbitrary complex matrices involving 36
parameters, which is extremely large compared to the
number of physical observables. This redundancy is related
to the fact that one has the freedom to make weak basis
(WB) transformations under which the fermion mass
matrices change but the gauge currents remain diagonal
and real [8,9].

An inspiring systematic study of these texture zeros
originating from WB transformations was recently dis-
cussed in detail by Branco et al. [8] and also discussed
earlier by Fritzsch et al. [9], wherein it emerged that some
sets of these zeros have, by themselves, no physical
meaning, since these can be obtained starting from arbitrary
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fermion mass matrices by making the appropriate unitary
transformations, the so-called WB transformations. This
greatly reduces the number of possible sets of texture zeros
to be studied. It was also observed [8,9] that using the
freedom of such transformations, it is possible to obtain
Hermitian fermion mass matrices involving a “maximum”
of three phenomenological texture zeros “without” having
any “physical” implications. Any “additional” texture zero
is supposed to have physical implications.

Among the several possibilities of texture specific lepton
mass matrices, the Hermitian Fritzsch-type lepton mass
matrices involving six [7,10] texture zeros have been
exhaustively studied due to a lesser number of parameters
involved in these matrices. Such matrices were recently
revisited by Fukugita et al. (FSTY) [10]. They observed
that such matrices are able to explain the current neutrino
oscillations data for the case of Majorana neutrinos
exhibiting normal mass hierarchy (NH). However, as these
matrices involve a greater number of texture zeros, they
may not be considered as the most general lepton mass
matrices in view of the WB transformations.

The purpose of the present paper is to use the
fundamental considerations of unitary transformations,
naturalness, and the seesaw mechanism to obtain lepton
mass textures assuming normal neutrino mass hierarchy
(NH). Following a hierarchical parametrization for these
mass matrices, the exact relations for the lepton mixing
angles have also been detailed, wherein the implications
of neutrino mass hierarchy for neutrino oscillations
are clearly evident. The significance of the effective
mass involved in (Oyff) on the imposition of texture
zeros in the resulting lepton mass matrices has also been
explored.

II. UNITARY TRANSFORMATIONS

In the WB approach [8,9], one may consider a basis
wherein one of the lepton mass matrices among the charged
lepton mass matrix M, and Dirac neutrino mass matrix
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M,p is real diagonal while the other is an arbitrary
Hermitian mass matrix, e.g.,

M,=D,, M,p= VDL/DVT
)] |ayD |eiaDD |fI/D |eiwm
= |at/D|e_iabD dvD |b1/D|eiﬂbD : (1)
|f1/D|e_iwbD |va|e_iﬂDD CuD

Here D, = diag(m,,—m,,m;) and D, = diag(m,,p,
—myyp,myap) are real diagonal matrices and V is the
neutrino mixing matrix, also called the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [11,12]. It has been
shown [13] that for the quark sector, the observed
hierarchy among the quark masses as well as the quark
mixing matrix [12] elements get naturally translated
onto the structure of the corresponding quark mass
matrices, 1.e.,

e < (lal,|f]) <d < |b| <c. 2)

Such hierarchical mass matrices have been referred to
in the literature as “natural mass matrices” [14]. However,
it shall be interesting to investigate the conditions under
which the lepton mass matrices emerging through
WB transformations exhibit such a structure, especially
if neutrinos are Majorana type with the seesaw mecha-
nism accounting for the small neutrino masses. In
principle, an exact diagonalization of the mass matrix
given in Eq. (1) is not always possible. In this context,
one can apply a WB transformation [8,9], which is
essentially a unitary transformation U operating simulta-
neously on the mass matrices M, and M, p, defined in
Eq. (1) such that

M,— M, =UM,U",
Mz/D - MLD = UMVDUT- (3)

It is trivial to check that the two representations
(M,,M,p) and (M, ,M,,) are physically equivalent
leading to the same mixing matrix, provided neutrinos
are assumed to be Dirac particles. In such a case, as
discussed in Ref. [9], there is a possible choice of U such
that

(M2) 1351 = (Myp)i135 = (M,p)y; =0, 4)

or

(Myp)1331 = (M) 1331 = (M), =0, (5)
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with nonvanishing other elements. However, if the
neutrinos are of the Majorana type, the light neutrino
mass matrix is obtained using the seesaw mechanism [15]
as M), = —M'T, Mz'M! ,, where My, is the right-handed
Majorana mass matrix. It has been recently shown [10,16]
that for Hermitian lepton mass matrices M/, and M/, and
for a real diagonal My = mpgl, where I is a unit matrix
and my denotes a very large mass scale, the left diagonal-
izing transformations for M/, and M, remain the same,
as shown in Egs. (9) and (11) below. Such a simple My
structure allows the two representations (M, M) and
(M, M ,, M) to be physically equivalent, leading to the
same mixing. However, in general, this may not hold
for a more general My structure with three different
eigenvalues leading to a greater complexity in the
structure of the light neutrino mass matrix, which may
also deviate from the symmetric mass structure. Note that
the matrices M/, and M/, are texture based [10] with no
such restriction on My and hence on M. It therefore
becomes desirable to investigate the implications of the
elements (M'), », in the matrices (M, M, ;) for neutrino
oscillation data, especially if the condition of naturalness
of Eq. (2) is imposed on these.

ITII. MATRIX DIAGONALIZATION

It may be noted that for the WB textures of lepton
mass matrices mentioned in Egs. (4) and (5), one of the
lepton mass matrices is a Fritzsch-like texture two zero
type [9], (e, = 0), whereas the other has the following
form:

e lag |e’ 0
My = | lag|e™™™ dy |br|e?"
0 |bL’€7iﬁL Ccy,
L=e,v. 6)

In order to construct the PMNS matrix, one needs to
obtain the diagonalizing transformations for this matrix.
It is observed [13,17,18] that for |a, | and |b; | to remain
real, the free parameters get constrained within the
limits

m; > e; > —m, and

(my —my —ep) >dy > (my—my—ep). @)

The above constraints indicate that the condition of
Hermiticity on the texture one zero mass matrix in Eq. (6)
restricts the free parameters e¢; to have small values only,
consistent with the naturalness condition in Eq. (2). The
exact diagonalizing matrix O, for M/, defined through
D, = O}P,M,0,0, is expressed as [18]
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" Mg My C(’+mur )(1=¢,)
(l+mw) \/ l+m,”
. me,u ( 1 _ée) 1 (¢e+m/41
0. = (+2,) () (1) T )emy | ®)
_\/’nﬂy<é’e+mur)<1_§e> \/ (§€+my1) 1
(1+¢.) (148 ) (1+m,,) (148) (1 +m,)

where P, = diag(e %, 1, /<) with Q,=

P! (for Hermitian M) and m, < m,, along with m, < m, have been used for the

charged lepton masses. The free parameters £,and {, represent the hlerarchy charactenzmg parameters for the mass matrix

M, and are defined as &, = e,/m,,{, = d,/c, while m,,
considered for simplicity.

= m,/m,, and m,, = m,/m along with m,,,

= m,/m, have been

The diagonalizing transformation O, for matrix M), defined through

D,p = 0} pP, M. 50,50, p, 9)

is given by

J(+&,pmy10p)
(I+my12p)
0 = \/mblzo(l—éo)U*m»st)
vD (T4+my,12p) (1+¢,p)

myiop(1=€,p)

(I+my12p) (1+my93p)
(+&pmuiap)

(I+my12p) (14€,p)

mmnmuzm (my23p+Lp)(1+E,pMy12p)
(I+my3p) (1+my93p)

(my3p+Cip)
(I+my3p) (14€,p) ’

(10)

_\/mplzn(mpz3n+ﬁ:»n)
(I+my12p) (14C,p)

where P, = diag(e~"», 1, ¢w) with Q,p,= P!, (for
Hermitian M. ), x = /(1 — &,p)/(1 — my3p) and the free
parameters &,p, {,p characterize the hierarchy that is
exhibited by the elements of the Dirac neutrino mass matrix
and are defined as &,p = e,p/m,1p, Cop = d,p/C,p, While
My1op = Myip/Myp, My1zp = Myip/Myzp and my3p =
my,p/my3p have again been considered for simplicity.
The condition of naturalness is imposed on the lepton mass
matrices (M), M!,) by restricting the parameter spaces of
the free parameters to ({,,{,p,&,.,&,p) < 1 and assuming
NH for the Dirac neutrinos, i.e., m,;p < Mmy,p < M3p-

IV. SEESAW AND PMNS MATRIX

Noting that the seesaw framework involves more free
parameters than can be obtained from low- energy data, it
would be desirable to keep the structure of My as simple as
possible involving the least number of free parameters.
In this context, following FSTY, we have considered
Mp = mgl. In such a case, it can be shown [10,16] that
the light neutrino mass matrix takes the following form,

(DvD)2

M M/DMRIM:/D =P,pO,p OZDPL/D

= PDDODDDUOZDPyDv (11)

where D, = diag(m,, —m,;,, m,3), so that the assumption
of a NH for Dirac neutrinos given by m,;p < myp < m,3p

\/ (+&pmy12p) (My23p+E,p)
(I+my12p) (1+my03p ) (14C,p)

1
(1+up)

automatically translates into a NH for light neutrino
masses, i.e., m,; < m,, < m,, and hence for the neutrino
matrix M,. One can now easily compute the PMNS
matrix [10,16] as

V=0{0.P,p0,p. (12)

In order that the mixing angles are independent of my,
we consider the neutrino masses m,|, m,,, and m, as input
parameters, so that we make the replacement of m,p with
\/mymy in all the terms of O, in agreement with Eq. (11)
above [10,16]. In such a case, the ratios m,,p, m,3p, and

myo3p get replaced by myp — /My, = \/my, /m,, and
so on. Likewise, the hierarchy parameters get redefined as
é:vD - 51/ = el/D/\/ myympg = eu/\/m—vl and CI/D - Cv =
C,p, where £, < 1 and {, < 1 are again arbitrary and in
accordance with the condition of naturalness. For the lepton
mass matrices (M), M., M) given by the Egs. (4), (5),
(11), (12), the product Q,P,p in Eq. (11) is a diagonal
phase matrix given by Q,P,, = diag(e™1, 1, e%2) [16],
where the phases ¢ = a, —a,p and ¢, = f, — p,p are
also free parameters.

A. Case I

For WB representation (M/,, M. ) given in Eq. (4), the
three lepton mixing angles may be expressed in terms of the
lepton mass ratios m,,, Mgz, My, \/My12, \/M1350/M03,
the free parameters ¢,, {,, £, and the phases ¢; and ¢, as

053007-3



ROHIT VERMA

PHYSICAL REVIEW D 89, 053007 (2014)

_ V12
e \/(1 + /M) (1 + /mys) o
\/ R EaTL] i
) (T y/23) (1= it,13) (123 € (14)
13 = j ’
Vet (Ve + 60 - V@ T m) (s + De:)
" .
23 ‘\/(1 i Ce)(l + mm’)(l 4 /—m,/23)(1 + é'y) (\/< Vv 123 + Z.:v) \/(Ce + mﬂ1)< nmyn3 + 1)6 ) s (15)

where only the leading-order term (first) as well as the next-
to-leading-order terms have been retained in the expres-
sions. It is observed that the above relations hold good
within an error of less than a percent. It is noteworthy that
51 depends predominantly on the neutrino mass ratio
\/My12. Likewise, it is also observed that 5,3 is independent
of £,. This is easy to interpret as the parameter £, does not
invoke any mixing among the second and third generations

of leptons. As a result, it should be interesting to investigate
the implications of &,, if any, for s;3 as well as those of ¢,
and ¢, for s3 and s53.

B. Case I1

For the WB representation (M/,, M, ;) given in Eq. (5),
the mixing angles may be expressed as

512:\/(]

\/\/mm\/mm \/my23+§p (148, v/m)(1-¢,) it

(14 /my03) (1= /i 13) (14 /1,23

S13 =

1
s”:\/(lm)(l ) (U /i) (14,

One observes that the mixing angle (s,)?
predominantly on the neutrino mass ratio |/m,;, and the
parameter £,. As expected, the mixing angle s,3 is still
independent of the parameter £,. As a result, it should be
interesting to investigate the implications of &,, if any,
for s, and si3 as well as those of {, and ¢, for s3
and s,3.

V. INPUTS

We use the following recent global three neutrino
oscillation data [19] at 16 C.L. as inputs for our analysis:

\/m D]Z( fu) (16)
+ \/mDIZ)( + \/”n1/23)7
N (17)
_\/(1+Ce)(1+\/%)(1+§y)(\/<v My +8) = V(Lo +mu)(1T+ m”23)el¢2>
)(\/(\/ M3 + Z:u) - \/(é’e + mur)(l + V mzx23)ei(/)2) . (]8)
|
depends om? = (7.32-7.80) x 107> GeV?,
Am? = (2.33-2.49) x 1073 GeV?,
Sin?6,, = 0.29-0.33,
Sin20,5 = 0.022-0.027,
Sin20y; = 0.37-0.41, (19)

where the neutrino mass square differences are defined as
dm*=mp —myy and Am? = miy — (mj, +mp,)/2 for
NH [19]. The lightest neutrino mass m,;, the parameters

Cer &,y E,, &,, and phases ¢; and ¢, are taken to be free
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parameters. It is noteworthy that the neutrino mass ratios
are completely determined if m,; is known, since

2
vl

2 2
my,+om

m

myip = and

m?,

ny3 = L . 20

v m2, + Am?* + (6m?)/2 °0)

In addition, we have imposed the condition of natural-
ness on the lepton mass matrices through the constraints
(e, 60,6 <1 and assumed NH for the neutrino
masses, consistent with the condition of naturalness.
Furthermore, in the absence of any clues for CP violation
in the lepton sector, the phases ¢ and ¢, have been given
full variation from O to 2z.

VI. RESULTS
A. Case 1

It is observed that the complete 1o range of all the
neutrino oscillation parameters given in Eq. (19) can be
reconstructed by the relations (13)—(15). Interestingly, it is
observed that none of the values for {,, £, allowed by the
condition of naturalness, i.e., 0 < (&,,{,) < 1, play any
significant role in fixing the mixing angles depicted in
Fig. 1, with respect to &£,. A similar plot is obtained with
respect to ¢,. This is easily understandable for s, and 5,3
through Eqgs. (13), (15) with respect to &,. However for s3,
it is noticed that nonzero values of {, and &, appear only in
the next-to- leading-order term in Eq. (14), the contribution
of which is very small as compared to the corresponding
leading-order term; as a result the implications of nonzero
{, and &, on s3 are largely insignificant. For the mixing
angle s,3, the contributions of the free parameter ¢, are able
to compensate for the nonzero values of , allowed by the
condition of naturalness, without affecting the predicted
values of s,3 as shown in Fig. 2.

Since the unique window to verify the Majorana nature
of massive neutrinos is through the neutrinoless double beta

0.5

0.4 1

(meV)
N
<

0.3 1

0.2 4

(5,95 5,7 5 5,9

0.1 1

0.0

FIG. 1. Plot showing redundancy of the parameter £, in
estimating the lepton mixing angles for case I.
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0.37 §

0.36

0.0 0.2 0.4 0.6 0.8

FIG. 2. Plot showing redundancy of parameter ¢, for (s,3)? in
the case 1.

(Oypp) decay, it is also desirable to study the impact of the
parameters ¢, and &, on the effective mass m,, measured in
(Oypp) defined through [20]
Mee= My |Ve1 |2 + mu2|Ve2|2+mu3|Ve3|2' (21)
Interestingly, we find that nonzero ¢, and &, do not
contribute in determining m,,, as depicted in Fig. 3 for ..
Similar observations are also obtained for £, indicating that
£, and £, may most generally be considered to be redundant
in neutrino oscillations. However, from Eq. (14) we notice
that due to the presence of (,/m,»3 + ¢,) in the leading-
order term for s;3, the phenomenologically allowed range
of ¢,is limited from 0 < {, < 1 to 0 < £, < 0.70 in order
to regenerate the experimentally measured s,3, as illustrated
in Fig. 4, wherein it is also noticed that values of {, > 0.70
lead to an overshoot in s;3 from its experimental range.
On one hand, one is able to regenerate the complete 1o
range of all the three mixing angles for 0 < ¢, < 0.7,
indicating that the parameter ¢,, like £, and ¢,, also has no
significant impact on neutrino mixing angles, yielding
corresponding graphs similar to Fig. 1.
On the other hand, interesting observations are obtained
for m,,. The large values of the parameter £, appear to have

6.0

m
ee
>
n

FIG. 3. Plot depicting that the parameter ¢, does not contribute
in determination of m,, for case I.
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0.027 4
0.026
0.025
0.024 -
0.023 4
0.022
0.021
0.020

(s;)°

0.0 0.2 0.4 0.6 0.8

FIG. 4. Plot showing the dependence of the mixing angle (s;3)>
on the parameter ¢, for case L.

greater implications on the allowed range of m,,, as shown
in Fig. 5. On the contrary, all the allowed values of the
remaining parameters £, and {,, including zero, have no
impact on m,,, signifying that the nonzero values of {,
imply vital implications especially in the context of m,,;
hence, only the parameters £, and £, may be considered to
be completely redundant if neutrinos are Majorana particles
leading to Fritzsch-like texture five zero structures of the
corresponding lepton mass matrices, i.e., with ({, =0,

éé’:O’ él/:O’ gl/¢0)

B. Case I1

Interestingly, the complete 1o range of all the neutrino
oscillation parameters given in Eq. (19) can also be
regenerated by the relations (16)—(18). However, using
the Egs. (16), (17), we notice that due to the

termy/(1 — &,), the phenomenologically allowed range
of &, is limited from 0 < £, < 1to 0 < &, < 0.50 in order
to regenerate the experimentally measured s, and 5,3 and
that the nonzero values of £, do not play any significant role
in determining the mixing angles. This is obvious from
Egs. (16), (18) for s;, and s,3. However, in the case of

Eq. (17), the effect of increase in &, on /(1 —¢,) in the

6.0

(meV)

0.0 0.2 0.4 0.6 0.8

FIG. 5. Plot indicating the strong influence of the nonzero
values of the parameter {,on m,, for case I.
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FIG. 6. Plot showing influence of nonzero values of the
parameter £, on m,, for case II.

leading-order term is compensated by a corresponding

increase in /(1 + £,m,;,) with no significant impact on
s13. Furthermore, the principle conclusions drawn from
Figs. 2-4 in case I are also obeyed for this case due to
similar reasoning, indicating that the parameters ¢,, {,, and
£, have no observed implications for neutrino mixing angles.

Although the allowed values of the parameter {, con-
tinue to have no impact on m,, for this case, the same is not
observed to be true for the remaining parameters, namely &,
and {,. The plot depicting the dependence of m,, on &, is
shown in Fig. 6, while that for m,, versus ¢, is observed to
be similar to Fig. 5, reinforcing the idea that the nonzero
values of the parameters &, and {, have vital implications
for the allowed range of m,,. Interestingly, both the
nonredundant parameters £, and ¢, are involved in the
neutrino mass matrix. As a result, only the parameter £,
may be considered to be completely redundant for this case,
leading to four texture zeros involved in the resulting lepton
mass matrices, i.e., with ({, =0, &, =0, £, #0, {, #0).

VII. CONCLUSIONS

We observe that even though the neutrino mixing pattern
is significantly different from the quark mixing pattern, it
can also be described by natural mass matrices. Using the
considerations of unitary transformations, the seesaw
mechanism, and a hierarchical parametrization for the
lepton mass matrices, through the condition of naturalness,
ie., (£.,C,, &, &) < 1, we have been able to illustrate the
effect of lepton mass hierarchies on lepton mass mixing by
exact relations involving lepton mass ratios, the hierarchy
characterizing parameters, and the phases ¢; and ¢,. It has
been clearly shown that for the recent three neutrino
oscillation data at 16 C.L., the most general texture three
zero lepton mass matrices of Egs. (4), (5), obtained through
unitary WB transformations, are physically equivalent to
texture six zero Hermitian lepton mass matrices with
£, =0,¢,=0,¢,=0 and {, =0, when the condition
of naturalness is imposed on these and considerations of
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0.02 1
0.01 1
B
&
= 0.00 1
-0.01 -

-0.02 -

-0.03 . - . :
0.0 0.2 0.4 0.6 0.8

FIG. 7. Plot showing the implications of the nonredundant
parameter ¢, for Jcp.

m,, are not taken into account. In particular, we find that no
additional restrictions are imposed on the three mixing
angles by the inclusion of nonzero values of the additional
free parameters &,, &,, {,, and {,. For such texture six zero
lepton mass matrices, the relations for the three mixing
angles reduce to the ones derived by FSTY [10], if one
ignores the contributions of \/m, 5, \/M,3, /M3, and
m,,; as compared to unity and considers (,53)"/* > /m;.

On the contrary, if m,, is taken into consideration,
Fritzsch-like texture five zeros with &, =0, &, =0,
¢, =0, and {, # 0 naturally emerge as the most general
(or generic) lepton mass textures involving a maximum
number of texture zeros. It is perhaps desirable to study the
implications of these texture five zero structures for the
possible CP violation in the lepton sector. In view of this,
we investigate, in Fig. 7, the implications of the non-
redundant free parameter ¢, for the Jarlskog’s rephasing
invariant CP-violation measure Jcp [21] defined through

Jep =Im[V,3VEVi Vo). (22)

PHYSICAL REVIEW D 89, 053007 (2014)

We find that the current three neutrino oscillation data at 1o
in Eq. (19) allow Jcp =0 for 0 <, < 0.045, but the
higher nonzero values of {, have vital implications on
the allowed values of Jp, i.e., —0.025 < Jp < 0.025,
thereby reinforcing the nonredundancy of ¢, for neutrino
oscillation phenomenology as well as indicating a possible
CP violation in the lepton sector, in agreement with
Ref. [10]. In particular, for such matrices with &, =0,
£,=0,¢,=0,and {, # 0, we obtain the following limits
for m,,, m,;, m,, and m,3, e.g.,

3.7 meV < m,, < 5.7 meV,
0.3 meV < m,; < 2.0 meV,
8.5 meV < m,; < 9.0 meV,

48.6 meV < m,; < 50.3 meV, (23)
which are in good agreement with recent analyses by
several authors [7,10,16,22]. These neutrino masses are
stable to the radiative corrections introduced by the
renormalization group equations [23] when the lepton
mass matrices are energy rescaled. It is observed that for
mpg ~ O(10'°) GeV, these corrections are several orders of
magnitude (107® to 1075 times) smaller [10] than the
neutrino masses in Eq. (23). Such corrections do not appear
to disturb the natural structure of the corresponding lepton
mass matrices and hence the results obtained in this paper
are unaffected by these corrections. Furthermore, the above
values of neutrino masses appear to favor standard lepto-
genesis as the mechanism to produce the baryon asymme-
try in the Universe [24].
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